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Overview
� the mathematical problem

– minimisation of functions

– rule of the Hessian matrix

– how to overcome slow convergence

� the three implemented algorithms

– Quasi-Newton (DIIS)

– conjugate gradient (CG)

– damped MD

strength, weaknesses

� a little bit on molecular dynamics
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The mathematical problem
� search for the local minimum of a function f �� x �

for simplicity we will consider a simple quadratic function

f �� x � � a � �

b� x � 1
2

� xB� x � ā � 1
2 �� x� � x0 � B �� x� � x0 ��

where B is the Hessian matrix

Bi j � ∂2 f
∂xi∂x j

�

� for a stationary point, one requires
� g �� x � � ∂ f

∂� x � B �� x� � x0 �

gi �� x � � ∂ f
∂xi

� ∑
j

Bi j � x j� x0
j �

at the minimum the Hessian matrix must be additionally positive definite
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The Newton algorithm

educational example

� start with an arbitrary start point� x1

� calculate the gradient� g �� x1 �

� multiply with the inverse of the Hessian matrix and perform a step

� x2 � � x1� B

	 1� g �� x1 �

by inserting� g �� x1 � � ∂ f
∂
 x

� B �� x1� � x0 � , one immediately recognises that� x2 � � x0

hence one can find the minimum in one step

� in practice, the calculation of B is not possible in a reasonable time-span, and one

needs to approximate B by some reasonable approximation

G. KRESSE, IONIC OPTIMISATION Page 4



Steepest descent

approximate B by the largest eigenvalue of the Hessian matrix � steepest descent
algorithm (Jacobi algorithm for linear equations)

1. initial guess� x1

2. calculate the gradient� g �� x1 �

3. make a step into the direction of the steepest descent

� x2 � � x1� 1 � Γmax � B � � g �� x1 �

4. repeat step 2 and 3 until convergence is reached

for functions with long steep valleys convergence can be very slow

Γ

Γ min

max
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Speed of convergence

how many steps are required to converge to a predefined accuracy

� assume that B is diagonal, and start from� x1 � � x0 � 1

B � 

Γ1 0
� � �

0 Γn
�� � x1 � � x0 � 

1

� � �

1

�� with Γ1� Γ2� Γ3� � �

� gradient� g �� x1 � and� x2 after steepest descent step are:

� g �� x1 � � B �� x1� � x0 � � 

Γ1

� � �

Γn

�� � x2 � � x1� 1
Γn

� g �� x1 � � � x0 � 

1� Γ1 � Γn

� � �

1� Γn � Γn

��
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Convergence
� the error reduction is given by

� x2 � � x0 � 

1� Γ1 � Γn
� � �

1� Γn � Γn
��

1−Γ/Γmax

ΓΓ Γ Γ Γ Γ4 5321

1

1−2Γ/Γmax−1

� – the error is reduced for each component

– in the high frequency component the error vanishes after on step

– for the low frequency component the reduction is smallest
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� the derivation is also true for non-diagonal matrices

in this case, the eigenvalues of the Hessian matrix are relevant
� for ionic relaxation, the eigenvalues of the Hessian matrix correspond to the

vibrational frequencies of the system

the highest frequency mode determines the maximum stable step-width (“hard

modes limit the step-size”)

but the soft modes converge slowest

� to reduce the error in all components to a predefined fraction ε,

k iterations are required

1� Γmin

Γmax

k

� ε

k ln 1� Γmin

Γmax

� lnε

� k
Γmin

Γmax

� lnε � k � � � lnε � Γmax

Γmin
k ∝

Γmax

Γmin
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Pre-conditioning

� if an approximation of the inverse Hessian matrix is know P � B	 1,

the convergence speed can be much improved

� xN � 1 � � xN� λP� g �� xN ��

� in this case the convergence speed depends on the eigenvalue spectrum of

PB

� for P � B	 1, the Newton algorithm is obtained
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Variable-metric schemes, Quasi-Newton scheme

variable-metric schemes maintain an iteration history

they construct an implicit or explicit approximation of the inverse Hessian matrix

B

	 1
approx�

search directions are given by

B

	 1
approx

� g �� x ��

the asymptotic convergence rate is give by

number of iterations ∝
Γmax

Γmin
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Simple Quasi-Newton scheme, DIIS

direct inversion in the iterative subspace (DIIS)

