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Overview I
� Levels of computer-simulations in materials science

� Born-Oppenheimer approximation

Decoupling ions and electrons

Hellmann-Feynman theorem

� Ab-initio electronic structure methods

Hartree-Fock (HF) and post-HF approaches

Density-functional theory (DFT)

Local density approximation
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Overview II
� DFT methods - an overview

Density-only approaches

Thomas-Fermi theory

Parametrization of the density in terms of orbitals

Kohn-Sham theory

Choice of a basis-set

Plane waves vs. local orbitals

Pseudopotentials vs. all-electron methods

Solving the Kohn-Sham equations

Total-energy minimization: Car-Parrinello dynamics

Iterative diagonalization
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Levels of materials modelling

� Ab-initio techniques

Hartree-Fock and post-HF techniques - Quantum chemistry

Density functional techniques - Materials science

� Tight-binding techniques

� Force-field simulations

Molecular dynamics

Monte Carlo
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Born-Oppenheimer approximation I

Hamiltonian of the coupled electron-ion system:

N ions, coordinates

�

R1 ��� � � �
�

RN � �

R, momenta

�

P1 ��� � � �
�

PN � �

P, charges Z1 ��� � � � ZN ,

masses MI ��� � � � Mn

Ne electrons, coordinates �r1 ��� � � � �rN � �r, momenta �p1 ��� � � � �pN � �p, mass m

H � N
∑

I� 1

�
P2

I
2MI

	
Ne

∑
i� 1

�p2
i

2m	 ∑
i 
 j

e2

� �ri� �r j �	 ∑
I 
 J

ZIZJe2

� �Ri� �

RJ �
 ∑

i � I
ZIe2

� �RI� �ri �

� TN	 Te	 Vee �� r �	 VNN �
�

R �	 VNe �� r �
�

R �

(1)

Schrödinger equation

� TN	 Te	 Vee �� r �	 VNN �
�

R �	 VNe �� r �
�

R � � Φ � x �
�

R � � EΦ � x �
�

R � (2)

x� �� r � s � full set of electronic positions and spin variables

J. HAFNER, AB-INITIO MATERIALS SIMULATIONS Page 5



Born-Oppenheimer approximation II

Difference in the time-scales of nuclear and electronic motions �

quasi-separable ansatz

Φ � x �
�

R � � Ψ � x �
�

R � χ �
�

R � (3)

Ψ � x �
�

R � electronic wavefunction, χ �
�

R � nuclear wavefunction

χ �
�

R � is more localized than Ψ � x �
�

R �  � ∇Iχ �
�

R ��� ∇IΨ � x �
�

R �  �

decoupled adiabatic Schrödinger equations of electrons and nuclei

� Te	 Vee �� r �	 VeN �� r �
�

R � � Ψn � x �
�

R � � εn �
�

R � Ψn � x �
�

R �

� TN	 VNN �
�

R �	 ε �
�

R � � χ �
�

R � � Eχ �
�

R �

(4)

Electronic eigenvalue εn �
�

R � depends parametrically on the ionic positions

�

R
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Born-Oppenheimer approximation III

Adiabatic approximation: Ions move on the potential-energy surface of the

electronic ground state only.
� Te	 Vee �� r �	 VeN �� r �

�

R � � Ψ0 � x �
�

R � � ε0 �
�

R � Ψ0 � x �
�

R �

� TN	 VNN �
�

R �	 ε �
�

R � � χ �
�

R � t � � ih̄ ∂
∂t χ �

�

R � t �

(5)

Neglect quantum effects in ionic dynamics � replace time-dependent

ionic Schrödinger equation by classical Newtonian equation of motion

∂2 �

PI � t �

∂t2

�  ∇IE0 �
�

R �

E0 �
�

R � � ε0 �
�

R �	 VNN �
�

R �

(6)

Force ∇IE0 �
�

R � contains contributions from the direct ion-ion interaction

and a term from the gradient of the electronic total energy
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Hellmann-Feynman theorem

