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Outline

� exchange and correlation in DFT

� local density and local spin density approximation

� generalised gradient approximation

� semilocal functionals beyond GGA

� VASP input and output

� nonlocal and hybrid functionals

� applications
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DFT basic theorems

DFT energy functional:

E � n � � T � n ��� dr Vext � r � n � r � �

1
2

dr dr� n � r � n � r� �

	 r
 r� 	
� Exc � n � (1)

Hohenberg-Kohn theorems [1]:

HK1 The full many-particle ground state is a unique functional of n � r � .
HK2 E � n � assumes its minimum value for the ground state density w.r.t. all densities

fullfilling � n � r � dr � N.
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Finding the minimum energy
� Minimizing the energy functional (1) directly

∂T � n �

∂n � r �
� Vext � r � � dr� n � r� �

1

	 r
 r� 	
� ∂Exc � n �

∂n � r �
� λn � r �� (2)

� Solving the Kohn-Sham equations [2]


 1
2

∇2� Vext � r � � Vxc � r � � dr� n � r� �

1

	 r
 r� 	

ψk � r � � εkψk � r �� (3)

leading to

E �

N

∑
k� 1

εk


1
2

dr dr� n � r � n � r� �

	 r
 r� 	
� Exc � n �
 dr Vxc � n � r � � n � r �� (4)

only Exc � n � and Vxc � n � r � ���

∂Exc � n �
∂n � r � are to be approximated!
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Exchange-correlation energy

Exc � n � � T � n �
 T0 � n ��� Uxc � n �� (5)

T � n �
 T0 � n � . . . kinetic energy difference of interacting and non-interacting system
Uxc � n � . . . Coulomb interaction of electrons with exchange correlation hole nxc

Adiabatic connection formula:

Exc � n � � 1
2

dr n � r � dr�

1

0
dλ

nxc � λ � r� r� �

	 r
 r� 	 � (6)

λ . . . interaction parameter.

Coulomb interaction is isotropic:

Exc � n � � 1
2

dr n � r �

∞

0
dRR2 1

R
dΩ

1

0
dλnxc � λ � r� R �� (7)
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Exchange-correlation hole nxc � rσ � r� σ� �

Definition from two-electron density matrix,

ρ2 � rσ� r� σ� ��� nσ � r � � nσ � r� � � nxc � rσ� r� σ� � ! � (8)

nxc is local,
lim

" r# r "%$ ∞
nxc � rσ� r� σ� � � 0� (9)

from the Pauli exclusion principle follows

nxc � rσ� rσ � � 
 nσ � r �� (10)

Dividing nxc in exchange and correlation part,
nxc � rσ� r� σ� � � nx � rσ� r� σ� � � nc � rσ� r� σ� � � yields

nx � rσ� r� σ� �& 0� dr� nx � rσ� r� σ� � � 
 δσ � σ � (11)

and
dr� nc � rσ� r� σ� � � 0� (12)
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Scaling relations (see eg. [3])

Lieb-Oxford bound,

Exc � n �' 
 D drn4 ( 3 � r � � 1� 44& D& 1� 68� (13)

Uniform scaling, e.g.,

Ex � γ3n � γr � � � γEx � n � r � �� Ec � γ3n � γr � �*) γEc � n � r � � � γ) 1 �� (14)

lim
γ$ 0

1
γ

Exc � γ3n � γr � �� B � n � r � �*+ Exc � n � r � �� (15)

non-uniform scalin, e.g.,

lim
γ$ 0

1
γ

Exc � γ2n � γx� γy� z � �) 
 ∞ (16)

lim
γ$ ∞

Exc � γn � γx� y� z � �) 
 ∞� (17)

. . . and many more.
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Local Density Approximation (LDA) I

Exc � dr n � r � εxc � n � r � �� (18)

εxc � n � r � � . . . exchange correlation energy of a uniform electron gas.

Exchange:

Ex � ∑
σ


 k dr n
4
3
σ � r � � (19)

with k � 2
24 , 3

3
2 � 3

4π !

1
3 in LDA and k � 3

2 � 3
4π !

1
3 in LSDA.

Correlation:
Parametrised from quantum Monte Carlo Simulations.

