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Introduction
! This software was developed to allow controlled bonding of polymers to ceramic 
nano particles for LAMMPS. The software uses an object oriented approach where the 
key classes are “Lmpsdata”, “Lmpsmolecule”, and “particlesurface”. The Lmpsdata 
class reads, writes, extracts, and stores all of the data required for LAMMPS to run 
simulations. The Lmpsmolecule class only stores molecular style data which is used for 
manipulating molecules for bonding. The “particlesurface” class stores the data of the 
nanoparticle surface that is interacting/bonding with the polymer. These classes interact 
in such a way to allow the user to read and write data files, and implement reactions 
between the particle surface and the polymer chains.

Current Version: Version 1.0
Capabilities: 
1. Bonding ceramic nano particles to the polymer matrix
2. Inserting nano particles into openings in the polymer matrix
3. Calculating the density of spherical shells centered around the origin
4. Creating xyz files for VMD
5. Create a polymer system with a specific molecular weight distribution (untested)

Limitations:
1. For large systems, code can run extremely slowly
2. Python’s multiprocessing has not been tested on distributed memory machines
3. Designed to only handle one nano particle which is in the center of the simulation 

box

Terminology
! Most of the terminology used below is explained in the LAMMPS manual or doc 
folder under the “read_data” command. The rest of the terminology comes from object 
oriented coding descriptions and procedural coding descriptions.



Sample Scripts
Example 1: Inserting a Nano Particle
! In this example, a nano particle is inserted into a spherical whole in the polymer 
box. Also, the density is calculated, which illustrates the nano particle was successfully 
inserted. The velocities were deleted because the nano particle has no velocity and 
LAMMPS wont let you have a data file where only some of the atoms have velocities. In 
this case, the pair coefficients were also deleted because LAMMPS will not let you read 
in pair coefficients if the pair style is set to hybrid or hybrid/overlay. 

import lmpsdata
from pylab import *

# Read in the alumina nanoparticle
f=open('alumina.pmma80','r')
nanoparticle=[]
for line in f:
! row=line.split()
! nanoparticle.append(row)

# Read in the polymer datafile
data=lmpsdata.Lmpsdata('pmma80data.finaleq3','full')

# Add in the mass information for the atom type 7, and 8
# 7 is aluminum cation and 8 is oxygen anion
massinfo=[['7','26.981539'],['8','15.9994']]
data.adddata(massinfo,'Masses')

# Add in the alumina nanopartice
data.addatoms(nanoparticle,False)

# Delete the data for the velocities and pair coefs
data.deletebodydata('Velocities')
data.deletebodydata('Pair Coeffs')

# Delete Velocities and Pair Coeffs from the keywords
data.keywords.remove('Velocities')
data.keywords.remove('Pair Coeffs')

# Write the density calculations to the file testden.txt
r,rho=data.density(.5,0,20)
plot(r,rho)
xlabel('distance (angstrom)')
ylabel('density (amu/angstrom^3)')
#legend(loc=1)
show()



# Write the new nanocomposite into a new datafile
data.write('pmma80_nano_composite_data.initial',1)

Example 2: Bonding of PMMA to a alumina nano particle.
! In this example PMMA is bonded to an alumina nano particle with this reaction:
Al2O3+ O + 2[ − CC(C)(COOC)−]→ 2AlO+(CC(C)(COO))−  +  2O−  + 2C− . Before this script 
can be run, the polymer needs to be near or at equilibrium. The starting bonding 
distance used in this example was the cation-cation distance for alpha aluminum. This 
value can be increased by an angstrom or two to form the number of bonds required. In 
this script the value is increased by about an angstrom. For brevity purposes, I only 
included one of the three bonding cases shown in the top portion of this example. 

import lmpsdata, copy
data=lmpsdata.Lmpsdata('pmma80compositedata.initeq','full')

#copies pmma80compositedata.initeq to a new folder
directory='./bulk/'
data.write(directory+'pmma80_composite_data.initial', 0)

#orders atomdata before doing bonding procedure.
data.atomorder()

#seperate nanocomposite atoms into polymer and nanoparticle portion
# Note:Only the atom structures will be present in these variables. 
polymer=lmpsdata.molecules(data,1,5)
nanoparticle=lmpsdata.molecules(data,6,6,'atom')

