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[ DFT basic theorems ]

DFT energy functional:

Eln| = +/dr Vext (T /dr/dr
r— l"|

Hohenberg-Kohn theorems [1]:
HK1 The full many-particle ground state is a unique functional of n(r).

HK2 E|[n] assumes its minimum value for the ground state density w.r.t. all densities
fullfilling [ n(r)dr = N.
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[ Finding the minimum energy ]

e Minimizing the energy functional (1) directly

s
on(r)

1

1 Vet (r) + / anl)

e Solving the Kohn-Sham equations [2]

<_lv2+vext( ) 4 Ve (1) /drn : )\pk( ) =gye(r), (3

2 r—r|

leading to

E = Zsk——/dr/dr e r’| /dr el

[only Exc[n] and V[n(r)] = =225 are to be approximated! ]
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[ Exchange-correlation energy J

Exc[n] = T|n] — Ty[n] + Uxc[n],

T[n] — To|n] .. . kinetic energy difference of interacting and non-interacting system
Uxc|n] ...Coulomb interaction of electrons with exchange correlation hole .

Adiabatic connection formula:
welr,r
/drn /dr/dk e >,
r—r’|

Coulomb interaction is isotropic:

1 w2l 1
=5 [ drn) [ arR* L [ dQ [ dhnea (v R)
2 0 R 0 ’

R. HIRSCcHL, DFT IN DEPTH

A ...interaction parameter.

)

Page 5



[Exchange-correlation hole nx.(ro,r'c’) ]

Definition from two-electron density matrix,
P2(ro,r'6’) = ng(r) (ny (') + nx(ro,r'c’)),
Ny 18 local,
lim 75y (ro,r'c’) =0,
[r—1/|—00

from the Pauli exclusion principle follows

Nxe(ro,ro) = —ng(r).

Dividing ny. in exchange and correlation part,
nxe(ro,r'c’) = ny(ro,r'c’) + n.(ro,r'c’), yields

ny(ro,r'c’) <0, /dr’ nx(ro,r'c’) = =85 o,

/dr’ ne(ro,r'c’) =0.
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[ Scaling relations (see eg. [3]) ]

Lieb-Oxford bound,

Ey.[n] > —D/drn4/3(r), 1.44 <D < 1.68.
Uniform scaling, e.g.,

Ex[Y'n(yw)] =vEx[n(r)],  Ec[y’n(yr)] > YE[n(r)] (y>1),

1

jim §Exc [Yn(yr)] = Bln(r)] < Exc[n(r)].

non-uniform scalin, e.g.,

1
lim — Exc [y n(yx,vy,2)] > —oo
—0 7Y

lim Exom(ye,7,2)] > —

...and many more.
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[ Local Density Approximation (LDA) I ]

E— / dr n(r) e (n(r)).

€xc(n(r))...exchange correlation energy of a uniform electron gas.

Exchange:

with k = 353 (45)° in LDA and k

Correlation:
Parametrised from quantum Monte Carlo Simulations.
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[ Local Density Approximation (LDA) I1 ]

fully local

exchange and correlation of a physical system

obeys uniform scaling relations (e.g. 14,15)

does not obey non-uniform scaling relations (e.g. 16,17)

although qualitatively wrong exchange-correlation hole, good approximation for
the spherical average

[ Overall, LDA performs remarkably well! ]
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[ Local Density Approximation (LDA) 111 ]

Figure 1: Exact and LSDA local (top) and integrated (bottom) exchange hole in a
nitrogen atom (from [4]).
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[ Spin-polarised exchange-correlation ]

Replacing scalar potentials and densities by spin-matrices [5]
V(r)— Voc[S(r) n(r) — nocB(r)a

HK1 i1s lost (class of potentials leads to same density matrix).

BUT: ground-states and derived quantities of the classes are equal
— DFT still valid.

