Chapter 8

Techniques of Integration

PEARSON

;&{ idison
Wesley Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



3.1

Basic Integration Formulas
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TABLE 8.1 Basic integration formulas
1. /du=u+C 13. fcotudu=ln|sinu| + C
= —1 +C
2. /kdu =fku+ C (any number k) n fescul
14. /e du =e" + C
3/du+dv) /dqu/dv
15. ]a du—lﬁ—a+C (a>0,a#1)
4./udu—n+1 +C (n# —1)
du 16. /sinhudu = coshu + C
5. /7=ln|u| + C
17. /coshudu =sinhu + C
6. /smudu = —cosu + C
du I (u)
18. [7= sin —|+C
7. fcosudu=sinu+C Va? — u? a4
du 1, 4 (u
19. f =—tan1(—>+C
8. fseczudu=tanu+C a*+u* 4 4
du 1 i lu
20. —=—sec |+ C
9. /csczudu:—cotu+C / uNu? a a
21. =sinh ' (2)+C (a>0)
10. [ secutanudu = secu + C \/a + 42 a
du _ 1 f(u
11. /cscucotudu= —cscu + C 22. uz_az_COSh (G)-FC (u>a>0)
12. ftanudu = —In |cosu| + C
= In|secu| + C
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Example 1 Making a simplifying substitution

u

2
J‘ 2X-9 dXZI d(x” —9x)
X —9x+1 X —9x+1

d(u +1) :j dv =2V1/2+C

S Rrete e

=2u+1)"2 +C=2(x* ~9x+1)  +C
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Example 2 Completing the square

J‘ dx :j dx _
V8xX — X2 \/16—(x—4)2

J‘ d(X—4) _j
J16—(x—4)? \/42—u
—gin~' = u +C =sin"’ (X;élj+C
4 4
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Example 3 Expanding a power and using a
trigonometric 1identity

I (sec X + tan X)” dx

= j(secz X + tan” X + 2 sec X tan X)dX.

Racall:tan°X = sec” X — l;d—tan X = sec’ X;d—sec X = tan Xsec X;
X X

= I(zsecz X —1+ 2sec X tan X)dX

=2tan X+ —X+2secX+C
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Example 4 Eliminating a square root

!4

j J1+ cosdxdx =
0

cos4X =cos2(2X) =2cos*(2X) -1
/4 /4 /4

IJ1+cos4XdX: I\/200322XdX:\/§I | cos2X| X
0 0 0

!4

= \/5 j Ccos2Xdx =...
0

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 7



Example 5 Reducing an improper fraction

dx

-"3X2 — 77X
3X+2

—4@—3x+2hﬂx+gﬂ+C
2 3
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Example 6 Separating a fraction
J‘ 3X+2

e
:3fﬂ

-—d(x)

=3 2
IVI X’ ' jVI X’ ’
:—IF+2s1n X+ C j - =—2(1-u)"*+C'

(1 . u)l/Z
=§[—2(1—u)”2]+ 2sin”' X+ C"

dx+j

2 dx
NS

=-3(1-Xx*) +2sin”' x+C"
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Example 7 Integral of y = sec X

j sec Xdx =?
d sec X = sec X tan xdX

d tan X = sec” xdx = sec Xsec XdXx
d(sec X + tan X) = sec X(sec X + tan X)dX

d(sec X + tan X)
sec X + tan X

sec Xdx =

d(sec X + tan X)
sec X + tan X

jsecde=I =In|secX+tan X |+C
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TABLE 8.2 The secant and cosecant integrals

1. /secudu= In |secu + tanu| + C

2, /cscudu = —In|cscu + cotu| + C
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Procedures for Matching Integrals to Basic Formulas

PROCEDURE EXAMPLE
Making a simplifying 22x — 0 dx = f/u_
substitution Vax? - 9x + 1 u
Completing the square V8 — x2 = V16 — (x — 4)?
Using a trigonometric (secx + tanx)? = sec’x + 2secxtanx + tan’x
identity = sec’x + 2secxtanx

+ (sec’x — 1)

= 2sec’x + 2secxtanx — 1

Eliminating a square root V1 + cosdx = V2cos22x = V2 |cos 2x|

, _ 3 —Tx 6
Reducing an improper 3x 12 O F 3+ 3x + 2

fraction

Separating a fraction x+2 _ 3x + 2
V1 — x? V1 — x? V1 — x?

