**Hands on Session III** 

**Andreas EICHLER** 

Institut für Materialphysik and Center for Computational Materials Science Universität Wien, Sensengasse 8, A-1090 Wien, Austria







- Ni(100)
  - surface relaxation
  - surface energy
  - LDOS
  - surface band-structure
- Ni(111)
  - clean surface
  - CO adsorption
  - adsorption-energy
  - LDOS
  - work-function (change)
  - frequencies

### Ni(100) - surface relaxation

## POSCAR

| Ēcc  | (100) | surface  |         |   |   |   |
|------|-------|----------|---------|---|---|---|
| 3.53 |       |          |         |   |   |   |
| .5   | 0000  | .50000   | .00000  |   |   |   |
| 5    | 0000  | .50000   | .00000  |   |   |   |
| .0   | 0000  | .00000   | 5.00000 |   |   |   |
| 5    |       |          |         |   |   |   |
| elec | tive  | Dynamics |         |   |   |   |
| arte | sian  |          |         |   |   |   |
| .0   | 0000  | .00000   | .00000  | F | F | F |
| .0   | 0000  | .50000   | .50000  | F | F | F |
| .0   | 0000  | .00000   | 1.00000 | F | F | F |
| .0   | 0000  | .50000   | 1.50000 | Т | Т | Τ |
| .0   | 0000  | .00000   | 2.00000 | Т | Т | Τ |

- Ni lattice constant 3.53 Å
- 1 atom per layer  $\Rightarrow p(1 \times 1)$  cell
- 5 nickel layers
- first two layers (of one side) relaxed
- $3 \cdot 3.53 = 10.59$ Å vacuum

# POTCAR

### PAW-GGA potential for Ni

```
general:
   SYSTEM = clean Ni(100) surface
   ISTART = 0 ; ICHARG=2
   ENCUT = 2.70
   ISMEAR = 2; SIGMA = 0.2
 spin:
   TSPTN=2
  MAGMOM = 5*1
 dynamic:
   IBRION = 1
  NSW = 100
  POTIM = 0.2
K-Points
```

 $\left( \right)$ 

991

0 0 0

Monkhorst-Pack

# INCAR

- startjob; initial charge-density from overlapping atoms
- energy cut-off: 270 eV (default)
- MP-smearing (metal!)
- spinpolarized calculation initial moments of 1
- ionic relaxation

# **KPOINTS**

- equally spaced mesh
- odd  $\rightarrow$  centered on  $\Gamma$
- results in 15 k-points in IBZ
- 1 in z-direction !

### the relaxation run

### forces in the first and last step (in OUTCAR)

| POSITION     |         |         | TOTAL-FORCE | (eV/Angst) |           |
|--------------|---------|---------|-------------|------------|-----------|
| 0.00000      | 0.00000 | 0.0000  | 0.000000    | 0.000000   | 0.397218  |
| 0.00000      | 1.76500 | 1.76500 | 0.00000     | 0.000000   | -0.391340 |
| 0.00000      | 0.00000 | 3.53000 | 0.00000     | 0.00000    | -0.001868 |
| 0.00000      | 1.76500 | 5.29500 | 0.00000     | 0.000000   | 0.392187  |
| 0.00000      | 0.00000 | 7.06000 | 0.00000     | 0.000000   | -0.396197 |
| total drift: |         |         | 0.000000    | 0.000000   | 0.000485  |
| POSITION     |         |         | TOTAL-FORCE | (eV/Angst) |           |
| 0.00000      | 0.00000 | 0.00000 | 0.000000    | 0.000000   | 0.403512  |
| 0.00000      | 1.76500 | 1.76500 | 0.00000     | 0.000000   | -0.382356 |
| 0.00000      | 0.00000 | 3.53000 | 0.00000     | 0.000000   | 0.111374  |
| 0.00000      | 1.76500 | 5.32841 | 0.00000     | 0.000000   | -0.063214 |
| 0.00000      | 0.00000 | 7.02095 | 0.00000     | 0.000000   | -0.069316 |
| total drift: |         |         | 0.000000    | 0.000000   | 0.007076  |



