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Chapters to discuss in the first sidang 
video
 Chapter 1: Temperature and the zeroth law of 

thermodynamics

 Chapter 2: Simple thermodynamics systems

 Chapter 3: Work



  

Chapter 1

 System is bounded by boundary
 Surroundings – everything outside the 

system
 System is said to be closed if no matter is 

allowed to pass through the boundary; its 
said to be open if otherwise

 A system can be described either 
macroscopically of microscopically



  

Example of a cylinder of a car 
engine
 Such a system can be described by 

specifying macroscopically measurable 
quantities – called macroscopic 
thermodynamic coordinates, such as the 
amount of gas, its temperature, volume, 
pressure.

 Description of such a system in terms of 
these macroscopic coordinates is an example 
of macroscopic description



  

Macroscopic description of a 
system
 Macroscopic coordinates – specification of 

fundamental measurable properties
 Example: hydrostatic system (or sometimes 

referred to as PVT system, of which the state 
is specified by three thermodynamics 
coordinates, P, V, T



  

Microscopic description
 Involving large degree of freedom, requiring huge amount of 

microscopic coordinates to specify the state of a system
 Take into account internal structures and various microscopic 

interactions among the particles in a system
 The probability of allowed energy states by the particles are 

determined by the microscopic interactions among the 
particles

 The purpose is to determine the density of states (populations 
of states) of particles in each of the microscopic energy states 
at equilibrium

 Statistically mechanics is the branch of physics that treats 
such microscopic description of a thermodynamical system



  

The aims of thermodynamics

 Thermodynamics aims to look for general 
rules for understanding macroscopic 
temperature-dependent phenomena

 To find among the thermodynamics 
coordinates, general relations that are 
consistent with the fundamental laws of 
thermodynamics



  

Definition of a thermodynamic 
system
 A thermodynamic system is a system that 

can be  described  by thermodynamic 
coordinates

 Different thermodynamic system has its own  
characteristic set of coordinates

 Example of thermodynamic systems: gas, 
steam, mixture of vapour in car cylinder 
engine, slab of dielectric, ferroelectric, soap 
films, etc.



  

Thermal Equilibrium (TE)

 Consider thermal equilibrium between two 
system in thermal contact (via a diathermic 
wall):

 Say (X,Y) and (X′ ,Y′ ) are two independent 
thermodynamics coordinates for the two 
system (system A and system B)

 In TE, (X, Y) for system A and (X′ ,Y′ ) for 
system B become constant – i.e. they are 
unchanged in time.



  

Example of TE

 A pot of containing water (system A) 
 Boundary – the wall of the pot
 The surrounding (system B)– the atmosphere out 

side the pot at room temperature X′ ,
 If initially the pot contains boiling water, the 

temperature (X) is not constant but will keep 
dropping. Hence during this period, both system A 
and B are not in TE

 Over the time, when X temperature drops to a value 
equal to X′ , both X and X′  will change no more. 

 We say that the water in the pot and the surrounding 
have achieved TE.



  

Zeroth law

 The zeroth law – two system in thermal 
equilibrium with a third one are in thermal 
equilibrium with each other.

 The operational definition of the zeroth law 
can be read from pg. 8 – 9, Zemaksky.

 At TE, both systems must have a common 
temperature.



  

Determining temperature 
experimentally In principle, the scale of temperature is arbitrary

 Hence, we have to define the scale of temperature through a 
standard procedure

 First, we choose to define (arbitrarily) the triple point of water as 
273.16 K.

 Triple point of water is chosen since it’s experimentally easy to be 
reproduced

 Then the empirical temperature of a system with thermometric 
property X is defined as

 X is the thermodynamic coordinate of thermometer with the other 
coordinates fixed

 The empirical temperature of a system can calculated once 
measurements on X and XTP  is performed, where XTP  is the 
experimentally measured value of X at the water’s triple point.

( )
TP

K16.273
X

X
X =θ



  

Measuring ideal-gas temperature 
with constant-volume gas 
thermometer

 Consider a constant-volume gas thermometer: X  pressure; Y  
volume (to be fixed). See figure 1-6, pg. 17, Zemansky.

 To measure the empirical temperature of a steam, θ , we carry out 
the following procedure:

 (1) Measure the pressure of the gas thermometer with the bulb in 
thermal contact with the steam until thermal equilibrium is achieved. 
Obtain X (steam). See figure 1-5, pg. 15, for triple-point cell

 (2) Repeat procedure (1) but this time putting the bulb in thermal 
contact with water at its triple point. X (TP) is then obtained.

 (3) Calculate 
 θ (steam) =  2 7 3 .1 6  Κ [X(steam) / X(TP)]

 (4) Take out some gas from the thermometer, and repeat (1), (2), (3) 
to obtain a set of {θ (steam), X (TP)}

 (5) Plot θ (steam) vs X (TP). 
 (6) The ideal-gas temperature of the steam is then given by



  

Figure 1-5



  

Figure 1-6, Constant-volume gas 
thermometer



  

Ideal-gas temperature with constant-
volume gas thermometer for steam
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θ (steam)

X(TP)

θ , the value of 
temperature of steam we 
desired

0

Reading of constant-volume gas 
thermometer of steam



  

Empirical temperature,
Ideal gas temperature

 In the previous example, the thermodynamic ideal-gas 
temperature T of the steam is obtained by measuring 
the empirical temperature θ  

 Empirical temperature, θ  is a experimentally measured 
quantity, using gas thermometer

 The gas thermometer uses real gas that obeys ideal-
gas law under low-pressure and high temperature 
region (that is generally coincide with daily-life 
temperature ranges)

 T, the ideal gas temperature, is an extrapolated quantity 
based on the graph of θ vs. PTP  . 

 T is considered an theoretically defined quantity, in 
contrast to θ, which is an experimentally measured one.



  

Advantage of using the ideal-gas 
temperature
 The ideal gas temperature obtained in this 

was has the advantage of being independent 
of the type of gas used.

 Gas thermometer using different types of gas 
yields the same value for the ideal-gas 
temperature for the steam (which is good).