secx + tanx
secx + tanx

Multiplying by a form of 1 secx = secx*

o sec’x + sec xtanx
secx + tanx
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3.2

Integration by Parts

(2™ lecture of week 17/09/07-
22/09/07)
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Product rule 1n integral form

L1 00g001= 900 11 (01+ 100 [g()
X dx dx
I&[ F(x)g(x)]dx :j g(x)&[ f (x)]dx +j f (x)&[g(x)]dx

f (0900 =900 F'e0dx+ [ F()g'(x)dx

/ Fg () dx = f()glx) — f F(x)g() dx )

Integration by parts formula
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Alternative form of the integration by parts
formula

L1 009001= 900 11001+ 100 [g()
X dx dx
I&[ F(x)g(x)]dx :j g(x)&[ f (x)]dx +j f (x)&[g(x)]dx

f(09(0) = [ g(0df )+ [ f()dg(x)

Let u= f(X);v=g(X).The above formular is recast into the form
uv = _[vdu + judv

Integration by Parts Formula

/udv=uv—/vdu (2)
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T i S N NN S
Example 4 Repeated use of integration by

parts

I x‘e*dx =2
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Example 5 Solving for the unknown integral

jex cos Xdx =2
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Evaluating by parts for definite integrals

Integration by Parts Formula for Definite Integrals

b b
/ f)g'(x) dx = f(x)g(x)]) — f £/ (x)g(x) dx (3)
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Example 6 Finding arca

2 Find the area of the region 1n Figure 8.1

y
A
1 L

0.5+ y=xe*
| | | | o

1 1 2 3 4
—05-
_1 -

FIGURE 8.1 The region in Example 6.
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Solution

4
jxe‘xdx = ...
0
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Example 9 Using a reduction formula

0 Evaluate j cos” XdXx
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General description of the method

2 A rational function f(X)/g(X) can be written as a
sum of partial fractions. To do so:

2 (a) The degree of f(X) must be less than the degree
of g(X). That 1s, the fraction must be proper. If it
isn’t, divide f(x) by g(x) and work with the
remainder term.

2 We must know the factors of g(X). In theory, any
polynomial with real coefficients can be written as
a product of real linear factors and real quadratic
factors.
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Reducibility of a polynomial

O A polynomial is said to be reducible if it is the product
of two polynomials of lower degree.

O A polynomial is irreducible if it is not the product of two
polynomials of lower degree.

U

THEOREM (Ayers, Schaum’s series, pg. 305)

Consider a polynomial g(X) of order n > 2 (with leading

coefficient 1). Two possibilities.

1. g(X)= (X-r)h(x), where h,(X) is a polynomial of degree
n-1, o0

2. g(x)= (X2+pX+q) h,(X), where h,(X) is a polynomial of

degree n-2, with the irreducible quadratic factor

(HpX+Q).

U
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Example

g(X) =X’ —4x=(Xx—=2)- X(X+2)
%K_J " v J
linear factor poly. of degree 2

gxX)=x"+4x= (X’+4) - X
v poly. of degree 1

irreducible quadratic factor

g(x)=x"-9=" (X+3)  -(X+/3)(x—+3)

irreducible quadratic factor poly. or degree 2

g(x) =X’ =3x" =x+3= (x+1) (x-2)°

) '
linear factor poly. or degree 2
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Quadratic polynomial

Q A quadratic polynomial (polynomial or
order N = 2) 1s either reducible or not
reducible.

0 Consider: g(X)= X>+px+q.

o If (p?-4q) > 0, g(X) is reducible, i.e.
g(X) = (X+1)(X+T,).

o If (p?-4q) < 0, g(X) is irreducible.
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2 In general, a polynomial of degree n can
always be expressed as the product of
linear factors and 1rreducible quadratic
factors:

Pn(x) — (X o rl)nl (X — rz)n2 ...(X— rl)”' X
(X + P X+0)™ (X + PyX+0,)™ (X + pX+ )™

n=(n+n,+...+n)+2(M +m, +...+m,)
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Integration of rational functions by partial

fractions -
Method of Partial Fractions (f(x)/g(x) Proper)

1. Letx — rbe a linear factor of g(x). Suppose that (x — »)” is the highest
power of x — r that divides g(x). Then, to this factor, assign the sum of the
m partial fractions:

41 + 4 _|_..._|_A—m
YTTF 0 (x — p)? (x —r™

Do this for each distinct linear factor of g(x).