#seperate nanoparticle into its particle surface
surface=lmpsdata.particlesurface(nanoparticle[0], 1.94, 8, 'full')
surface.createxyz('alumina_surface_initeq.xyz',data)

#setup copies of molecules for different reaction processes
crosslink=copy.deepcopy(polymer) #crosslink case is 2 bonds formed
weakbond=copy.deepcopy(polymer)  #weakbond case is 4 bonds formed
strongbond=copy.deepcopy(polymer) #strongbonds case is 8 bonds formed

#setup copies of surface for different reaction processes
surface_crosslink=copy.deepcopy(surface)
surface_weakbond=copy.deepcopy(surface)
surface_strongbond=copy.deepcopy(surface)

#add mass data for the bonded carbonyl type
massinfo=[['9','15.9994']]
data.adddata(massinfo,'Masses')

#setup copies of data for different reaction processes



data_crosslink=copy.deepcopy(data)
data_weakbond=copy.deepcopy(data)
data_strongbond=copy.deepcopy(data)

#find possible bonding between crosslink(polymer) and 
surface_crosslink
bondinglen=0
for molecule in crosslink:
! molecule.findparticlebondingpoints(surface_crosslink,6,3.2,2)
! #need to ensure the number of bonds are in multiples of 2
! if len(molecule.bondinginformation)!
=int(len(molecule.bondinginformation)/2.0)*2:
! ! i=len(molecule.bondinginformation)-1
! ! del molecule.bondinginformation[i]
! print 'the length of the bonding information is', 
len(molecule.bondinginformation)
! bondinglen+=len(molecule.bondinginformation)
bondinglen=bondinglen/float(len(crosslink))

#Bond crosslink(polymer) to surface_crosslink
count=1
for molecule in crosslink:
! print 'the iteration is', count
! molecule.bondtoparticle(surface_crosslink,1,'9','-.7825')
! #add 1 atom to surface_crosslink per 2 atoms bonded
! for j in range(len(molecule.bondinginformation)/2):
! ! surface_crosslink.addatom(8,-.945,5)! !
! count+=1

# extract the crosslink surface
surface_crosslink.extractparticle()

# extract molecule informtaion to data_crosslink
data_crosslink.extractmolecules(crosslink)

# add in the crosslinked nanoparticle to data_crosslink
data_crosslink.addatoms(surface_crosslink.particle)

# delete the data for the velocities and pair coeffs from 
data_crosslink
data_crosslink.deletebodydata('Velocities')

# delete the Velocities and Pair Coeffs from the keywords from 
data_crosslink
data_crosslink.keywords.remove('Velocities')

# write the crosslink bonded nanocomposite into a new data file



directory='./crosslink/'
data_crosslink.write(directory+'pmma80_composite_data.initial',1)
# write the crosslink bondinglen into a file in the crosslink 
directory
f=open(directory+'bondinglen.info','w')
f.write('{0}'.format(bondinglen))
f.close()

Methods by class
Notes: Not all of the methods are included in this guide. The methods I have left out are 
meant to be private methods, but as all methods in python are public, they can still be 
accessed. Therefore, to avoid people including them in Python scripts and possibly 
causing unintended behavior, I will just avoid placing them in the guide. 

All methods using atom information are written assuming the image flags are included. 
If you don’t use the image flags, this software may crash.

Lmpsdata(file,atomtype)
! Initiates the class and reads from “file” which is a LAMMPS data file. All 
information from the read data file is stored in this class. In order to utilize the atom 
information later, the atom style must be assigned from “atomtype”.

write(file, modflag)
! Writes the information stored in this class out to a LAMMPS data file. The modflag 
allows the user to control whether certain header data will be calculated or written to the 
data file as is. The modflag set to “0” accesses the portion of the method which writes 
out all information to the data file unchanged, but the modflag set to “1” accesses the 
portion of the method which calculates certain header data. The header data that can 
be calculated are the number of atoms, bonds, angles, dihedrals, impropers and their 
number of types. 

atomorder()
! This method organizes the atoms by atom id from least to greatest and allows the 
bonding algorithm to always attempt to bond the first and last bondable atom on the 
molecule.