 Hence, the ideal-gas temperature scale 
provide us with a universal way to uniquely 
assign a value to the temperature of a given 
system.
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Chapter 2

Simple thermodynamic systems



  

Thermodynamic equilibrium (TE)
 For a thermodynamic system, three types of 

equilibrium are possible: (a) Mechanical equilibrium, 
(b) Thermal equilibrium, (c) chemical equilibrium

 Thermodynamic Equilibrium (TE) – an equilibrium that 
has all three types of equilibrium (a) – (c).

 In a thermodynamic equilibrium, all thermo coordinates 
become constant in time.

 Only in a TE have the thermodynamic coordinates a 
valid meaning to represent the properties of the 
thermodynamic system.



  

Change of state is a result of 
‘interactions’
 When a thermodynamic system suffers a change in 

any of the values of its thermodynamic coordinates, 
we say the system undergoes a change of state 

 The change of state is a result caused by 
‘interaction’ between the system with its surrounding

 These interaction may be in the form of e.g.
 external force acting on the system
 heat flowing in or out from the system, or 
 Inflow or outflow of substances through the 

boundary 
 work done by external agent on the system.
 etc…



  

Thermodynamic system in a non-
equilibrium state
• In a Non-TE state, the thermo coordinates 

fails to account for the properties of the 
system of a whole since different parts of the 
system are thermodynamically inequivalent.

• A single value of e.g. temperature T = 300 K 
is insufficient to account for the temperature 
of the system as a whole since in different 
parts of a system in non-TE the temperature 
are different.



  

We will only study Equilibrium 
thermodynamics in this course
 In the thermodynamic course we shall learn 

here, we will deal exclusively with equilibrium 
thermodynamics only.

 That is, all formula that shall be mentioned in 
this course has a valid meaning only for 
system in TE.

 Non-equilibrium thermodynamics will not be 
discussed here. This is an advanced field of 
research that is beyond the scope of most 
undergraduate course.



  

System is not in TE when state 
changes
 When a state of a thermo system changes during a 

transition of states, the system will not in an TE
 Hence, thermodynamic calculation/formulae that 

apply only on TE states may not apply in during the 
transient period of a change of states.

 So problem arises: How to calculate the thermo 
properties of a system undergoing a finite change of 
state from i to f, if the intermediate states are not in 
TE?

 SOLUTION: quasi-static assumption



  

Quasi-static process
 It is assumed that in a finite transitional process from 

state i to state f, the process happens in a series of 
intermediate transient states which are separated 
from one to another infinitesimally, and each of such 
transient states are at all times infinitesimally near a 
thermodynamic equilibrium.

 Such assumption is necessary so that we can treat 
each of the intermediate transient states as though 
they are in TE

 Hence this make it possible to calculate the thermo 
properties of the system from state i to state f, despite 
the thermo coordinates undergo changes.



  

A finite transition of state i f is 
made up of a series of infinitesimally 
separated near-TE transient states

 Adjacent transient states 
separated infinitesimally

state f

state i

 Each    represents a transient state 
that is infinitesimally near to an TE 
state, hence we can describe them 
with equilibrium TE formulation



  

A system with three thermo 
coordinates – the xyz system

 Consider a thermo system at TE that is described by 
three thermo coordinates {x, y, z}.

 At equilibrium, once any two of the coordinates, say 
{x, y} are fixed, the value of the other coordinate, 
here, z could not varied anymore. 

 This means that there exists a relation that ties z to {x, 
y} such that z is not a free variable but is dependent 
on the values of {x, y}. 

 This can be mathematically described as z=z(x,y)
 Despite having three coordinates, the system has 

only two degree of freedom. 
 In this case, {x, y} is taken to be two free variable, 

whereas z is not.



  

Equation of state (EoS)
 In the previous example, the relation that ties 

z to {x,y}, a function of the form z=z(x,y), is 
the so-called 

 Equation of State (EoS)
 EoS relates the appropriate thermo 

coordinates of a system in equilibrium.



  

Example of EoS for a PVT system – 
Ideal gas system
 One specific xyz-system is the hydrostatic system
 It’s a system that exerts uniform hydrostatic pressure to the 

surrounding -sometimes is referred to as ‘fluid system’
 Example – gas, mixture of gases contained in a closed volume
 It can be described by three coordinates: P, V, T
 We refer such system as a PVT system
 A specific example of a PVT system is the ideal gas system
 EoS for ideal gas: PV = nRT 
 This is the specific form of z=z(x,y) taken by the idea gas system.
 Different system has different EoS.



  

Infinitesimal changes of hydrostatic 
system
 V, T, P are related by EoS.
 Hence, in general, we know how V is related to P, T, 

and we state V = V(P,T)
 If V change by a tiny amount dV, so will T change by 

an amount dT, and P by dP.
 Since V = V(P,T), according to the calculus of 

differential variables, these changes are related via

 If EoS is known, we can then work out what
     is

dP
P

V
dT

T

V
dV

TP








∂
∂+







∂
∂=

,
P T

V V

T P

ﾮ ﾮ� � � �
� � � �ﾮ ﾮ� � � �



  

Definition of β

 Volume expansivity β is a measureable 
quantity, and from it we can determines via 
its relationship to the changes of 
thermodynamic coordinates V and T

 It is normally a positive number since most 
substance expand when its temperature rises

1

P

V

V T
β ﾮ� �= � �ﾮ� �



  

Definition of κ

 Isothermal compressibility κ is a 
measureable quantity, and from it we can 
determines via its relationship to the changes 
of thermodynamic coordinates V and P

1
1/

T

T

P
B V

V

V
B

V P
κ

ﾮ� �= − � �ﾮ� �
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Average bulk 
modulus

 These are usually positive numbers



  

Relating partial derivatives with 
experimental measurements
 κ and β  are experimental quantities
 The partial derivatives of the thermo 

coordinates are theoretical construct
 Measuring κ and β  allows us to gain 

information on the equation of states in terms 
of the partial derivatives of the thermo 
coordinates.



