Linear transformation and the change of basis

August 3, 2007

Abstract

This short note supplements the set of ZCA 110 lecture notes on linear algebra. It expounds in understandable language the idea of linear transformation involving different bases.

1 Going from one basis to another

Consider two bases, $W = (W_1, W_2, \dots, W_n)$ and $Z = (Z_1, Z_2, \dots, Z_n)$ in the vector space $V_n(R)$. Note that here Z_i, W_i are colume vectors of *n*-components. The connection between the two bases can be worked out via the following consideration:

Consider a general *n*-vector in $V_n(\mathbf{R})$, call it Q. Q can be represented in the W-basis or in the Z-basis.

In the W-basis: $Q = W \cdot Q_W$, where Q_W is the coordinate vector of Q relative to the W-basis. In the Z-basis: $Q = Z \cdot Q_Z$, where Q_Z is the coordinate vector of Q relative to the Z-basis. The vector Q is the same vector irrespective of its basis representation, hence

$$Q = W \cdot Q_W = Z \cdot Q_Z$$

$$\Rightarrow Q_Z = (Z^{-1} \cdot W)Q_W \equiv PQ_W.$$
(1)

Eq. (1) relates the coordinate vector of an general vector Q in the Z-basis to that in the W-basis. In other words, if the basis Z and W is given, we can form a matrix

$$P = Z^{-1} \cdot X \tag{2}$$

which allows the coordinate vector in one basis to be determined if the coordinate vector in the other is given. Eq. (1) can also equivalently be stated as

$$Q_W = P^{-1}Q_Z.$$

2 Linear Transformation

A transformation can be carried out in any basis. Consider a vector X is transformed into vector Y. Such a transformation can be represented in both the W-basis and the Z-basis. In each basis representationm the transformation takes on different forms. Say A is the transformation matrix in the X-basis representation, whereas B is the corresponding transformation in the Z-basis representation. The linear transformations in both bases are given by:

W-basis	Z-basis
$W = (W_1, W_2, \cdots, W_n)$ $X \xrightarrow{A} Y$	$Z = (Z_1, Z_2, \cdots, Z_n)$ $X \xrightarrow{B} Y$
In component form $X_W \xrightarrow{A} Y_W$	In component form $X_Z \xrightarrow{B} Y_Z$
In matrix form $Y_W = A X_W$	In matrix form $Y_Z = BX_Z$

Now, we shall prove that: If

 $\begin{array}{rcl} X_W & \stackrel{A}{\to} & Y_W \text{ in the W-basis} \\ X_Z & \stackrel{B}{\to} & Y_Z \text{ in the Z-basis,} \end{array}$

then the two transformation A, B are similar, i.e.,

 $B = Q^{-1}AQ,$

where $Q = P^{-1} = (Z^{-1}W)^{-1} = W^{-1}Z$. The proof is as followed: We begin with

 $Y_Z = BX_Z.$ (3)

In Eq. (3), the LHS, i.e. Y_Z is related to Y_W via $Y_Z = PY_W$, whereas X_Z in the RHS is related to X_W via $X_Z = PX_W$. Hence, Eq. (3) can be written as

$$PY_W = B(PX_W)$$

$$\Rightarrow \quad Y_W = (P^{-1}BP)X_W. \tag{4}$$

Eq. (4) is just the transformation of X_W into Y_W by A (in the W-basis), i.e.

$$Y_W = (P^{-1}BP)X_W = AX_W.$$
(5)

Hence, we can identify

or

$$B = PAP^{-1} = Q^{-1}AQ,$$

 $A = P^{-1}BP,$

where P is given by Eq. (2).