/* * Copyright (c) 2003, 2006 Matteo Frigo * Copyright (c) 2003, 2006 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* $Id: ct.c,v 1.6 2006-01-27 02:10:50 athena Exp $ */ #include "threads.h" typedef struct { plan_dft super; plan *cld; plan **cldws; int nthr; INT r, ts; } P; typedef struct { plan **cldws; R *r, *i; INT ts; } PD; static void *spawn_apply(spawn_data *d) WITH_ALIGNED_STACK({ PD *ego = (PD *) d->data; INT thr_num = d->thr_num; INT offset = thr_num * ego->ts; plan_dftw *cldw = (plan_dftw *) (ego->cldws[thr_num]); cldw->apply((plan *) cldw, ego->r + offset, ego->i + offset); return 0; }) static void apply_dit(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const P *ego = (const P *) ego_; plan_dft *cld; cld = (plan_dft *) ego->cld; cld->apply(ego->cld, ri, ii, ro, io); { PD d; d.r = ro; d.i = io; d.cldws = ego->cldws; d.ts = ego->ts; X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d); } } static void apply_dif(const plan *ego_, R *ri, R *ii, R *ro, R *io) { const P *ego = (const P *) ego_; plan_dft *cld; { PD d; d.r = ri; d.i = ii; d.cldws = ego->cldws; d.ts = ego->ts; X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d); } cld = (plan_dft *) ego->cld; cld->apply(ego->cld, ri, ii, ro, io); } static void awake(plan *ego_, enum wakefulness wakefulness) { P *ego = (P *) ego_; int i; X(plan_awake)(ego->cld, wakefulness); for (i = 0; i < ego->nthr; ++i) X(plan_awake)(ego->cldws[i], wakefulness); } static void destroy(plan *ego_) { P *ego = (P *) ego_; int i; X(plan_destroy_internal)(ego->cld); for (i = 0; i < ego->nthr; ++i) X(plan_destroy_internal)(ego->cldws[i]); X(ifree)(ego->cldws); } static void print(const plan *ego_, printer *p) { const P *ego = (const P *) ego_; int i; p->print(p, "(dft-thr-ct-%s-x%d/%D", ego->super.apply == apply_dit ? "dit" : "dif", ego->nthr, ego->r); for (i = 0; i < ego->nthr; ++i) if (i == 0 || (ego->cldws[i] != ego->cldws[i-1] && (i <= 1 || ego->cldws[i] != ego->cldws[i-2]))) p->print(p, "%(%p%)", ego->cldws[i]); p->print(p, "%(%p%))", ego->cld); } static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) { const ct_solver *ego = (const ct_solver *) ego_; const problem_dft *p; P *pln = 0; plan *cld = 0, **cldws = 0; INT n, r, m, vl, ivs, ovs; INT block_size, ts; int i, nthr, plnr_nthr_save; iodim *d; tensor *t1, *t2; static const plan_adt padt = { X(dft_solve), awake, print, destroy }; if (plnr->nthr <= 1 || !X(ct_applicable)(ego, p_, plnr)) return (plan *) 0; p = (const problem_dft *) p_; d = p->sz->dims; n = d[0].n; r = X(choose_radix)(ego->r, n); m = n / r; X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); block_size = (m + plnr->nthr - 1) / plnr->nthr; nthr = (int)((m + block_size - 1) / block_size); plnr_nthr_save = plnr->nthr; plnr->nthr = (plnr->nthr + nthr - 1) / nthr; cldws = (plan **) MALLOC(sizeof(plan *) * nthr, PLANS); for (i = 0; i < nthr; ++i) cldws[i] = (plan *) 0; switch (ego->dec) { case DECDIT: { ts = d[0].os * block_size; for (i = 0; i < nthr; ++i) { cldws[i] = ego->mkcldw(ego, DECDIT, r, m, d[0].os, vl, ovs, i*block_size, (i == nthr - 1) ? (m - i*block_size) : block_size, p->ro + ts*i, p->io + ts*i, plnr); if (!cldws[i]) goto nada; } t1 = X(mktensor_1d)(r, d[0].is, m * d[0].os); t2 = X(tensor_append)(t1, p->vecsz); X(tensor_destroy)(t1); plnr->nthr = plnr_nthr_save; cld = X(mkplan_d)(plnr, X(mkproblem_dft_d)( X(mktensor_1d)(m, r * d[0].is, d[0].os), t2, p->ri, p->ii, p->ro, p->io) ); if (!cld) goto nada; pln = MKPLAN_DFT(P, &padt, apply_dit); break; } case DECDIF: { ts = d[0].is * block_size; for (i = 0; i < nthr; ++i) { cldws[i] = ego->mkcldw(ego, DECDIF, r, m, d[0].is, vl, ivs, i*block_size, (i == nthr - 1) ? (m - i*block_size) : block_size, p->ri + ts*i, p->ii + ts*i, plnr); if (!cldws[i]) goto nada; } t1 = X(mktensor_1d)(r, m * d[0].is, d[0].os); t2 = X(tensor_append)(t1, p->vecsz); X(tensor_destroy)(t1); plnr->nthr = plnr_nthr_save; cld = X(mkplan_d)(plnr, X(mkproblem_dft_d)( X(mktensor_1d)(m, d[0].is, r * d[0].os), t2, p->ri, p->ii, p->ro, p->io) ); if (!cld) goto nada; pln = MKPLAN_DFT(P, &padt, apply_dif); break; } default: A(0); } pln->cld = cld; pln->cldws = cldws; pln->nthr = nthr; pln->ts = ts; pln->r = r; X(ops_zero)(&pln->super.super.ops); for (i = 0; i < nthr; ++i) X(ops_add2)(&cldws[i]->ops, &pln->super.super.ops); X(ops_add2)(&cld->ops, &pln->super.super.ops); return &(pln->super.super); nada: if (cldws) { for (i = 0; i < nthr; ++i) X(plan_destroy_internal)(cldws[i]); X(ifree)(cldws); } X(plan_destroy_internal)(cld); return (plan *) 0; } ct_solver *X(mksolver_ct_threads)(size_t size, INT r, int dec, ct_mkinferior mkcldw) { static const solver_adt sadt = { PROBLEM_DFT, mkplan }; ct_solver *slv = (ct_solver *) X(mksolver)(size, &sadt); slv->r = r; slv->dec = dec; slv->mkcldw = mkcldw; return slv; }