  

Mathematical theorems in partial 
differential calculus
 Consider an EoS. This is in general an 

equation that relates the thermodynamical 
coordinates, say, x, y, z. (Think of P,V,T)

 The general form of an EoS is f(x, y, z) = 0.
 The EoS serves to constrain the relation of 

how x, y, z can vary 
 Hence, in general, any one of the he 

thermodynamical coodrinates can be 
expressed as a function of each another, e.g. 
x=x(y,z)



  

Mathematical theorems in partial 
differential calculus
 Since x=x(y,z), the differential of x, according to calculus, is 

d d d
yz

x x
x y z

y z
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 Combining both equation, we have 
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Mathematical theorems in partial 
differential calculus

 dx and dz are two independent variables

 If dx = 0, and dz ≠ 0, then 

0
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Apply the theorem to PVT system

 Identifying xﾮP, yﾮV, zﾮT,

1 1
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y z x V T P
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dP in terms of β  and κ 

 Consider an infinitesimal change in P:

 Then, dP is expressed as 

V T

P P
dP dT dV

T V
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β
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 Changes in pressure (dP), temperature (dT) and 

volume (dV) are related by β  and κ 



  

Calculation of compression in 
mercury when temperature rises at 
constant volume

 Read the example in page 37 on compressing 
mercury at constant volume when it temperature 
rises from 15°C  25°C. In this case, dV = 0
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Extensive and intensive 
coordinates
 Intensive coordinates – coordinates that are 

independent of the mass. 
 Example: temperature, pressure
 Extensive coordinates – coordinates that are 

dependent of the mass. 
 Example: volume



  

Discussion of problem 2.1
 The equation of state of an ideal gas is  

PV=nRT, where n and R are constants.

a) Show that the volume expansivity β is equal

    to 1/T

b) Show that the isothermal compressibility κ is 
equal to 1/P.



  

Discussion of problems 2.2

 Given the equation of state of a van der 
Waals gas, calculate 

 (a) 

 (b) 

T

P

v
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v

P
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Chapter 3: Work
 When system undergoes a displacement under the 

action of a force, work is said to be done.

External force F compresses the gas-in-the-cylinder system 
quasi-statically, making it to go from state i to state f. 
External work is said to be done ON the system by the 
external force F. 

F

state i

F

state f
distance 
through which 
the external 
force F has 
been displaced

F
′

F 
′



  

Internal vs. external work

 Two kinds of work done on a system can be 
distinguished: work done due to external forces, and 
work done due to internal forces

 Unless specified, when the word work is referred, it 
shall refer to external work

 Internal work is due to forces acting among the 
particles within a system

 As the internal net force is always summed to zero, 
there shall be no net change to the internal energy 
of the system due to the work done by these forces.



  

Work in changing the volume of a 
hydrostatic system quasi-statistically

f

i
i f if

V

V

dW PdV

W W PdVﾮ

= −

= = −ﾮ

 Compression: Vf < Vi, or equivalently, dV < 0

 Expansion: Vf > Vi, or equivalently, dV > 0

Definition: Work done BY the system from i to f



  

External  work done during 
compression

 During compression, 
the work done BY the 
system, 

     is positive
 As a result, the energy 

of the gas-in-the-
cylinder system 
increases.

 “work is done on the 
system”

F

state i

F

state f
distance 
through which 
the external 
force F has 
been displaced

F
′

F 
′

f

i
i f

V

V
W PdVﾮ = −ﾮ



  

External work done during 
expansion

A gas-in-the-cylinder system expands against the 
pressure from atmosphere, making it going from state i to 
state f. 

The work done BY the system,                          is –ve. 

As a result the total energy of the gas-in-the-cylinder 
system decreases.

“Work is done BY the system”.
state i

state f

f

i
i f

V

V
W PdVﾮ = −ﾮ



  

PV diagram
 The area under the PV curve represent work 

done on or by the gas 

Initial 
state

Final 
state

P

V

Expansion of gas – 
work is done by 
system, Wif < 0

Final 
state

Initial 
state

P

V

Compression of gas – 
work is done on the  
system, Wif > 0

f

i
i f 0

V

V
W PdVﾮ = − <ﾮ f

i
i f 0

V

V
W PdVﾮ = − >ﾮ



  

3 types of thermodynamic 
processes
 Isochoric – volume kept constant
 Isobaric – pressure kept constant
 Isothermal – temperature kept constant



  

Hydrostatic work depends on the 
path

 Path ibf, iaf, if, has different area – work done are 
different if different path are followed

 Hence, work is not a state function of the system
 If it were, the work done will only depends on the initial 

and final state, but not on the path chosen
P

V

initial

final

i

a

b f



  

Work done by ideal gas when 
compressed Page 57 example on how to calculate the work 

done by the gas when it is compressed is 
calculated isothermally at T=T0=293K

 In the calculation, we want to evaluate, with Vi 
and Vf known, the integral of 

∫− f

i

V

V
PdV

 To do so, we need the equation of state for the ideal 
gas – which is simply PV = nRT, from which the V- 
dependence of P is deduced, that is, 

P = P(V) = nRT/V 
    with T kept constant at T0



  

Work done is only uniquely 
determined if the path on a PV 
diagram is fixed Should the behaviour of P as a function of V 

is not specified, we could not evaluate the 
work done uniquely since different path 
followed by the process when making 
transition from i to f on a PV diagram will 
result in different values for the integration

V

P

0

i

f

P = nRT0/V

Work done is unique 
determined only if the 
path is specified



  

 Work done by gas is positive if Vf < Vi

(compression)
  Work done by gas is negative if Vf > Vi 

(expansion)

1
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f f f
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V V V
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V V V
f

VnRT
W PdV dV nRT dV nRT

V V V
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Isothermal work done by ideal gas 
(pg. 57, Zemansky)



  

Example of work done by other 
thermodynamic system
 Chapter 3.8: Work in changing the area of a 

surface film
 Chapter 3.9: Work in moving charge with an 

electrochemical cell
 Chapter 3.10: Work in changing the total 

polarisation of a dielectric solid
 Chapter 3.11: Work in changing the total 

magnetisation of a paramagnetic solid



  

Solution to assignment 
questions on Chapter 1 – 
Chapter 3 can be found in 
assignment1_sol.pdf
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Dec 2008



  

Contact hours

 Thursday, 4 Dec 2008, 8.00 – 9.00 pm
 Saturday, 6 Dec 2008, 9.00 – 10.00 pm
 Sunday, 7 Dec 2008, 12.00 – 1.00 pm



  

Lecture Plan during intensive 
course
 To discuss briefly chapter 1,2,3 (1/2 hour).
 To discuss tutorial questions of chapter 1,2,3 

(1/2 hour).
 Test on 6 Saturday Dec 2008, 8.00 – 9.00 pm 

(1 hour).
 To discuss chapters 3, 4, 5 on (1 -2 hours)
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Chapter 4

Heat and the first law of 
thermodynamics



  

Distinction between heat and 
work

System B 
coupled to 
the glass of 
water

T

 Consider a system consist of a glass of water at 
temperature T, coupled to a generic system B, and both 
are contained within adiabatic walls.