2. Letx? 4+ px + g be a quadratic factor of g(x). Suppose that (x* + px + g)"
1s the highest power of this factor that divides g(x). Then, to this factor,
assign the sum of the » partial fractions:

le + C] Bzx + C2 an + Cn
2 T y Tt '
x“+px+q (x°+ px + q) (x* + px + q)"

Do this for each distinct quadratic factor of g(x) that cannot be factored into
linear factors with real coefficients.

3. Set the original fraction f(x)/g(x) equal to the sum of all these partial
fractions. Clear the resulting equation of fractions and arrange the terms in
decreasing powers of x.

4. Equate the coefficients of corresponding powers of x and solve the resulting
equations for the undetermined coefficients.

1
N
o

Copyright © -




Example 1 Distinct linear factors

I X>+4x+1 iy —
(X=D(X+1D(X+3)
X* +4X+1 A B C

= + + =...
(X-D(x+1)(x+3) (x-1) (x+1) (x+3)
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Example 2 A repeated linear factor

6X+7

I ~dx=...
(X+2)

ox+7 A B

(x+2)2_(x+2)+(x+2)2
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Example 3 Integrating an improper fraction

2% —4x* —x—3
I > dx=...
X" —2X-3
2% —4x* —x=3 5x—73
> =2X+—
X —2X-3 X°—2X-3
5x-3 5x-3 A B

X _2x—3 (X=3)(x+1) (x=3) (x+1)
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Example 4 Integrating with an irreducible
quadratic factor in the denominator

—2X+4
j(x2 DT
-2x+4  AX+ B C D

(x> +1)(x=1) (x +1) (X — 1) (X — 1)
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Example 5 A repeated 1irreducible quadratic
factor

1
dx =72
j X(X* +1)

1 A BX+C Dx+E
x(X2+1)> X (x +1) C+1)72
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Other ways to determine the coefficients

A(X+1)’+B(x+)+C  x-1

0 Example 8 Using

3 o 3
differentiation (x+1) (x+1)
. , = A(X+1)*+B(x+1)+C=x-1
0 Find A, B and C 1n the
, X=-1->C=-2
equation ,
«—1 A 3 C = AX+D) " +B(Xx+1)=x+1

(X+1)° } (x+1)+(x+1)2 +(x+1)3 :d>A(X+1)+B:1

d
—{AX+1)+B]=—(1)=0
A=0
B=1
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Example 9 Assigning numerical values to X

0 Find A, Band C in
X" +1
(X=D(x=2)(x-3)
A B C
= + +
(x=1) (x=2) (x=3)

AX=2)(X=3)+B(x-1)(x=3)+C(x—=1)(x—=2) = f(X)
= X" +1

f()=2A+=1"+1=2= A=1
f(2Q)=-B=2"+1=5;=>B=-5
f(3)=2C=3+1=10;=C =5
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Products of Powers of Sines and Cosines

We begin with integrals of the form:
/ sin” x cos” x dx,

where m and n are nonnegative integers (positive or zero). We can divide the work into
three cases.

Case 1 If m is odd, we write m as 2k + 1 and use the identity sin’x = 1 — cos®x to
obtain

2k+1

sin”x = sin?**1 x = (sin?x)*sinx = (1 — cos®x)*sin x. (1)

Then we combine the single sin x with dx in the integral and set sin x dx equal to —d (cos x).

Case 2 Ifmiseven and n is odd in f sin” x cos” x dx, we write n as 2k + 1 and use the
identity cos’x = 1 — sin®x to obtain

2k+1

cos”x = cos?*tlx = (cos?x)*cosx = (1 — sin®x)*cos x.

We then combine the single cos x with dx and set cos x dx equal to d(sin x).

Case 3 Ifboth m and » are even in f sin” x cos” x dx, we substitute

sin?x = 1 — gos 2x, coslx = 1 + gos 2x )

to reduce the integrand to one in lower powers of cos 2x.
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Example 1 m1s odd

jsin3 Xcos X dx=7?

jsin3 Xcos X dX = —_“sin2 xcos“x d(cosXx)
= j(cosz x—1)cos“x d(cosx)

= j(u2 —u’du =...
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ot T S S NS,
Example 2 m 1s even and n 1s odd
j cos’X dx=?
3 2 2 2 .
jcos X COS™ X dX=Icos Xcos“X d sin X
= j (1-sinx)(1-sin’X) d sin X

=j(1-u2)(1-u2) du=..

