DFT in depth

the exchange-correlation term

Robin HIRSCHL

Institut fur¨ Materialphysik and Center for Computational Material Science Universitat¨ Wien, Strudlhofgasse 4, A-1090 Wien, Austria

Outline

- exchange and correlation in DFT
- local density and local spin density approximation
- generalised gradient approximation
- semilocal functionals beyond GGA
- VASP input and output
- nonlocal and hybrid functionals
- applications

DFT basic theorems

DFT energy functional:

$$
\boxed{DFT \text{ basic theorems}}
$$
\n(y functional):

\n
$$
E[n] = T[n] + \int d\mathbf{r} \, V_{\text{ext}}(\mathbf{r}) n(\mathbf{r}) + \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \frac{n(\mathbf{r}) n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + E_{\text{xc}}[n] \tag{1}
$$

Hohenberg-Kohn theorems [1]:

- **HK1** The full many-particle ground state is a unique functional of $n(\mathbf{r})$.
- $\bf{HK2}$ $E[n]$ assumes its minimum value for the ground state density w.r.t. all densities fullfilling $\int n(\mathbf{r})d\mathbf{r}=N$.

Finding the minimum energy

Minimizing the energy functional (1) directly

the energy functional (1) directly
\n
$$
\frac{\partial T[n]}{\partial n(\mathbf{r})} + V_{\text{ext}}(\mathbf{r}) + \int d\mathbf{r}' n(\mathbf{r}') \frac{1}{|\mathbf{r} - \mathbf{r}'|} + \frac{\partial E_{\text{xc}}[n]}{\partial n(\mathbf{r})} = \lambda n(\mathbf{r}).
$$
\n(2)

• Solving the Kohn-Sham equations [2]

$$
\int_{0}^{R} |I - I| \, dM(I)
$$
\nthe Kohn-Sham equations [2]

\n
$$
\left(-\frac{1}{2} \nabla^2 + V_{\text{ext}}(\mathbf{r}) + V_{\text{xc}}(\mathbf{r}) + \int d\mathbf{r}' n(\mathbf{r}') \frac{1}{|\mathbf{r} - \mathbf{r}'|} \right) \Psi_k(\mathbf{r}) = \varepsilon_k \Psi_k(\mathbf{r}), \qquad (3)
$$
\nto

\n
$$
E = \sum_{r=1}^{N} \varepsilon_k - \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \frac{n(\mathbf{r}) n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + E_{\text{xc}}[n] - \int d\mathbf{r} \, V_{\text{xc}}[n(\mathbf{r})] n(\mathbf{r}). \qquad (4)
$$

leading to

$$
\left(-\frac{1}{2}\nabla^2 + V_{\text{ext}}(\mathbf{r}) + V_{\text{xc}}(\mathbf{r}) + \int d\mathbf{r}' n(\mathbf{r}') \frac{1}{|\mathbf{r} - \mathbf{r}'|}\right) \Psi_k(\mathbf{r}) = \varepsilon_k \Psi_k(\mathbf{r}), \qquad (3)
$$

ling to

$$
E = \sum_{k=1}^N \varepsilon_k - \frac{1}{2} \int d\mathbf{r} \int d\mathbf{r}' \frac{n(\mathbf{r}) n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + E_{\text{xc}}[n] - \int d\mathbf{r} \, V_{\text{xc}}[n(\mathbf{r})] n(\mathbf{r}). \qquad (4)
$$
only $E_{\text{xc}}[n]$ and $V_{\text{xc}}[n(\mathbf{r})] = \frac{\partial E_{\text{xc}}[n]}{\partial n(\mathbf{r})}$ are to be approximated!

Exchange-correlation energy

$$
E_{\rm xc}[n] = T[n] - T_0[n] + U_{\rm xc}[n],\tag{5}
$$

 $T[n]-T_0[n] \ldots$ kinetic energy difference of interacting and non-interacting system $U_{\rm xc}[n]$. . . Coulomb interaction of electrons with exchange correlation hole $n_{\rm xc}$ $E_{\text{xc}}[n] = T[n] - T_0[n] + U_{\text{xc}}[n],$

the gy difference of interacting and non-is

ion of electrons with exchange correls

mula:
 $= \frac{1}{2} \int d\mathbf{r} n(\mathbf{r}) \int d\mathbf{r}' \int_0^1 d\lambda \frac{n_{\text{xc},\lambda}(\mathbf{r}, \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$

