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Function

y = 1(x)
f represents function (a rule that tell us how
to calculate the value of y from the variable x

X : independent variable (input of f )

y . dependent variable (the correspoinding
output value of f at x)

DEFINITION Function

A function from a set D to a set Y is a rule that assigns a unique (single) element
f(x)e Y to each element xe D.

Definition Domain of the function
The set of D of all possible input values
Definition Range of the function

The set of all values of f(x) as x varies throughout D
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f——— f —— [
Input Output

(domain) (range)

FIGURE 1.22 A diagram showing a
function as a kind of machine.

“_— N

2 f@) Sfx)
D = domain set Y = set containing
the range

FIGURE 1.23 A function from a set D to
a set Y assigns a unique element of Y to
each element in D.
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Natural Domain

When a function y = f(x)is defined and the
domain is not stated explicitly, the domain is
assumed to be the largest set of real x-values
for the formula gives real y-values.

e.g. compare “y = x?”’ c.f. “y = x?, x=0”
Domain may be open, closed, half open,
finite, infinite.

Verify the domains and ranges of these
functions

Function Domain (x) Range ()

y =x? (—00, ) [0, 00)

y =1/ (—00,0)U (0, 0) (=00, 0)U (0, 00)
y=Vax [0, 00) [0, 00)

y=V4 —x (—00, 4] [0, 00)
y=VI1-—x* [—1,1] [0, 1]
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Graphs of functions

Graphs provide another way to visualise a
function

In set notation, a graph is
{(x,f(x)) | x D}

The graph of a function is a useful picture of
Its behaviour.

y=x+2

200

FIGURE 1.24 The graph of
f(x) = x + 2 is the set of points (x, y) for
which y has the value x + 2.

10
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FIGURE 1.25 If(x, y) lies on the graph of
f, then the value y = f(x) is the height of
the graph above the point x (or below x if
f(x) is negative).
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Example 2 Sketching a graph

Graph the function y = x2 over the interval
[_272]

12
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The vertical line test

Since a function must be single valued over
Its domain, no vertical line can intersect the
graph of a function more than once.

If a is a point in the domain of a function f, the
vertical line x=a can intersect the graph of f in
a single point (a, f(a)).
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(a) _\.2+_\.17_| (b) y = V11— x? i.’(:)_'fﬁ—\,-fl—x2

FIGURE 1.28 (a) The circle is not the graph of a function; it fails the vertical line test. (b) The upper semicircle is the graph of a function
flx) = V1 - x2. (c) The lower semicircle is the graph of a function g(x) = — V1 — X2

14
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Piecewise-defined functions

The absolute value function

X XxX=0
X|=
—X X<0
"
y = ||
y=-x 3 3
o 7T
1_
| [ | | | L 5y
-3 -2 -1 0 1 2 3

FIGURE 1.29 The absolute value
function has domain (—00, 00)
and range [0, 00).

16
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Graphing piecewise-defined functions

Note: this is just one function with a domain
covering all real number

-

—X X <0
f(x):<x2 0<x<1
1 X>1

.

17

FIGURE 1.30 To graph the
function y = f(x) shown here,
we apply different formulas to
different parts of its domain
(Example 5).

18
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The greatest integer function

Also called integer floor function

f = [X], defined as greatest integer less than
or equal to x.

e.g.
2.4] =2
2]=2

-2] = -2, etc.

19

FIGURE 1.31 The graph of the
greatest integer function y = | x |
lies on or below the line y = x, so

it provides an integer floor for x
(Example 6).

Note: the graph 1s the blue colour lines,
not the one in red

20
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Writing formulas for piecewise-defined
functions

Write a formula for the function y=f(x) in
Figure 1.33

21

y = f(x)
1, 1) 2, 1)

FIGURE 1.33 The segment on the
left contains (0, 0) but not (1, 1).
The segment on the right contains
both of its endpoints (Example 8).

22
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1.4

|dentifying Functions;
Mathematical Models

23

I inear functions

Linear function takes the form of
y=mx + b

m, b constants

m slope of the graph

b intersection with the y-axis

The linear function reduces to a constant
function f = ¢ when m = 0,

24
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FIGURE 1.34 The collection of lines
y = mx has slope m and all lines pass
through the origin.

25

y
A
3
2 y_§
1_
] ] ] | ] ] > X
0 1 2

FIGURE 1.35 A constant function
has slope m = 0.

26
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Power functions

m f(x) = x2
= a constant
= Case (a): a = n, a positive integer

FIGURE 1.36 Graphs of f(x) = x",n = 1, 2, 3, 4, 5 defined for —00 < x < 0,

g0 back

27
2 y=x ¥ y=x? Y y=a Y p=axt Y y=x°
! \/ {_/ l_j l_j
1 1 >y 1 1 g 1 1 >y 1 1 5 1 L
-1 Ao 1 = o] 1 A7 1 a0 1 170 1
-1F -1 -1 -1} -1
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Power functions

= Case (b):
= a =-1 (hyperbola)
= ora=-2

29

L
>

Domain: x # 0

Range: y # 0 0

(a) (b)

Domain: x # 0
Range: y >0

FIGURE 1.37 Graphs of the power functions f(x) = x for part

(@) a = —1 and for part (b) a = —2.

go back
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Power functions

Case (c):
a="%,1/3, 3/2, and 2/3

f(x) = x* = Vx (square root) , domain = [0 < x < <o)
g(x) = x3 = 3yx(cube root), domain = (- < x < )

p(x) = x?3= (x13)2 domain = ?
q(x) = x32= (x3)? domain = ?

31

Domain: 0 =x <=
Range: O0=y<w

:

L > X
0 |

Domain; 0 = x <=
Range: 0=y<=

FIGURE 1.38 Graphs of the power functions f(x) = x“ fora =

g0 back

0 1

Domain: —% < x <
Range: -w<y<w=

£

2/3

y=x
l /
1 > X

0 |
Domain; —o¢ << x <<«
Range: 0=y<o>

?

oW

and%.

b | —
W=

32
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Polynomials

p(xX)=ax"+a, X"t +a x"?2+... aXx+a,
n nonnegative integer (1,2,3...)
a’s coefficients (real constants)

If a,,# 0, nis called the degree of the
polynomial

33

k.

