(* * Copyright (c) 1997-1999, 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *) (* $Id: exprdag.ml,v 1.43 2003/03/16 23:43:46 stevenj Exp $ *) let cvsid = "$Id: exprdag.ml,v 1.43 2003/03/16 23:43:46 stevenj Exp $" open Util type node = | Num of Number.number | Load of Variable.variable | Store of Variable.variable * node | Plus of node list | Times of node * node | Uminus of node (* a dag is represented by the list of its roots *) type dag = Dag of (node list) module Hash = struct (* various hash functions *) let hash_float x = let (mantissa, exponent) = frexp x in truncate (mantissa *. 10000.0) let hash_variable = Variable.hash let rec hash_node = function Num x -> hash_float (Number.to_float x) | Load v -> 1 + 1237 * hash_variable v | Store (v, x) -> 2 * hash_variable v - 2345 * hash_node x | Plus l -> 5 + 23451 * sum_list (List.map Hashtbl.hash l) | Times (a, b) -> 31415 * Hashtbl.hash a + 2718 * Hashtbl.hash b | Uminus x -> 42 + 12345 * (hash_node x) end open Hash module LittleSimplifier = struct (* * The LittleSimplifier module implements a subset of the simplifications * of the AlgSimp module. These simplifications can be executed * quickly here, while they would take a long time using the heavy * machinery of AlgSimp. * * For example, 0 * x is simplified to 0 tout court by the LittleSimplifier. * On the other hand, AlgSimp would first simplify x, generating lots * of common subexpressions, storing them in a table etc, just to * discard all the work later. Similarly, the LittleSimplifier * reduces the constant FFT in Rader's algorithm to a constant sequence. *) let rec makeNum = function | n -> Num n and makeUminus = function | Uminus a -> a | Num a -> makeNum (Number.negate a) | a -> Uminus a and makeTimes = function | (Num a, Num b) -> makeNum (Number.mul a b) | (Num a, Times (Num b, c)) -> makeTimes (makeNum (Number.mul a b), c) | (Num a, b) when Number.is_zero a -> makeNum (Number.zero) | (Num a, b) when Number.is_one a -> b | (Num a, b) when Number.is_mone a -> makeUminus b | (Num a, Uminus b) -> Times (makeUminus (Num a), b) | (a, (Num b as b')) -> makeTimes (b', a) | (a, b) -> Times (a, b) and makePlus l = let rec reduceSum x = match x with [] -> [] | [Num a] -> if Number.is_zero a then [] else x | (Num a) :: (Num b) :: c -> reduceSum ((makeNum (Number.add a b)) :: c) | ((Num _) as a') :: b :: c -> b :: reduceSum (a' :: c) | a :: s -> a :: reduceSum s in match reduceSum l with [] -> makeNum (Number.zero) | [a] -> a | [a; b] when a == b -> makeTimes (Num Number.two, a) | [Times (Num a, b); Times (Num c, d)] when b == d -> makeTimes (makePlus [Num a; Num c], b) | a -> Plus a end (************************************************************* * Functional associative table *************************************************************) (* * this module implements a functional associative table. * The table is parametrized by an equality predicate and * a hash function, with the restriction that (equal a b) ==> * hash a == hash b. * The table is purely functional and implemented using a binary * search tree (not balanced for now) *) module AssocTable : sig type ('a, 'b) elem = | Leaf | Node of int * ('a, 'b) elem * ('a, 'b) elem * ('a * 'b) list val empty : ('a, 'b) elem val lookup : ('a -> int) -> ('a -> 'b -> bool) -> 'a -> ('b, 'c) elem -> 'c option val insert : ('a -> int) -> 'a -> 'c -> ('a, 'c) elem -> ('a, 'c) elem end = struct type ('a, 'b) elem = Leaf | Node of int * ('a, 'b) elem * ('a, 'b) elem * ('a * 'b) list