ZCA 110B

Calculus and Linear Algebra Semester I, Sessi 2007/08 **QUIZ 9 (27 Sept 2007)**

rks

Nama: No. Kad Matriks:	otal = 12 marks
Q1 The function $f(x) = e^x + x$, being differentiable and one-to-one, has a differentiable inverse, $f^{-1}(x)$.	Find the value
of df^{-1}/dx at the point $f(\ln 2)$.	[5 marks]
Q2. (i) Derive $\frac{d}{dx} \tan^{-1} x$. Show your steps clearly. Draw a diagram if it helps in explaining your derivation	n.
	[5 marks]
(ii) Find the derivative $y = \tan^{-1}(\ln x)$.	[2 marks]

Calculus and Linear Algebra Semester I, Sessi 2007/08 QUIZ 9 (27 Sept 2007)

Total = 12 marks

Nama:

No. Kad Matriks:

Q1 The function $f(x) = e^x + x$, being differentiable and one-to-one, has a differentiable inverse, $f^{-1}(x)$. Find the value of df^{-1}/dx at the point $f(\ln 2)$. [5 marks]

Solution (Thomas' pg. 549, Chapter 7 Practice exercise Q101).

$$\frac{df}{dx} = e^{x} + 1$$

$$\Rightarrow \left(\frac{df^{-1}}{dx}\right)_{x=f(\ln 2)} = 1/\left(\frac{df}{dx}\right)_{x=\ln 2}$$

$$\Rightarrow \left(\frac{df^{-1}}{dx}\right)_{x=f(\ln 2)} = \frac{1}{\left(e^{x} + 1\right)}\Big|_{x=\ln 2} = \frac{1}{\left(e^{\ln 2} + 1\right)} = \frac{1}{\left(2 + 1\right)} = \frac{1}{3}$$

Q2. (i) Derive $\frac{d}{dx} \tan^{-1} x$. Show your steps clearly. Draw a diagram if it helps in explaining your derivation. [5 marks]

(ii) Find the derivative $y = \tan^{-1}(\ln x)$. [2 marks]

Solution (Thomas' pg. 531, Q62, exercise 7.7)

$$\frac{d}{dx} \tan^{-1} x = ?$$
Let $\theta = \tan^{-1} x \Rightarrow x = \tan \theta$

$$\Rightarrow \frac{d}{dx} x = \frac{d}{dx} \tan \theta$$

$$\Rightarrow 1 = \frac{d\theta}{dx} \frac{d}{d\theta} \tan \theta = \frac{d\theta}{dx} \sec^2 \theta \Rightarrow \frac{d\theta}{dx} = \frac{d}{dx} \tan^{-1} x = \frac{1}{\sec^2 \theta} = \cos^2 \theta = \frac{1}{x^2 + 1}$$
(ii)
$$y = \tan^{-1} (\ln x)$$

Let
$$u = \ln x \Rightarrow v = \tan^{-1}(u)$$

$$\frac{dy}{dx} = \frac{d}{dx} \tan^{-1} u = \frac{du}{dx} \frac{d}{dx} \tan^{-1} x = \frac{1}{x} \frac{d}{dx} \tan^{-1} x = \frac{1}{x(x^2 + 1)}$$