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 8- 39



Example 3 m and n are both even
jcoszx sin* X dx=?

jc052Xsin4x dx =

(l-cos2xj(1+0032X jz
j dx
2 2

= % j (1 —cos2x) (1+c:0s2x)2 dx

:ij(1+c082x—00822x—cos 2X) dx =...
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Example 4 Eliminating square roots

IOEM\/I +cos4xdx ="?

joﬁ/4\/l + cos 4xdx

= Ioﬂ/4\/2cos2 2xdx = \/EKMCOS 2xdx =...
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Example 6 Integrals of powers of tan X and

3
sec X sec” Xdx =7
Use integration by parts.

j sec’ Xdx = I sec X - sec” XdX;
u

tan X +sec X
dv jsec Xdx = jsec X ( ) dx

5 5 tan X +sec X

dv =sec XdX—>V=jsec Xdx = tan X )
_ ((secxtan X +sec” X) dx
U =sec — du = sec X tan Xdx e tan X 4 sec X
Jsecx-secz xdx _ - d(sec X + tan X)
—_
u dv 7 tan X +sec X

= sec X tan X — | tan X - sec X tan Xdx =In|secx+tanx|+C

du

—sec Xtan X — | tan x> sec xdx

=sec Xtan X — | (sec” X —1)sec XdXx

p[sec3 Xdx = sec X tan X — | sec® xdx + e[sec xdXx...
Co

right © 2005 Pearson Education, Inc. Publishing #5 Pearson Addison-Wesl|
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Example 7 Products of sines and cosines

jcosSXsin3XdX:?

. . 1

sin mxsin NX = E[COS(m —n)x—cos(M+n)x|;
. I . .

sin MX cos NX = E[sm(m —N)X +sin(m+n)x];

1
cosSMXcosNX = E[cos(m —N)X +cos(M+n)x|

Icos 5xsin 3xdx

= % j [sin(—2X) + sin 8X]dX
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Trigonometric Substitutions
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Three basic substitutions

a X
X x* — a®
0 7,
a a? — x? a
x=atan@ x=asin@ x=asecb

Va? + x*=alsec8] Va*— x*= alcos 6 V x? — a* = altan 6|

FIGURE 8.2 Reference triangles for the three basic substitutions
identifying the sides labeled x and a for each substitution.

Useful for integrals involving va?-x*,Ja’ +x*,Jx* -a’
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Example 1 Using the substitution x=atané

j dx _o
Ja+x®

X =2tany — dx = 2sec’ ydy = 2(tan” y + 1)dy

2
:_[ 2(tan” y +1) dy

dx
‘[\/4+4tan2y \/4+4tan2y

:j(tan2y+l) dy:_‘-\/sec2 ydy=j|secy|dy

\/1+tan2y
=In|secy+tany|+C
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Example 2 Using the substitution X = asiné

j x2dx o
Jo—x2

X=3siny —>dXx=3cosy dy

X dx 9sin’ y-3cosy dy
IWZI Jo—osin’y
:9jsin2y-cosy dy

\/l—sinzy
:9“‘sin2 ydy =...
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Example 3 Using the substitution X = asecé

dx
jstx2 _4

2 2
ngsecy —> dngsec ytany dy

_[ __Isecytanydy_lj‘secytanydy
\/25X — \/4sec y—4 5 \/seczy—l
J-secytany dy
\/sec y-—1
1

=§ln|secy+tany|+C:...

—Isecydy
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Example 4 Finding the volume of a solid of
revolution

—16ﬂj

y o (% +4) - [ y=

.
Eal

(a) (b)

FIGURE 8.7 The region (a) and solid (b) in Example 4.
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Solution

_167zj(x +4)2=?

Let X =2tan y — dx = 2sec” ydy

/4 2 /4 2
V = 1 2sec ydy2 _ 2sec ydzy
0 (tan2 y+1) 0 (8602 y)
/4

=27 j cos” ydy =...
0
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Integral Tables
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Integral tables 1s provided at the back of
Thomas’

Q T-4 A brief tables of integrals

Q Integration can be evaluated using the tables
of integral.
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EXAMPLE 1  Find

/x(Zx + 5) ldx.
Solution We use Formula 8 (not 7, which requires n # —1):
—1 X b
/x(ax-l—b) dx =7 — —lIn|ax + b| + C.
a
Witha = 2and b = 5, we have

/x(2x+5)_1dx=%—%ln|2x+5| + C.
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EXAMPLE 2  Find

dx
/x\/Z.x + 4.