let empty = Leaf let lookup hash equal key table = let h = hash key in let rec look = function Leaf -> None | Node (hash_key, left, right, this_list) -> if (hash_key < h) then look left else if (hash_key > h) then look right else let rec loop = function [] -> None | (a, b) :: rest -> if (equal key a) then Some b else loop rest in loop this_list in look table let insert hash key value table = let h = hash key in let rec ins = function Leaf -> Node (h, Leaf, Leaf, [(key, value)]) | Node (hash_key, left, right, this_list) -> if (hash_key < h) then Node (hash_key, ins left, right, this_list) else if (hash_key > h) then Node (hash_key, left, ins right, this_list) else Node (hash_key, left, right, (key, value) :: this_list) in ins table end let node_insert = AssocTable.insert hash_node let node_lookup = AssocTable.lookup hash_node (==) (************************************************************* * Monads *************************************************************) (* * Phil Wadler has many well written papers about monads. See * http://cm.bell-labs.com/cm/cs/who/wadler/ *) (* vanilla state monad *) module StateMonad = struct let returnM x = fun s -> (x, s) let (>>=) = fun m k -> fun s -> let (a', s') = m s in let (a'', s'') = k a' s' in (a'', s'') let (>>) = fun m k -> m >>= fun _ -> k let rec mapM f = function [] -> returnM [] | a :: b -> f a >>= fun a' -> mapM f b >>= fun b' -> returnM (a' :: b') let runM m x initial_state = let (a, _) = m x initial_state in a let fetchState = fun s -> s, s let storeState newState = fun _ -> (), newState end (* monad with built-in memoizing capabilities *) module MemoMonad = struct open StateMonad let memoizing lookupM insertM f k = lookupM k >>= fun vMaybe -> match vMaybe with Some value -> returnM value | None -> f k >>= fun value -> insertM k value >> returnM value let runM initial_state m x = StateMonad.runM m x initial_state end module Oracle : sig val should_flip_sign : node -> bool end = struct open AssocTable let make_memoizer hash equal = let table = ref empty in fun f k -> match lookup hash equal k !table with Some value -> value | None -> let value = f k in begin table := insert hash k value !table; value end let almost_equal x y = let epsilon = 1.0E-8 in (abs_float (x -. y) < epsilon) or (abs_float (x -. y) < epsilon *. (abs_float x +. abs_float y)) let memoizing_numbers = make_memoizer (fun x -> hash_float (abs_float x)) (fun a b -> almost_equal a b or almost_equal (-. a) b) let absid = memoizing_numbers (fun x -> x) let memoizing_variables = make_memoizer hash_variable Variable.same let memoizing_nodes = make_memoizer hash_node (==) let random_oracle = memoizing_variables (fun _ -> (float (Random.bits())) /. 1073741824.0) let sum_list l = List.fold_right (+.) l 0.0 let rec eval x = memoizing_nodes (function Num x -> Number.to_float x | Load v -> random_oracle v | Store (v, x) -> random_oracle v | Plus l -> sum_list (List.map eval l) | Times (a, b) -> (eval a) *. (eval b) | Uminus x -> -. (eval x) ) x let should_flip_sign node = let v = eval node in let v' = absid v in not (almost_equal v v') end module Reverse = struct open StateMonad open MemoMonad open AssocTable open LittleSimplifier let fetchDuals = fetchState let storeDuals = storeState let lookupDualsM key = fetchDuals >>= fun table -> returnM (node_lookup key table) let insertDualsM key value = fetchDuals >>= fun table -> storeDuals (node_insert key value table) let rec visit visited vtable parent_table = function [] -> (visited, parent_table) | node :: rest -> match AssocTable.lookup hash_node (==) node vtable with Some _ -> visit visited vtable parent_table rest | None -> let children = match node with Store (v, n) -> [n] | Plus l -> l | Times (a, b) -> [a; b] | Uminus x -> [x] | _ -> [] in let rec loop t = function [] -> t | a :: rest -> (match AssocTable.lookup hash_node (==) a t with None -> loop (AssocTable.insert hash_node a [node] t) rest | Some c -> loop (AssocTable.insert hash_node a (node :: c) t) rest) in visit (node :: visited) (AssocTable.insert hash_node node () vtable) (loop parent_table children) (children @ rest) let make_reverser parent_table = let rec termM node candidate_parent = match candidate_parent with Store (_, n) when n == node -> dualM candidate_parent >>= fun x' -> returnM [x'] | Plus (l) when List.memq node l -> dualM candidate_parent >>= fun x' -> returnM [x'] | Times (a, b) when b == node -> dualM candidate_parent >>= fun x' -> returnM [makeTimes (a, x')] | Uminus n when n == node -> dualM candidate_parent >>= fun x' -> returnM [makeUminus x'] | _ -> returnM [] and dualExpressionM this_node = mapM (termM this_node) (match AssocTable.lookup hash_node (==) this_node parent_table with Some a -> a | None -> failwith "bug in dualExpressionM" ) >>= fun l -> returnM (makePlus (List.flatten l)) and dualM this_node = memoizing lookupDualsM insertDualsM (function Load v as x -> if (Variable.is_twiddle v) then returnM (Load v) else (dualExpressionM x >>= fun d -> returnM (Store (v, d))) | Store (v, x) -> returnM (Load v) | x -> dualExpressionM x) this_node in dualM let is_store = function Store _ -> true | _ -> false let reverse (Dag dag) = let (all_nodes, parent_table) = visit [] empty empty dag in let reverserM = make_reverser parent_table in let mapReverserM = mapM reverserM in let duals = runM empty mapReverserM all_nodes in let roots = filter is_store duals in Dag roots end (************************************************************* * Various dag statistics *************************************************************) module Stats : sig type complexity val complexity : dag -> complexity val same_complexity : complexity -> complexity -> bool end = struct type complexity = int * int * int * int * int * int let rec visit visited vtable = function [] -> visited | node :: rest -> match AssocTable.lookup hash_node (==) node vtable with Some _ -> visit visited vtable rest | None -> let children = match node with Store (v, n) -> [n] | Plus l -> l | Times (a, b) -> [a; b] | Uminus x -> [x] | _ -> [] in visit (node :: visited) (AssocTable.insert hash_node node () vtable) (children @ rest) let complexity (Dag dag) = let rec loop (load, store, plus, times, uminus, num) = function [] -> (load, store, plus, times, uminus, num) | node :: rest -> loop (match node with Load _ -> (load + 1, store, plus, times, uminus, num) | Store _ -> (load, store + 1, plus, times, uminus, num) | Plus _ -> (load, store, plus + 1, times, uminus, num) | Times _ -> (load, store, plus, times + 1, uminus, num) | Uminus _ -> (load, store, plus, times, uminus + 1, num) | Num _ -> (load, store, plus, times, uminus, num + 1)) rest in let (l, s, p, t, u, n) = loop (0, 0, 0, 0, 0, 0) (visit [] AssocTable.empty dag) in (l, s, p, t, u, n) let same_complexity a b = (a = b) end (************************************************************* * Algebraic simplifier/elimination of common subexpressions *************************************************************) module AlgSimp : sig val algsimp : dag -> dag end = struct open StateMonad open MemoMonad open AssocTable let fetchSimp = fetchState >>= fun (s, _) -> returnM s let storeSimp s = fetchState >>= (fun (_, c) -> storeState (s, c)) let lookupSimpM key = fetchSimp >>= fun table -> returnM (node_lookup key table) let insertSimpM key value = fetchSimp >>= fun table -> storeSimp (node_insert key value table) let subset a b = List.for_all (fun x -> List.exists (fun y -> x == y) b) a let equalCSE a b = match (a, b) with (Num a, Num b) -> Number.equal a b | (Load a, Load b) -> Variable.same a b && (!Magic.collect_common_twiddle or not (Variable.is_twiddle a)) && (!Magic.collect_common_inputs or not (Variable.is_input a)) | (Times (a, a'), Times (b, b')) -> ((a == b) && (a' == b')) or ((a == b') && (a' == b)) | (Plus a, Plus b) -> subset a b && subset b a | (Uminus a, Uminus b) -> (a == b) | _ -> false let fetchCSE = fetchState >>= fun (_, c) -> returnM c let storeCSE c = fetchState >>= (fun (s, _) -> storeState (s, c)) let lookupCSEM key = fetchCSE >>= fun table -> returnM (AssocTable.lookup hash_node equalCSE key table) let insertCSEM key value = fetchCSE >>= fun table -> storeCSE (AssocTable.insert hash_node key value table) (* memoize both x and Uminus x (unless x is already negated) *) let identityM x = let memo x = memoizing lookupCSEM insertCSEM returnM x in match x with Uminus _ -> memo x | _ -> memo x >>= fun x' -> memo (Uminus x') >> returnM x' let makeNode = identityM (* simplifiers for various kinds of nodes *) let rec snumM = function n when Number.is_zero n -> makeNode (Num (Number.zero)) | n when Number.negative n -> makeNode (Num (Number.negate n)) >>= suminusM | n -> makeNode (Num n) and suminusM = function Uminus x -> makeNode x | Num a when (Number.is_zero a) -> snumM Number.zero | a -> makeNode (Uminus a) and stimesM = function | (Uminus a, b) -> stimesM (a, b) >>= suminusM | (a, Uminus b) -> stimesM (a, b) >>= suminusM | (Num a, Num b) -> snumM (Number.mul a b) | (Num a, Times (Num b, c)) -> snumM (Number.mul a b) >>= fun x -> stimesM (x, c) | (Num a, b) when Number.is_zero a -> snumM Number.zero | (Num a, b) when Number.is_one a -> makeNode b | (Num a, b) when Number.is_mone a -> suminusM b | (a, (Num _ as b')) -> stimesM (b', a) | (a, b) -> makeNode (Times (a, b)) and reduce_sumM x = match x with [] -> returnM [] | [Num a] -> if (Number.is_zero a) then returnM [] else returnM x | [Uminus (Num a)] -> if (Number.is_zero a) then returnM [] else returnM x | (Num a) :: (Num b) :: s -> snumM (Number.add a b) >>= fun x -> reduce_sumM (x :: s) | (Num a) :: (Uminus (Num b)) :: s -> snumM (Number.sub a b) >>= fun x -> reduce_sumM (x :: s) | (Uminus (Num a)) :: (Num b) :: s -> snumM (Number.sub b a) >>= fun x -> reduce_sumM (x :: s) | (Uminus (Num a)) :: (Uminus (Num b)) :: s -> snumM (Number.add a b) >>= suminusM >>= fun x -> reduce_sumM (x :: s) | ((Num _) as a) :: b :: s -> reduce_sumM (b :: a :: s) | ((Uminus (Num _)) as a) :: b :: s -> reduce_sumM (b :: a :: s) | a :: s -> reduce_sumM s >>= fun s' -> returnM (a :: s') (* collectCoeffM transforms * n x + n y => n (x + y) * where n is a number *) and collectCoeffM x = let rec filterM coeff = function Times (Num a, b) as y :: rest -> filterM coeff rest >>= fun (w, wo) -> if (Number.equal a coeff) then returnM (b :: w, wo) else returnM (w, y :: wo) | Uminus (Times (Num a, b)) as y :: rest -> filterM coeff rest >>= fun (w, wo) -> if (Number.equal a coeff) then suminusM b >>= fun b' -> returnM (b' :: w, wo) else returnM (w, y :: wo) | y :: rest -> filterM coeff rest >>= fun (w, wo) -> returnM (w, y :: wo) | [] -> returnM ([], []) and foundCoeffM a x = filterM a x >>= fun (w, wo) -> collectCoeffM wo >>= fun wo' -> (match w with [d] -> makeNode d | _ -> splusM w) >>= fun p -> snumM a >>= fun a' -> stimesM (a', p) >>= fun ap -> returnM (ap :: wo') in match x with [] -> returnM [] | Times (Num a, _) :: _ -> foundCoeffM a x | (Uminus (Times (Num a, b))) :: _ -> foundCoeffM a x | (a :: c) -> collectCoeffM c >>= fun c' -> returnM (a :: c') (* transform n1 * x + n2 * x ==> (n1 + n2) * x *) and collectExprM x = let rec findCoeffM = function Times (Num a as a', b) -> returnM (a', b) | Uminus (Times (Num a as a', b)) -> suminusM a' >>= fun a'' -> returnM (a'', b) | Uminus x -> snumM Number.one >>= suminusM >>= fun mone -> returnM (mone, x) | x -> snumM Number.one >>= fun one -> returnM (one, x) and filterM xpr = function [] -> returnM ([], []) | a :: b -> filterM xpr b >>= fun (w, wo) -> findCoeffM a >>= fun (c, x) -> if (xpr == x) then returnM (c :: w, wo) else returnM (w, a :: wo) in match x with [] -> returnM x | [a] -> returnM x | a :: b -> findCoeffM a >>= fun (_, xpr) -> filterM xpr x >>= fun (w, wo) -> collectExprM wo >>= fun wo' -> splusM w >>= fun w' -> stimesM (w', xpr) >>= fun t' -> returnM (t':: wo') and mangleSumM x = returnM x >>= reduce_sumM >>= collectExprM >>= collectCoeffM >>= reduce_sumM >>= eliminateButterflyishPatternsM >>= reduce_sumM and reorder_uminus = function (* push all Uminuses to the end *) [] -> [] | ((Uminus a) as a' :: b) -> (reorder_uminus b) @ [a'] | (a :: b) -> a :: (reorder_uminus b) and canonicalizeM = function [] -> snumM Number.zero | [a] -> makeNode a (* one term *) | a -> makeNode (Plus (reorder_uminus a)) >>= generateFusedMultAddM and negative = function Uminus _ -> true | _ -> false (* * simplify patterns of the form * * (c_1 * a + ...) + (c_2 * a + ...) * * The pattern includes arbitrary coefficients and minus signs. * A common case of this pattern is the butterfly * (a + b) + (a - b) * (a + b) - (a - b) *) and eliminateButterflyishPatternsM l = let rec findTerms depth x = match x with | Uminus x -> findTerms depth x | Times (Num a, b) -> findTerms (depth - 1) b | Plus l when depth > 0 -> x :: List.flatten (List.map (findTerms (depth - 1)) l) | x -> [x] and duplicates = function [] -> [] | a :: b -> if List.memq a b then a :: duplicates b else duplicates b in let rec flattenPlusM d coef x = if (List.memq x d) then snumM coef >>= fun coef' -> stimesM (coef', x) >>= fun x' -> returnM [x'] else match x with | Times (Num a, b) -> flattenPlusM d (Number.mul a coef) b | Uminus x -> flattenPlusM d (Number.negate coef) x | Plus l -> snumM coef >>= fun coef' -> mapM (fun x -> stimesM (coef', x)) l | x -> snumM coef >>= fun coef' -> stimesM (coef', x) >>= fun x' -> returnM [x'] in let l' = List.flatten (List.map (findTerms 1) l) in let d = duplicates l' in if (List.length d) > 0 then mapM (flattenPlusM d Number.one) l >>= fun a -> collectExprM (List.flatten a) >>= mangleSumM else returnM l and splusM l = mangleSumM l >>= fun l' -> (* no terms are negative. Don't do anything *) if not (List.exists negative l') then canonicalizeM l' (* all terms are negative. Negate all of them and collect the minus sign *) else if List.for_all negative l' then mapM suminusM l' >>= splusM >>= suminusM (* some terms are positive and some are negative. We are in trouble. Ask the Oracle *) else if Oracle.should_flip_sign (Plus l') then mapM suminusM l' >>= splusM >>= suminusM else canonicalizeM l' and generateFusedMultAddM = let rec is_multiplication = function | Times (Num a, b) -> true | Uminus (Times (Num a, b)) -> true | _ -> false and separate = function [] -> ([], [], Number.zero) | (Times (Num a, b)) as this :: c -> let (x, y, max) = separate c in let newmax = if (Number.greater a max) then a else max in (this :: x, y, newmax) | (Uminus (Times (Num a, b))) as this :: c -> let (x, y, max) = separate c in let newmax = if (Number.greater a max) then a else max in (this :: x, y, newmax) | this :: c -> let (x, y, max) = separate c in (x, this :: y, max) in function Plus l when (count is_multiplication l >= 2) && !Magic.enable_fma -> let (w, wo, max) = separate l in snumM (Number.div Number.one max) >>= fun invmax' -> snumM max >>= fun max' -> mapM (fun x -> stimesM (invmax', x)) w >>= splusM >>= fun pw' -> stimesM (max', pw') >>= fun mw' -> splusM (wo @ [mw']) | x -> returnM x (* monadic style algebraic simplifier for the dag *) let rec algsimpM x = memoizing lookupSimpM insertSimpM (function Num a -> snumM a | Plus a -> mapM algsimpM a >>= splusM | Times (a, b) -> algsimpM a >>= fun a' -> algsimpM b >>= fun b' -> stimesM (a', b') | Uminus a -> algsimpM a >>= suminusM | Store (v, a) -> algsimpM a >>= fun a' -> makeNode (Store (v, a')) | x -> makeNode x) x let initialTable = (empty, empty) let simp_roots = mapM algsimpM let algsimp (Dag dag) = Dag (runM initialTable simp_roots dag) end (* simplify the dag *) let rec simplification_loop v = let complexity = Stats.complexity v in let v = Reverse.reverse v in let v = AlgSimp.algsimp v in let v = Reverse.reverse v in let v = AlgSimp.algsimp v in let complexity' = Stats.complexity v in if (Stats.same_complexity complexity complexity') then v else simplification_loop v let algsimp v = let v = AlgSimp.algsimp v in simplification_loop v let make nodes = Dag nodes (************************************************************* * Conversion of the dag to an assignment list *************************************************************) (* * This function is messy. The main problem is that we want to * inline dag nodes conditionally, depending on how many times they * are used. The Right Thing to do would be to modify the * state monad to propagate some of the state backwards, so that * we know whether a given node will be used again in the future. * This modification is trivial in a lazy language, but it is * messy in a strict language like ML. * * In this implementation, we just do the obvious thing, i.e., visit * the dag twice, the first to count the node usages, and the second to * produce the output. *) module Destructor : sig val to_assignments : dag -> (Variable.variable * Expr.expr) list end = struct open StateMonad open MemoMonad open AssocTable let fresh = Variable.make_temporary let fetchAl = fetchState >>= (fun (al, _, _) -> returnM al) let storeAl al = fetchState >>= (fun (_, visited, visited') -> storeState (al, visited, visited')) let fetchVisited = fetchState >>= (fun (_, v, _) -> returnM v) let storeVisited visited = fetchState >>= (fun (al, _, visited') -> storeState (al, visited, visited')) let fetchVisited' = fetchState >>= (fun (_, _, v') -> returnM v') let storeVisited' visited' = fetchState >>= (fun (al, visited, _) -> storeState (al, visited, visited')) let lookupVisitedM' key = fetchVisited' >>= fun table -> returnM (AssocTable.lookup hash_node (==) key table) let insertVisitedM' key