� set of points

� � xi � i � 1� � � � � N � and � � gi � i � 1� � � � � N �

� search for a linear combination of xi which minimises the gradient, under the
constraint

∑
i

αi � 1�

�

� g � ∑
i

αi� xi � � B ∑
i

αi� xi� � x0 � B ∑
i

αi� xi� ∑
i

αi� x0

� ∑
i

αiB �� xi� � x0 � � ∑
i

αi

� gi�
gradient is linear in it’s arguments for a quadratic function
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Full DIIS algorithm

1. single initial point� x1

2. gradient� g1 � � g �� x1 � , move along gradient (steepest descent)

� x2 � � x1� λ� g1

3. calculate new gradient� g2 � � g �� x2 �

4. search in the space spanned by � � gi � i � 1� � � � � N � for the minimal gradient

� gopt � ∑αi� gi�

and calculate the corresponding position
� xopt � ∑αi� xi

5. Construct a new point� x3 by moving from� xopt along� gopt

� x3 � � xopt� λ� gopt
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1. steepest descent step from �x0 to �x1 (arrows correspond to gradients �g0 and �g1)

2. gradient along indicated red line is now know, determine optimal position �x1
opt

3. another steepest descent step form �x1
opt along �gopt � �g � �x1

opt�

4. calculate gradient x2 � now the gradient is known in the entire 2 dimensional space

(linearity condition) and the function can be minimised exactly

optx1

x0

1

x2

x

x0

a x + a x,    a +a =10  0    1   1     0    1
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Conjugate gradient

first step is a steepest descent step with line minimisation

search directions are “conjugated” to the previous search directions

1. gradient at the current position� g �� xN �

2. conjugate this gradient to the previous search direction using:

� sN � � g �� xN � � γ� sN	 1 γ � � � g �� xN �� � g �� xN	 1 � ��� � g �� xN �

� � g �� xN	 1 � ��� � g �� xN	 1 �

3. line minimisation along this search direction� sN

4. continue with step 1), if the gradient is not sufficiently small.

the search directions satisfy:

� sNB� sM � δNM � N� M

the conjugate gradient algorithm finds the minimum of a quadratic function with k

degrees of freedom in k � 1 steps exactly
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1. steepest descent step from �x0, search for minimum along �g0 by performing several trial

steps (crosses, at least one triastep is required) � �x1

2. determine new gradient �g1 � �g � �x1� and conjugate it to get �s1 (green arrow)

for 2d-functions the gradient points now directly to the minimum

3. minimisation along search direction �s1

1x

x0

x2

1x1x

x0

s1
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Asymptotic convergence rate
� asymptotic convergence rate is the convergence behaviour for the case that the

degrees of freedom are much large than the number of steps

e.g. 100 degrees of freedom but you perform only 10-20 steps

� how quickly, do the forces decrease?

� this depends entirely on the eigenvalue spectrum of the Hessian matrix:

– steepest descent: Γmax � Γmin steps are required to reduce the forces to a

fraction ε

– DIIS, CG, damped MD: Γmax � Γmin steps are required to reduce the

forces to a fraction ε

Γmax� Γmin are the maximum and minimal eigenvalue of the Hessian matrix
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Damped molecular dynamics

instead of using a fancy minimisation algorithms it is possible to treat the

minimisation problem using a simple “simulated annealing algorithm”

� regard the positions as dynamic degrees of freedom

� the forces serve as accelerations and an additional friction term is introduced

� equation of motion (� x are the positions)

¨� x � � 2� α� g �� x �� µ˙� x�

using a velocity Verlet algorithm this becomes

� vN � 1  2 � ! � 1� µ � 2 � � vN	 1  2
� 2� α

�

FN " � � 1 � µ � 2 �

� xN � 1 � � xN � 1 � � vN � 1  2

for µ � 2, this is equivalent to a simple steepest descent step
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� behaves like a rolling ball with a friction

it will accelerate initially, and then deaccelerate when close to the minimum

� if the optimal friction is chosen the ball will glide right away into the minimum

� for a too small friction it will overshoot the minimum and accelerate back

� for a tool large friction relaxation will also slow down (behaves like a steepest

descent)

x0
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Algorithms implemented in VASP

additional flags termination

DISS IBRION =1 POTIM, NFREE EDIFFG

CG IBRION =2 POTIM EDIFFG

damped MD IBRION =3 POTIM, SMASS EDIFFG

POTIM determines generally the step size

for the CG gradient algorithm, where line minisations are performed, this is the size of

the very first trial step

EDIFFG determines when to terminate relaxation

positive values: energy change between steps must be less than EDIFFG

negative values: �
�

Fi �� �$#% &' ' ( � � i � 1� Nions
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DIIS
� POTIM determines the step size in the steepest descent steps

no line minisations are performed !!