  

Distinction between heat and work 
(cont.)

System B 
coupled to 
the glass of 
water

T

 The temperature of water can be raised if (i) system 
B perform external work on it (e.g. via mechanical or 
electrical means), or (ii) system B can raise the 
temperature of the glass of water through “non-
work” means, such as heating with fire or radiation.



  

Distinction between heat and work 
(cont.)

System B 
coupled to 
the glass of 
water

T

 Conclusion: the total energy of water can be 
changed either via work done on it, or via 
means that is otherwise. This ‘otherwise’ 
means is ‘heat’.



  

Adiabatic process

 Consider a system confined within an adiabatic boundary allowing 
no heat to penetrate

 Refer to figure 4.2, page 75, Zemansky.
 Adiabatic process – a process in which no heat is allowed to flow 

through the boundary when changes of states are taking place
 Example: compressing a gas contained in a adiabatic cylinder, or a 

gas undergo free expansion (with external pressure zero) in a 
adiabatic container.

 A good question to ask: What is the work done by the system  
when it undergoes an adiabatic process from an state Ui to state 
Uf? 

 Here: U measure the total energy contained in the system. It is 
called internal energy of the system, which is to be defined later.

 Furthermore, if the initial and final states Ui, Uf are fixed, but the 
process follow a different adiabatic  path, will the work done be the 
same?



  

Figure 4-2



  

Restricted statement of the first law 
of thermodynamics
 If a closed system is caused to change from 

an initial state to a final state by adiabatic 
means only, then the work done on the 
system is the same for all adiabatic paths 
connecting the two states.



  

Work done adiabatically is path 
independence
 According to the restricted statement of the 

first law, the answers to the questions asked 
earlier are:

 Wif (adiabatic) is simply the difference 
between Uf and Ui, and is independent of the 
path as long as the process is adiabatic.

 In other words, Wif (adiabatic) is uniquely 
fixed as long as the f and i states are known.



  

Work done by two adiabatic 
processes with common i and f  are 
the same

V

P

0

i

f

Work done by two adiabatic 
paths are the same, if both begin 
and end at the same states



  

Internal energy function

 There exists a function of the coordinates of a 
thermo system whose value at the final state minus 
the value at the initial state is equal to the adiabatic 
work done in going from one state to the other.

 This function is called: the Internal energy function, 
U 

 It is a state function of the system.
 In fact, the difference in the values of internal energy 

function at two different states = energy change in 
the system.



  

Internal energy function

 By definition, Uf >Ui when work is done on the 
system.

 Interpretation of ∆U = Uf – Ui: 

 When work is done on the system, the 
internal energy increases, Uf >Ui, hence, ∆U > 
0

 When work is done by the system, the internal 
energy decreases, Uf <Ui, hence, ∆U < 0



  

Internal energy function for PVT 
system
 For a PVT system, U in general is a function 

of any two thermodynamic coordinates, e.g. 
{P,T}, {P,V},{V,T}

 U is a function of only two thermo coordinates 
but not three because the third coordinate is 
a dependent variable that is already fixed by 
the equation of state.



  

Internal energy function for PVT 
system (cont.)

 As an example, consider a special PVT system, the 
ideal gas system, with equation of state PV = RT

 If we choose {V,T} as two independent variables, P  is 
then the dependent variable that is fixed by the 
equation of state via 

P =RT/V. 
 Alternatively, we can also choose {P,T} instead as the 

two independent variables. V is then the dependent 
variable via the equation of state, 

    V = RT /P .
 Essentially, to specify the state of U, we need only a 

pair of independent thermodynamic coordinates.



  

Since U is path-independent, dU is 
an exact differential
 Say U (X, Y), U (X+dX, Y+dY), with X, Y any two 

thermodynamic coordinates, with dY and dX 
infinitesimally small*

 Two such states are said to be differ from each 
other infinitesimally, with the difference described 
by 

dU = U (X+dX, Y+dY) - U(X,Y) 

 *A number N that is infinitesimally small means it is extremely 
small, smaller than any possible finite number, but N is never be 
exactly zero.



  

Exact differential of U, dU

 fixed X fixed

d  = ( +d , +d ) - ( , ) 

d d d
Y

U U X X Y Y U X Y

U U
U X Y

X Y

ﾮ ﾮ= +
ﾮ ﾮ

 {X, Y} can be e.g. {T, V } or {T, P } or {V, P }.
 In each case, the third variable, Z, are P, V and T  

respectively.



  

Example of choosing U=U(T,V)

For example, if we choose  = ( , ) , 

with  fixed by EoS via ( , ),  

Then the exact differential d  is given by

d d d
V T

U U X T Y V

P P P T V

U

U U
U T V

T V

= =
=

ﾮ ﾮ= +
ﾮ ﾮ



  

                  are two different 
functions

 U = U (X,Y)  U = U (X,Z )

 fixedY

U

X

ﾮ
ﾮ  fixedZ

U

X

ﾮ
ﾮ

≠

 fixedY

U

X

ﾮ
ﾮ  fixed

,  
Z

U

X

ﾮ
ﾮ



  

Definition of diathemic wall

 Diathermic wall – a heat conductor wall that 
permits heat to flow through (in contrast to 
diabatic wall)



  

Non-adiabatical process

 Consider work done by a system bounded by not a 
diabatic wall but a diathermal one.

 See figure 4-4, page 78, Zemansky.
 Such are examples of non-adiabatic processes.
 Unlike the case of adiabatic process, in non-

adiabatic process, heat is allowed to flow through 
the wall of the system

 What is the work done by such a diathermalprocess 
Wif(diathermal)?

 The answer is answered experimentally,

Wif(diathermal) ≠ Uf – Ui



  

Figure 4-4



  

Thermodynamic definition of heat

 The difference between Wif (diathermal) and 
(Uf – Ui) is called heat, 

Q = (Uf – Ui) - Wif(diathermal)

 Convention: Q is positive if heat enters a 
system, negative when if leave the system.