∇Iε0 �
�

R � � ∂
∂

�

RI

� Ψ0 � He �
�

R � � Ψ0 �

� � ∇IΨ0 � He �
�

R � � Ψ0 �

	 � Ψ0 � ∇IHe �
�

R � � Ψ0 �

	 � Ψ0 � He �
�

R � � ∇IΨ0 �

� � Ψ0 �
�

R � � ∇IHe �
�

R � � Ψ0 �
�

R � �

(7)

First and third terms in the derivative vanish due to variational property of

the ground-state � Forces acting on the ions are given by the expectation

value of the gradient of the electronic Hamiltonian in the ground-state

The electronic Schrödinger equation and the Newtonian equations of

motion of the ions, coupled via the Hellmann-Feynman theorem are the

basis of the Car-Parrinello method.
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Ab-initio electronic structure - Hartree-Fock methods

Quantum chemistry: Hartree-Fock and post-HF techniques

- Many-electron wavefunctions � Slater-determinants

Ψa
α1� � � αN � q1 ��� � � � qN � � 1

 N!

!!!!!!!!!

φα1 � q1 � " " " φα1 � qN �

...
...

φαN � q1 � " " " φαN � qN �
!!!!!!!!!

� 1

 N! ∑
P

� 1 � PPφα1 � q1 � " " " φαN � qN �

(8)

- Variational condition

δ� Ψa � H � Ψa �

� Ψa � Ψa �
� 0 (9)

Variation with respect to the one-electron orbitals φα
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Hartree-Fock methods II
 � Hartree-Fock equations

#
 h̄2

2m ∆ Ze2

r $ φi �� r �	 e2 ∑
j %� i

& � φ j � �r' � � 2

� �r� �r' � d3r( φi �� r �

 e2 ∑
j

j )+* i

∆szisz j&

φ, j � �r' � φi � �r' �

� �r� �r' � d3r( φ j �� r � � εiφi �� r �

(10)

Problems with Hartree-Fock calculations

� Computational effort scales badly with the number of electrons

� Neglect of correlations

- Too wide band gaps, too small band widths

- Exchange-operator for metallic systems singular at the Fermi level
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Post Hartree-Fock methods

Express wavefunction as linear combination of Slater determinants to

include correlation � ”Configuration interactions” - HF-CI

� Even higher computational effort, scaling worse

� Convergence problematic

� Metals ????
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Ab-initio electronic structure - Density-functional theory

Hohenberg-Kohn-Sham theorem:

- The ground-state energy of a many-body system is a unique functional of

the particle density, E0 � E � �� r � � .
- The functional E � �� r � � has its minimum relative to variations δn �� r � of the

particle density at the equilibrium density n0 �� r � ,

E � E � n0 �� r � � � min - E � �� r � �.

δE / n � �r �0

δn � �r � � n � �r �� no � �r � � 0
(11)
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Density-functional theory II

Total-energy functional

E � n � � T � n �	 EH � n �	 Exc � n �	 V �� r � n �� r � d3r (12)

T � n � � � � kinetic energy,
EH � n � � � � Hartree energy (electron-electron repulsion),
Exc � n � � � � exchange and correlation energies,
V �� r � external potential
- the exact form of T � n � and Exc is unknown !

Local density approximation - ”density only”:
- Approximate the functionals T � n � and Exc � n � by the corresponding
energies of a homogeneous electron gas of the same local density

 � Thomas-Fermi theory
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Density-functional theory III

Local density approximation - Kohn-Sham theory:

- Parametrize the particle density in terms of a set of one-electron orbitals

representing a non-interacting reference system

n �� r � � ∑
i

� φi �� r � � 2 (13)

- Calculate non-interacting kinetic energy in terms of the φi �� r � ’s,

T � n � � ∑
i

φ1 i �� r �  h̄2

2m
∇2 φi �� r � d3r (14)