� NFREE determines how many ionic steps are stored in the iteration history

set of points ) �xi * i � 1 +-, , , + N . and ) �gi * i � 1 +-, , , + N . searches for a linear combination of

xi, that minimises the gradient

NFREE is the maximum N

� for complex problems NFREE can be large (i.e. 10-20)

� for small problems, it is advisable to count the degrees of freedom carefully

(symmetry inequivalent degrees of freedom)

� if NFREE is not specified, VASP will try to determine a reasonable value, but

usually the convergence is then slower
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CG
� the only required parameter is POTIM

this parameter is used to parameterise, how large the trial steps are

� CG requires a line minisations along the search direction

1x

x0

x0

1x trial 1x
trial 2x

this is done using a variant of Brent’s algorithm

– trial step along search direction (conjg. gradient scaled by POTIM)

– quadratic or cubic interpolation using energies and forces at� x0 and� x1 allows
to determine the approximate minimum

– continue minimisation as long as approximate minimum is not accurate
enough
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Damped MD
� two parameters POTIM and SMASS

� vN � 1  2 � ! � 1� µ � 2 � � vN	 1  2

� 2� α

�

FN " � � 1 � µ � 2 � � xN � 1 � � xN � 1 � � vN � 1  2

α ∝ POTIM and µ ∝ SMASS

� POTIM must be as large as possible, but without leading to divergence

and SMASS must be set to µ � 2 Γmin � Γmax, where Γmin and Γmax are the
minimal und maximal eigenvalues of the Hessian matrix

� a practicle optimisation procedure:

– set SMASS=0.5-1 and use a small POTIM of 0.05-0.1

– increase POTIM by 20 % until the relaxation runs diverge

– fix POTIM to the largest value for which convergence was achieved

– try a set of different SMASS until convergence is fastest (or stick to

SMASS=0.5-1.0)
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Damped MD — QUICKMIN
� alternatively do not specify SMASS (or set SMASS� 0)

this select an algorithm sometimes called QUICKMIN

� QUICKMIN
� vnew �

/
0 1

α

�
F � �

F �� vold� �

F � � � �
�

F � � for� vold� �

F 2 0

α
�

F else

– if the forces are antiparallel to the velocities, quench the velocities to zero and

restart

– otherwise increase the “speed” and make the velocities parallel to the present

forces

� I have not often used this algorithm, but it is supposed to be very efficient
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Damped MD — QUICKMIN

my experience is that damped MD (as implemented in VASP) is faster than

QUICKMIN

but it requires less playing around

defective ZnO surface:

96 atoms are allowed to move!

relaxation after a finite temperature

MD at 1000 K

0 20 40 60 80

steps

-6

-4

-2

0

2

lo
g(

E
-E

0)

damped: SMASS=0.4
quickmin
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Why so many algorithms :-(... decision chart

      close to minimum 1−3 degrees of freedom

Really, this is too complicated

no

yes

no

very broad vib. spectrum
>20 degrees of freedom

yes

yes

no

no

yes

                DIIS

damped MD or QUICKMIN

    CG
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Two cases where the DIIS has huge troubles

X0

X1

DIIS is dead, since it consideres
the forces only

in cartesian coordinates
the Hessian matrix changes

force increases along the search
direction

it will move uphill instead of down when the octahedron rotates!

rigid unit modes i.e. in 
perovskites (rotation)
molecular systems (rotation)
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How bad can it get
� the convergence speed depends on the eigenvalue spectrum of the Hessian matrix

– larger systems (thicker slabs) are more problematic (acoustic modes are very

soft)

– molecular system are terrible (week intermolecular and strong intramolecular

forces)

– rigid unit modes and rotational modes can be exceedingly soft

the spectrum can vary over three orders of magnitudes � 100 or even more steps

might be required ionic relaxation can be painful

� to model the behaviour of the soft modes, you need very accurate forces since

otherwise the soft modes are hidden by the noise in the forces

EDIFF must be set to very small values (10	 6) if soft modes exist
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