R. HIRSCHL, DFT IN DEPTH Page 8



Local Density Approximation (LDA) II

� fully local

� exchange and correlation of a physical system

� obeys uniform scaling relations (e.g. 14,15)

� does not obey non-uniform scaling relations (e.g. 16,17)

� although qualitatively wrong exchange-correlation hole, good approximation for
the spherical average

Overall, LDA performs remarkably well!
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Local Density Approximation (LDA) III

Figure 1: Exact and LSDA local (top) and integrated (bottom) exchange hole in a
nitrogen atom (from [4]).
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Spin-polarised exchange-correlation

Replacing scalar potentials and densities by spin-matrices [5]

V � r �.- Vαβ � r � n � r � - nαβ � r � � (20)

HK1 is lost (class of potentials leads to same density matrix).

BUT: ground-states and derived quantities of the classes are equal

- DFT still valid.

Exchange energy treated seperatly for both spins

Correlation energy Commonly written as functionals of rs ∝ ρ# 1 ( 3 and ζ � n / # n 0

n

� von Barth and Hedin: correlation potential and energy from RPA

� Vosko, Wilk, and Nusair: included interpolations from quantom Monto Carlo
results for ζ � 0 and ζ � 1.
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Gradient Expansion Approximation (GEA)

Already suggested by Kohn and Sham [2],

EGEA
xc � n 1 � n 2 � � dr n � r � εxc � n 1 � r �� n 2 � r � � �

� ∑
σ � σ 

Cσ � σ � n 1 � r �� n 2 � r � �

∇nσ

n2 ( 3
σ

∇nσ 

n2 ( 3
σ 

� (21)

� nxc not the exchange-correlation hole of any physical system

� improvement over LSDA for slowly varying systems

Typically GEA performs worse than LSDA for real electronic systems.
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Generalised Gradient Approximation (GGA)

General semilocal approximation to the exchange-correlation energy as a functional of
the density and its gradient to fullfill a maximum number of exact relations,

EGGA
xc � n 1 � n 2 � � dr f � n 1 � r � � n 2 � r � � ∇n 1 � r �� ∇n 2 � r � �� (22)

Exchange correlation potential:

Vxc � n � r � � � ∂Exc � n �
∂n � r �


 ∇3 ∂Exc � n �

∂ � ∇n � r � �
� (23)

The gradient of the density is usually determined numerically.
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GGA Examples I
� Langreth-Mehl 1983 (LM)

– Construction from wave-vector analysis of Exc

– Correlation term for small k set to zero

– Correction in right direction but major shortcomings, e.g. uniform gas limit is
not correct

� Perdew-Wang 1986 (PW86)

– real space cutoff to Ex of GEA

– reciprocal space cutoff to Ec of GEA

� Becke-Perdew 1988 (BP)

– Improved exchange functional with a single adjustable parameter

� Lee-Yang-Parr 1988 (LYP)

– correlation functional derived from the Cole-Salvetti formula
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GGA Examples II
� Perdew-Wang 1991 (PW91) [6]

– purely ab-initio

– fullfills almost all scaling relations except high density limit of uniform
scaling

Exchange energy:

EPW91
x � n � � 
 drn

3kF

4π
1� 0� 1965ssinh# 1 � 7� 796s � � � 0� 274
 0� 151e# 100s2

� s2

1� 0� 1964ssinh# 1 � 7� 796s � � 0� 004s4

Correlation energy:

EPW91
c � n � � drn � εc � rs� ζ � � H � t� rs� ζ � �

with kF � � 3π2n � 1 ( 3, s � 	 ∇n 	4 2kF n, t � 	 ∇n 	4 2gksn, g � � � 1� ζ � 2 ( 3� � 1
 ζ � 2 ( 3 � 4 2,
and ks � � 4kF4 π � 1 ( 2.
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GGA Examples III
� Perdew-Burke-Ernzerhof 1996 (PBE)

– simplification of the derivation of PW91

– only minor changes to PW91

� Revised Perdew-Burke-Ernzerhof 1999 (RPBE)

– semi-empirical change of PBE to improve atomisation energies of small
molecules and chemisorption energies of atoms and molecules on transition
metal surfaces

Many GGAs are tailored for specific classes of problems and have
therefore a limited general applicability.
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Extending the GGA

Problem:

� GGA cannot describe the r- ∞ limit of the xc-energy density and the
xc-potential simultaneously correctly.

