ZCA 110 Kalkulus dan Aljabar

Semester I, Sessi 2005/06

QUIZ 2 (29 Julai 2005)

Nama: No. Kad Matriks: Kumpulan Tutorial:

Q1 Proof that f(x) = x is everywhere continuous

Solution. Theorem 8.2 (pg. 73).

First, we must prove that $\lim_{x \to a} f(x) = a$, where a is a real number. Moreover f(a) is defined and is given

by f(a) = a. Hence, $\lim_{x \to a} f(x) = a = f(a)$. By definition, f(x) = x is thus everywhere continuous.

To prove the existence of $\lim_{x\to a} f(x) = a$, we are required to show that for any arbitrary $\varepsilon > 0$, there exists a

 $\delta > 0$ such that whenever $|x - a| < \delta$, $|f(x) - a| < \varepsilon$.

To begin with, let us assumes $\delta > 0$, and consider *x* to be confined within the domain of $(a - \delta, a + \delta)$, but with $x \neq 0$. In other words we consider *x* that is constrained by the condition $0 < |x - a| < \delta$.

Let f(x) = x. Hence, |f(x) - a| = |x - a|. But $|x - a| < \delta$. $\therefore |f(x) - a| = |x - a| < \delta$. If we choose $\delta = \varepsilon$, then $|f(x) - a| < \varepsilon$. Thus, $\lim_{x \to a} f(x) = a$ is proven.

Q2

Find the discontinuity of the following functions. Determine whether they are removable or non removable.

(a)
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0$$

(b) $f(x) = \begin{cases} 4 & \text{if } x = 2\\ 0 & \text{if } x \neq 2 \end{cases}$

Solutions

(a) Schaum's series, Solved Pro. 1(d), pg 76 A polynomial has no discontinuity

(b) Schaum's series, Solved Pro. 1(j), pg 76

Has a removable discontinuity at x = 2.