¥y
X y=8ct — 143 — 922+ 1lx— 1 y=G=%+ -1

AV

-
10+
12+

(a) (b) (c)

B
T T T =T T T T

5

|
=
T

FIGURE 1.39 Graphs of three polynomial functions,
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Rational functions

A rational function is a quotient of two
polynomials:

f(x) = p(x) / q(x)
p,q are polynomials.

Domain of f(x) is the set of all real number x
for which g(x) = 0.

35

PR T T B PR W T 1 1
2 = = 2
L2 - -
NOT TO SCALE
4 -6
-8

(a) (b) (c)

FIGURE 1.40 Graphs of three rational functions.
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Algebraic functions

Functions constructed from polynomials
using algebraic operations (addition,
subtraction, multiplication, division, and
taking roots)

37

3 |
-10 o\ 0 51
1k 7
-2 bk
-3

(a) (b) (c)

FIGURE 1.41 Graphs of three algebraic functions.
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Trigonomettic functions

= More details in later chapter

39

ARG 1\ A

<

VRN RV

(a) f(x) = sinx (b) f(x) = cos x

FIGURE 1.42 Graphs of the sine and cosine functions.

40
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Exponential functions

f(x) = aX

Where a >0 and a= 0. ais called the ‘base’.
Domain (-co, o°)

Range (0, =)

Hence, f(x) > 0

More in later chapter

41

y y
y = 10% y=10"*

12 12
10 10+

8 8+

6 y=3" 6

T y &‘_

2k T o y =2 2k

gs#’ | | R | | N‘
1 05 0 05 1 * 1 05 o0 05 1
(a) y=2%y=3%y=10¢ (b) y=2%y=3"%y=10""

FIGURE 1.43 Graphs of exponential functions.
Note: graphs in (a) are reflections of the

corresponding curves in (b) about the y-axis. This
amount to the symmetry operation of X < -X.
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Logarithmic functions

f(x) = log, X

a Is the base

az1,a>0

Domain (0, <o)

Range (-o°, <°)

They are the inverse functions of the
exponential functions (more in later chapter)

43

FIGURE 1.44 Graphs of four
logarithmic functions.

44
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Transcendental functions

Functions that are not algebraic

Include: trigonometric, inverse trigonometric,
exponential, logarithmic, hyperbolic and
many other functions

45

Example 1

Recognizing Functions
(@) f(x) =1 + x — %x°
(b) g(x) = 7

(€) h(z) =z

(d) y(t) = sin(t—-4)

46
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Increasing versus decreasing functions

A function is said to be increasing if it rises as
you move from left to right

A function is said to be decreasing if it falls as
you move from left to right

47

Function Where increasing Where decreasing

y=x2 0=x< ™ -0 <x=0

y = x3 —00 < x < 00 Nowhere

y=1/x Nowhere —00 <x<0and0 <x <
J’Zl/xz —00 <x <0 0<x<

y= Vix 0=x< @ Nowhere

y = x23 0=x< o —00 <x=0

y=X2, y=x3; y=1/X, y=1/x?; y=x"2, y=x?73

48
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DEFINITIONS  Even Function, 0dd Function
A function y = f(x) is an

even function of x if f(—x) = f(x),
odd function of x if f(—x) = —f(x),

for every x in the function’s domain.

49

>3
>

(=x, y) &e

(a)

> '

FIGURE 1.46 In part (a) the graph of

y = x? (an even function) is symmetric
about the y-axis. The graph of y = x° (an
(=%, =) odd function) in part (b) is symmetric
about the origin.

(b)

50
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Recognising even and odd functions

f(x) = x? Even function as (-x)? = x? for all x,
symmetric about the all x, symmetric about
the y-axis.

f(x) = x2 + 1 Even function as (-x)2 + 1 = x?+ 1
for all x, symmetric about the all x, symmetric
about the y-axis.

Recognising even and odd functions

f(x) = x. Odd function as (-x) = -x for all x,
symmetric about origin.

f(x) = x+1. Odd function ?
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(a) (b)

FIGURE 1.47 (a) When we add the constant term 1 to the function

y = x2, the resulting function y = x* + 1 is still even and its graph is
still symmetric about the y-axis. (b) When we add the constant term 1 to
the function y = x, the resulting function y = x + 1 is no longer odd.
The symmetry about the origin is lost (Example 2).

53

1.5

Combining Functions;
Shifting and Scaling Graphs

54
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Sums, differences, products and quotients

f, g are functions

For x eD(f ) N D(g), we can define the functions
of

(f+g) (x) =1(x) + 9(x)
(f-9) (x) =1(x) - g(x)
(fg)(x) = 1(x)g(x).

1?( ) = cf(x) a real number
LI
ﬁ TN

Example 1

f(x) = Vx, g(x) = V(1-x),
The domain common to both f,g is
D(f )N D(g) = [0,1] (work it out)
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Function Formula Domain

f+g (f+2)x=Vx+V1-x [0, 1] = D(f) N D(g)

f-g (f —g)x) =Vx—V1-x [0, 1]

g—f (g — Hx) = V1 —x—Vx [0, 1]

fg (f-2)x) = flx)gx) = Vx(1 — x) [0, 1]

/g é(x) = g% =7 fx [0, 1) (x = 1 excluded)
(x) -

g/f %(x) = % =) — (0, 1] (x = 0 excluded)

57

/
-fla) + gla)

FIGURE 1.50 Graphical addition of two
functions.

58
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Wi

W -

| -
Ju—

]
1
5
FIGURE 1.51 The domain of the function f + g is

the intersection of the domains of f and g, the
interval [0, 1] on the x-axis where these domains
overlap. This interval is also the domain of the

function f - g (Example 1).