addatoms(atoms,retlist=false)
! This method adds “atoms” to the atoms already stored in the “Lmpsdata” class. If 
“retlist” is set to “false” the method returns nothing. If “retlist” is set to “true” the method 
returns a list of the modified atom-ids of the added atoms. 

adddata(data, keyword)
! This method adds “data” to the information already stored in the “Lmpsdata” class. 
The specific structure the data is added to is determined by the “keyword” given. Only a 
body keyword input will result in data being added. 



deletebodydata(keyword) 
! This method empties the corresponding structure of the “keyword”. The “keyword” 
must be a body keyword for the method to work.  

extractmolecules(molecule)
! Extracts the information contained in “molecule” to this class. The input, 
“molecule”, is a list of “Lmpsmolecule” objects. This method should be used with care, 
because the method empties the “Lmpsdata” class’s structures which correspond to the  
keywords stored in the first “Lmpsmolecule” object. Note, if the keywords in the 
“Lmpsmolecule” objects are different, this may cause this method to not function 
properly. If the program requires multiple lists of “Lmpsmolecule” objects, only the first 
list being added to this class can use this method. The rest of the lists must be added 
manually using the “addatoms” and “adddata” methods. Otherwise, important 
information will be lost from the class’s structures.

density(ringsize, init, final, file=’ ‘)
! Creates spherical shells from the “init” radius to the “final” radius. The thickness of 
these shells are defined by the “ringsize”. The method than calculates the density in 
each shell. The resulting list of radii and densities are either returned to the calling script 
or printed to a file. The default option is to return the values to the calling script. To print 
the values to a file, set the desired destination with the “file” variable.

createxyz(file, routine=‘mass’, values=None)
! Stores the atom information from the class in a xyz formatted file specified by “file”. 
This format is readable by VMD. There are two different algorithms used by “createxyz” 
for this conversion. One uses the masses of the atoms and the other uses the atomtype 
of the atoms. The mass method is the default method. In this method the mass of the 
atom is converted to its corresponding element number in the code. Currently, the code 
only contains this conversion for carbon, oxygen and aluminum. The masses used for 
these materials are formatted to four decimal points and the atom’s mass must exactly 
match in order for a conversion to occur. The atomtype method can be used by setting 
routine to ‘atomtype’ and values to a list of element numbers. The atomtype is used to 
access the list at the index atomtype-1. 

particlesurface (particle, cutoff, atomid, atomtype, shape=‘sphere’)
! Initiates the class and stores the “particle”’s atoms. Then produces the particle’s 
surface using the “cutoff”, “atomid”, “atomtype”, and “shape”. Currently, only one shape 
of the nano particle is supported, a sphere. The current implementation assumes the 
nano particle is centered around the origin and finds the atom with atomtype matching 
“atomid” which is the maximum distance away from the center. The algorithm than fills 
all atoms with atomtype matching “atomid” which are the “cutoff” distance away from the 
maximum distance. The “atomtype” input corresponds with the atomstyle which is 
required for all distance calculations and atom manipulations. 

addatom(atomtype, charge=None, moleculenum=None)



! This method adds an atom to the surface of the nano particle between the cutoff 
distance and the maximum distance. This also adds an atom to the particle’s atoms 
stored in this class. The “atomtype” corresponds to the atomtype of the added atom. 
The “charge” and “moleculenum” have the default setting of None. The “moleculenum” 
corresponds with the molecule number. If the atom style of this class requires either a 
charge or a molecule number and the default settings are used, undefined behavior 
may occur because the current code does not check if these variables are using the 
default. This method also adds image flags automatically at the end of the atom 
information. These flags are all set to zero. 

extractparticle()
! This method removes atoms from the particle surface which have been marked as 
being replaced during the bonding process. These atoms are also removed from the 
particle’s atoms stored in the class. 

createxyz(file, data, routine=‘mass’, values=None)
! Stores the surface atom information from the class in a xyz formatted file specified 
by “file”. This format is readable by VMD. There are two different algorithms used by 
“createxyz” for this conversion. One uses the masses of the atoms and the other uses 
the atomtype of the atoms. The mass method is the default method. In this method the 
mass of the atom is converted to its corresponding element number in the code. 
Currently, the code only contains this conversion for carbon, oxygen and aluminum. The 
masses used for these materials go out to four decimal points and the atom’s mass 
must exactly match in order for a conversion to occur. The atomtype method can be 
used by setting routine to ‘atomtype’ and values to a list of element numbers. The 
atomtype is used to access the list at the index atomtype-1. The “data” input is a 
“Lmpsdata” class which is required for the mass algorithm to work. But even if your not 
using that algorithm the input is still required. Note: if you are trying to create a xyz file 
after the surface has bonded, the particle will need to be extracted than reinserted into 
the “particlesurface” class. Afterwards, the “createxyz” method can be run. 