- energy changes during relaxation from -25.560 to -25.575 eV
  - $\Rightarrow$  relaxation energy  $E^{\text{rel}} = -15 \text{ meV}$
- surface energy of (unrelaxed) surface according  $\sigma = \frac{1}{2} (E_{surf} - N_{atoms} \cdot E_{bulk})$   $\Rightarrow \sigma^{unrel} = \frac{1}{2} (-25.560 - 5 \cdot (-5.457)) = 0.86 \text{ eV}$ •  $\sigma = \sigma^{unrel} + E^{rel} = 0.71 \text{ eV}$

| geometry |
|----------|
| 0        |

### from CONTCAR (or OUTCAR) file

| Phonons - (100)-dire                    | ction |                                         |         |         |       |        |        |   |   |
|-----------------------------------------|-------|-----------------------------------------|---------|---------|-------|--------|--------|---|---|
| 3.53000000000000                        |       |                                         |         |         |       |        |        |   |   |
| 0.500000000000000                       | 00    | 0.500000                                | 0000000 | 000     | 0.000 | 000000 | 000000 | 0 |   |
| -0.500000000000000                      | 00    | 0.500000                                | 0000000 | 000     | 0.000 | 000000 | 000000 | 0 |   |
| 0.0000000000000000000000000000000000000 | 00    | 0.000000                                | 0000000 | 000     | 5.000 | 000000 | 000000 | 0 |   |
| 5                                       |       |                                         |         |         |       |        |        |   |   |
| Selective dynamics                      |       |                                         |         |         |       |        |        |   |   |
| Direct                                  |       |                                         |         |         |       |        |        |   |   |
| 0.000000000000000000                    | 0.000 | 000000000000000000000000000000000000000 | 0000    | 0.0000  | 00000 | 000000 | F      | F | F |
| 0.50000000000000000                     | 0.500 | 000000000000000000000000000000000000000 | 0000    | 0.10000 | 00000 | 000014 | F      | F | F |
| 0.00000000000000000                     | 0.000 | 000000000000000000000000000000000000000 | 0000    | 0.20000 | 00000 | 000028 | F      | F | F |
| 0.50000000000000000                     | 0.500 | 000000000000000000000000000000000000000 | 0000    | 0.30189 | 29055 | 424291 | Т      | Т | Т |

0.00000000000000 0.00000000000000 0.3977878031170696 T T T

• inward relaxation of surface layers

 $\Rightarrow \Delta d_{12} = (0.3978 - 0.3019)/0.1 = -4.1\%$  $\Rightarrow \Delta d_{12} = (0.3019 - 0.2000)/0.1 = +1.9\%$ 

### Ni(100) - local density of states

## INCAR

```
general:
```

```
SYSTEM = clean (100) Ni surface
ISMEAR = -5
ALGO=V
```

```
spin:
```

ISPIN=2 MAGMOM = 5\*1

NPAR = 1

RWIGS = 1.4

- tetrahedron method
- Wigner-Seitz radius of 1.4 Å
- NPAR=1 necessary for parallel run

