Solution to Assignment questions JIF 314 Thermodynamics

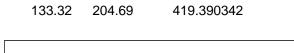
Based on the text book Heat and thermodynamics by Zemansky and Dittman, 7th edition, Mcgraw-Hill.

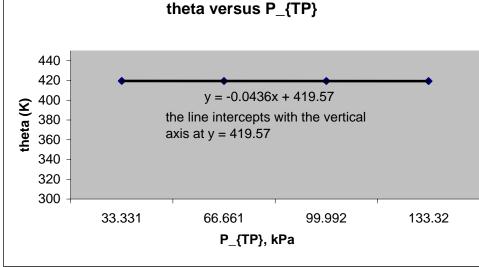
Chapter 1

Problem 1.1. Solve using Excel.

```
First, calculate the value \theta of the gas: \theta = 273.1 \text{K} \left| \frac{P}{P} \right|
```

P_{TP} (kPa) P (kPa) θ (K) 33.331 51.19 419.5211785 66.661 102.37 419.4864944 99.992 153.54 419.4434195





 θ vs. P_{TP} is a straight line in the form of y = mx + c, where $y \equiv \theta$, $x \equiv P_{\text{TP}}$. The value of θ when P_{TP} becomes zero is the value of the temperature of the gas. This value is simply the value of intersection, *c*, in the formula of the straight line in the form of y = mx + c.

From the formula of the straight line generated by Excell, the intersection of the straight line is c = 419.57 in the graph of θ vs. P_{TP} .

Hence, the temperature of the gas in the bulb is $\theta = 419.57$ K.

Problem 1.3.

(a) The temperature with resistance measured to be 1000Ω can be calculated using the relationship between R' and T, as per

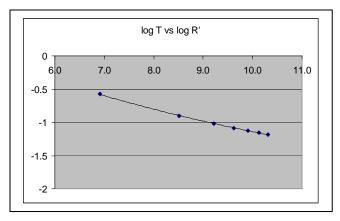
$$\sqrt{\frac{\log R'}{T}} = a + b \log R', a = -1.16, b = 0.675$$

Setting
$$R' = 1000 \Omega$$
,
 $\left(\sqrt{\frac{\log R'}{T}} = a + b \log R'\right)^2 = \frac{\log R'}{T} = a^2 + b^2 (\log R')^2 + 2ab \log R'$
 $T = \frac{\log R'}{a^2 + b^2 (\log R')^2 + 2ab \log R'}$
 $= \frac{\log (1000)}{(-1.16)^2 + (0.675)^2 [\log (1000)]^2 + 2(-1.16)(0.675) \log R'}$
 $= \frac{0.6908}{(-1.16)^2 + (0.675)^2 [0.6908]^2 + 2(-1.16)(0.675)(0.6908)} = 1.44$

Hence, the temperature of the helium cryostat is 1.44 K.

(b) Use Excell. Plot $\log R'$ vs. $\log T$ graph by forming the following table:

R'	log R'	$T = \log R'/(a + b \log R')^2$	log T
1000	6.907755	0.563018189	- 0.57444
5000	8.517193	0.404427271	- 0.90528
10000	9.21034	0.360158153	- 1.02121
15000	9.615805	0.338393713	- 1.08355
20000	9.903488	0.32444907	- 1.12563
25000 30000	10.12663 10.30895	0.31438398 0.306603264	- 1.15714 -1.1822



Problem 1.9: $\theta({}^{\circ}F) = \frac{9}{5}\theta({}^{\circ}C) + 32 = \frac{9}{5}(99.974) + 32 = 211.95^{\circ}F(5 \text{ significant figures}).$

Chapter 2

Problem 2.1

(a) Given the equation of state for a ideal gas PV = n RT, show that $\beta = \frac{1}{T}$.

Solution:

Given equation of state for a ideal gas

$$PV = n RT$$
, Eq. (1)

and the definition of volume expansivity $\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)$, it is easily verified that $\beta = 1/T$ by taking the partial derivate of Eq. (1) with respect to *T*:

$$\frac{\partial}{\partial T} \left(PV = nRT \right) \to P \frac{\partial V}{\partial T} = nR \qquad \text{Eq. (2)}$$

Inserting PV = nRT into Eq. (2), we arrive at

$$\frac{\partial V}{\partial T} = \frac{nR}{P} = \frac{PV}{T}\frac{1}{P} = \frac{V}{T}$$

Hence, $\beta = \frac{1}{V}\left(\frac{\partial V}{\partial T}\right) = \beta = \frac{1}{V}\left(\frac{V}{T}\right) = \frac{1}{T}$.

(b) Show that the isothermal compressivility $\kappa = 1/P$.