value = fetchVisited' >>= fun table -> storeVisited' (AssocTable.insert hash_node key value table) let counting f x = fetchVisited >>= (fun v -> match AssocTable.lookup hash_node (==) x v with Some count -> fetchVisited >>= (fun v' -> storeVisited (AssocTable.insert hash_node x (count + 1) v')) | None -> f x >>= fun () -> fetchVisited >>= (fun v' -> storeVisited (AssocTable.insert hash_node x 1 v'))) let with_varM v x = fetchAl >>= (fun al -> storeAl ((v, x) :: al)) >> returnM (Expr.Var v) let inlineM = returnM let with_tempM x = with_varM (fresh ()) x (* declare a temporary only if node is used more than once *) let with_temp_maybeM node x = fetchVisited >>= (fun v -> match AssocTable.lookup hash_node (==) node v with Some count -> if (count = 1 && !Magic.inline_single) then inlineM x else with_tempM x | None -> failwith "with_temp_maybeM") type fma = NO_FMA | FMA of node * node * node (* FMA (a, b, c) => a + b * c *) | FMS of node * node * node (* FMS (a, b, c) => -a + b * c *) | FNMS of node * node * node (* FNMS (a, b, c) => a - b * c *) let build_fma l = if (not !Magic.enable_fma_expansion) then NO_FMA else match l with | [Uminus a; Times (b, c)] -> FMS (a, b, c) | [Times (b, c); Uminus a] -> FMS (a, b, c) | [a; Uminus (Times (b, c))] -> FNMS (a, b, c) | [Uminus (Times (b, c)); a] -> FNMS (a, b, c) | [a; Times (b, c)] -> FMA (a, b, c) | [Times (b, c); a] -> FMA (a, b, c) | _ -> NO_FMA let children_fma l = match build_fma l with FMA (a, b, c) -> Some (a, b, c) | FMS (a, b, c) -> Some (a, b, c) | FNMS (a, b, c) -> Some (a, b, c) | NO_FMA -> None let rec visitM x = counting (function Load v -> returnM () | Num a -> returnM () | Store (v, x) -> visitM x | Plus a -> (match children_fma a with None -> mapM visitM a >> returnM () | Some (a, b, c) -> (* visit fma's arguments twice to make sure they get a variable *) visitM a >> visitM a >> visitM b >> visitM b >> visitM c >> visitM c) | Times (a, b) -> visitM a >> visitM b | Uminus a -> visitM a) x let visit_rootsM = mapM visitM let rec expr_of_nodeM x = memoizing lookupVisitedM' insertVisitedM' (function x -> match x with Load v -> if (!Magic.inline_loads) then inlineM (Expr.Var v) else with_tempM (Expr.Var v) | Num a -> inlineM (Expr.Num a) | Store (v, x) -> expr_of_nodeM x >>= with_varM v | Plus a -> (match build_fma a with FMA (a, b, c) -> expr_of_nodeM a >>= fun a' -> expr_of_nodeM b >>= fun b' -> expr_of_nodeM c >>= fun c' -> with_temp_maybeM x (Expr.Plus [a'; Expr.Times (b', c')]) | FMS (a, b, c) -> expr_of_nodeM a >>= fun a' -> expr_of_nodeM b >>= fun b' -> expr_of_nodeM c >>= fun c' -> with_temp_maybeM x (Expr.Plus [Expr.Times (b', c'); Expr.Uminus a']) | FNMS (a, b, c) -> expr_of_nodeM a >>= fun a' -> expr_of_nodeM b >>= fun b' -> expr_of_nodeM c >>= fun c' -> with_temp_maybeM x (Expr.Plus [a'; Expr.Uminus (Expr.Times (b', c'))]) | NO_FMA -> mapM expr_of_nodeM a >>= fun a' -> with_temp_maybeM x (Expr.Plus a')) | Times (a, b) -> expr_of_nodeM a >>= fun a' -> expr_of_nodeM b >>= fun b' -> with_temp_maybeM x (Expr.Times (a', b')) | Uminus a -> expr_of_nodeM a >>= fun a' -> inlineM (Expr.Uminus a')) x let expr_of_rootsM = mapM expr_of_nodeM let peek_alistM roots = visit_rootsM roots >> expr_of_rootsM roots >> fetchAl let to_assignments (Dag dag) = List.rev (runM ([], empty, empty) peek_alistM dag) end let to_assignments = Destructor.to_assignments let wrap_assign (a, b) = Expr.Assign (a, b) let simplify_to_alist dag = let d1 = algsimp dag in List.map wrap_assign (to_assignments d1)