## POSCAR

• copy CONTCAR (optimized!) to POSCAR

| total charge |          |        |       |       |  |  |  |
|--------------|----------|--------|-------|-------|--|--|--|
| # of ion     | S        | р      | d     | tot   |  |  |  |
|              |          |        |       |       |  |  |  |
| 1            | 0.522    | 0.390  | 8.449 | 9.361 |  |  |  |
| 2            | 0.551    | 0.577  | 8.463 | 9.591 |  |  |  |
| 3            | 0.551    | 0.571  | 8.464 | 9.586 |  |  |  |
| 4            | 0.559    | 0.595  | 8.470 | 9.624 |  |  |  |
| 5            | 0.535    | 0.415  | 8.461 | 9.411 |  |  |  |
| tot          | 2.72     | 2.55   | 42.31 | 47.57 |  |  |  |
| magnetiz     | ation (x | :)     |       |       |  |  |  |
| # of ion     | S        | р      | d     | tot   |  |  |  |
| 1            | -0.003   | -0.023 | 0.715 | 0.689 |  |  |  |
| 2            | -0.008   | -0.028 | 0.618 | 0.582 |  |  |  |
| 3            | -0.008   | -0.029 | 0.618 | 0.582 |  |  |  |
| 4            | -0.008   | -0.028 | 0.621 | 0.585 |  |  |  |
| 5            | -0.004   | -0.024 | 0.705 | 0.678 |  |  |  |
| tot          | -0.03    | -0.13  | 3.28  | 3.12  |  |  |  |

### partial charge - magnetization

- at the end of the OUTCAR file information on local charge and magnetization is given
- by changing RWIGS the total number of electrons within the spheres could be adapted (nickel pseudo-potential has a valence of 10)
- enhancement of the magnetic moment at the surface
- in the center "bulk like



- projection onto surface layer and bulk layer
- each spin component is plotted separately
- band narrowing at surface
- exchange splitting larger at surface

### Ni(100) - band structure

```
ICHARG = 11
general:
  SYSTEM = clean (100) nickel surface
  ENMAX = 2.70
  ISMEAR = 2; SIGMA = 0.2
 AT,GO=V
spin:
  ISPIN=2
 MAGMOM = 5*1
 NPAR=1
  RWIGS = 1.4
for consistency with parallel run:
NGX = 10; NGY = 10; NGZ = 72
 NGXF= 18 ; NGYF= 18 ; NGZF= 140
```

# INCAR

- read in charge density (1) and do not update it (+10) ⇒ non-selfconsistent run!
- set FFT grid parameters manually to same values, to make sure that CHGCAR file is read properly

| kpoints  | for | band-st | ructure | G-X-M-G |
|----------|-----|---------|---------|---------|
| 13       |     |         |         |         |
| reziprok | 2   |         |         |         |
| .0000    | 0   | .00000  | .00000  | ) 1     |
| .1250    | 0 ( | .00000  | .00000  | ) 1     |
| .2500    | 0 ( | .00000  | .00000  | ) 1     |
| .3750    | 0   | .00000  | .00000  | ) 1     |
| .5000    | 0   | .00000  | .00000  | ) 1     |
|          |     |         |         |         |
| .5000    | 0   | .12500  | .00000  | ) 1     |
| .5000    | 0   | .25000  | .00000  | ) 1     |
| .5000    | 0   | .37500  | .00000  | ) 1     |
| .5000    | )() | .50000  | .00000  | ) 1     |
|          |     |         |         |         |
| .3750    | 0   | .37500  | .00000  | ) 1     |
| .2500    | )() | .25000  | .00000  | ) 1     |
| .1250    | 0   | .12500  | .00000  | ) 1     |
| .0000    | 0   | .00000  | .00000  | ) 1     |

### **KPOINTS**

- 13 k-points along line  $\overline{\Gamma} \overline{X} \overline{M} \overline{\Gamma}$
- in reciprocal coordinates
- all points with weight 1



### surface bandstructure

•••

. . .