Adiabatic connection formula:

on formula:
\n
$$
E_{\text{xc}}[n] = \frac{1}{2} \int d\mathbf{r} \, n(\mathbf{r}) \int d\mathbf{r}' \int_0^1 d\lambda \, \frac{n_{\text{xc},\lambda}(\mathbf{r}, \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}, \tag{6}
$$
\n
$$
\text{ameter.}
$$
\n
$$
] = \frac{1}{2} \int d\mathbf{r} \, n(\mathbf{r}) \int_0^\infty dR R^2 \frac{1}{R} \int d\Omega \int_0^1 d\lambda n_{\text{xc},\lambda}(\mathbf{r}, \mathbf{R}). \tag{7}
$$

 λ . . . interaction parameter.

Coulomb interaction is isotropic:

$$
E_{\rm xc}[n] = \frac{1}{2} \int d\mathbf{r} \; n(\mathbf{r}) \int_0^\infty dR R^2 \frac{1}{R} \int d\Omega \int_0^1 d\lambda n_{\rm xc,\lambda}(\mathbf{r}, \mathbf{R}). \tag{7}
$$

Exchange-correlation hole $n_{\rm xc}(\mathbf{r}\sigma,\mathbf{r}'\sigma')$ **(rσ, r'σ'**

Definition from two-electron density matrix,

-electron density matrix,
\n
$$
\rho_2(\mathbf{r}\sigma, \mathbf{r}'\sigma') \equiv n_{\sigma}(\mathbf{r}) (n_{\sigma'}(\mathbf{r}') + n_{\text{xc}}(\mathbf{r}\sigma, \mathbf{r}'\sigma')) ,
$$
\n
$$
\lim_{\varepsilon \to 0} n_{\text{xc}}(\mathbf{r}\sigma, \mathbf{r}'\sigma') = 0, \tag{9}
$$

 $n_{\rm xc}$ is local,

$$
\lim_{|\mathbf{r}-\mathbf{r}'| \to \infty} n_{\text{xc}}(\mathbf{r}\sigma, \mathbf{r}'\sigma') = 0,
$$
\n(9)

from the Pauli exclusion principle follows

$$
n_{\rm xc}(\mathbf{r}\sigma,\mathbf{r}\sigma) = -n_{\sigma}(\mathbf{r}).\tag{10}
$$

Dividing $n_{\rm xc}$ in exchange and correlation part, *n*_{xc}(rσ,rσ) = -*n*
Dividing n_{xc} in exchange and correlation part,
 $n_{\text{xc}}(\mathbf{r}\sigma, \mathbf{r}'\sigma') = n_{\text{x}}(\mathbf{r}\sigma, \mathbf{r}'\sigma') + n_{\text{c}}(\mathbf{r}\sigma, \mathbf{r}'\sigma')$, yields **change and correlation part,**
 $(\mathbf{r}\sigma, \mathbf{r}'\sigma') + n_c(\mathbf{r}\sigma, \mathbf{r}'\sigma')$, yields
 $n_x(\mathbf{r}\sigma, \mathbf{r}'\sigma') \le 0, \qquad \int d\mathbf{r}' \ n_x(\mathbf{r}\sigma, \mathbf{r}'\sigma') = -\delta_{\sigma, \sigma'},$ (11)
 $\int d\mathbf{r}' \ n_c(\mathbf{r}\sigma, \mathbf{r}'\sigma') = 0.$ (12) (11)

and

$$
\int d\mathbf{r}' \, n_{\rm c}(\mathbf{r}\sigma, \mathbf{r}'\sigma') = 0. \tag{12}
$$

Scaling relations (see eg. [3])

Lieb-Oxford bound,

d,
\n
$$
E_{\text{xc}}[n] \ge -D \int d\mathbf{r} n^{4/3}(\mathbf{r}), \qquad 1.44 \le D \le 1.68.
$$
\n(13)
\n
$$
E_{\text{xc}}[n] = \gamma E_{\text{x}}[n(\mathbf{r})], \qquad E_{\text{c}}[\gamma^3 n(\gamma \mathbf{r})] > \gamma E_{\text{c}}[n(\mathbf{r})] \quad (\gamma > 1), \qquad (14)
$$
\n
$$
\lim_{n \to \infty} \frac{1}{n!} E_{\text{xc}}[\gamma^3 n(\gamma \mathbf{r})] = B[n(\mathbf{r})] < E_{\text{xc}}[n(\mathbf{r})]. \qquad (15)
$$