Composite functions

Another way of combining functions

60
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DEFINITION  Composition of Functions

If f and g are functions, the composite function f o g (*“f composed with g”) is
defined by

(f ° g)x) = flgx)).

The domain of f ° g consists of the numbers x in the domain of g for which g(x)
lies in the domain of f.

61

X m— 8 8(x) [ — f(gx))

FIGURE 1.52 Two functions can be composed at
x whenever the value of one function at x lies in the
domain of the other. The composite is denoted by

feg.

62
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fog

/_\ £g)
X

f
8

g(x)

FIGURE 1.53 Arrow diagram for f ° g.

63

Example 2

Viewing a function as a composite
y(X) = V(1 — x2) is a composite of
g(x) = 1 — x2 and f(x) = Vx

.e. y(x) = f [g(x)] = V(1 - x?)

Domain of the composite function is |x| < 1,
or[-1,1]

Is T[g(x)] = g [f(x)]?

64
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Example 3

Read it yourself

Make sure that you know how to work out the
domains and ranges of each composite
functions listed

65

Shifting a graph of a function

Shift Formulas

Vertical Shifts
y=fx) +k Shifts the graph of fup kunits if £k > 0
Shifts it down | k| units if £ < 0

Horizontal Shifts
y=flx+h) Shifts the graph of f left h units if & > 0
Shifts it 7ight| A | units if & < 0

66
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Example 4

= (@y=x5y=x2+1
= (b)y=x%y=x2-2

67

A y=x*+2
y=x2+l
y=x’
y=x2-2

1 unit
. - > X
-2, 0 |\2
_l_l 2 units
N

FIGURE 1.54 To shift the graph
of f(x) = x? up (or down), we add
positive (or negative) constants to
the formula for f (Example 4a
and b).

68
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Example 4

C)y=x%4y=(x+3) y=(x-3)*

69

Add a positive

constant to x.
-«

y = (x + 3)?

Add a negative

constant to x.
»

y=x* [y=(x—2)?

' > X

1 2

FIGURE 1.55 To shift the graph of y = x to the
left, we add a positive constant to x. To shift the
graph to the right, we add a negative constant to x

(Example 4c).

70
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Example 4

=@y=[x,y=Ix-2]-1

71

FIGURE 1.56 Shifting the graph of
¥ = |x| 2 units to the right and 1 unit
down (Example 4d).

72
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Scaling and reflecting a graph of a function

To scale a graph of a function is to stretch or
compress it, vertically or horizontally.

This is done by multiplying a constant c to the
function or the independent variable

73

Vertical and Horizontal Scaling and Reflecting Formulas

Forc > 1,

y = cf(x) Stretches the graph of f vertically by a factor of c.

y = % f(x) Compresses the graph of f vertically by a factor of c.

y = f(ex) Compresses the graph of f horizontally by a factor of c.
y = f(x/c) Stretches the graph of f horizontally by a factor of c.
Forc = —1,

y = —f(x) Reflects the graph of f across the x-axis.

y = f(—x) Reflects the graph of f across the y-axis.

74
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Example 5(a)

Vertical stretching and compression of the
graph y = \x by a factor or 3

75

1
FIGURE 1.57 Vertically stretching and
compressing the graph y = Vxby a
factor of 3 (Example 5a).

76
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Example 5(b)

Horizontal stretching and compression of the
graph y = Vx by a factor of 3

77

FIGURE 1.58 Horizontally stretching and
compressing the graph y = Vx by a factor of
3 (Example 5b).
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Example 5(c)

Reflection across the x- and y- axes
c=-1

79

FIGURE 1.59 Reflections of the graph
¥ = Vx across the coordinate axes
(Example 5c¢).

80
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Example 6

= Read it yourself

81

¥ y=16x*+ 3223+ 10 Y 24

fo=x*—4xr+10
20~ 201 y=—%x4+2x3—5

|
8]
=
T
o
(=]
T

(a) (b) (c)

FIGURE 1.60 (a) The original graph of /. (b) The horizontal compression of y = f(x) in part (a) by a factor of 2, followed
by a reflection across the y-axis. (¢) The vertical compression of y = f(x) in part (a) by a factor of 2, followed by a reflection
across the x-axis (Example 6).
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1.6

Trigonometric Functions

83

Radian measure

FIGURE 1.63 The radian measure of
angle ACB is the length 6 of arc 4B on the
unit circle centered at C. The value of 8
can be found from any other circle,
however, as the ratio s/r. Thus s = 8 is
the length of arc on a circle of radius r
when 6 is measured in radians.

84
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Conversion Formulas

T

130 (~0.02) radians

1 degree =
Degrees to radians: multiply by %

1 radian = %(%57) degrees

: . 180
Radians to degrees: multiply by ———
85
y y
A A
Terminal ray
Initial ray
L,
Positive Initial ray /Negative
measure J Terminal measure
> X ray

FIGURE 1.65 Angles in standard position in the xy-plane.
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>
>

/1N
4=|§"K/

y y
A A
o7
4
> X > X
17 S
4

FIGURE 1.66 Nonzero radian measures can be positive or

negative and can go beyond 2.
87

Angle convention

Be noted that angle will be expressed in
terms of radian unless otherwise specified.

Get used to the change of the unit

88
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The six basic trigonometric

functions

hypotenuse ,
opposite
-
adjacent
h
sin 6 = PP csc @ = P
hyp opp
_adj _hyp
cos 0 = ﬁ sec 0 = a_dj
&
tan 0 = @ cot O = 249
adj opp

FIGURE 1.67 Trigonometric

ratios of an acute angle.
89

Generalised definition of the six trigo
functions !

