(* * Copyright (c) 1997-1999, 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * *) (* $Id: symmetry.ml,v 1.15 2003/03/16 23:43:46 stevenj Exp $ *) (* various kinds of symmetries *) open Complex open Util (* * symmetries are encoded as symmetries of the *input*. A symmetry * determines * 1) the symmetry of the output (osym) * 2) symmetries at intermediate stages of divide and conquer or Rader * (isym1 and isym2) *) type symmetry = { apply: int -> (int -> Complex.expr) -> int -> Complex.expr; store: int -> (int -> Complex.expr) -> int -> Exprdag.node list; osym: symmetry; isym1: symmetry; isym2: symmetry} (* no symmetry *) let rec no_sym = { isym1 = no_sym; isym2 = no_sym; osym = no_sym; store = (fun _ f i -> store_var (access_output i) (f i)); apply = fun _ f -> f } (* the crazy symmetry of the intermediate elements of the hc2hc_forward transform. *) and middle_hc2hc_forward_sym = { osym = middle_hc2hc_forward_sym; isym1 = no_sym; isym2 = no_sym; store = (fun n f i -> if (i < n - i) then store_var (access_output i) (f i) else store_var (access_output i) (swap_re_im (conj (f i)))); apply = fun _ f -> f } (* the crazy symmetry of the intermediate elements of the hc2hc_backward transform. *) and middle_hc2hc_backward_sym = { osym = no_sym; isym1 = no_sym; isym2 = no_sym; store = (fun _ -> failwith "middle_hc2hc_backward_sym"); apply = fun n f i -> if (i < n - i) then (f i) else conj (swap_re_im (f i)) } (* the crazy symmetry of the n/2-th element of the hc2hc_forward transform. *) and final_hc2hc_forward_sym = { osym = final_hc2hc_forward_output_sym; isym1 = real_sym; isym2 = no_sym; store = (fun n f i -> if (2 * i < n) then store_real (access_output i) (f i) else []); apply = fun n f i -> if (2 * i < n) then real (f i) else uminus (real (f (i - n/2))) } and final_hc2hc_backward_sym = { osym = final_hc2hc_forward_sym; isym1 = no_sym; isym2 = no_sym; store = (fun _ -> failwith "final_hc2hc_backward_sym"); apply = (fun n f i -> if (i mod 2 == 0) then zero else ( let i' = (i - 1) / 2 and n' = n / 2 in if (2 * i' < n' - 1) then (f i') else if (2 * i' == n' - 1) then real (f i') else conj (f (n' - 1 - i')) )) } and final_hc2hc_forward_output_sym = { osym = final_hc2hc_forward_sym; isym1 = no_sym; isym2 = no_sym; store = (fun n f i -> if (i mod 2 == 0) then [] else ( let i' = (i - 1) / 2 and n' = n / 2 in if (2 * i' < n' - 1) then store_var (access_output i') (times (inverse_int 2) (f i)) else if (2 * i' == n' - 1) then store_real (access_output i') (times (inverse_int 2) (f i)) else [] )); apply = fun _ f -> f } (* real input data *) and real_sym = { osym = hermitian_sym; isym1 = real_sym; isym2 = no_sym; store = (fun _ f i -> store_real (access_output i) (f i)); apply = fun _ f -> real @@ f } (* imaginary input data *) and imag_sym = { osym = antihermitian_sym; isym1 = imag_sym; isym2 = no_sym; store = (fun _ f i -> store_imag (access_output i) (f i)); apply = fun _ f -> imag @@ f } (* real, even input data *) and realeven_sym = { osym = realeven_sym; isym1 = real_sym; isym2 = hermitian_sym; store = (fun n f i -> if (i <= n - i) then store_real (access_output i) (f i) else []); apply = fun n f i -> if (i <= n - i) then real (f i) else real (f (n - i)) } (* imaginary, even input data *) and imageven_sym = { osym = imageven_sym; isym1 = imag_sym; isym2 = antihermitian_sym; store = (fun n f i -> if (i <= n - i) then store_imag (access_output i) (f i) else []); apply = fun n f i -> if (i <= n - i) then imag (f i) else imag (f (n - i)) } (* real, odd input data *) and realodd_sym = { osym = imagodd_sym; isym1 = real_sym; isym2 = antihermitian_sym; store = (fun n f i -> if ((i > 0) && (i < n - i)) then store_real (access_output i) (f i) else []); apply = fun n f i -> if (i == 0) then zero else if (i < n - i) then real (f i) else if (i > n - i) then real (uminus (f (n - i))) else zero } (* imaginary, odd input data *) and imagodd_sym = { osym = realodd_sym; isym1 = imag_sym; isym2 = hermitian_sym; store = (fun n f i -> if ((i > 0) && (i < n - i)) then store_imag (access_output i) (f i) else []); apply = fun n f i -> if (i == 0) then zero else if (i < n - i) then imag (f i) else if (i > n - i) then imag (uminus (f (n - i))) else zero } (* halfcomplex/anti-hermitian input data *) and antihermitian_sym = { osym = imag_sym; isym1 = no_sym; isym2 = antihermitian_sym; apply = (fun n f i -> if (i = 0) then imag (f 0) else if (i < n - i) then (f i) else if (i > n - i) then uminus (conj (f (n - i))) else imag (f i)); store = fun n f i -> if (i = 0) then store_imag (access_output i) (f i) else if (i < n - i) then store_var (access_output i) (f i) else if (i == n - i) then store_imag (access_output i) (f i) else [] } (* halfcomplex/hermitian input data *) and hermitian_sym = { osym = real_sym; isym1 = no_sym; isym2 = hermitian_sym; apply = (fun n f i -> if (i = 0) then real (f 0) else if (i < n - i) then (f i) else if (i > n - i) then conj (f (n - i)) else real (f i)); store = fun n f i -> if (i = 0) then store_real (access_output i) (f i) else if (i < n - i) then store_var (access_output i) (f i) else if (i == n - i) then store_real (access_output i) (f i) else [] } (* symmetric input data, used by rader *) and symmetric_sym = { osym = symmetric_sym; isym1 = no_sym; isym2 = no_sym; apply = (fun n f i -> if (i < n - i) then (f i) else (f (n - i))); store = (fun _ -> failwith "symmetric_sym") } (* anti-symmetric input data, used by rader *) and anti_symmetric_sym = { osym = anti_symmetric_sym; isym1 = no_sym; isym2 = no_sym; apply = (fun n f i -> if (i == 0) then zero else if (i < n - i) then (f i) else if (i > n - i) then uminus (f (n - i)) else zero); store = (fun _ -> failwith "anti_symmetric_sym") } (* real, even-2 input data (even about n=-1/2, not n=0). *) and realeven2_input_sym = { osym = realeven2_output_sym; isym1 = real_sym; isym2 = hermitian_sym; store = (fun _ -> failwith "realeven2_input_sym"); apply = fun n f i -> if ((i mod 2) == 0) then zero else if (i <= n - i) then real (f ((i - 1) / 2)) else real (f (n/2 - 1 - (i - 1)/2)) } (* real, even-2 output data (even about n=-1/2, not n=0). We have multiplied output[k] by omega^(k/2); the result is real, odd, and anti-periodic. *) and realeven2_output_sym = { osym = no_sym; isym1 = no_sym; isym2 = no_sym; store = (fun n f i -> if (4 * i < n) then store_real (access_output i) (f i) else []); apply = (fun n f i -> f i) } (* real, odd-2 input data (odd about n=-1/2, not n=0). *) and realodd2_input_sym = { osym = realodd2_output_sym; isym1 = real_sym; isym2 = antihermitian_sym; store = (fun _ -> failwith "realodd2_input_sym"); apply = fun n f i -> if ((i mod 2) == 0) then zero else if (i < n - i) then real (f ((i - 1) / 2)) else if (i == n - i) then zero else uminus (real (f (n/2 - 1 - (i - 1)/2))) } (* real, odd-2 output data (odd about n=-1/2, not n=0). We have multiplied output[k] by omega^(k/2); the result is imaginary, even, and anti-periodic. *) and realodd2_output_sym = { osym = no_sym; isym1 = no_sym; isym2 = no_sym; store = (fun n f i -> if (i > 0 && 4 * i <= n) then store_imag (access_output i) (f i) else []); apply = (fun n f i -> f i) } (* mp3 mdct symmetries *) and mp3mdct_input_sym = { osym = mp3mdct_output_sym; isym1 = real_sym; isym2 = hermitian_sym; store = (fun _ -> failwith "mp3mdct_input_sym"); apply = fun n f i -> let coef = times two (inverse_int (n / 4)) in (* this is the `normal' mp3 mdcd window. I have not implemented the `start' and `stop' windows yet *) let w i = let s = swap_re_im (imag (exp n (2 * i + 1))) in times (times coef s) (f (i mod (n / 4))) in let g i = if (i mod 2) == 0 then zero else w (((i - 1 - n / 8) / 2 + n) mod (n / 2)) in if (i <= n - i) then g i else g (n - i) } and mp3mdct_output_sym = { osym = no_sym; isym1 = no_sym; isym2 = no_sym; store = (fun n f i -> if ((i mod 2) == 1 && 4 * i < n) then store_real (access_output ((i-1) / 2)) (f i) else []); apply = (fun n f i -> f i) }