Uniform scaling, e.g.,

$$
E_{\mathbf{x}}[\gamma^3 n(\gamma \mathbf{r})] = \gamma E_{\mathbf{x}}[n(\mathbf{r})], \qquad E_{\mathbf{c}}[\gamma^3 n(\gamma \mathbf{r})] > \gamma E_{\mathbf{c}}[n(\mathbf{r})] \quad (\gamma > 1), \tag{14}
$$

$$
\lim_{\gamma \to 0} \frac{1}{\gamma} E_{\rm xc}[\gamma^3 n(\gamma \mathbf{r})] \equiv B[n(\mathbf{r})] < E_{\rm xc}[n(\mathbf{r})]. \tag{15}
$$

non-uniform scalin, e.g.,

$$
\lim_{\gamma \to 0} \frac{1}{\gamma} E_{\rm xc}[\gamma^2 n(\gamma x, \gamma y, z)] > -\infty \tag{16}
$$

$$
\lim_{\gamma \to \infty} E_{\rm xc}[\gamma n(\gamma x, y, z)] > -\infty, \tag{17}
$$

. . . and many more.

Local Density Approximation (LDA) I

$$
Density Approximation (LDA) I
$$

$$
E_{xc} = \int d\mathbf{r} \, n(\mathbf{r}) \, \varepsilon_{xc}(n(\mathbf{r})). \tag{18}
$$

 $\epsilon_{\rm xc}(n({\bf r}))$...exchange correlation energy of a uniform electron gas.

Exchange:

$$
E_{\rm x} = \sum_{\sigma} -k \int d\mathbf{r} \, n_{\sigma}^{\frac{4}{3}}(\mathbf{r}),\tag{19}
$$

 $\mathbf{E}_{\text{xc}}(n(\mathbf{r})).$... exchannibus:
 Exchange:

with $k = \frac{2}{2^{4/3}} \frac{3}{2} \left(\frac{3}{4\pi}\right)$ 1 $E_{\text{xc}} = \int d\mathbf{r} \, n(r)$

(ge correlation energy of a
 $E_{\text{x}} = \sum_{\sigma} -k$
 $\frac{1}{3}$ in LDA and $k = \frac{3}{2} \left(\frac{3}{4\pi}\right)$ 1 3 in LSDA.

Correlation:

Parametrised from quantum Monte Carlo Simulations.

Local Density Approximation (LDA) II

- fully local
- exchange and correlation of ^a *physical system*
- \bullet obeys uniform scaling relations (e.g. 14,15)
- does **not** obey non-uniform scaling relations (e.g. 16,17)
- although qualitatively wrong exchange-correlation hole, good approximation for the spherical average

Overall, LDA performs remarkably well!

Local Density Approximation (LDA) III

Figure 1: Exact and LSDA local (top) and integrated (bottom) exchange hole in ^a nitrogen atom (from [4]).

Spin-polarised exchange-correlation

Replacing scalar potentials and densities by spin-matrices [5]

$$
V(\mathbf{r}) \to V_{\alpha\beta}(\mathbf{r}) \qquad n(\mathbf{r}) \to n_{\alpha\beta}(\mathbf{r}), \tag{20}
$$

HK1 is lost (class of potentials leads to same density matrix).

BUT: ground-states and derived quantities of the classes are equal \rightarrow DFT still valid.

Exchange energy treated seperatly for both spins

Correlation energy Commonly written as functionals of $r_s \propto \rho^{-1/3}$ and $\zeta = \frac{n_f - n_l}{n}$

- von Barth and Hedin: correlation potential and energy from RPA
- Vosko, Wilk, and Nusair: included interpolations from quantom Monto Carlo results for $\zeta = 0$ and $\zeta = 1$.