Static calculation charge density remains constant during run spin polarized calculation

#### Bandstructure (projected)



• in OUTCAR status message on actual job
 ⇒ non-selfconsistent calculation

- bandstructure consists mainly out of bulklike bands
- dots mark localization at surface layer

### *Ni*(111) - *surface relaxation*

```
general:
  ISTART = 0; ICHARG = 2
  SYSTEM = clean (111) surface
  ENMAX = 270
  ISMEAR = 2 ; SIGMA = 0.2
  ALGO=V
```

#### dynamic:

NSW=100

POTIM = 0.2

IBRION = 1

# INCAR

- same INCAR file as previously for (100) surface
- spin-polarization neglected

```
Ni - (111)
 3.53
   .70710678 .0000000 .000000
 -0.35355339 0.6123724 .000000
   .000000 .000000 5.196152
    5
selective dynamics
direct.
.00000000 .0000000 .0000000 F F F
.33333333 .66666667 .11111111 F
                                F
.66666667 .33333333 .22222222 F
                                F
                                  F
.00000000 .0000000 .33333333 T
                                Т
                                  Т
.33333333 .66666667 .44444444 T T
                                  Т
```

## POSCAR

- similar setup as for (100) surface
- again 5 layers, 2 relaxed
- $(1 .444) \cdot 5.196 \cdot 3.53 =$  $\sim 10.2$ Å of vacuum

F

| surface en   | ergy - geo | ometry  |             |            |           |
|--------------|------------|---------|-------------|------------|-----------|
| POSITION     |            |         | TOTAL-FORCE | (eV/Angst) |           |
| 0.00000      | 0.00000    | 0.00000 | 0.00000     | 0.000000   | 0.173189  |
| 0.00000      | 1.44112    | 2.03805 | 0.00000     | 0.000000   | -0.059921 |
| 1.24804      | 0.72056    | 4.07609 | 0.00000     | 0.000000   | -0.004067 |
| 0.00000      | 0.0000     | 6.11414 | 0.00000     | 0.000000   | 0.064998  |
| 0.00000      | 1.44112    | 8.15219 | 0.000000    | 0.000000   | -0.174199 |
| total drift: |            |         | -0.000054   | 0.000104   | -0.004855 |

- forces already at the beginning rather small
  - $\Rightarrow$  small relaxations for compact surfaces
- for surface energy non-spin-polarized bulk nickel as reference !  $\Rightarrow \sigma^{\text{unrel}} = \frac{1}{2}(-25.729 - 5 \cdot (-5.406)) = 0.65 \text{ eV}$   $\Rightarrow (111) \text{ surface more stable than (100) surface}$

### Ni(111) - CO adsorption

# POSCAR

| $\mathbf{N} \perp = (\perp \perp \perp)$ |            |           |
|------------------------------------------|------------|-----------|
| 3.53                                     |            |           |
| .70710678                                | .0000000   | .000000   |
| -0.35355339                              | 0.6123724  | .000000   |
| .000000                                  | .000000    | 5.1961524 |
| 5 1 1                                    |            |           |
| alastina dur                             | omiga dire | h at      |

selective dynamics direct

NT -

1111

| .00000000 | .00000000 | .00000000 | F | F | F |
|-----------|-----------|-----------|---|---|---|
| .33333333 | .66666667 | .11111111 | F | F | F |
| .66666667 | .33333333 | .22222222 | F | F | F |
| .00000000 | .00000000 | .33333333 | Т | Т | Т |
| .33333333 | .66666667 | .44444444 | Т | Т | Т |
| .33333333 | .66666667 | .54029062 | Т | Т | Т |
| .33333333 | .66666667 | .60298866 | Т | Т | Т |

- two additional types (C+O)
   ⇒ POTCAR!
- CO molecule put above surface atom ⇒on-top
- $z_C = (.540 .444) \cdot 5.196 \cdot 3.53 =$ ~ 1.76Å
- $d_{CO} = (.603 .540) \cdot 5.196 \cdot 3.53 =$ ~ 1.16Å