Define the trigo Py

functios in terms of \9

the coordinats of the 0 r
point P(X,y) on a circle Kj

of radius r

sine: sin@ = y/r FIGURE 1.68 The trigonometric
. functions of a general angle 6 are
cosine: cos@d = x/r defined in terms of x, y, and .
tangent: tand= cosecant: cscod=rly
y/X secant: secd = r/x

cotangent: cot@=xly

90
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.
>

hypotenuse ¥ P(x, y)
r
Y\ opposite
0 PP
> X
0 X
adjacent

FIGURE 1.69 The new and old
definitions agree for acute angles.

91

Mnemonic to remember when the basic trigo
functions are positive or negative

Y
A
S A
sin pos all pos
T C
tan pos COS pos

FIGURE 1.70 The CAST rule,
remembered by the statement “All
Students Take Calculus,” tells
which trigonometric functions are
positive in each quadrant.
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2o o 27 _ (1 V3
os 22 sin 22) - (L1, V2)

y
A
P
|
V3 2
1 > X
2

FIGURE 1.71 The triangle for
calculating the sine and cosine of 27/3
radians. The side lengths come from the

geometry of right triangles.

93

TABLE 1.4 Values of sin 0, cos #, and tan @ for selected values of @

Degrees  —180 —135 —90 —45 0 30 45 60 90 120 135 150

- =3w =n. = T @m w @ 2m 3w 5w
g (eadiana) S ae g 2 4 * ¢ a4 3 2 3 4 6
- o V2 o V2 o1 M2 M3 V3 VDo
= 2 2 2 "2 3 2 2 2
cos 0 e ____\/__‘:Z. 0 ﬁ 1 _._\/__'?’. ._.\/__‘:Z_ 1 0 el _—_@ ;__\[31
: 2 2 3. 2. 3 3. & 2
tan 0 0 1 -1 0 ? 1 V3 -V3 -1 _T\/i

180 270 360

27

94




Chapter 01 Preliminaries

Periodicity and graphs of the trigo

functions

Trigo functions are also periodic.

DEFINITION

Periodic Function

A function f(x) is periodic if there is a positive number p such that
f(x + p) = f(x) for every value of x. The smallest such value of p is the period

of f.

95

y=cosx

y=sinx

Domain: —o0 << x <<
Range: -l=y=1
Period: 27

(a)
y

)

| |
dg-m ¥ 0| 7 = 3r
| y

y=secx

3

Domain: +7 + 3w

omain: x # 50 5
Range: y=-landy=1
Period: 27

(d)

I
|
(|
NIE -

Domain: —o0 < x < 0
Range: -l1=y=1
Period: 27

(b)

N T

Domain: x # 0, 7, *2m, ...
Range: y=-landy=1
Period: 2w

(e)

|/

< 3w
D x4+ Z 4+ =K
omain: x # R 2

Range: - <y <o
Period: = (©

y=cotx

WL

Domain: x # 0, =, +2m, ...
Range: - <y<w
Period:

6}

FIGURE 1.73 Graphs of the (a) cosine, (b) sine, (c) tangent, (d) secant, (e) cosecant, and (f) cotangent
functions using radian measure. The shading for each trigonometric function indicates its periodicity.
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Parity of the trigo functions

Even Odd

cos(—x) = cosx sin(—x) = —sinx

sec(—x) = secx tan(—x) = —tanx
csc(—x) = —cscx
cot(—x) = —cotx

The parity is easily deduced
from the graphs.

97

Identities

A

P(cos 8, sin )

|sin 6| =

[

|cos 6 1

Applying
Pythagorean theorem
to the right triangle
FIGURE 1.74  The reference leads to the 1dentity

triangle for a general angle 6.

cos’ @ + sin’6 = 1. (1)
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Dividing identity (1) by cos?#and sin?6in
turn gives the next two identities

1 + tan® 6 = sec? 6.
1 + cot?® = csc 6.

Addition Formulas

cos(A + B) = cosAcos B — sinAdsinB

2
sin(4 + B) = sind cos B + cos A sin B @)

There are also similar formulas for cos (A-B) and sin
(A-B). Do you know how to deduce them? 5

Double-Angle Formulas
cos 20 = cos’ 6 — sin’ @

sin20 = 2sinfcos 0

Identity (3) i1s derived by setting A= B 1n (2)

Half-Angle Formulas
1 + cos26

cos’ 6 = — (4)
sin2 0 = 1‘3& 5)

Identities (4,5) are derived by combining (1) and (3(1))

100
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L.aw of cosines

c?=a’>+ b? — 2abcosh. (6)

y

A

B(a cos 6, a sin 6)

Ve

h

0

X

c’= (acosd - b)? + (asinb)?

= a*+b? -2abcosd

C

b

A(b, 0)

FIGURE 1.75 The square of the distance
between A and B gives the law of cosines.
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Chapter 2

Limits and Continuity

2.1

Rates of Change and Limits
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Average Rates of change and Secant Lines

Given an arbitrary function y=f(x), we
calculate the average rate of change of y
with respect to x over the interval [X,, X,]

by dividing the change in the value of y, Ay,
by the length Ax

DEFINITION  Average Rate of Change over an Interval
The average rate of change of y = f(x) with respect to x over the interval [x1, x,] is

Ay fO) = fO) _ fea+h) — fa)

2= ; h# 0.
3
Yy
0 y =fx®
Q(xy, f(x))

Secant

P(xl,f(xl))

0 X X

FIGURE 2.1 A secant to the graph
y = f(x). Its slope is Ay/Ax, the
average rate of change of f over the
interval [x;, x3].
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Example 4

Figure 2.2 shows how a population of fruit
flies grew in a 50-day experiment.

(a) Find the average growth rate from day 23
to day 45.