Gradient Expansion Approximation (GEA)

Already suggested by Kohn and Sham [2],

Gradient Expansion Approximation (GEA)
ed by Kohn and Sham [2],

$$
E_{\text{xc}}^{\text{GEA}}[n_{\uparrow}, n_{\downarrow}] = \int d\mathbf{r} \, n(\mathbf{r}) \, \varepsilon_{\text{xc}}(n_{\uparrow}(\mathbf{r}), n_{\downarrow}(\mathbf{r})) +
$$

$$
+ \sum_{\sigma, \sigma'} C_{\sigma, \sigma'}(n_{\uparrow}(\mathbf{r}), n_{\downarrow}(\mathbf{r})) \frac{\nabla n_{\sigma}}{n_{\sigma'}^{2/3}} \frac{\nabla n_{\sigma'}}{n_{\sigma'}^{2/3}}.
$$
(21)

- n_{xc} not the exchange-correlation hole of *any* physical system
- improvement over LSDA for slowly varying systems

Typically GEA performs **worse** than LSDA for real electronic systems.

Generalised Gradient Approximation (GGA)

General *semi*local approximation to the exchange-correlation energy as ^a functional of the density and its gradient to fullfill ^a maximum number of exact relations,

$$
E_{\rm xc}^{\rm GGA}[n_\uparrow, n_\downarrow] = \int d\mathbf{r} \, f(n_\uparrow(\mathbf{r}), n_\downarrow(\mathbf{r}), \nabla n_\uparrow(\mathbf{r}), \nabla n_\downarrow(\mathbf{r})),\tag{22}
$$

Exchange correlation potential:

$$
V_{\text{xc}}[n(\mathbf{r})] = \frac{\partial E_{\text{xc}}[n]}{\partial n(\mathbf{r})} - \nabla \cdot \frac{\partial E_{\text{xc}}[n]}{\partial (\nabla n(\mathbf{r}))}.
$$
 (23)

The gradient of the density is usually determined *numerically*.

GGA Examples I

- Langreth-Mehl 1983 (LM)
	- **–**Construction from wave-vector analysis of *E*xc
	- **–** Correlation term for small *k* set to zero
	- **–** Correction in right direction but major shortcomings, e.g. uniform gas limit is not correct
- Perdew-Wang 1986 (PW86)
	- **–** $-$ real space cutoff to $E_{\rm x}$ of GEA
	- **–**reciprocal space cutoff to *E*^c of GEA
- Becke-Perdew 1988 (BP)
	- **–**Improved exchange functional with ^a single adjustable parameter
- Lee-Yang-Parr 1988 (LYP)
	- **–** correlation functional derived from the Cole-Salvetti formula

GGA Examples II

- Perdew-Wang 1991 (PW91) [6]
	- **–**purely ab-initio
	- **–** fullfills almost all scaling relations excep^t high density limit of uniform scaling

Exchange energy:

change energy:
\n
$$
E_x^{\text{PW91}}[n] = -\int d\mathbf{r} n \frac{3k_F}{4\pi} \frac{1 + 0.1965s \sinh^{-1}(7.796s) + (0.274 - 0.151e^{-100s^2})s^2}{1 + 0.1964s \sinh^{-1}(7.796s) + 0.004s^4}
$$
\nprrelation energy:

\n
$$
E_c^{\text{PW91}}[n] = \int d\mathbf{r} n \left(\varepsilon_c(\mathbf{r}_s, \zeta) + H(t, r_s, \zeta) \right)
$$

Correlation energy:

$$
E_{\rm c}^{\rm PW91}[n] = \int d\mathbf{r} n \left(\varepsilon_{\rm c}(\mathbf{r}_s, \zeta) + H(t, r_s, \zeta) \right)
$$

 $\text{with } k_F = (3\pi^2 n)^{1/3}, s = |\nabla n|/2k_F n, t = |\nabla n|/2g k_s n, g = [(1+\zeta)^{2/3} + (1-\zeta)^{2/3}]/2,$ and $k_{s} = (4k_{F}/\pi)^{1/2}.$

GGA Examples III

- Perdew-Burke-Ernzerhof 1996 (PBE)
	- **–**simplification of the derivation of PW91
	- **–**- only minor changes to PW91
- Revised Perdew-Burke-Ernzerhof 1999 (RPBE)
	- **–** semi-empirical change of PBE to improve atomisation energies of small molecules and chemisorption energies of atoms and molecules on transition metal surfaces

Many GGAs are tailored for specific classes of problems and have therefore ^a limited general applicability.