# POTCAR

• append carbon and oxygen potentials

geometry

| POSITION     |         |          | TOTAL-FORCE | E (eV/Angst) |           |
|--------------|---------|----------|-------------|--------------|-----------|
| 0.00000      | 0.00000 | 0.00000  | 0.000000    | 0.000000     | 0.170860  |
| 0.0000       | 1.44112 | 2.03805  | 0.00000     | 0.000000     | -0.108390 |
| 1.24804      | 0.72056 | 4.07609  | 0.00000     | 0.000000     | -0.030356 |
| 0.0000       | 0.00000 | 6.10874  | 0.00000     | 0.000000     | -0.082039 |
| 0.0000       | 1.44112 | 8.15398  | 0.00000     | 0.000000     | 0.007561  |
| 0.0000       | 1.44112 | 9.90862  | 0.00000     | 0.000000     | 0.020113  |
| 0.00000      | 1.44112 | 11.06330 | 0.000000    | 0.000000     | 0.022250  |
| total drift: |         |          | -0.000184   | -0.000227    | 0.014065  |

- small outward relaxation of surface due to adsorption  $\Rightarrow \Delta d_{12} = (8.154 - 6.109)/2.038 = 0.4\%$
- CO geometry

 $\Rightarrow d_{\rm CO} = 11.063 - 9.909 = 1.155$ Å;  $z_C = 9.909 - 8.154 = 1.755$ Å.

# Ni(111) - 400 eV

(for adsorption energy)

- potentials for oxygen and carbon require an energy cut-off of 400 eV.
  - $\Rightarrow$  previous calculation for clean cannot be used as reference
  - $\Rightarrow$  recalculate with same energy cut-off

```
INCAR
 ENMAX = 400
general:
  SYSTEM = Ni(100)
  TSTART = 0
  ICHARG = 2
  ISMEAR = 2
  SIGMA = 0.2
  ALGO=V
special:
```

LVTOT = .TRUE.

change of cut-off lowers total energy
 ⇒ -25.730 eV (270 eV) → -25.741 eV at 400 eV
 ⇒ becomes more important for larger cells!

$$E_{\rm ads} = E_{\rm total} - E_{\rm clean} - E_{\rm CO}$$

 $\Rightarrow E_{\rm ads} = -40.830 + 25.741 + 14.833 = -0.256 \text{ eV}$ 

• we use this run also to calculate the work-function of Ni(111)

### work-function

- usage of simple utility vtotav gives planar average of the potential
- vacuum-potential  $E^{\text{vac}} = 5.46 \text{ eV}$
- Fermi-level  $\varepsilon_F = 0.225 \text{ eV}$ (from OUTCAR)

• 
$$\Phi = E^{\text{vac}} - \varepsilon_{\text{F}} = 5.24 \text{ eV}$$



### LDOS, workfunction

# INCAR

general: ENMAX = 400 SYSTEM = CO adsorption on Ni(100) ISMEAR = -5 ALGO=V

#### LDOS:

```
LORBIT = 1 ; NPAR = 1
RWIGS = 1.40 1.29 1.11
```

workfunction:

IDIPOL=3

LDIPOL= .TRUE.

LVTOT = .TRUE.

- for DOS calculation ISMEAR=-5
- two additional WS-radii
- LVTOT writes local potential into LOCPOT file
- IDIPOL enables dipole correction in direction 3
- active dipole corrections to potential (=dipole layer)

# POSCAR

• copy CONTCAR (optimized!) to POSCAR





- Im-decomposed DOS helps to analyze the bonding
- CO 5σ,1π,2π\*
- from comparison with substrate LDOS
  - hybridization with Ni- $d_{3z^2-r^2}$
  - no interaction with  $d_{xy}$ 
    - $\Rightarrow$  from symmetry

### workfunction

- $\varepsilon_F = 1.66 \text{ eV} \text{ (from OUTCAR)}$
- vacuum-potential at 8.15 / 6.76 eV  $\Rightarrow \Phi_{CO} = 6.49, \Phi_{clean} = 5.10 \text{ eV}$
- too small result for clean surface due to too small vacuum ...



