ZCA 110 Kalkulus dan Aljabar

Semester I, Sessi 2005/06

QUIZ 4 (12 August 2005)

Nama: No. Kad Matriks: **Kumpulan Tutorial:** [7 marks]

Given $y = ax^2 - bx + c$ on the interval $[x_1, x_2]$, where *a*, *b*, *c*, are some real numbers. Assume the function

has two roots within $[x_1, x_2]$.

(a) Find a value of x_0 prescribed by the Law of the Mean	[3 marks]
(b) Find a value of x'_0 prescribed by Rolle's theorem	[2 marks]
(c) Find the slope (gradient) of the tangent lines at the value of x in (b)(d) Find the slope (gradient) of the normal lines at the value of x in (b)	[1 mark] [1 mark]

Solution: modified from Suppl Problem 17(b), pg 114 and Solved problem 1, pg. 111 (a) [3 marks]

Law of the Mean:

 $\therefore 2ax'_0 - b = 0 \Longrightarrow x'_0 = b/2a$

$\frac{f(x_2) - f(x_1)}{f(x_1)} = f'(x_1)$	1 mark
$x_2 - x_1$ - <i>J</i> (x_0)	1 mark
LHS, $f'(x_0) = 2ax_0 - b$	1 mark
$\therefore 2ax_0 - b = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \Longrightarrow x_0 = \frac{f(x_2) - f(x_1)}{2a(x_2 - x_1)} + b$	
$=\frac{x_2 + x_1}{2}$	1 mark
(b) [2 marks]	
Let the roots be $x=x'_1, x=x'_2 \Rightarrow f(x'_1)=f(x'_2)=0$	
Rolle's Theorem gaurantees that	
$f'(x'_0) = 0$ for a point x'_0 between (x'_1, x'_2)	1 mark
LHS, $f'(x'_0) = 2ax'_0 - b$	
$\therefore 2ax'_0 - b = 0 \Longrightarrow x'_0 = b/2a$	1 mark

- (c) The slope of tangent line at $x'_0 = b/2a$ is zero [1 mark]
- (d) The slope of normal line at $x'_0 = b/2a$ is ∞ [1 mark]