(b) How fast was the number of the flies
growing on day 237

L
r

350
300
250 Ap-= 190

Ap :
—|~ 8.6 fliesy
A; 8.6 fliesyday

At =122

Q(45, 340)

200

P(23, 150)

150
100
50

Number of flies

0 10 20 30 40 50
Time (days)

FIGURE 2.2 Growth of a fruit fly population in a controlled
experiment. The average rate of change over 22 days is the slope
Ap/ At of the secant line.
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Slope of PQ = Ap /At

0 (flies /day)
340 — 150 _

(45, 340) 45 — 03~ 8.6
330 — 150 _

(40, 330) 003 ~ 106
310 — 150 _

(35, 310) 35 —o3 ~ 133
265 — 150

(30, 265) =3 ~ 164

Number of flies

350
300
250
200
150
100

50

0

Slop at P =~ (250 - 0)/(35-
r14) = 16.7 flies/day

BE5,350) ) /o,
A 71045, 340)

<17\ 20 30 40 50
A(14,0) Time (days)

FIGURE 2.3 The positions and slopes of four secants through the point P on the fruit fly graph (Example 4).

The grow rate at day 23 is calculated by examining the
average rates of change over increasingly short time
intervals starting at day 23. Geometrically, this is
equivalent to evaluating the slopes of secants from P to Q

with Q approaching P.

7

Iimits of function values

Informal definition of limit;

Let f be a function defined on an open
interval about x,, except possibly at x,
itself.

If f gets arbitrarily close to L for all x
sufficiently close to x,, we say that f

approaches Iﬁlr% IWQ)L:aLs X approaches X,

X—>Xg

“Arbitrarily close” is not yet defined here
(hence the definition is informal). ;
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Example 5

How does the function behave near x=17

f(x)—

Solution:

f (x) = (x—1)(x+1)

-1
-1

=X+1 forx=1

seems to get to 2

TABLE 2.2 The closer x gets to 1, the closer f(x) =

(x* — 1)/(x — 1)

Values of x below and above 1

f(x)=’;z__11=x+ 1, x#1

0.9

1.1

0.99

1.01
0.999
1.001
0.999999
1.000001

1.9

2.1

1.99
2.01
1.999
2.001
1.999999
2.000001

We say that f(x) approaches the limit 22as X

approaches 1, Ilmf(x) 2 or lim=2

=2
x—1 X -1

10
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FIGURE 2.4 The graph of f is
identical with the line y = x + 1

1
/ except at x = 1, where f is not
. > defined (Example 5).

11

y=x+1

Example 6

The limit value does not depend on how the
function is defined at x,,.
y y

A A

>

x*-1
s x# 1
@ fx) = £ (b) g(x)—[ o ©) h() =x + 1
1, x=1

FIGURE 2.5 The limits of f(x), g(x), and 4(x) all equal 2 as x approaches 1. However,
only /(x) has the same function value as its limit at x = 1 (Example 6).
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Example 7

In some special cases lim, ., f(x) can be evaluated by
calculating f (x,). For example, constant function,
rational function and identity function for which x=x, is
defined

(@) lim, ., (4) = 4 (constant function)

(b) lim, . ;5 (4) = 4 (constant function)

(c) lim, 5 x = 3 (identity function)

(d) lim, _, (5x-3) = 10 — 3 =7 (polynomial function of
degree 1)

(e) lim,_. , (3x+4)/(x+5) = (-6+4)/(-2+5) =-2/3 (rational
function)

13

Xo———">

X0

(a) Identity function

y

*
|
|
|
|
|

0 X0

(b) Constant function

FIGURE 2.6 The functions in Example 8. "
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Example 9

A function may fail to have a limit exist at a
point in its domain.

0, x<=0
Y o=
l, x=0

ﬁ U \/! o

(a) Unit step function U(x) (b) g(x) (e) flx)

FIGURE 2.7 None of these functions has a limit as x approaches 0 (Example 9).

Jump Grow to Oscillate
Infinities

15

2.2

Calculating limits using
the limits laws

16




Chapter 02 Limits and Continuity

The limit laws

= Theorem 1 tells how to calculate limits of
functions that are arithmetic combinations of
functions whose limit are already known.

17

THEOREM 1 Limit Laws
If L, M, ¢ and k are real numbers and

lim f(x) = L and lim g(x) = M, then

x—e x—c
1. Sum Rule: li_'m(f(x] +gx)=L+M
The limit of the sum of two functionsris tchc sum of their limits.
2. Difference Rule: 1121( flx) —gx))=L - M
The limit of the difference of two fun?:tiocns is the difference of their limits.
3. Product Rule: lim (f(x) - g(x)) = L-M
The limit of a product of two ﬁ.mctionxs i.: the product of their limits.
4. Constant Multiple Rule: lzn (k*f(x)) = k-L
The limit of a constant times a ﬁmciiori is the constant times the limit of the
function.
x
5. Quotient Rule: rh—rﬂ % = }%, M#0

The limit of a quotient of two functions is the quotient of their limits, provided
the limit of the denominator is not zero.

6. Power Rule: If r and s are integers with no common factor and s # 0, then
lim (f(x))" = L7
X—*C

provided that L' is a real number. (If s is even, we assume that L > 0.)

The limit of a rational power of a function is that power of the limit of the func-
tion, provided the latter is a real number.

18
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Example 1 Using the limit laws

(a) lim, _, . (x3+4x?-3)
=lim,_ . x3+Ilim,_ . 4x%-lim _ 3
(sum and difference rule)

= C3+ 4c?- 3
(product and multiple rules)

19

Example 1

(b) lim,__ _ (x*4+x2-1)/(x2+5)

= lim, . (x4+x2-1) /lim, __ . (x2+5)

X—>C X—=C

=(lim,_ x*+ lim,_ Xx3-lim
= (c*+c?- 1)/(c?+ 5)

x2lim . 1)/(lim, . X2 + lim__ 5)

20
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Example 1

= (€) lim _ _, V(4x2-3) =+ lim__ _, (4x2-3)
Power rule with r/s = 15

=~ lim,_. ,4x2-lim _
= [4(-2)2 - 3] = V13

3]

21

THEOREM 2 Limits of Polynomials Can Be Found by Substitution
If P(x) = a,x" + ap—1x"" ' + -+ + ag, then

lim P(x) = P(c) = ayc" + ay—1c" ' + -+ + ag.
x—c¢

22
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THEOREM 3 Limits of Rational Functions Can Be Found by Substitution
If the Limit of the Denominator Is Not Zero

If P(x) and Q(x) are polynomials and Q(c) # 0, then
"’ P(x) _ Plc)
e 0() 00

23

‘ Example 2

= Limit of a rational function

i x> +4x° -3 (-1’ +4(-1)° -3 _9_0
-1  X°+5 (-1)*+5 6

24
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Eliminating zero denominators

algebraically

Identifying Common Factors

It can be shown that if O(x) 1s a
polynomial and Q(c) = 0, then

(x — ¢) is a factor of Q(x). Thus, if

the numerator and denominator of a
rational function of x are both zero at

x = c, they have (x — ¢) as a common
factor.

