/* * Copyright (c) 2003, 2006 Matteo Frigo * Copyright (c) 2003, 2006 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* $Id: indirect.c,v 1.42 2006-01-27 02:10:50 athena Exp $ */ /* solvers/plans for vectors of small DFT's that cannot be done in-place directly. Use a rank-0 plan to rearrange the data before or after the transform. Can also change an out-of-place plan into a copy + in-place (where the in-place transform is e.g. unit stride). */ /* FIXME: merge with rank-geq2.c(?), since this is just a special case of a rank split where the first/second transform has rank 0. */ #include "dft.h" typedef problem *(*mkcld_t) (const problem_dft *p); typedef struct { dftapply apply; problem *(*mkcld)(const problem_dft *p); const char *nam; } ndrct_adt; typedef struct { solver super; const ndrct_adt *adt; } S; typedef struct { plan_dft super; plan *cldcpy, *cld; const S *slv; } P; /*-----------------------------------------------------------------------*/ /* first rearrange, then transform */ static void apply_before(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const P *ego = (const P *) ego_; { plan_dft *cldcpy = (plan_dft *) ego->cldcpy; cldcpy->apply(ego->cldcpy, ri, ii, ro, io); } { plan_dft *cld = (plan_dft *) ego->cld; cld->apply(ego->cld, ro, io, ro, io); } } static problem *mkcld_before(const problem_dft *p) { return X(mkproblem_dft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_OS), X(tensor_copy_inplace)(p->vecsz, INPLACE_OS), p->ro, p->io, p->ro, p->io); } static const ndrct_adt adt_before = { apply_before, mkcld_before, "dft-indirect-before" }; /*-----------------------------------------------------------------------*/ /* first transform, then rearrange */ static void apply_after(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const P *ego = (const P *) ego_; { plan_dft *cld = (plan_dft *) ego->cld; cld->apply(ego->cld, ri, ii, ri, ii); } { plan_dft *cldcpy = (plan_dft *) ego->cldcpy; cldcpy->apply(ego->cldcpy, ri, ii, ro, io); } } static problem *mkcld_after(const problem_dft *p) { return X(mkproblem_dft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_IS), X(tensor_copy_inplace)(p->vecsz, INPLACE_IS), p->ri, p->ii, p->ri, p->ii); } static const ndrct_adt adt_after = { apply_after, mkcld_after, "dft-indirect-after" }; /*-----------------------------------------------------------------------*/ static void destroy(plan *ego_) { P *ego = (P *) ego_; X(plan_destroy_internal)(ego->cld); X(plan_destroy_internal)(ego->cldcpy); } static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; X(plan_awake)(ego->cldcpy, wakefulness); X(plan_awake)(ego->cld, wakefulness); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; const S *s = ego->slv; p->print(p, "(%s%(%p%)%(%p%))", s->adt->nam, ego->cld, ego->cldcpy); } static int applicable0(const solver *ego_, const problem *p_, const planner *plnr) { const S *ego = (const S *) ego_; const problem_dft *p = (const problem_dft *) p_; return (1 && FINITE_RNK(p->vecsz->rnk) /* problem must be a nontrivial transform, not just a copy */ && p->sz->rnk > 0 && (0 /* problem must be in-place & require some rearrangement of the data; to prevent infinite loops with indirect-transpose, we further require that at least some transform strides must decrease */ || (p->ri == p->ro && !X(tensor_inplace_strides2)(p->sz, p->vecsz) && X(tensor_strides_decrease)( p->sz, p->vecsz, ego->adt->apply == apply_after ? INPLACE_IS : INPLACE_OS)) /* or problem must be out of place, transforming from stride 1/2 to bigger stride, for apply_after */ || (p->ri != p->ro && ego->adt->apply == apply_after && !NO_DESTROY_INPUTP(plnr) && X(tensor_min_istride)(p->sz) <= 2 && X(tensor_min_ostride)(p->sz) > 2) /* or problem must be out of place, transforming to stride 1/2 from bigger stride, for apply_before */ || (p->ri != p->ro && ego->adt->apply == apply_before && X(tensor_min_ostride)(p->sz) <= 2 && X(tensor_min_istride)(p->sz) > 2) ) ); } static int applicable(const solver *ego_, const problem *p_, const planner *plnr) { if (!applicable0(ego_, p_, plnr)) return 0; { const problem_dft *p = (const problem_dft *) p_; if (NO_INDIRECT_OP_P(plnr) && p->ri != p->ro) return 0; } return 1; } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const problem_dft *p = (const problem_dft *) p_; const S *ego = (const S *) ego_; P *pln; plan *cld = 0, *cldcpy = 0; static const plan_adt padt = { X(dft_solve), awake, print, destroy }; if (!applicable(ego_, p_, plnr)) return (plan *) 0; cldcpy = X(mkplan_d)(plnr, X(mkproblem_dft_d)(X(mktensor_0d)(), X(tensor_append)(p->vecsz, p->sz), p->ri, p->ii, p->ro, p->io)); if (!cldcpy) goto nada; cld = X(mkplan_f_d)(plnr, ego->adt->mkcld(p), NO_BUFFERING, 0, 0); if (!cld) goto nada; pln = MKPLAN_DFT(P, &padt, ego->adt->apply); pln->cld = cld; pln->cldcpy = cldcpy; pln->slv = ego; X(ops_add)(&cld->ops, &cldcpy->ops, &pln->super.super.ops); return &(pln->super.super); nada: X(plan_destroy_internal)(cld); X(plan_destroy_internal)(cldcpy); return (plan *)0; } static solver *mksolver(const ndrct_adt *adt) { static const solver_adt sadt = { PROBLEM_DFT, mkplan }; S *slv = MKSOLVER(S, &sadt); slv->adt = adt; return &(slv->super); } void X(dft_indirect_register)(planner *p) { unsigned i; static const ndrct_adt *const adts[] = { &adt_before, &adt_after }; for (i = 0; i < sizeof(adts) / sizeof(adts[0]); ++i) REGISTER_SOLVER(p, mksolver(adts[i])); }