Exchange energy treated seperatly for both spins

Correlation energy Commonly written as functionals of rg o< p_l/ 3and { = _”T;’%

e von Barth and Hedin: correlation potential and energy from RPA

e Vosko, Wilk, and Nusair: included interpolations from quantom Monto Carlo
results for C=0and { = 1.
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[ Gradient Expansion Approximation (GEA) ]

Already suggested by Kohn and Sham [2],

ECEA[n )] = / dr n(r) exe (nr(r),n, (1)) +

Vns Vng
+ Z CG,G’ (nT(r)7ni(r))nz/§ 2/(; '

0,0’ G nc’

e 7. not the exchange-correlation hole of any physical system

e improvement over LSDA for slowly varying systems

[ Typically GEA performs worse than LSDA for real electronic systems. ]
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[ Generalised Gradient Approximation (GGA) J

General semilocal approximation to the exchange-correlation energy as a functional of
the density and its gradient to fullfill a maximum number of exact relations,

ESCGA[HT,FLL] = /dl’ f(nT(r),ni(r),VnT(r),Vni(r)), (22)

Exchange correlation potential:

0Ex.[n]
d(Vn(r))

V.

The gradient of the density is usually determined numerically.
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[ GGA Examples 1 ]

Langreth-Mehl 1983 (LM)
— Construction from wave-vector analysis of Ex¢
— Correlation term for small & set to zero

— Correction in right direction but major shortcomings, e.g. uniform gas limit is

not correct

Perdew-Wang 1986 (PW86)
— real space cutoff to Ex of GEA
— reciprocal space cutoff to E. of GEA

Becke-Perdew 1988 (BP)

— Improved exchange functional with a single adjustable parameter

Lee-Yang-Parr 1988 (LYP)

— correlation functional derived from the Cole-Salvetti formula
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[ GGA Examples 11 ]

e Perdew-Wang 1991 (PWO1) [6]
— purely ab-initio

— fullfills almost all scaling relations except high density limit of uniform
scaling

Exchange energy:

1 — _ 2
EPWOL ) — / e 3kr 1+0.1965ssinh 1 (7.796s) + (0.274 — 0.151e™1%)s2
" 4 14 0.1964ssinh~ 1 (7.796s) + 0.004s*

Correlation energy:

EPWOL,] — / drn (eo(rs,C) + H (1,75, 0))

with kr = (3n2n)'/3, s = |Vn|/2kpn, t = |Vn|/2gksn, g = [(14+0)?3 + (1 =)?/3]/2,
and k, = (4kp /m)V/2.
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[ GGA Examples 111 J

e Perdew-Burke-Ernzerhof 1996 (PBE)
— simplification of the derivation of PW91
— only minor changes to PW91

e Revised Perdew-Burke-Ernzerhof 1999 (RPBE)

— semi-empirical change of PBE to improve atomisation energies of small
molecules and chemisorption energies of atoms and molecules on transition
metal surfaces

Many GGAs are tailored for specific classes of problems and have
therefore a limited general applicability.

R. HIrScHL, DFT IN DEPTH Page 16



[ Extending the GGA J

Problem:

e GGA cannot describe the r — oo limit of the xc-energy density and the
xc-potential simultaneously correctly.

Solution:
e include further semilocal information of the density, e.g. An(r)

e include semilocal information of the orbitals, e.g. the kinetic energy density,

1N

1(r) == Y [Vy(n) [, (24)

2 k=1
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[ Laplacian of the density ]

Advantage:

e straight forward exchange-correlation potential

_ 0Ex|n] 0Fx. |n] 0FEx. [n]
Vacln(r)] = on(r) -V 8(Vn(r))+A o(An(r))
Disadvantage:

e numerically unstable

Examples:

e Jemmer and Knowles (1995)

e Filatov and Thiel (1998) (FT98)
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[ Kinetic energy density ]

modifications of the LDA which do not consider the nature of the orbitals
involved are unlikely to be satisfactory in all systems