25

Example 3 Canceling a common

factor
Evaluate . X° 4+ X—2
Solution: We,canyt sufpstitute x=1 since

f (x = 1) is not defined. Since x#1, we can
cancel the common factor of x-1;

2 —
fimX X2 (EDO2) e (x2)

x>l  X°—X x—1 X(X—l) x—1 X

26
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= FIGURE 2.8 The graph of

3L\ (1,3) flx) = (x* + x — 2)/(x* — x)in
part (a) is the same as the graph of
g(x) = (x + 2)/x in part (b) except

T | . atx = 1, where f is undefined. The
-2 0] 1 functions have the same limit as x — 1
\ (Example 3).
(b)

27

‘ The Sandwich theorem

THEOREM 4 The Sandwich Theorem
Suppose that g(x) = f(x) = h(x) for all x in some open interval containing c,
except possibly at x = c itself. Suppose also that

lim g(x) = lim A(x) = L.
X—>C X—*C

Then lim,—. f(x) = L.

28
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FIGURE 2.9 The graph of f is
sandwiched between the graphs of g and 4.

29

Example 6

(a)

The function y =sin #is sandwiched between
y =|@| and y= -|@| for all values of 4. Since
lim,_, (-]€]) =lim,_, (|8]) = 0, we have
lim,_, sin 8=0.

(b)
From the definition of cos 6,

O0<1-cos @ =< |@]forall  and we have
the limit lim, _, cos =1

30
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y:|9|

A y:lﬂl 2
1L y=sin# 1k
y=1-—cosf
Al 5 | I | | >0

(a)

FIGURE 2.11 The Sandwich Theorem confirms that (a) limy—q sin# = 0 and
(b) limg—g (1 — cos @) = 0 (Example 6).

31

Example 6(c)

For any function f (x), if lim,_, (|f (x)|) =0,
then lim,_, f (X) = O due to the sandwich
theorem.

Proof: -|f ()] < f (x) < [f (X)|.
since lim, o (If () [) = lim, _ (-If () ) = 0
— lim,_,f(x) =0

32
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2.3

The Precise Definition of a Limit

33

Example 1 A linear function

Consider the linear function y = 2x — 1 near X,
= 4. Intuitively it is close to 7 when x is close
to 4, so lim,, (2x-1)=7. How close does x
have to be so that y = 2x -1 differs from 7 by
less than 2 units?

34
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Solution

For what value of x
is |y-7|< 2?
First, find |y-7|<2 in terms
of x:
ly-7|<2 = |2x-8|<2
= -2<2x-8<2
=3<x<5
=-1<x-4<1
Keeping x within 1 unit
of X, = 4 will keep y within
2 units of y,=7.

y
0 y=2x—1
Upper bound:
y=0
9 .
To satisfy : :
this s [ |
N
: : Lower bound:
| | y=75
[ |
[ |
| ¢ | > X
of 345
Y/ I—
Restrict
to this

FIGURE 2.12 Keeping x within 1 unit
of xo = 4 will keep y within 2 units of
yo = 7 (Example 1).

35

Definition of limit

DEFINITION

Limit of a Function

Let f(x) be defined on an open interval about x,, except possibly at x itself. We
say that the limit of f(x) as x approaches x; is the number L, and write

lim f(x) =L,

if, for every number € > 0, there exists a corresponding number 8 > 0 such that

for all x,

0<|x—x0|<6

= |f(x) — L| <e.

36
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Definition of limit

L+eT )

f(x) lies

L L .

¢ (%) in here

L—¢€ o J
for all x # x
in here
o o
{ .I'. o 3\ > X
0 < 7

JCO—S Xq x0+3

FIGURE 2.14 The relation of 8 and € in

the definition of limit.
37

: et

1
L+—="7
10
f _
f(x) lies
L in here
1
TR
for all x # Xy
in here
(—A—\
e
¢ —
0 xU — 0 JCO xO + o

FIGURE 2.13 How should we define

0 > 0 so that keeping x within the

interval (xo — &, xo + &) will keep f(x)
1 1

o . 1 1,
within the interval (L 10’ L + 10) ]

» The problem of proving L as the
limit of f (x) as x approaches x, is a
problem of proving the existence of
0, such that whenever

* Xg— 0< X< Xp+6,

o L+e<f(X)<L-& for any arbitrarily
small value of &

« As an example in Figure 2.13, given
&= 1/10, can we find a
corresponding value of 6?

» How about if £¢=1/100? ¢=1/12347

 If for any arbitrarily small value of ¢
we can always find a corresponding
value of ¢, then we has successfully
proven that L is the limit of f as x
approaches X,

38
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el =
1]

" :
.........

Example 2 Testing the 3 -5y
definition 2e |
= Show that T -
2—¢€ / i ;
|XILT1](5X—3)=2 0 1|§ i 1I+§ ot

/
FIGURE 2.15 If f(x) = 5x — 3, then

0 < |x — 1| < €/5 guarantees that
| f(x) — 2| < e (Example 2).

NOT TO SCALE

40
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Solution ‘ y=5c- 7

(W]
I
|
|
|
|
|
|
|
|
|
|
|
|
|

Set x,=1, f(x)=5x-3, L=2.

