(* * Copyright (c) 1997-1999, 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *) (* $Id: complex.ml,v 1.23 2003/03/16 23:43:46 stevenj Exp $ *) (* abstraction layer for complex operations *) (* type of complex expressions *) open Exprdag open Exprdag.LittleSimplifier type expr = CE of node * node let two = CE (makeNum Number.two, makeNum Number.zero) let one = CE (makeNum Number.one, makeNum Number.zero) let zero = CE (makeNum Number.zero, makeNum Number.zero) let inverse_int n = CE (makeNum (Number.div Number.one (Number.of_int n)), makeNum Number.zero) let times_4_2 (CE (a, b)) (CE (c, d)) = CE (makePlus [makeTimes (a, c); makeUminus (makeTimes (b, d))], makePlus [makeTimes (a, d); makeTimes (b, c)]) let simple = function Num a -> Number.is_zero a or Number.is_one a or Number.is_mone a | _ -> false let rec times_3_3 (CE (a, b)) (CE (c, d)) = (* refuse to do the 3-3 algorithm if a=1, i, -i, -1, etc. *) if simple a or simple b or simple c or simple d then times_4_2 (CE (c, d)) (CE (a, b)) else match a with Num _ -> let amb = makePlus [a; makeUminus b] and cpd = makePlus [c; d] and apb = makePlus [a; b] in let apbc = makeTimes (apb, c) and bcpd = makeTimes (b, cpd) and ambd = makeTimes (amb, d) in CE (makePlus [apbc; makeUminus bcpd], makePlus [bcpd; ambd]) | _ -> match c with Num _ -> times_3_3 (CE (c, d)) (CE (a, b)) | _ -> times_4_2 (CE (a, b)) (CE (c, d)) let times a b = if !Magic.times_3_3 then times_3_3 a b else times_4_2 a b let uminus (CE (a, b)) = CE (makeUminus a, makeUminus b) (* hack to swap real<->imaginary. Used by hc2hc codelets *) let swap_re_im (CE (r, i)) = CE (i, r) (* complex exponential (of root of unity); returns exp(2*pi*i/n * m) *) let exp n i = let (c, s) = Number.cexp n i in CE (makeNum c, makeNum s) (* complex sum *) let plus a = let rec unzip_complex = function [] -> ([], []) | ((CE (a, b)) :: s) -> let (r,i) = unzip_complex s in (a::r), (b::i) in let (c, d) = unzip_complex a in CE (makePlus c, makePlus d) (* extract real/imaginary *) let real (CE (a, b)) = CE (a, makeNum Number.zero) let imag (CE (a, b)) = CE (makeNum Number.zero, b) let conj (CE (a, b)) = CE (a, makeUminus b) let abs_sqr (CE (a, b)) = makePlus [makeTimes (a, a); makeTimes (b, b)] (* * special cases for complex numbers w where |w| = 1 *) (* (a + bi)^2 = (2a^2 - 1) + 2abi *) let wsquare (CE (a, b)) = let twoa = makeTimes (makeNum Number.two, a) in let twoasq = makeTimes (twoa, a) and twoab = makeTimes (twoa, b) in CE (makePlus [twoasq; makeUminus (makeNum Number.one)], twoab) (* * compute w^n given w^{n-1}, w^{n-2}, and w, using the identity * * w^n + w^{n-2} = w^{n-1} (w + w^{-1}) = 2 w^{n-1} Re(w) *) let wthree (CE (an1, bn1)) wn2 (CE (a, b)) = let twoa = makeTimes (makeNum Number.two, a) in let twoa_wn1 = CE (makeTimes (twoa, an1), makeTimes (twoa, bn1)) in plus [twoa_wn1; (uminus wn2)] (* abstraction of sum_{i=0}^{n-1} *) (* let sigma a b f = plus (Util.forall :: a b f) *) let sigma a b f = let rec loop a = if (a >= b) then [] else (f a) :: (loop (a + 1)) in plus (loop a) (* complex variables *) type variable = CV of Variable.variable * Variable.variable let load_var (CV (vr, vi)) = CE (Load vr, Load vi) let store_var (CV (vr, vi)) (CE (xr, xi)) = [Store (vr, xr); Store (vi, xi)] let store_real (CV (vr, vi)) (CE (xr, xi)) = [Store (vr, xr)] let store_imag (CV (vr, vi)) (CE (xr, xi)) = [Store (vi, xi)] let access what k = let (r, i) = what k in CV (r, i) let access_input = access Variable.access_input let access_output = access Variable.access_output let access_twiddle = access Variable.access_twiddle