 Transit of heat is a result of a temperature 
difference

 Heat, being a difference in terms of work and 
internal energy, is itself a form of energy.



  

Ui

Q

U i  U f

Positive Q flows in, causing volume to expand from Vi to 
Vf against atmospheric pressure. Internal energy changes 
from Ui  to Uf . Work is done by the system, Wif

Volume 
expands

Pictorial illustration of Q = (Uf – Ui) - 
W

Temperature 
Tsu  > Tsy  so that 
heat flows from 
surrounding 
(su) to the 
system (sy)

Diathermal 
wall 
permitting 
heat flow

Atmospheric 
pressure

Atmospheric 
pressure

f

i
i f

V

V
W PdVﾮ = −ﾮ



  

The change in internal energy, ∆U = Uf - Ui, could be 
positive of negative

If ∆U negative, it means internal energy decreases after 
the expansion,

If ∆U positive, it means internal energy increases after the 
expansion

The sign of ∆U depends on the balance between the 
“input” Q, and the “output”, W. 

The sign of ∆U



  

Q and W have meaning only if a 
state undergoes transitional process
 Heating and working are transient processes 

that causes a system to change from one state 
to another.

 Heat and work are involved only in the process 
of making transition from a state to another. 

 Once the transition of states ceases and 
equilibrium achieved, heat or work does not 
endure anymore.

 Once the transition of state ceases, what 
endures finally is the new state, and the final 
internal energy.

 Hence, it is meaningless to talk of “the heat of a 
state” or “work of a state”



  

Infinitesimal amount of Q, W are not 
exact differentials
 Since Since U U is a state function of the coordinates is a state function of the coordinates 

of the system, and hence path-independent, of the system, and hence path-independent, 
the difference in the difference in U U between two infinitesimally between two infinitesimally 
different states is an exact differential, ddifferent states is an exact differential, dUU, , 
and we can write it as, e.g.and we can write it as, e.g.

dP
P

U
dT

T

U
dU

TP ∂
∂+

∂
∂=



  

Infinitesimal amount of Q, W are not 
exact differentials (cont.)
 In contrast, Q and W are not state functions, 

and they are path-dependent.
 The difference in Q and W between two 

infinitesimally different states are not exact 
differential, 

 that is, e.g., we CANNOT write 

dP
P

Q
dT

T

Q
dQ

TP ∂
∂+

∂
∂≠



  

Inexact differential form of Q and 
W

 Hence, we use      to denote an infinitesimal amount of 
heat, but not the differential form, dQ.

 The same notation goes to W.

Qd



  

Calculations of W and Q are path-
dependence
 What all these meant: the calculation involving heat 

and work is path-dependent, and normally we have 
to carry out integration, which is path-dependent, to 
determine W and Q between two states, and the 
results are path-dependent.

 (In contrast, calculation of ∆U is much easier since 
∆U is simply a difference of two numbers, = Ui – Uf, 
a value which can be easily evaluated without the 
need to carry out path-dependent integration.)



  

Path-independence and path-
dependence

 As an example, when we calculate the difference in 
internal energy between two states, we only need to 
calculate the difference, ∆U =Uf – Ui. This difference is 
always the same for two fixed states of Uf and Ui, since 
U is a state function. This infers path-independence.



  

Path-independence and path-
dependence  (cont.)
 However, in calculating the work done, Wi→f 

when a system change from state i to state f, 
we cannot simply calculate Wi→f as Wf – Wi  but 
have to perform the integration            ,

    which will result in different value for process 
carried out via different path (e.g. adiabatical 
path result in a value of work done that is 
different from that of a non-adibatical one)

path 1 path 2dW dWﾮ� �

path dWﾮ



  

Path-independence and path-
dependence  (cont.)
 So does the argument for work done applies 

to the heat flow as well

path 1 path 2dQ dQﾮ� �



  

Different paths , common {i, f} states, 
resulted in different work done, and 
different heat flow

V

P

0

i

f Work done is W1

V

P

0

i

f
Work done is W2

∆U= Uf-Ui 
are the 
same in 
both cases

Wif are 
different in 
both cases

Qif are 
different in 
both cases



  

Net heat flow within a 
compartmentalised adiabatic system 
is zero Within an adiabatic boundary, the heat lost 

(or gained) by system A is equal to the heat 
gained (or lost) by system B, ∆Q = Q + Q’ = 0

System A

System B

 Q = - Q’

 Q, heat from 
system B into 
system A

diathermal wall

Adiabatic wall

 Q’, heat flow 
from system A 
into system B



  

Differential form of the first law

 Two inexact differentials on the right hand 
side (RHS) make one exact differential on the 
left hand side (LHS).

 For hydrostatic system (fluid),

 and the first law reduces to 

dU dQ dW= +

ddW P V−ﾮ

dQ dU PdV= +

Work done is 
path dependent

Heat transfer is 
path dependent



  

Heat Capacity

 In unit of joules per kelvin (J/K)
 It is an extensive quantity (i.e. the larger the 

mass the larger is the value of C since a 
larger amount of heat is require to heat up 
the material for 1 degree.)

lim
i fT T

f i

Q dQ
C

T T dTﾮ
= ﾮ

−



  

Specific heat Capacity

 In unit of joules per kelvin per kg (J/kg∙K)
 Intensive quantity, i.e. it’s value remains the 

same for different amount of mass of the 
same material.

/c C m=



  

Molar heat capacity

 n is the amount of material measured in unit of 
mole.

 In unit of joules per kelvin per mole (J/mol∙K)
 Intensive quantity, i.e. it’s value remains the same 

for different amount of mass of the same material.

/c C n=



  

Amount of substance in terms of 
mole
 1 mole of substance is defined to contain NA atom

 NA = Avogardo number, 6.023 ﾮ 1023

 If an atom has a mass of m, N atoms will have a 
total mass of M′  = mN 

 Number of atoms of a substance with a total mass 
M′  is N = M′  /m. 