Lmpsmolecule (moleculenum, data, method)
! Initiates the class and stores the molecular information from “data”. The input 
“data” is a “Lmpsdata” class. The molecular information consists of atoms, angles, 
bonds, dihedrals, impropers and velocities. There are two “methods”; the default 
method incorporates all the molecular data. The other method incorporates only 
the atom data and can be accessed by setting method to ‘atom’.

deleteatoms(atomnumbers, atomid)
! Algorithm finds all atoms in the “Lmpsmolecule” class bonded to “atomnumbers” in 
the direction of “atomid”. The “atomnumbers” is a list of atom ids in the “Lmpsmolecule” 
class where the nano particle surface is forming bonds. The “atomid” can either be a list 
of atom id values or a single atom type. The “atomid” is used to find the direction of 
deletion for the algorithm. This algorithm can be used to create a polymer system with a 



specific molecular weight distribution; though, this use for the algorithm has not been 
tested.

findparticlebondingpoints(particle, atomid, cutoffdistance, bondnumber)
! This method finds and stores the bonding points between the “Lmpsmolecule” 
object and the “particle”, a “particlesurface” object. Around the particle is a bonding 
region where atoms in the molecule with the correct atom type, “atomid”, can form 
bonds with the nano particle surface. The thickness of this region is defined by the 
“cutoffdistance”. The max number of possible bonds formed is defined by the 
“bondnumber”; though, this number may not be reached.

bondtoparticle(particle, atomid, newid, newcharge)
! This method bonds the molecule to the particle surface using the previously found 
bonding points. The “particle” is a “particlesurface” object. The “atomid” can either be a 
list of atom id values or a single atom type. The method changes the bonding atom in 
the molecule to have “newid” as the atomtype and “newcharge” as the charge. The 
method than uses the “atomid” to run the “deleteatoms” method. Finally, the method 
communicates with the “particle” which atoms on the particle surface need removing. 

createxyz(file, data, routine=‘mass’, values=None)
! Stores the surface atom information from the class in a xyz formatted file specified 
by “file”. This format is readable by VMD. There are two different algorithms used by 
“createxyz” for this conversion. One uses the masses of the atoms and the other uses 
the atomtype of the atoms. The mass method is the default method. In this method the 
mass of the atom is converted to its corresponding element number in the code. 
Currently, the code only contains this conversion for carbon, oxygen and aluminum. The 
masses used for these materials go out to four decimal points and the atom’s mass 
must exactly match in order for a conversion to occur. The atomtype method can be 
used by setting routine to ‘atomtype’ and values to a list of element numbers. The 
atomtype is used to access the list at the index atomtype-1. The “data” input is a 
“Lmpsdata” class which is required for the mass algorithm to work. But even if your not 
using that algorithm the input is still required.

Functions
molecules(data, init, final, processors, method=‘all’)
! Builds a list of “Lmpsmolecule” classes using Python’s multiprocessing module. 
The “Lmpsmolecule” classes begin with the molecular number “init” and end with the 
molecular number “final”. The “Lmpsdata” which is passed to the “Lmpsmolecule” 
classes come from the input “data”. The “processors” tells the function how many 
processes to devote to building the list. The multiprocessing used here is an 
embarrassingly parallel algorithm. There are two “methods”; the default method 
incorporates all the molecular data. The other method incorporates only the atom 
data and can be accessed by setting method to ‘atom’.



Future Versions
! Updates to the software will add bonding of metallic and polymer nano particles 
to the polymer matrix. This expansion of the software capabilities may change which 
language the code is written in, but the current functionality and method calls should 
change little.