- Determine the optimal one-electron orbitals using the variational condition

δE � � n �� r � �

δφi �� r �
� 0 (15)

 � Kohn-Sham equations
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Density-functional theory IV

E � n � � T � n �	 EH � n �	 Exc � n �	 V �� r � n �� r � d3r (16)

with the exchange-correlation energy

Exc � n �� r � � � n �� r � εxc � n �� r � � d3r � (17)

where εxc � n �� r � � is the exchange-correlation energy of a homogeneous
electron gas with the local density n �� r � � Kohn-Sham equations:

 h̄2

2m
∇2	 V �� r �	 e2 n �� r( �

�� r � r( �
d3r	 µxc � n �� r � �

2 34 5

Ve f f � �r �
φi �� r � � εiφi �� r � (18)

with the exchange-correlation potential

µxc � n �� r � � � δExc � n �� r � �

δn �� r �
� δ - n �� r � εxc � n �� r � �.

δn �� r �
(19)
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Solving the Kohn-Sham equations I

Choice of a basis set

� Plane waves and related basis functions

Plane waves

(Linearized) augmented plane waves - (L)APW’s

(Linearized) muffin-tin orbitals - (L)MTO’s

Projector augmented waves -PAW’s

� Localized orbitals

Atomic orbitals - LCAO’s

Gaussian orbitals

� Mixed basis sets

� Discrete variable representations
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Basis sets I

Localized orbitals

� Well localized orbitals allow, at least in principle, linear scaling of DFT

calculations with the system size.

� Loss of accuracy for strong localization

� Basis depends on ionic positions � Pulay corrections have to be

added to the Hellmann-Feynman forces

� Basis-set completness and superposition errors are difficult to control

� For Gaussians: many integrals appearing in the DFT functional can be

done analytically
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Basis sets II

Plane waves (PW’s)

� Natural choice for system with periodic boundary conditions

� It is easy to pass from real- to reciprocal space representation (and vice

versa) by FFT

� No Pulay correction to forces on atoms

� Basis set convergence easy to control

� Convergence slow �

- Electron-ion interaction must be represented by pseudopotentials or

projector-augmented wave (PAW) potentials

- Use LAPW’s or mixed basis sets
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Pseudopotentials I
� Slow convergence of PW expansion caused by the necessity to

reproduce nodal character of valence orbitals

� Nodes are the consequence of the orthogonality to the tightly-bound

core-orbitals �

� Eliminate the tightly-bound core states and the strong potential binding

these states:

- Use ”frozen-core” approximation

- Project Kohn-Sham equations onto sub-space orthogonal to

core-states � orthogonalized plane waves ...., or

- Replace strong electron-ion potential by a weak pseudopotential

which has the same scattering properties as the all-electron potential

beyond a given cut-off radius

J. HAFNER, AB-INITIO MATERIALS SIMULATIONS Page 19



Pseudopotentials II

Scattering approach to pseudopotentials

� Perform all-electron calculation for atom or ion at a reference energy ε

� Define a cut-off radius rc well outside the node of the highest core-state

� Construct a pseudo valence-orbital φ̃l that is identical to the all-electron

orbital φl for r 6 rc, but nodeless for r 7 rc and continuous and

continuously differentiable at rc

� The scattering phase-shifts for electrons agree (modulo 2π) if the

logarithmic derivatives of φl and φ̃l agree on the surface of the cut-off

sphere:

∂ logφl � r � ε �

∂r

� ∂ logφ̃l � r � ε �
∂r � at r � rc (20)
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Pseudopotentials III

Modern pseudopotentials

� Norm-conserving pseudopotentials (NC-PP)

Norm-conservation: charge within cut-off sphere fixed

High cut-off energies for first-row and transition elements

� Ultrasoft pseudopotentials - (US-PP)