Solution:

� include further semilocal information of the density, e.g. ∆n � r �

� include semilocal information of the orbitals, e.g. the kinetic energy density,

τ � r � � 1
2

N

∑
k� 1

	 ∇ψk � r � 	 2� (24)
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Laplacian of the density

Advantage:

� straight forward exchange-correlation potential

Vxc � n � r � � � ∂Exc � n �

∂n � r �

 ∇3 ∂Exc � n �

∂ � ∇n � r � �
� ∆3 ∂Exc � n �

∂ � ∆n � r � �

(25)

Disadvantage:

� numerically unstable

Examples:

� Jemmer and Knowles (1995)

� Filatov and Thiel (1998) (FT98)
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Kinetic energy density

modifications of the LDA which do not consider the nature of the orbitals
involved are unlikely to be satisfactory in all systems

Jones and Gunarsson 1985

Problem:

� Determination of the exchange-correlation potential

Solution:

� Optimised effective potential method

∑
i

dr� V OEP
xc � r� �


1
ψi � r� �

∂Exc �5 ψi 6 �

∂ψ 7
i � r� �

ψ 7

i � r� � Gi � r� � r � ψi � r � � c� c� � 0

� Neumann-Nobes-Handy method

ψiVxcψkdr � � � � � ∇ψi 2
∂εxc � n� ∇n� τ �

∂τ
∇ψkdr
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VASP Input
� Choose the exchange correlation functional

– via the POTCAR file

– by setting GGA = |CA|91|PE|RP in the INCAR file

8 (two blanks) . . . LDA exchange only

8 CA . . . LDA exchange and correlation

� Switch on non-selfconsistent PKZB meta-GGA energy

– based on PBE potentials (only those include the kinetic energy density)

– set LMETAGGA=.TRUE. in the INCAR file

� non-selfconsistent aspherical contributions to the on-site GGA energy (PAW
potentials only)

– set LASPH=.TRUE. in the INCAR file
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VASP output
� OSZICAR and stdout:

1 F= -.35333292E+01 E0= -.35333292E+01 d E =-.748238E-17

1 F(ASPHER.)= -.35567321E+01 E0(ASPHER.)= -.35567321E+01

1 F(METAGGA)= 0.32195711E+01 E0(METAGGA)= 0.32195711E+01

� OUTCAR:

ASPHERICAL CONTRIBUTION TO EXCH AND CORRELATION IN SPHERES (eV)

---------------------------------------------------

standard PAW PS : AE= 135.083574 -166.260165

Aspheric PAW PS : AE= 135.115379 -166.315373

core xc AE= -1334.998410

---------------------------------------------------

Aspherical result:

free energy TOTEN = -3.556732 eV

energy without entropy= -3.556732 energy(sigma->0) = -3.556732
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� OUTCAR cont’d:

METAGGA EXCHANGE AND CORRELATION (eV)

---------------------------------------------------

LDA+GGA E(xc) EXCG = -164.793059

LDA+GGA PAW PS : AE= 135.115379 -166.315373

core xc AE= -1334.998410

metaGGA E(xc) EXCM = -164.476006

metaGGA PAW PS : AE= 134.494206 -159.234950

metaGGA core xc AE= -1378.140708

---------------------------------------------------

METAGGA result:

free energy TOTEN = 3.219571 eV

energy without entropy= 3.219571 energy(sigma->0) = 3.219571
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Hybrid functionals

Motivation:
Adiabatic connection formula (6)

Exc � n � �

1

0
Uxc � λ � n � dλ9 1

2
Uxc � 0 � n ���

1
2

Uxc � 1 � n � (26)

Uxc � 0 � n � . . . nonlocal exchange energy of KS-orbitals
Uxc � 1 � n � . . . potential energy of exchange-correlation

Common hybrid functional B3LYP:

Exc � � 1
 a0 � ELSDA
x � a0Eexact

x � ax∆EB88
x � acELYP

c � � 1
 ac � EVWN
c � (27)

a0 � 0� 20, ax � 0� 72, and ac � 0� 81.
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Implementation of exact exchange

Eexact
x is a sum of four-center integrals,

Eexact
x � 
 1

2

N

∑
m � n

fn fm
drdr�

	 r
 r� 	

φ 7

m � r � φm � r� � φn � r � φ 7

n � r� � � (28)

Scaling problem:

� DFT scaling (VASP): O � N2 �

� Ex scaling (plane waves): O � N3 logN �
Periodic boundary conditions (PBC):

� Integrable divergence in reciprocal space for G � 0.

� Remove the singulartiy due to PBC by “localising” the orbitals.
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Application I: Small Molecules
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Figure 2: Atomisation energy errors (Ecalc
 Eexp � of small molecules (results from [7]
(B3PW91) and [8])
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Application II: Adsorption path
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Figure 3: Minimum energy path (MEP) of the H2 approach over the Pd(111) surface
(RH, thesis)
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