 The ratio of the two numbers, N/NA defines the 
amount of atom of that material in term of mole: 

n = N/NA



  

Heat capacity at constant 
pressure

( )P P

d
,

d
P

Q
C C P T

T

� �
= =� �
� �

d  amount of heat required to heat up the 

temeperature of the system by d   

Q

T



  

Heat capacity at constant volume

( )V V

d
,

d
V

Q
C C V T

T

� �
= =� �
� �



  

Deriving heat capacities for 
hydrostatic system from the first law

 Choose U=U(T,V)

dU dQ PdV= −

V T

V T

V T

V T

U U
dU dT dV

T V

U U
dQ PdV dT dV

T V

U U
dQ dT P dV

T V

dT

dQ U U dV
P

dT T V dT

ﾮ ﾮ� � � �= +� � � �ﾮ ﾮ� � � �

ﾮ ﾮ� � � �+ = +� � � �ﾮ ﾮ� � � �

� �ﾮ ﾮ� � � �= + +� �� � � �ﾮ ﾮ� � � �� �

ﾮﾮ

� �ﾮ ﾮ� � � �= + +� �� � � �ﾮ ﾮ� � � �� �



  

Special case, dV = 0 (for the case of 
CV)
 If the temperature is raised by dT by heating the  

substance without changing the volume, (i.e. set dV 
=0)

V
V T VV

dQ U U dV dQ U
P C

dT T V dT dT T

� �ﾮ ﾮ ﾮ� � � � � �= + + =ﾮﾮ� �� � � � � �ﾮ ﾮ ﾮ� � � � � �� �

 Specific heat at constant volume of a 
substances CV can be calculated from theory 
if the internal energy function of that 
substance, U, is known, via V

V

U
C

T

ﾮ� �=� �ﾮ� �



  

Special case, dP = 0 (for the case of 
CP) If the temperature is raised by dT by heating the  

substance without changing the pressure 
 ⇒ V = V(T) only ⇒

V T

P
V T PP

P V
T

P V

T

dQ U U dV
P

dT T V dT

dQ U U V
C P

dT T V T

U
C C P V

V

C C PVU

V V

β

β
β

� �ﾮ ﾮ� � � �= + + ﾮ� �� � � �ﾮ ﾮ� � � �� �

� �ﾮ ﾮ ﾮ� � � � � �= + +ﾮ � �� � � � � �ﾮ ﾮ ﾮ� � � � � �� �

� �ﾮ� �= + +� �� �ﾮ� �� �
− −ﾮ� �=� �ﾮ� �

 Specific heat at constant pressure of a substances CP can be calculated from 
theory if the internal energy function U, β  and the equation of state of that 
substance are known.

P

dV V
V

dT T
βﾮ� �= =� �ﾮ� �



  

Heat reservior

 A body of such a large mass that it may 
absorbed or reject an unlimited quantity of 
heat without experiencing an appreciable 
change in temperature or in any other 
thermodynamic coordinate.



  

Calculating quasi-static isobaric heat 
transfer process via a temperature 
difference

 If CP is constant in temperature in the range of 
Ti to Tf, 

f

i

T

P PT
Q C dT=ﾮ

( )P P f iQ C T T= −



  

Calculating quasi-static isochoric 
heat transfer process via a 
temperature difference

 If CV is constant in temperature in the range of 
Ti to Tf, 

f

i

T

V VT
Q C dT=ﾮ

( )V V f iQ C T T= −



  

Three mechanism of heat 
conduction
 Conduction
 Convection
 Radiation



  

Heat conduction

dQ dT
KA

dt dx
= −

Thermal conductivity

Temperature gradient

Heat flow from high 
temperature to low 
temperature

Cross section 
perpendicular to 
direction of heat flow



  

Heat convection

dQ
hA T

dt
= ∆

Convection coefficient

Temperature difference



  

Thermal radiation

 Emission of heat as electromagnetic radiation
 Absorbitivity 
 Radiant exitance, R
 Emissivity, ε
 Black body
 Kirchhoff’s law
 Radiated heat 

( ) ( ) ( )bb W bb

dQ
A T R T R T

dt
ε � �= −� �



  

Stefan-Boltzmann law

( ) 4
bbR T Tσ=
Stefan-Boltzmann constant, = 5.67051 ﾮ 10-8 W/m2∙K4

( )4 4
W

dQ
A T T

dt
εσ= −



  

Experimental determination of σ

 Nonequilibrium method
 Equilibrium method



  

Problem 4.10

 Regarding the internal energy of a hydrostatic 
system to be a function of T and P, derive the 
following equations:

 a)
 b)
 c)



  

Solution for 4.10(a)

U =U (T, P )
 First law of Thermodynamics =>                    

                                  
 Combining both Eq. (1)



  

Solution for 4.10(a) (cont.)

 For a PVT system,  we can write V as a 
function of T and P.

 By substituting the expression of dV into 
equation Eq. (1), we get

                                                                             
                                       Eq. (2)



  

Solution for 4.10 (b)

 At constant pressure, dP=0. Setting dP=0, and 
dividing Eq. (2) by dT, we get 

 Since 

 Therefore,   

P
P

dQ
C

dT
ﾮ



  

Solution for 4.10(c)
 At constant volume, dV=0. Setting dV=0, and dividing 

Eq. (1) by dT, we get

V V

dP P

dT T

ﾮ� �=� �ﾮ� �V
V

;
P T V P T V

dQ U U dP U U P
C

dT T P dT T P T

ﾮ ﾮ ﾮ ﾮ ﾮ� � � � � � � �� �= + = +ﾮ � � � � � � � �� �ﾮ ﾮ ﾮ ﾮ ﾮ� � � � � � � �� �

1 1

P P P

V T T
V V

V T V V
β β

β
ﾮ ﾮ ﾮ� � � � � �= = =� �� � � � � �ﾮ ﾮ ﾮ� � � � � �

Eq. (3)

Eq. (4)



  

Solution for 4.10 (c)
 Combining Eq. (3), (4), and 

( ) V
V

P
P

T T

C C PVU U
C C PV

P P

βββ
βκ
κ

− +ﾮ ﾮ� �� � � �= − + =�� �� � � �ﾮ ﾮ� �� �� � � �
� �
� �



  

Problem 4.14

 One mole of a gas obeys the van der Waals 
equation of state:

   and its molar internal energy is given by 
where a,b,c and R are constants. Calculate 
the molar heat capacities cv and cP.