Extending the GGA

Problem:

• GGA cannot describe the *r* → ∞ limit of the xc-energy density and the xc-potential *simultaneously* correctly. ity
(**r**

Solution:

- include further semilocal information of the density, e.g. $\Delta n(\mathbf{r})$
- include semilocal information of the orbitals, e.g. the kinetic energy density,

$$
\tau(\mathbf{r}) = \frac{1}{2} \sum_{k=1}^{N} |\nabla \psi_k(\mathbf{r})|^2, \qquad (24)
$$

Laplacian of the density

Advantage:

straight forward exchange-correlation potential

$$
V_{\text{xc}}[n(\mathbf{r})] = \frac{\partial E_{\text{xc}}[n]}{\partial n(\mathbf{r})} - \nabla \cdot \frac{\partial E_{\text{xc}}[n]}{\partial (\nabla n(\mathbf{r}))} + \Delta \cdot \frac{\partial E_{\text{xc}}[n]}{\partial (\Delta n(\mathbf{r}))}
$$
(25)

Disadvantage:

numerically unstable

Examples:

- Jemmer and Knowles (1995)
- Filatov and Thiel (1998) (FT98)

Kinetic energy density

modifications of the LDA which do not consider the nature of the orbitals involved are unlikely to be satisfactory in all systems

Jones and Gunarsson 1985

Problem:

• Determination of the exchange-correlation potential

Solution:

• Optimised effective potential method

\n- trmination of the exchange-correlation potential
\n- mised effective potential method
\n- $$
\sum_{i} \int d\mathbf{r}' \left(V_{xc}^{OEP}(\mathbf{r}') - \frac{1}{\psi_i(\mathbf{r}')} \frac{\partial E_{xc}[\{\psi_i\}]}{\partial \psi_i^*(\mathbf{r}')} \right) \psi_i^*(\mathbf{r}') G_i(\mathbf{r}', \mathbf{r}) \psi_i(\mathbf{r}) + c.c. = 0
$$
\n

• Neumann-Nobes-Handy method

$$
\int \psi_i V_{\rm xc} \psi_k d\mathbf{r} = \ldots + \int \nabla \psi_i \, 2 \frac{\partial \varepsilon_{\rm xc}(n, \nabla n, \tau)}{\partial \tau} \nabla \psi_k d\mathbf{r}
$$

VASP Input

- Choose the exchange correlation functional
	- **–** via the POTCAR file
	- **–** $-$ by setting GGA = $_{-1}$ CA|91|PE|RP in the INCAR file
		- $*$ _ (two blanks) \dots LDA exchange only
		- * CA ... LDA exchange and correlation
- Switch on *non-selfconsistent* PKZB meta-GGA energy
	- **–**based on PBE potentials (only those include the kinetic energy density)
	- **–** set LMETAGGA=.TRUE. in the INCAR file
- *non-selfconsistent* aspherical contributions to the on-site GGA energy (PAW potentials only)
	- **–** set LASPH=.TRUE. in the INCAR file

VASP output

OSZICAR and stdout:

1 F= -.35333292E+01 E0= -.35333292E+01 d E =-.748238E-17

1 F(ASPHER.)= -.35567321E+01 E0(ASPHER.)= -.35567321E+01

1 F(METAGGA)= 0.32195711E+01 E0(METAGGA)= 0.32195711E+01

\bullet OUTCAR:

ASPHERICAL CONTRIBUTION TO EXCH AND CORRELATION IN SPHERES (eV)

```
---------------------------------------------------standard PAW PS : AE= 135.083574 -166.260165
Aspheric PAW PS : AE= 135.115379 -166.315373
core xc AE= -1334.998410
    ---------------------------------------------------Aspherical result:
free energy TOTEN = -3.556732 eV
energy without entropy= -3.556732 energy(sigma->0) = -3.556732
```
OUTCAR cont'd:

METAGGA EXCHANGE AND CORRELATION (eV)

 $LDA+GGA E(xc) EXCG = -164.793059$ LDA+GGA PAW PS : AE= 135.115379 -166.315373 core xc AE= -1334.998410 $metagGA E(xc) EXCM = -164.476006$ metaGGA PAW PS : AE= 134.494206 -159.234950 metaGGA core xc AE= -1378.140708