- Norm-conservation relaxed - more freedom for pseudizing 2p and

3d states

- Add augmentation charges inside the cut-off sphere to correct

charge

- Multiple reference energies - improved transferability

- Lower cut-off energies

J. HAFNER, AB-INITIO MATERIALS SIMULATIONS Page 21



Pseudopotentials IV

Projector-augmented waves - PAW’s

- Pseudization as for ultrasoft potentials

- Reconstruction of exact wavefunction in the core region �

Decomposition of wavefunctions (ϕlmε � ϕ̃lmε - partial waves)

� φn � � � φ̃n �  ∑
atoms

� ϕ̃lmε � clmε 	 ∑
atoms

� ϕlmε � clmε

exact W F pseudo W F pseudo onsite W F exact onsite W F
� augmentation � � compensation �

(21)

Pseudo-WF represented on FFT-grid, on-site terms on atom-centred radial

grids

Same decomposition holds for charge densities, kinetic, Hartree, and

exchange-correlation energies and potentials
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Pseudopotentials vs. all-electron methods

FLAPW

� Plane-wave expansion in interstitial region

� Expansion in terms of spherical waves inside muffin-tin spheres (up to

l � 12)

US-PP, PAW

� Plane-wave expansion throughout entire cell

� Onsite terms represented on radial grids (up to l � 2 � 3 � )
PAW’s combine the accuracy of all-electron methods such as FLAPW with

the efficiency of pseudopotentials
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Solving the Kohn-Sham equations I

Direct minimization of the Kohn-Sham total-energy functional
� Preconditioned conjugate-gradient minimization

Gradient : Fl �� r � �  h̄2

2m
∇2	 Ve f f �� r � - φl �� r( . �  εl φl �� r � (22)

� Car-Parrinello (CP) method: Use dynamical-simulated annealing
approach for minimization � pseudo-Newtonian equations of motion
for coupled electron-ion system

Difficulties with direct minimization approaches:

� Difficult to keep wavefunctions orthogonal

� Bad scaling for metallic systems (”charge sloshing”)

� In CP calculations: no adiabatic decoupling for metals, the system
”drifts away from the Born-Oppenheimer surface”
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Solving the Kohn-Sham equations II

Iterative matrix diagonalization and mixing

General strategy:

� Start with a set of trial vectors (wavefunctions) representing all
occupied and a few empty eigenstates: - φn � n � 1 � � � � � Nbands.

� Improve each wavefunction by adding a fraction of the residual vector

� R � φn � � ,

� R � φn � � � � H εapp
n � � φn � � εapp

n � � φn � H � φn � (23)

� After updating all states, perform subspace diagonalization

� Calculate new charge density ρout

� Determine optimal new input-charge density (mixing old ρin and ρout)

� Iterate to selfconsistency
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Solving the Kohn-Sham equations III

Algorithms implemented in VASP

� Updating the wavefunctions

- Blocked Davidson algorithm

- RMM-DIIS: Residuum minimization method - direct inversion in

the iterative subspace: minimize norm� Rn � Rn � of residual vector

to each eigenstate (no orthogonality constraint)

� Mixing:

- DIIS
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Ionic structure and dynamics I

Static optimization of crystal structure

Atomic coordinates at fixed cell-shape:Hellmann-Feynman forces

Geometry of the unit cell: Hellmann-Feynman stresses

Algorithms implemented in VASP:

� Conjugate gradient technique

� Quasi-Newton scheme

� Damped molecular dynamics
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Ionic structure and dynamics II

Ab-initio molecular dynamics (AIMD)

� Car-Parrinello MD (not implemented in VASP):

- Works well for insulators and semiconductors

- Time-step controlled by evolution of eigenstates

- For metals, the systems tends to drift away from the

Born-Oppenheimer surface due to the coupling of electrons and ions

- Must use ”Two-thermostat” approach for metals

� MD on the Born-Oppenheimer surface: Hellmann-Feynman MD

- Stable also for metals, canonical ensemble realized using Nosé

thermostat

- Time-step controlled by ionic dynamics
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