Calendar

Note: the planned schedule is tentative and subjected to possible modification.

*Tutorial class will be conducted on every Thursday 2.00 pm ¨C 3.00 pm.

Week

lecture/tutorial no.

Topics

Remark

1

(10/7/06-14/7/06)

-

Briefing

¡¡

L1

Definition of functions; the graphs of a real function; transformation of functions

¡¡

L2

Sums, differences, products and quotients; composition of functions; monotone functions; odd and even functions; injective functions; surjective functions; bijective functions

¡¡

L3

Inverse functions; polynomials; rational functions

¡¡

2

(17/7/06-21/7/06)

L4

The absolute value function; real-valued n-th root functions; trigonometric functions and their inverses I

¡¡

L5

Trigonometric functions and their inverses II

¡¡

T1*

Tutorial 1

¡¡

L6

Exponential and logarithmic functions; hyperbolic functions and their inverses I

¡¡

3

(24/7/06-28/7/06)

L7

Hyperbolic functions and their inverses II

¡¡

L8

Limits of real functions; one-sided limits

¡¡

T2*

Tutorial 2

¡¡

L9

Properties of limits; limits at infinity and infinities limits I

¡¡

4

(31/7/06-4/8/06)

L10

Limits at infinity and infinities limits II; the precise definition of a limit I

¡¡

L11

The precise definition of a limit II; continuity I

¡¡

T3*

Tutorial 3

¡¡

L12

Continuity II

¡¡

5

(7/8/06-11/8/06)

L13

Derivatives

¡¡

L14

Differentiation formulas

¡¡

T4*

Tutorial 4

¡¡

L15

The chain rule; higher order derivatives; implicit differentiation

¡¡

6

(14/8/06-18/8/06)

L16

The mean value theorem

¡¡

L17

L¡¯Hopotal Rule; differentialbility of inverses; some applications of derivatives I

¡¡

T5*

Tutorial 5

¡¡

L18

Some applications of derivatives II

¡¡

7

(21/8/06-25/8/06)

L19

Some applications of derivatives III; Taylor¡¯s theorem I

¡¡

L20

Taylor¡¯s theorem II

¡¡

T6*

Tutorial 6

¡¡

L21

Riemann integral; basic properties of the definite integral

¡¡

8

(28/8/06-2/9/06)

¡¡

semester break

¡¡

¡¡

¡¡

¡¡

9

(4/9/06-8/9/06)

¡¡

L22

Areas of bounded regions; fundamental theorem of calculus I

¡¡

L23

Fundamental theorem of calculus II; antidifferentiation and indefinite integral

 

TEST I

TEST I (7 Sept 06, Thursday)

¡¡

L24

Techniques of integration I

¡¡

10

(11/09/06-15/09/06)

¡¡

L25

Techniques of integration II

¡¡

L26

Improper integrals; the logarithms and the exponential functions

¡¡

T7*

Tutorial 7

¡¡

L27

Another look at the integral; applications of the definite integral I

¡¡

11

(18/9/06-22/9/06)

¡¡

L28

Applications of the definite integral II

¡¡

L29

Infinite series. Series with positive terms.

¡¡

TEST

TEST II (21 Sept 06, Thursday, Venue: DPA)

¡¡

L30

Integral test. Comparison tests

¡¡

12

(25/9/06-29/9/06)

L31

Definition; Matrix algebra; Types of matrces.

¡¡

L32

System of Linear Equations

¡¡

T8*

Tutorial 8

¡¡

L30

Inverse of a Matrix; Determinants

¡¡

13

(2/10/06-6/10/06)

¡¡

L31

Cramer's rule;

 

L32

Revision and exercise

 

T9*

Tutorial 9

 

L33

Revision and exercise

 

14

(9/10/06-13/10/06)

¡¡

L34

Revision and exercise

 

L35

Revision and exercise

 

T10*

Tutorial 10

 

L36

Revision and exercise

 

15

(16/10/06-20/10/06)

L37

Revision and exercise

 

L38

Revision and exercise

 

T11*

Tutorial 11

 

T39

Revision and exercise

 

¡¡