For any given ¢, we haveto 2~¢ .
find a suitable 6> 0 so that /ie
whenever 5
O<| x = 1|< 6, x#1,

it is true that f(x) is within
distance ¢of L=2, i.e. 3
|f ()() -2 |< . / NOT TO SCALE

—_ ————

1+

wnim

FIGURE 2.15 If f(x) = 5x — 3, then
0 < |x — 1| < €/5 guarantees that
| f(x) — 2| < e (Example 2).

41

First, obtain an open interval (a,b) in- which
[f(X) - 2|< & = [bx-5|< ¢ =
-g[5<X-1<¢g/5 = -g/5< X - %, < /5
X
(

\ AN ) g
el5 Xy Xgh /5 b

d
choose 6< ¢/ 5. This choice will guarantee that

[f(X) — L| < ewhenever x,—6 <X <X, + 6.
We have shown that for any value of ¢ given, we can

always find an corresponding value of ¢ that meets the
“challenge” posed by an ever diminishing &. This is an
proof of existence.

Thus we have proven that the limit for f(x)=5x-3 is L=2
when x 2 X,=1.

42
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Example 3(a)

A
y=2x
X0 + e
Limits of the identity  »,+5 /
. XO————~"———7;
functions xg— 8 | :
|
Prove xo— el e
|
lim x = X, e
X—Xg Lol .y
0 Xg — 0 Xo X +6
FIGURE 2.16 For the function f(x) = x,
we find that 0 < |x — x| < & will
guarantee | f(x) — xo| < € whenever
0 = e (Example 3a).
Solution

Let £> 0. We must
find 6> 0 such that for
all x, 0 < [x-X,|< &
implies |f(x)-X,|< .,
here, f(x)=x, the
identity function.

Choose 6< ¢ will do
the job.

The proof of the
existence of o proves

lim x =X,

X—>Xg

y
h
y=x
x0+e—
x0+5
__________ |
xo pd
x0—5 1
[
ror !
Xo— € I ||
ol
[
ol
[
] L1
0 XU—S.}’CO.XO+8

FIGURE 2.16 For the function f(x) = x,

we find that 0 < |x — x| < & will
guarantee | f(x) — xo| < € whenever
0 = € (Example 3a).

44
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Example 3(b)

"
=k
k+e€ >
- M -

Limits constant functions® I

|
Prove i | i

|
limk =k (k constant) R g
X—>Xp 0 Xg — 6 Xg Xp + 8

FIGURE 2.17 For the function f(x) = k,
we find that | f(x) — k| < e for any

positive 6 (Example 3b).

45

Solution

o
>

Let £> 0. We must

find 5> 0 such that for ¥t €

all X, 0 < |x-%,|< & “1

— €

implies |f(x)- k|< &,
here, f(x)=k, the

|
|
|
constant function. |
]

1
|
|
|
|
|
|
|
|
|

Choose any o will do
the job.

The proof of the

X—>Xg

0 XU—S X0 XO+8

: FIGURE 2.17 For the function f(x) = k,
existence of Sproves . find that | £(x)

limk =k positive 6 (Example 3b).

— k| < e for any

46
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Finding delta algebraically for given
epsilons

Example 4: Finding delta algebraically
For the limit

find @ &> 0 thAms¥6r2 = 1. Thatis, find a

o > 0 such that for all x,

O<\x—5\<5:>0<‘\/E—2‘<1

47

y
A
y=Vx-—1
3 ,/
|
[ |
| |
| |
P it | |
I | |
I | |
I | |
I | |
1 f f :
| I | |
/ 3 | 3 [ |
I | ] |
| I | |
] | | | ] | | ] | | > X
0 1 2 5 8 10
NOT TO SCALE

FIGURE 2.19 The function and intervals
in Example 4.
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Solution

o Is found by working backward:

How to Find Algebraically a 6 for a Given f, L, xo, and e > 0
The process of finding a 6 > 0 such that for all x

0 <|x—x <86 = |f(x) — L] <€
can be accomplished in two steps.

1. Solve the inequality | f(x) — L| < e to find an open interval (a, b) contain-
ing xo on which the inequality holds for all x # xy.

2. Find a value of 8 > 0 that places the open interval (xo — 8, xo + &) centered
at xo inside the interval (a, b). The inequality | f(x) — L| < € will hold for all
X # X in this é-interval.

49

Solution

Step one: Solve the inequality [f(x)-L|<e

0<‘\/ﬁ—2 <1l=2<x<10
Step two: Find a value of 6> 0 that places the open
interval (X,-0, X,+J) centered at X, inside the open
interval found in step one. Hence, we choose 6= 3
or a smaller number

By doing so, the 5=3 . 5=3
in?qua”ty 0<.|X -5 <o é: — 10Inte’r<6/al found in
will automatically place ) " step 1

X between 2 and 10 to FIGURE 2.18 An open interval of
make 0< I f(x)— 2| <1 radius 3 about xo = 5 will lie inside the

open interval (2, 10).

T nE
oo

50
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Example 5

Prove that

lim f (x) =4 if

|
I
I
X—2 : :
2 B
X° X#2 |
f(x)= o
1 x=2 o2
L]
L 11 > x
0 22\
4 —€ V4 + €
FIGURE 2.20 An interval containing
x = 2 so that the function in Example 5
satisfies | f(x) — 4| < e.
51
Solution

Step one: Solve the

inequality [f(x)-L|<e: 1
O<‘x2—2‘<g:>\/m<x<\/m,x¢24+E /

Step two: Choose

§< min [2-V(4-8)2, N(4+¢) - .

2] B

For all x, Hm .
0<|x-2| <6 = [f(x)-4]<e At v

ThlS Completes the prOOf FIGURE 2.20 An interval containing

x = 2 so that the function in Example 5
satisfies | f(x) — 4| < e.
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2.4

One-Sided Limits and
Limits at Infinity

Two sided limit _x
does not exist fory; | b
lim f (x)=1

BUt x—0*
y does has two one- ° o
sided limits |

lim f (x)=-1

Xx—=>0"

FIGURE 2.21 Different right-hand and
left-hand limits at the origin.
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One-sided limits

y A
—
L - f(x) f(x) rM
0 C 4= X > X 0 X >
(a) lim+ fx)y=1L (b) lim f(x)=M
x—=c x—=c

FIGURE 2.22 (a) Right-hand limit as x approaches c. (b) Left-hand limit as x
approaches c.

