/* * Copyright (c) 2003, 2006 Matteo Frigo * Copyright (c) 2003, 2006 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* $Id: tensor7.c,v 1.10 2006-01-05 03:04:27 stevenj Exp $ */ #include "ifftw.h" static int signof(INT x) { if (x < 0) return -1; if (x == 0) return 0; /* if (x > 0) */ return 1; } /* total order among iodim's */ int X(dimcmp)(const iodim *a, const iodim *b) { INT sai = X(iabs)(a->is), sbi = X(iabs)(b->is); INT sao = X(iabs)(a->os), sbo = X(iabs)(b->os); INT sam = X(imin)(sai, sao), sbm = X(imin)(sbi, sbo); /* in descending order of min{istride, ostride} */ if (sam != sbm) return signof(sbm - sam); /* in case of a tie, in descending order of istride */ if (sbi != sai) return signof(sbi - sai); /* in case of a tie, in descending order of ostride */ if (sbo != sao) return signof(sbo - sao); /* in case of a tie, in ascending order of n */ return signof(a->n - b->n); } /* Like tensor_copy, but eliminate n == 1 dimensions, which never affect any transform or transform vector. Also, we sort the tensor into a canonical order of decreasing is. In general, processing a loop/array in order of decreasing stride will improve locality; sorting also makes the analysis in fftw_tensor_contiguous (below) easier. The choice of is over os is mostly arbitrary, and hopefully shouldn't affect things much. Normally, either the os will be in the same order as is (for e.g. multi-dimensional transforms) or will be in opposite order (e.g. for Cooley-Tukey recursion). (Both forward and backwards traversal of the tensor are considered e.g. by vrank-geq1, so sorting in increasing vs. decreasing order is not really important.) */ tensor *X(tensor_compress)(const tensor *sz) { int i, rnk; tensor *x; A(FINITE_RNK(sz->rnk)); for (i = rnk = 0; i < sz->rnk; ++i) { A(sz->dims[i].n > 0); if (sz->dims[i].n != 1) ++rnk; } x = X(mktensor)(rnk); for (i = rnk = 0; i < sz->rnk; ++i) { if (sz->dims[i].n != 1) x->dims[rnk++] = sz->dims[i]; } if (rnk) { /* God knows how qsort() behaves if n==0 */ qsort(x->dims, (size_t)x->rnk, sizeof(iodim), (int (*)(const void *, const void *))X(dimcmp)); } return x; } /* Return whether the strides of a and b are such that they form an effective contiguous 1d array. Assumes that a.is >= b.is. */ static int strides_contig(iodim *a, iodim *b) { return (a->is == b->is * b->n && a->os == b->os * b->n); } /* Like tensor_compress, but also compress into one dimension any group of dimensions that form a contiguous block of indices with some stride. (This can safely be done for transform vector sizes.) */ tensor *X(tensor_compress_contiguous)(const tensor *sz) { int i, rnk; tensor *sz2, *x; if (X(tensor_sz)(sz) == 0) return X(mktensor)(RNK_MINFTY); sz2 = X(tensor_compress)(sz); A(FINITE_RNK(sz2->rnk)); if (sz2->rnk < 2) /* nothing to compress */ return sz2; for (i = rnk = 1; i < sz2->rnk; ++i) if (!strides_contig(sz2->dims + i - 1, sz2->dims + i)) ++rnk; x = X(mktensor)(rnk); x->dims[0] = sz2->dims[0]; for (i = rnk = 1; i < sz2->rnk; ++i) { if (strides_contig(sz2->dims + i - 1, sz2->dims + i)) { x->dims[rnk - 1].n *= sz2->dims[i].n; x->dims[rnk - 1].is = sz2->dims[i].is; x->dims[rnk - 1].os = sz2->dims[i].os; } else { A(rnk < x->rnk); x->dims[rnk++] = sz2->dims[i]; } } X(tensor_destroy)(sz2); return x; } /* The inverse of X(tensor_append): splits the sz tensor into tensor a followed by tensor b, where a's rank is arnk. */ void X(tensor_split)(const tensor *sz, tensor **a, int arnk, tensor **b) { A(FINITE_RNK(sz->rnk) && FINITE_RNK(arnk)); *a = X(tensor_copy_sub)(sz, 0, arnk); *b = X(tensor_copy_sub)(sz, arnk, sz->rnk - arnk); }