### frequencies

```
SYSTEM= CO on Nill1 - frequencies
general:
   ENMAX = 400
   ISMEAR = 2 ; SIGMA = 0.2
   ALGO = V
   EDIFF = 1E-6
dynamic:
   NSW=100
```

# INCAR

- the very usual settings ...
- smaller termination criterion EDIFF
- automatic frequency calculation (displacement 0.04 Å)

NSW=100 POTIM = 0.04 IBRION = 5

NFREE = 2

```
Ni - (111) + CO ontop
3.530000000000
0.70710678 0.0000000 0.0000000
-0.35355339 0.6123724 0.0000000
0.00000000 0.0000000 5.1961524
5 1 1
Selective dynamics
Direct
0.0000000 0.0000000 0.0000000 F F F
```

0.3333333 0.6666667 0.1111111 F F F

0.6666666 0.3333333 0.2222222 F F F

0.0000000 0.0000000 0.3314564 FFF

0.3333333 0.6666667 0.4453762 F F F

0.6666666 0.3333333 0.5177755 F F T

0.6666666 0.3333333 0.5815997 F F T

### POSCAR

- take CONTCAR from relaxed calculation
- frequencies only for CO molecule and zdirection

(z- and (x,y) are independent!)

### frequencies

### Additional output in OUTCAR file for frequency calculation via finite difference:

Finite differences progress: Degree of freedom: 1/ 2 Displacement: 1/ 2 Total: 1/ 4

- After the first calculation for the equilibrium geometry, NFREE displacements (± POTIM) are performed for each degree of freedom; from these displacements the dynamical matrix is set up and diagonalized
- at the end of the OUTCAR file the
  - forces,
  - the dynamical matrix and finally
  - the eigenfrequencies and
  - eigenvectors (first normalized and then mass-weighted)

are listed

| Eigenvectors a | and eigenva | lues of the d | ynamical matrix       |       |                  |            |
|----------------|-------------|---------------|-----------------------|-------|------------------|------------|
| 1 f = 64.      | .112970 THz | 402.833672    | 2PiTHz 2138.578420    | ) cm- | 1 265.150026 meV |            |
| Х              | Y           | Z             | dx                    | dy    | dz               |            |
| 0.00000        | 0.00000     | 0.00000       | 0                     | 0     | 0                | CO stretch |
| 0.00000        | 1.441116    | 2.038046      | 0                     | 0     | 0                |            |
| 1.248043       | 0.720558    | 4.076093      | 0                     | 0     | 0                |            |
| 0.000000       | 0.00000     | 6.108743      | 0                     | 0     | 0                |            |
| 0.000000       | 1.441116    | 8.153979      | 0                     | 0     | 0                |            |
| 0.00000        | 1.441116    | 9.908620      | 0                     | 0     | -0.225414        |            |
| 0.000000       | 1.441116    | 11.063296     | 0                     | 0     | 0.156066         |            |
| 0.6.10         |             |               | 00 - 77 - 410 - 05050 | 0     | 1 51 100000      |            |
| $2 \pm 12$ .   | .362230 THz | //.6/4183     | 2PiTHz 412.359599     | 9 cm- | 1 51.126093 meV  |            |
| Х              | Y           | Z             | dx                    | dy    | dz               |            |
| 0.00000        | 0.000000    | 0.00000       | 0                     | 0     | 0                |            |
| 0.00000        | 1.441116    | 2.038046      | 0                     | 0     | 0                |            |
| 1.248043       | 0.720558    | 4.076093      | 0                     | 0     | 0                |            |
| 0.00000        | 0.000000    | 6.108743      | 0                     | 0     | 0                | CO-metal   |
| 0.000000       | 1.441116    | 8.153979      | 0                     | 0     | 0                |            |
| 0.000000       | 1.441116    | 9.908620      | 0                     | 0     | -0.180127        |            |
| 0.000000       | 1.441116    | 11.063296     | 0                     | 0     | -0.195303        |            |

A. EICHLER, HANDS ON (III): 3\_8\_COOnNi111\_freq