Solution

Given equation of state for a ideal gas

$$PV = n RT$$
, Eq. (1)

and the definition of isothermal compressibility $\kappa = \frac{1}{B} = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)$, it is easily verified that $\beta = 1/P$ by taking the partial derivate of Eq. (1) with respect to *P*:

$$\frac{\partial}{\partial P} \left(PV = nRT \right) \to P \frac{\partial V}{\partial P} + V = \frac{\partial}{\partial P} \left(nRT \right) = 0 \qquad \text{Eq. (2)}$$

Inserting PV = nRT into Eq. (2), we arrive at

Hence,
$$\kappa = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right) = -\frac{1}{V} \left(-\frac{V}{P} \right) = \frac{1}{P}$$
.

Problem 2.2: Given the equation of state of a van der Waals gas, $\left(P + \frac{a}{v^2}\right)(v-b) = RT$, calculate (a) $\left(\frac{\partial P}{\partial v}\right)_T$, (b) $\left(\frac{\partial P}{\partial T}\right)_v$.

Solution:

(a) Taking the partial derivative with respect to v, with constant T, $\partial \left[\begin{pmatrix} a \\ c \end{pmatrix} \right] = \left[\begin{pmatrix} a \\ c \end{pmatrix} \right]$

$$\frac{\partial}{\partial v} \left[\left(P + \frac{a}{v^2} \right) (v - b) \right]_T = \frac{\partial}{\partial v} (RT) \bigg|_T = 0$$

$$\left(v - b \right) \frac{\partial}{\partial v} \left(P + \frac{a}{v^2} \right) \bigg|_T + \left(P + \frac{a}{v^2} \right) \frac{\partial}{\partial v} (v - b) \bigg|_T = 0$$

$$\left(v - b \right) \left(\frac{\partial P}{\partial v} \bigg|_T - \frac{2a}{v^3} \right) + \left(P + \frac{a}{v^2} \right) = 0$$

$$\frac{\partial P}{\partial v} \bigg|_T = -\frac{P + \frac{a}{v^2}}{v - b} + \frac{2a}{v^3}$$

(b) Taking the partial derivative with respect to T, with constant v,

$$\frac{\partial}{\partial T} \left[\left(P + \frac{a}{v^2} \right) (v - b) \right]_v = \frac{\partial}{\partial T} (RT) \Big|_v$$

$$(v - b) \frac{\partial}{\partial T} \left(P + \frac{a}{v^2} \right) \Big|_v + \left(P + \frac{a}{v^2} \right) \frac{\partial}{\partial T} (v - b) \Big|_v = R$$

$$(v - b) \left[\frac{\partial P}{\partial T} \Big|_v + a \frac{\partial}{\partial T} \left(\frac{1}{v^2} \right) \Big|_v \right] + \left(P + \frac{a}{v^2} \right) \frac{\partial v}{\partial T} \Big|_v = R$$

$$(v - b) \left(\frac{\partial P}{\partial T} \Big|_v + 0 \right) + \left(P + \frac{a}{v^2} \right) \cdot 0 = R$$

$$\frac{\partial P}{\partial T} \Big|_v = \frac{R}{v - b}$$

(c)

$$\left(\frac{\partial P}{\partial v}\right)_{T}\left(\frac{\partial v}{\partial T}\right)_{P} = -\left(\frac{\partial P}{\partial T}\right)_{v}$$

$$\rightarrow \left(\frac{\partial v}{\partial T}\right)_{P} = \frac{-\left(\frac{\partial P}{\partial T}\right)_{v}}{\left(\frac{\partial P}{\partial v}\right)_{T}} = -\frac{\frac{R}{v-b}}{-\frac{P+\frac{a}{v^{2}}}{v-b} + \frac{2a}{v^{3}}} = \frac{R}{P}\left(\frac{1}{1+\frac{2ab}{v^{3}P} - \frac{a}{v^{2}P}}\right)$$

Problem 3.2

(a) Show that the work done by an ideal gas during the quasi-static, isothermal expansion from an initial pressure P_i to a final pressure P_f , is given by $W = nRT \ln (P_f/P_i)$.

Solution:

For isothermal process, $P_iV_i = P_fV_f$. Hence $V_i/V_f = P_f/P_i$. Substitute this into $W = -nRT \ln (V_f/V_i)$, we get $W = -nRT \ln (P_i/P_f) = nRT \ln (P_f/P_i)$.

Problem 3.3

An adiabatic chamber with rigid walls consists of two compartments, one containing a gas and the other evacuated; the partition between the two compartments is suddenly removed. Is the work done during an infinitesimal portion of this process (called an adiabatic expansion) equal *PdV*?

Answer: NO. Because there is no work done against the expansion of the gas-filled compartment by the evacuated compartment.