Solution We use Formula 13(b):

ifb > 0.

/\ﬁ\/_‘m_‘

Witha = 2 and b = 4, we have

1n‘\/2x+ —\/Z‘ \

2x + 4 +

/x\/;%ﬁz

2x +4 — 2

V2x +4 + 2

+ C.
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EXAMPLE 3  Find

dx
/ V2 — 4
Solution We use Formula 13(a):
dx 2 -1 ax — b
= —=tan + C.
fx Vax —b Vb b

Witha = 2 and b = 4, we have

dx 2 1 [2x — 4 1 [x— 2
= —=tan + C = tan + C.
/x\/rc_z; Vi o N4 Vo2
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EXAMPLE 4  Find

dx
/ 2Vox — 4
Solution We begin with Formula 15:

/ dx :_Vm+b_a/ | -
>Vax + b bx 2b) xNax + b

Witha = 2and b = —4, we have

f dc  _ Na—4 z/ . -~
x>V2x — 4 —4x 2:4) xV2x — 4 .

We then use Formula 13(a) to evaluate the integral on the right (Example 3) to obtain

f dx = 2x_4-I—ltan_lﬂfx_z—I—C
x2\/2x_4 4.7( 4 2 )
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EXAMPLE 5 Find
/ xsin ' xdx.
Solution We use Formula 99;

n+1 n+1
x"sin laxdx = >——sin lax — —2 X ax , n#—1.
n+1 n—+1 1 — ax2

Withn = 1 anda = 1, we have
xsin lxdx = x—zsin_lx _ 1 xz—dx
2 2 A /1 _ x2 ’
The integral on the right is found in the table as Formula 33:
2 2
x _at . afx\_1 /32 2
/—mdx 5 sin (a) yXxVa x“+ C.
Witha = 1,
2
_xfax 1.1 /2
m S sin X — 5x 1 —x+ C.
The combined result is

/xsin_lxdx = x?zsin_lx — l(lsin_lx — %x\/l — X2+ C)

2\2

= (ﬁ - l)sin_lx + %x\/l -x*+C.

2 4
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Improper Integrals
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(a) (b)

FIGURE 8.17 Are the areas under these infinite curves finite?

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 8- 59



y

A

Infinite limits of integration \ , _.

\

A(a) = lim A(b) =1lim2 - 26> = 2= .

bh—o0 bh—o0

A

b
A(b) = je‘mdx =..=2-2e"" N
0

(b)

FIGURE 8.18 (a) The area in the first
quadrant under the curve y = e /2 is
(b) an improper integral of the first type.

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8 - 60



DEFINITION Type I Improper Integrals
Integrals with infinite limits of integration are improper integrals of Type I.

1. If f(x) is continuous on [a, ©©), then

[ = jim [ ey

2. If f(x) is continuous on (— 09, b], then

b b
[wa= gim_ [ sea

3. If f(x) is continuous on (—00, 00), then

[Dof(x)dx=[;f(x)dx+/ £(x) d.

where c is any real number.

In each case, if the limit is finite we say that the improper integral converges and
that the limit is the value of the improper integral. If the limit fails to exist, the
improper integral diverges.
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Example 1 Evaluating an improper integral on
[1,00]

0 Is the area under the curve y=(In X)/x* from
1 to oo finite? If so, what 1s 1t?

A b
1 . In X
021 y="5 lim | —dx=7?
b—>oo1 X2
0.1}
> X
0 1 T

FIGURE 8.19 The area under this curve
1s an improper integral (Example 1).
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Solution

b Inb
ln_X% Ilnxd(lnx) J'—du ;u=lnx,x=e“

1 lnl

Inb Inb Inb
jue‘“du =u(-e")| - j (—e™")du
7 %K_de T 7 —
0 W
Inb 0 Inb
=ue | + j e'du=ue™| -—-e
Inb Inb 0
1 1

=—Inb-e™ —(e™ -1)=——Inb——+1
b b

b—w0 X2 b—w0

1

lim ln—XdX = hm[—llnb —l+ 1} 1
b b
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Example 2 Evaluating an integral on [-00,00]

]de s

2
1+ X
—00
o0 b
dx .. ¢ dx . dx Y
j 2:hm 2+11rn >
S+ XT boed T+ X7 b T4 X
b
. dx __1
=21im > YTt 2 Area =
b <14+ X
> X
0
NOT TO SCALE

FIGURE 8.20 The area under this curve
is finite (Example 2).