  

Solution

 We write u = u(T,v)

v T

u u
du dT dv

T v

ﾮ ﾮ� � � �= +� � � �ﾮ ﾮ� � � �
Eq. (1)

Eq. (2)

Eq. (1) combined with Eq. (2)

v T

u u
dq dT P dv

T v

� �ﾮ ﾮ� � � �= + +� �� � � �ﾮ ﾮ� � � �� �

V
v

u
c

T

ﾮ� �=� �ﾮ� �

ﾮdT
v T

dq u u dv
P

dT T v dT

� �ﾮ ﾮ� � � �= + +� �� � � �ﾮ ﾮ� � � �� �

Eq. (5)

dq du Pdv= +



  

Solution
 At constant volume, Eq. (5) becomes

,since /V
v v

dq u
c c u cT a v

dT T

ﾮ� �= = = −ﾮ � �ﾮ� �



  

Solution
 At constant pressure, Eq. (5) becomes

2
since /

P
P V T P

P V V
T P P

dq u u dv
c P

dT T v dT

u v a v
c c P c P u cT a v

v T v T

� �ﾮ ﾮ� � � �= + +ﾮ � �� � � �ﾮ ﾮ� � � �� �

� �ﾮ ﾮ ﾮ� � � � � �� �= + + = + + = −� �� � � � � �� �ﾮ ﾮ ﾮ� � � � � �� �� �

 From 

( )
2

2

2 3

2P V
P

a
Pa V VC C P R
a v bV T a

P
v v

� �
+� �ﾮ� �� �− = + = � �� �� � −ﾮ� �� � � �+ −� �� �

( )
2 3

2P

v R
a v bT a

P
v v

ﾮ� �=� � −ﾮ� � + −
( )

At constant pressure, there is no difference 

between  and  since 

only when pressure is kept constant.
P P

v dv

T dT

v v T

ﾮ� �
� �ﾮ� �

=



  

JIF 314
Thermodynamics

Chapter 5

Ideal gas



  

Internal every of real gas

 In adiabatic free expansion (Joule expansion), 
the internal energy of a system of gas molecules 
remains unchanged 

 dU = dQ + dW = 0 since dQ = 0 (adiabatic) and 
dW = 0 (since it’s a free expansion)

 Will the temperature change in such a adiabatic 
free expansion?

 This effect is described by the Joule coefficient 

U

T

V

ﾮ� �
� �ﾮ� �



  

If U=U(T) only

 In that case, there will be no temperature 
change in a joule expansion

 In other words, if U is not only dependent on 
T but also on P (or V) then temperature 
change will take place in a Joule expansion

 Follow the argument in Zemansky, page 109 
– 110, beginning with 

T

d d d
V

U U
U T V

T V

ﾮ ﾮ= +
ﾮ ﾮ



  

Real gas vs. ideal gas

 For real gas, U=U(T,P) or U=U(T,V) 
 For ideal gas, U=U(T) only
 For real gas with van der Waals force acting 

among the molecules, the equation of state is 
relatively complicated,

 In low pressure limit, real gas behaves like 
ideal gas, where the molecular forces 
becomes weak due to the increase in the 
average separation between the molecules.



  

Some thermodynamical properties of 
Ideal gas

( );  for ideal gas

= 0 
T

PV nRT U U T

U

P

= =

ﾮ� �
� �ﾮ� �

= 0
T

U

V

ﾮ� �
� �ﾮ� �

( )=  onlyU U T

2
Derived from = ; 0

T T T T

U U P P nRT

V P V V V

−ﾮ ﾮ ﾮ ﾮ� � � �� � � �= ﾮ� � � �� � � �ﾮ ﾮ ﾮ ﾮ� � � �� � � �

( )V

d
= , because   only, hence there is 

d

d
no difference between and 

d

V

V

U U
C U U T

T T

U U

T T

ﾮ� �= =� �ﾮ� �

ﾮ� �
� �ﾮ� �



  

Some thermodynamical properties of 
Ideal gas (cont.)

( )P V P P= ;  aloneC C nR C C T+ =

Pd =Q C dT VdP−
 All of these properties can derived based on 

the first law of thermodynamics, definitions of 
the quantities concerned, and the equation of 
state of idea gas, and the calculus of 
infinitesimal changes.

 Refer to page 112-114 in Zemansky for 
details.



  

The ratio γ  = cP/cV

 For idea gas, the ratio of molar heat 
capacities, γ  is predicted to be

   γ  = cP/cV = (cV + nR)/cV =1 + nR/cV > 1



  

Experimental measurement of molar 
heat capacities of real gas at low 
pressure (a) cV is a function of T only

 (b) cP is a function of T only, and is greater 
than cV

 (c) cP - cV is NOT a function of T but equals to 
R

 (d) the ratio γ  = cP/cV is a function of T only, 
and is greater than 1



  

For monoatomic gasses

 cV is almost constant for most T, and nearly 
equal to 3R/2

 cP is almost constant for most T, and nearly 
equal to 5R/2

 The ratio γ  is nearly a constant for most T, 
and is nearly equal to 5/3.



  

For permanent diatomic gasses
 cV is almost constant for some lower range of T, 

nearly equal to 5R/2, and increases as T increases.
 cP is almost constant for some lower range of T, 

nearly equal to 7R/2, and increases as T increases. 
 The ratio γ  is nearly a constant for some lower range 

of T, nearly equal to 7/5, and decreases as T 
increases.

 We often write cP/R =7/2 + f (T)
 where f (T) is an empirical equation used to fit the 

experimental behavior of the gases. 
 It is theoretically difficult to derive f (T)



  

Quasi-static adiabatic process of 
ideal gas

 Combining the first law with the definition of CV, CP, in adiabatic process, 
where dQ = 0, and assuming γ  stays constant, one arrives at

ln ln constant constant
dP dV

P V PV
P V

γγ γ= − = − + =ﾮ ﾮ

1

adiabatic
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Taking ∂ /∂V  
leads to 
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Quasi-static isothermal process of 
ideal gas
 Using PV = nRT, the slope of PV curve for 

isothermal process is 

T

P P

V V

ﾮ� �= −� �ﾮ� �

 The slope of PV curve for adiabatic process is 
steeper than that of corresponding isothermal 
process (with a common initial temperature) due to 
the fact that γ  >1.

adiabatic T

P P

V V
γﾮ ﾮ� � � �=� � � �ﾮ ﾮ� � � �



  

PVT surface for ideal gas

 Figure 5-5, page 118, Zemansky.