METAGGA result:

free energy TOTEN ⁼ 3.219571 eV

energy without entropy= 3.219571 energy(sigma->0) ⁼ 3.219571

Hybrid functionals

Motivation:

Adiabatic connection formula (6)

$$
E_{\rm xc}[n] = \int_0^1 U_{\rm xc,\lambda}[n] d\lambda \approx \frac{1}{2} U_{\rm xc,0}[n] + \frac{1}{2} U_{\rm xc,1}[n]
$$
(26)

 $U_{{\rm xc},0}[n]$. . . nonlocal exchange energy of KS-orbitals $U_{\rm xc,1}[n] \ldots$ *potential* energy of exchange-correlation

Common hybrid functional B3LYP:

$$
E_{\rm xc} = (1 - a_0) E_{\rm x}^{\rm LSDA} + a_0 E_{\rm x}^{\rm exact} + a_x \Delta E_{\rm x}^{\rm B88} + a_c E_{\rm c}^{\rm LYP} + (1 - a_c) E_{\rm c}^{\rm VWN},\tag{27}
$$

$$
a_0 = 0.20
$$
, $a_x = 0.72$, and $a_c = 0.81$.

Implementation of exact exchange

 $E_{\rm x}^{\rm exact}$ is a sum of four-center integrals,

$$
E_{x}^{\text{exact}} \text{ is a sum of four-center integrals,}
$$
\n
$$
E_{x}^{\text{exact}} = -\frac{1}{2} \sum_{m,n}^{N} f_{n} f_{m} \int \frac{d\mathbf{r} d\mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|} \phi_{m}^{*}(\mathbf{r}) \phi_{m}(\mathbf{r}') \phi_{n}(\mathbf{r}) \phi_{n}^{*}(\mathbf{r}'), \qquad (28)
$$
\n28

\n29

\n29

\n20

\n30

\n31

\n40

\n51

\n52

\n6

\n73

\n8

\n9

\n10

\n11

\n12

\n13

\n14

\n15

\n16

\n17

\n18

\n19

\n10

\n10

\n11

\n11

\n12

\n13

\n14

\n15

\n16

\n17

\n18

\n19

\n10

\n11

\n11

\n12

\n13

\n14

\n15

\n16

\n17

\n18

\n19

\n10

\n11

\n11

\n12

\n13

\n14

\n15

\n16

\n17

\n18

\n19

\n10

\n11

\n11

\n12

\n13

\n14

\n15

\n16

\n17

\n18

\n19

\n10

\n11

\n11

\n12

\n13

\n14

\n15

Scaling problem:

- DFT scaling (VASP): $O(N^2)$
-

Periodic boundary conditions (PBC):

- Integrable divergence in reciprocal space for $G = 0$.
- Remove the singulartiy due to PBC by "localising" the orbitals.

Application I: Small Molecules

Figure 2: Atomisation energy errors $(E_{\rm calc}-E_{\rm exp})$ of small molecules (results from [7] (B3PW91) and [8])

Application II: Adsorption path

Figure 3: Minimum energy path (MEP) of the H_2 approach over the Pd(111) surface (RH, thesis)

References

- [1] P. Hohenberg and W. Kohn, Phys. Rev. **136**(3), B864 (1964).
- [2] W. Kohn and L. J. Sham, Phys. Rev. **140**, A1133 (1965).
- [3] K. Burke, J. P. Perdew, and M. Levy, in J. Seminario and P. Politzer, eds., *Modern Density Functional Theory: A Tool for Chemistry* , Elsevier, Amsterdam (1995).
- [4] R. O. Jones and O. Gunarsson, Rev.Mod. Phys. **61**, 689 (1989).
- [5] U. von Barth and L. Hedin, J. Phys. C **5**, 1629 (1972).
- [6] J. P. Perdew et al., Phys. Rev. B **46**, 6671 (1992).
- [7] A. Becke, J. Chem. Phys. **98**, 5648 (1993).
- [8] S. Kurth, J. P. Perdew, and P. Blaha, Int. J. Quantum Chem. **75**, 889 (1999).
- [9] R. Hirschl, *Binary Transition Metal Alloys and Their Surfaces - an Ab Initio Study*, PhD Thesis, Universitat¨ Wien (2002), available from

http://cms.mpi.univie.ac.at/robin/

بح
-