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 64



Solution

Using the integral table (Eq. 16)
j dx 1 X
d

: ~=—tan —+C
+ X a a

; dx 1P -1 -1 -1
II+X2 =[tan X]O = tan (b)—tan 0 = tan (b)
0

j ax :21imtan_1b:2-£=ﬂ
14+ x> b 2 y

1

y=tan 'b=Db=tany

. . T
limtan " b=—
_ _ o _ b—o0
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DEFINITION  Type II Improper Integrals
Integrals of functions that become infinite at a point within the interval of inte-
gration are improper integrals of Type I1.

1. If f(x) is continuous on (a, b] and is discontinuous at a then

b b
/f(x)dx= 1_i)m+/ f(x)dx.

2. If f(x) is continuous on [a, b) and 1s discontinuous at b, then

/bf(X)dx = cl_i)nf}_/cf(x) dx.

3. If f(x) is discontinuous at ¢, where a < ¢ < b, and continuous on
[a, ¢) U (c, b], then

b c b
/f(X)dx=/f(X)dx+/ f(x) dx.

In each case, if the limit is finite we say the improper integral converges and that
the limit is the value of the improper integral. If the limit does not exist, the inte-

gral diverges.
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Example 3 Integrands with vertical
asymptotes

> =t

FIGURE 8.21 The area under this curve
18

1
Area =2 — 2Va lim/ (L)dx=2,
a=0"Jo \\/x

an improper integral of the second kind.

> X
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Example 4 A divergent improper integral

A | . 1
'“"”'y_l—x

Q Investigate the dx

convergence of j
— X

FIGURE 8.22 The limit does not exist:

1 b
1 /(1 )dx=lim/ L =
o \l —x b—>1"Jo 1 —x

The area beneath the curve and above the
x-axis for [0, 1) is not a real number

> X (Example 4).

0 b 1
—
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Solution
1 b
i [ _ fim [ x -1
Ol—x b—>1‘01—)( b1 0
=—lim[In|b-1|=In|0—-1]]
b—1" ~ B
=—lim[In|b—1|-In[0-1|]=lim|In|b—1]"|
b—1" ~ § b—1"
. 1
:hm[ln— = 00
e—0 g_
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Example 5 Vertical asymptote at an interior
y point

3
X
_[ . 5 =
|  (x=1)
Y= (I . 1)2#’3
FIGURE 8.23 Example 5 shows the
convergence of
P
| / —dx =3 + 3V2,
0o (x — 1)¥
so the area under the curve exists (so itis a
s real number).
0 b c 3 g
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Example 5 Vertical asymptote at an interior

y point j j j
A
) (X 1)2/3 ) (X 1)2/3 1 (X 1)2/3
1 dx . 0 dx : 1/3 7P
y = (x _11)213 J-(X 1)2/3 _ bl_g}j (X _1)2/3 o %I_Ij} |:3(X _1) i|0 -
m[xb D' =3(-D'" | = lim[0+3]=3;
¢ dx . ¢ dx s
_‘-(X . 1)2/3 = gl_)r}}__“ (X _1)2/3 = %ll}l |:3(X 1) :|
1/3 1/3 2/3
| = &5{1[3(3 D" =3(b-1"|=3-2
3
- X 30402
s (X=1)
0 b c >
bl
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Example 7 Finding the volume of an infinite
solid y

0 The cross section of 2~
the solid in Figure
8.24 perpendicular to
the X-axis are circular
disks with diameters
reaching from the x-
axis to the curve y =
eX, -oo <X <In 2. Find

the volume of the FIGURE 8.24 The calculation in

horn. Example 7 shows that this infinite horn
has a finite volume.
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Example 7 Finding the volume of an infinite

solid
volume of a slice of disk of thickness dx,diameter y
v In2 . 2 '}:
V= [av ~ L im [ 7y (0 dx AV =7(y/2) X
) 4 b——o0 " 2
1 In2
=— lim | 7e**dx
4 b—>—o
! lim _ﬂez’(]m
8 b——oo L b
= 1 lim | 47 — 72'92b:|
{ b—>—ol
L d—e®y =X FIGURE 8.24  The calculation in
8 b 2 Example 7 shows that this infinite horn
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