/* * Copyright (c) 1997-1999, 2003 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* This file was automatically generated --- DO NOT EDIT */ /* Generated on Mon Mar 24 02:08:53 EST 2003 */ #include "fftw-int.h" #include "fftw.h" /* Generated by: /homee/stevenj/cvs/fftw/gensrc/genfft -magic-alignment-check -magic-twiddle-load-all -magic-variables 4 -magic-loopi -hc2hc-backward 6 */ /* * This function contains 72 FP additions, 38 FP multiplications, * (or, 54 additions, 20 multiplications, 18 fused multiply/add), * 25 stack variables, and 48 memory accesses */ static const fftw_real K500000000 = FFTW_KONST(+0.500000000000000000000000000000000000000000000); static const fftw_real K866025403 = FFTW_KONST(+0.866025403784438646763723170752936183471402627); static const fftw_real K2_000000000 = FFTW_KONST(+2.000000000000000000000000000000000000000000000); static const fftw_real K1_732050807 = FFTW_KONST(+1.732050807568877293527446341505872366942805254); /* * Generator Id's : * $Id: exprdag.ml,v 1.43 2003/03/16 23:43:46 stevenj Exp $ * $Id: fft.ml,v 1.44 2003/03/16 23:43:46 stevenj Exp $ * $Id: to_c.ml,v 1.26 2003/03/16 23:43:46 stevenj Exp $ */ void fftw_hc2hc_backward_6(fftw_real *A, const fftw_complex *W, int iostride, int m, int dist) { int i; fftw_real *X; fftw_real *Y; X = A; Y = A + (6 * iostride); { fftw_real tmp71; fftw_real tmp75; fftw_real tmp80; fftw_real tmp82; fftw_real tmp74; fftw_real tmp76; fftw_real tmp69; fftw_real tmp70; fftw_real tmp77; fftw_real tmp81; ASSERT_ALIGNED_DOUBLE; tmp69 = X[0]; tmp70 = X[3 * iostride]; tmp71 = tmp69 - tmp70; tmp75 = tmp69 + tmp70; { fftw_real tmp78; fftw_real tmp79; fftw_real tmp72; fftw_real tmp73; ASSERT_ALIGNED_DOUBLE; tmp78 = Y[-2 * iostride]; tmp79 = Y[-iostride]; tmp80 = K1_732050807 * (tmp78 + tmp79); tmp82 = K1_732050807 * (tmp78 - tmp79); tmp72 = X[2 * iostride]; tmp73 = X[iostride]; tmp74 = tmp72 - tmp73; tmp76 = tmp72 + tmp73; } X[3 * iostride] = tmp71 + (K2_000000000 * tmp74); tmp77 = tmp71 - tmp74; X[iostride] = tmp77 - tmp80; X[5 * iostride] = tmp77 + tmp80; X[0] = tmp75 + (K2_000000000 * tmp76); tmp81 = tmp75 - tmp76; X[2 * iostride] = tmp81 + tmp82; X[4 * iostride] = tmp81 - tmp82; } X = X + dist; Y = Y - dist; for (i = 2; i < m; i = i + 2, X = X + dist, Y = Y - dist, W = W + 5) { fftw_real tmp15; fftw_real tmp46; fftw_real tmp25; fftw_real tmp52; fftw_real tmp22; fftw_real tmp35; fftw_real tmp49; fftw_real tmp62; fftw_real tmp32; fftw_real tmp39; fftw_real tmp55; fftw_real tmp59; ASSERT_ALIGNED_DOUBLE; { fftw_real tmp13; fftw_real tmp14; fftw_real tmp23; fftw_real tmp24; ASSERT_ALIGNED_DOUBLE; tmp13 = X[0]; tmp14 = Y[-3 * iostride]; tmp15 = tmp13 + tmp14; tmp46 = tmp13 - tmp14; tmp23 = Y[0]; tmp24 = X[3 * iostride]; tmp25 = tmp23 - tmp24; tmp52 = tmp23 + tmp24; } { fftw_real tmp18; fftw_real tmp47; fftw_real tmp21; fftw_real tmp48; ASSERT_ALIGNED_DOUBLE; { fftw_real tmp16; fftw_real tmp17; fftw_real tmp19; fftw_real tmp20; ASSERT_ALIGNED_DOUBLE; tmp16 = X[2 * iostride]; tmp17 = Y[-5 * iostride]; tmp18 = tmp16 + tmp17; tmp47 = tmp16 - tmp17; tmp19 = Y[-4 * iostride]; tmp20 = X[iostride]; tmp21 = tmp19 + tmp20; tmp48 = tmp19 - tmp20; } tmp22 = tmp18 + tmp21; tmp35 = K866025403 * (tmp18 - tmp21); tmp49 = tmp47 + tmp48; tmp62 = K866025403 * (tmp47 - tmp48); } { fftw_real tmp28; fftw_real tmp54; fftw_real tmp31; fftw_real tmp53; ASSERT_ALIGNED_DOUBLE; { fftw_real tmp26; fftw_real tmp27; fftw_real tmp29; fftw_real tmp30; ASSERT_ALIGNED_DOUBLE; tmp26 = Y[-2 * iostride]; tmp27 = X[5 * iostride]; tmp28 = tmp26 - tmp27; tmp54 = tmp26 + tmp27; tmp29 = Y[-iostride]; tmp30 = X[4 * iostride]; tmp31 = tmp29 - tmp30; tmp53 = tmp29 + tmp30; } tmp32 = tmp28 + tmp31; tmp39 = K866025403 * (tmp31 - tmp28); tmp55 = tmp53 - tmp54; tmp59 = K866025403 * (tmp54 + tmp53); } X[0] = tmp15 + tmp22; { fftw_real tmp36; fftw_real tmp42; fftw_real tmp40; fftw_real tmp44; fftw_real tmp34; fftw_real tmp38; ASSERT_ALIGNED_DOUBLE; tmp34 = tmp25 - (K500000000 * tmp32); tmp36 = tmp34 - tmp35; tmp42 = tmp35 + tmp34; tmp38 = tmp15 - (K500000000 * tmp22); tmp40 = tmp38 - tmp39; tmp44 = tmp38 + tmp39; { fftw_real tmp33; fftw_real tmp37; fftw_real tmp41; fftw_real tmp43; ASSERT_ALIGNED_DOUBLE; tmp33 = c_re(W[1]); tmp37 = c_im(W[1]); Y[-3 * iostride] = (tmp33 * tmp36) - (tmp37 * tmp40); X[2 * iostride] = (tmp37 * tmp36) + (tmp33 * tmp40); tmp41 = c_re(W[3]); tmp43 = c_im(W[3]); Y[-iostride] = (tmp41 * tmp42) - (tmp43 * tmp44); X[4 * iostride] = (tmp43 * tmp42) + (tmp41 * tmp44); } } Y[-5 * iostride] = tmp25 + tmp32; { fftw_real tmp50; fftw_real tmp56; fftw_real tmp45; fftw_real tmp51; ASSERT_ALIGNED_DOUBLE; tmp50 = tmp46 + tmp49; tmp56 = tmp52 - tmp55; tmp45 = c_re(W[2]); tmp51 = c_im(W[2]); X[3 * iostride] = (tmp45 * tmp50) + (tmp51 * tmp56); Y[-2 * iostride] = (tmp45 * tmp56) - (tmp51 * tmp50); } { fftw_real tmp60; fftw_real tmp66; fftw_real tmp64; fftw_real tmp68; fftw_real tmp58; fftw_real tmp63; ASSERT_ALIGNED_DOUBLE; tmp58 = tmp46 - (K500000000 * tmp49); tmp60 = tmp58 - tmp59; tmp66 = tmp58 + tmp59; tmp63 = tmp52 + (K500000000 * tmp55); tmp64 = tmp62 + tmp63; tmp68 = tmp63 - tmp62; { fftw_real tmp57; fftw_real tmp61; fftw_real tmp65; fftw_real tmp67; ASSERT_ALIGNED_DOUBLE; tmp57 = c_re(W[0]); tmp61 = c_im(W[0]); X[iostride] = (tmp57 * tmp60) + (tmp61 * tmp64); Y[-4 * iostride] = (tmp57 * tmp64) - (tmp61 * tmp60); tmp65 = c_re(W[4]); tmp67 = c_im(W[4]); X[5 * iostride] = (tmp65 * tmp66) + (tmp67 * tmp68); Y[0] = (tmp65 * tmp68) - (tmp67 * tmp66); } } } if (i == m) { fftw_real tmp1; fftw_real tmp6; fftw_real tmp4; fftw_real tmp5; fftw_real tmp9; fftw_real tmp11; fftw_real tmp12; fftw_real tmp10; ASSERT_ALIGNED_DOUBLE; tmp1 = X[iostride]; tmp6 = Y[-iostride]; { fftw_real tmp2; fftw_real tmp3; fftw_real tmp7; fftw_real tmp8; ASSERT_ALIGNED_DOUBLE; tmp2 = X[2 * iostride]; tmp3 = X[0]; tmp4 = tmp2 + tmp3; tmp5 = K1_732050807 * (tmp2 - tmp3); tmp7 = Y[-2 * iostride]; tmp8 = Y[0]; tmp9 = tmp7 + tmp8; tmp11 = K1_732050807 * (tmp7 - tmp8); } X[0] = K2_000000000 * (tmp1 + tmp4); tmp12 = (K2_000000000 * tmp1) - tmp4; X[2 * iostride] = tmp11 - tmp12; X[4 * iostride] = tmp12 + tmp11; X[3 * iostride] = K2_000000000 * (tmp6 - tmp9); tmp10 = (K2_000000000 * tmp6) + tmp9; X[iostride] = -(tmp5 + tmp10); X[5 * iostride] = tmp5 - tmp10; } } static const int twiddle_order[] = { 1, 2, 3, 4, 5 }; fftw_codelet_desc fftw_hc2hc_backward_6_desc = { "fftw_hc2hc_backward_6", (void (*)()) fftw_hc2hc_backward_6, 6, FFTW_BACKWARD, FFTW_HC2HC, 146, 5, twiddle_order, };