Jones and Gunarsson 1985
Problem:
e Determination of the exchange-correlation potential
Solution:

e Optimised effective potential method

¢ ( VOEP(r 1 dExc[{Vi}] NG (v P (E) e —
/d (V Wi(r,) a\|f:<(l") )\lfl( )Gl( , )W;( )+ .C. 0

e Neumann-Nobes-Handy method

xe (1, Vn,
/ WiVewdr = ...+ / v 2% <’gt ") G
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[ VASP Input J

e Choose the exchange correlation functional
— via the POTCAR file

— by setting GGA = __|CA|91|PE|RP in the INCAR file
* __ (two blanks) ...LDA exchange only

* CA ...LDA exchange and correlation
e Switch on non-selfconsistent PKZB meta-GGA energy
— based on PBE potentials (only those include the kinetic energy density)
— set LMETAGGA=.TRUE. in the INCAR file
e non-selfconsistent aspherical contributions to the on-site GGA energy (PAW
potentials only)

— set LASPH=.TRUE. in the INCAR file
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[ VASP output ]

e OSZICAR and stdout:

1 F= -.35333292E+01 EO= -.35333292E+01 d E =-.748238E-17
1 F(ASPHER.)= -.35567321E+01 EO (ASPHER.)= -.35567321E+01

1 F(METAGGA)= 0.32195711E+01 EO (METAGGA)= 0.32195711E+01

OUTCAR:

ASPHERICAL CONTRIBUTION TO EXCH AND CORRELATION IN SPHERES (eV)

standard PAW PS : AE= 135.083574 -166.260165
Aspheric PAW PS : AE= 135.115379 -166.315373

core xc AE= -1334.998410

Aspherical result:
free energy TOTEN = -3.556732 eV

energy without entropy= -3.556732 energy(sigma->0) = -3.556732
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e OUTCAR cont’d:

METAGGA EXCHANGE AND CORRELATION (eV)

LDA+GGA -164.793059

LDA+GGA : 135.115379 -166.315373
core xc AE= -1334.998410

metaGGA E(xc) EXCM = -164.476006

metaGGA PAW PS : AE= 134.494206 -159.234950

metaGGA core xc AE= -1378.140708

METAGGA result:

free energy TOTEN 3.219571 eV

energy without entropy= 3.219571 energy(sigma->0) = 3.219571
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[ Hybrid functionals ]

Motivation:

Adiabatic connection formula (6)

 Ureoln] + ~Usealn]
> xc,0 [ > xc,1 (1

1
Excln = [ Usealndr =

Uxcoln] .. .nonlocal exchange energy of KS-orbitals
Uxc.1|n] ... potential energy of exchange-correlation

Common hybrid functional B3LYP:
Exc = (1 —ag) EFPPA 4 o EZ* 4+ 0 AEB® + 0 EVYP + (1 — a ) EYWN, (27)

ao = 0.20, a, = 0.72, and a, = 0.81.
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[ Implementation of exact exchange ]

E*2t is a sum of four-center integrals,

drdr’
r —r|

O (1) Om (1) 0 () 9, (r'),

Eexact . _1]2\]:][ f
X _ 2 nJgm
m,n

Scaling problem:
e DFT scaling (VASP): O(N?)
e E, scaling (plane waves): O(N>logN)
Periodic boundary conditions (PBC):
e Integrable divergence in reciprocal space for G = 0.

e Remove the singulartiy due to PBC by “localising” the orbitals.
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[Application [: Small Molecules ]
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Figure 2: Atomisation energy errors (Ecalc — Eexp) of small molecules (results from [7]
(B3PWO91) and [8])
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[Application II: Adsorption path ]

Pd (111) PBE ——

Pd (111) RPBE — — —

Pd (111) PKZB (apgg) - - - -
Pd (111) PKZB (apyzg) ------- -

Figure 3: Minimum energy path (MEP) of the H, approach over the Pd(111) surface
(RH, thesis)
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