  

The microscopic point of view

 Given a system, to know its thermodynamic 
behaviour, we need to know 

(i) its internal energy function, U
(ii) its equation of state
 These information can sometimes be obtained by 

performing experimental measurement on a case-
by-case basis. 

 In addition, it is sometimes difficult if not impossible 
to do so. 

 It will be much more satisfying if we can obtain these 
thermodynamical information theoretically rather 
than experimentally



  

The microscopic point of view 
(cont.)
 To obtain theoretically U and the equation of 

state, we need to model the system 
microscopically based on the collective 
behaviour of the particles of the system.

 First approach: kinetic theory of gas
 Second approach: statistical mechanics



  

Kinetic theory of ideal gas
Assumptions:
 Number of particles, N, is enormous
 Particles are identical hard sphere (no internal degree 

of freedom such as vibration nor rotation), and 
chemically inert

 If m particle mass, the total mass of gas = Nm
 M denotes molar mass in kg/mol (e.g. M=1 g/mol for 

hydrogen atom, water molecule has M = 18 g/mol).
 The number of moles n = Nm/M
 Avogadro’a number NA = N/n = M/m = 6.023 x 1023 
 At standard pressure and temperature (STP), P = 1 

atm, T = 273K (water’s freezing point), 1 mole of ideal 
gas occupy a volume of 22.4 litre = 22.4 x 103 cm3.



  

Assumptions of kinetic theory of ideal 
gas (cont.)
 The particles of ideal gas resemble hard sphere with 

negligible diameter compared to the average 
distance between these particle

 Particles are in perpetual random motion 
 Particles exert no force among themselvea except 

when the collide among themselves or against the 
wall

 Collision is perfectly elastic
 Between collision particles move with uniform 

rectilinear motion
 Upon bouncing against the wall, a particle suffers 

change of a velocity by -2w┴ (w┴  is the initial velocity 
before bouncing)



  

Assumptions of kinetic theory of ideal 
gas (cont.)
 Particle density N/V is assumed uniform and 

constant (V volume of the ideal gas) 
 In an infinitesimal volume dV, number of 

particle is dN = (N/V)dV
 Motion of particles is anisotropic
 The speed of particle is distributed non-

uniformly in the range from zero to speed of 
light. 

 dNw is a function of w.



  

System of ideal particles moving in 
3–D spherical coordinate system
 Differential solid angle, dΩ (in unit of steradians), 

see Figure 5-9, pg. 129.
 Solid angle covering the whole solid sphere is 4π
 dNw  denotes number of particle having speed [w, 

w+dw]
 d3Nw,θ ,φ= dNw dΩ/4 π denotes number of particle with 

speed [w, w+dw] in the solid angle at spherical 
coordinate interval [θ, θ+dθ], [φ ,φ +dφ ] 

 Note that d3Nw,θ ,φ  is independent of φ ,θ, hence 
‘particle speed distribution is anisotropic’



  

Figure 5-9



  

System of ideal particles moving in 
3–D spherical coordinate system 
(cont.)
 Number of particles striking dA in time dt 

is d3Nw,θ ,φ= dNw dΩ/4 π dV/V 
 where dV is the infinitesimal volume 

subtended by solid angle dΩ
 dV= w dt cos θ  dA 



  

Figure 5-10



  

Derivation of PV in term of 
microscopic quantities
 Change of momentum per collision at this surface is 

-2mw cosθ  
 Total change of momentum = (no of atoms of speed 

w in solid angle, dΩ) x (fraction of these atoms 
striking dA in time dt) x (change in momentum per 
collision)

 Total pressure = total change of momentum / dt
 The pressure exerted on the wall, dPw, by the dNw 

gas atoms is the total change of momentum per unit 
time per unit area:
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 Integrating over θ  and φ , and making used of the definition 
of root mean square of the speed, 2 2

0

1 c

ww w dN
N

= ﾮ

 LHS is a a macroscopic description, RHS is microscopic 
description

 Since PV =nRT
 Hence, we can equate  2

3

mN
PV w nRT= =

Derivation of PV in term of 
microscopic quantities (cont.)



  

 Average kinetic energy per particle             (a microscopic 
quantity), can then be related to the macroscopic quantity 
T, via 

Internal energy of ideal gas is 
temperature dependent only

2

A A A

3 3 3 3
;   

2 2 2 2 2

m R R N R R
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N N N N N
= = = = =

2

2

m
w

 Total kinetic energy of the ideal gas is 

 Since ideal gas assumes no interaction among the particle, 
hence total internal energy of the system = total kinetic energy 
of the system, where no internal energy is stored in the form of 
potential energy 
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Generalisation of idean gas to non-
ideal gas interacted via van der 
Waals force

 a accounts for cohesive forces between 
atoms

 b accounts for volume occupied by atoms 
inside the system volume V

 a, b varies from gas to gas, and have to be 
measured experimentally.
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Problem 5.1
 By defination, the ideal gas satisfies the equations  

PV=nRT. Find the relationships between CP and CV for 
an ideal gas

 Solution
 For ideal gas, the internal energy function is a function 

of temperature only, U=f(T).
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Solution 5.1 (cont.)
 When temperature is raised by dT, the increase in 

U is

 For an infinitesimal quasi-static process of a 
hydrostatic system, the first law is 

 dQ = dU - dW = CVdT + PdV
 or, dQ = CVdT + PdV
 For an infinitesimal quasi-static process at constant 

volume
 d(PV = nRT)  PdV + VdP = nRdT
 Eliminating PdV, by combining both equation, we 

get dQ = (CV + nR)dT – VdP.
 Divide by dT, yields dQ/dT = (CV + nR) – V (dP/dT)

V
V T V

d
d d d d

d

U U U
dU T V T C T

T T T

ﾮ ﾮ� � � � � �= + = =� � � � � �ﾮ ﾮ� � � � � �



  

 At constant pressure, dP=0, the LHS 
becomes CP and, dP/dT = 0

 Hence the equation reduce to 

   (CP = CV + nR)/n 

 cP = cV + R = 3R/2 + R = 5R/2
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