Right-hand limit Left-hand limit
Example 1
ded | f ; I
One sided limits of g semicircle -
N I\_Io_rlght Ear.wd
limit at x=2;

No left hand No two sided
limit at x= -2 limit at x= 2;
No two sided -2 0 2
limit at x= -2

' FIGURE 2.23  lim V4 — x2 = 0 and

x—2

lim V4 — x? = 0 (Example 1).

x—>-2
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THEOREM 6

A function f(x) has a limit as x approaches c if and only if it has left-hand and
right-hand limits there and these one-sided limits are equal:

lim f(x) = L o lim f(x) =L and ll')m+ f(x) = L.

xX—c X—>c

57

Example 2

Limits of the

function graphed y

in Figure 2.24 1

Can you write ) y =1

down all the limits | ._/\
at x=0, x=1, x=2, 1
x=3, Xx=47? K\\M o

1

What is the limit at 0

?
other values of X FIGURE 2.24 Graph of the function
in Example 2.
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Precise definition of one-sided limits

DEFINITIONS Right-Hand, Left-Hand Limits
We say that f(x) has right-hand limit L at x,, and write

lim_f(x) =1L (See Figure 2.25)
XXy
if for every number € > 0 there exists a corresponding number 6 > 0 such that
for all x

X0 <x<xy)+ 6 = | f(x) — L| <e.
We say that f has left-hand limit L at x, and write
lim f(x) =L (See Figure 2.26)

XXy
if for every number € > 0 there exists a corresponding number 6 > 0 such that
for all x

Xo— 06 <x<ux = | f(x) — L| <e.
59
y
h
L+e~A~
¢ f(x)
L f(x) lies
L in here
L —el
for all x # x
in here
o
o . - > X
0 )CO .XU + 6

FIGURE 2.25 Intervals associated with

the definition of right-hand limit.
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y

A
L+en

¢ f(x)

J(x) lies
L ™ (inhere
L —el
for all x # x
in here
]
s . 0 > X
0 xO — 6 JCO

FIGURE 2.26

Intervals associated with

the definition of left-hand limit.

61

Limits involving (sin6)/ 0

L]

1

A

\

=3 2~

lx % (radians)
| ——
2

T~ 3

NOT TO SCALE

FIGURE 2.29 The graph of f(6) = (sin8)/6.

THEOREM 7

6—0

lim 126 =

(@ in radians)

(1)

v
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Proof

Area AOAP =2 sind
Area sector OAP = 6/2
Area AOAT =2 tand
¥28In0<0/2 <% tand
1<@/sinf< 1/cosd
1>sind/6 > cosd

Taking limit @ 204,

lim siné _1-1im sinég

00" @ 9—>0 6?

—

T

tan 6

sin 6

cos 0 = =

0 A(1,0)

1

FIGURE 2.30 The figure for the proof of
Theorem 7. TA/OA = tan,but O4 = 1,
= tan 6.

Example 5(a)

Using theorem 7, show that

lim cosh—1:O

h—0 h
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Example S(b)

= Using theorem 7, show that ' sin2x 2
Im
x>0 By 5

65

Finite imits as x—=>1t°° %

FIGURE 2.31 The graphof y = 1/x.
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Precise definition

DEFINITIONS Limit as x approaches o© or — o0
1. We say that f(x) has the limit L as x approaches infinity and write

lim f(x) = L

if, for every number € > 0, there exists a corresponding number M such that
for all x

x> M = |f(x) — L| <e.
2. We say that f(x) has the limit L as x approaches minus infinity and write
xl{‘?@o flx) =1L

if, for every number € > 0, there exists a corresponding number N such that
for all x

x <N = | f(x) — L| <e.

Example 6

Limit at infinity for 1
f(x)==

X
(a) Show that _
lim—=0
X—00 ¥
(b) Show that 1
lim—=0

X—>—00 X
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No matter what
. positive number € is,
the graph enters
B this band atx = 2
Y=x and stays.

€ ly:ﬁ
N

No matter what
positive number € is,
the graph enters

this band at x = -
and stays.

FIGURE 2.32 The geometry behind the
argument in Example 6.

69

THEOREM 8

Limit Laws as x — + o©

If L, M, and k, are real numbers and

lim f(x) =L and

x—>100

1. Sum Rule:
Difference Rule:
Product Rule:

El oA

Constant Multiple Rule:

5. Quotient Rule:

x—ioo g(x) M

lim g(x) = M, then

X—>100

im (f(x) +g(x)) =L+ M
xﬂ‘fw(f(x) —glx))=L-M
im (f(x)-g(x) = L-M
im (k- f(x)) = k- L

fx) L M £ O

6. Power Rule: If r and s are integers with no common factors, s # 0, then
lim (f(x))”* = L'"*
x—>100

provided that L’/* is a real number. (If s is even, we assume that L > 0.)
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Example 7(a)

Using Theorem 8

Iim(5+1J: Iim5+|im£:5+0:5
X

X—>00 X—>0 X—>00 X

71

Example 7(b)

73 7Z\/_|Im—

X—00 X X—>00 X

=nﬁ|im3.|im1

X—>00 X X—>00 X

= 73-0.0=0
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Limits at infinity of rational functions

Example 8

|im5X2 +28X_3:"m5+(8/X)—(3/X2):
on X420 34+(2/%)

X—>0 X—>0

3+Iim(2/x2) 340 3

X—

5+1im(8/x)—1im(3/x*) 5,0_0 5

73

Yy y:5x2+28x—3

3x°+ 2
of 2

5

3

\ 17/ Liney =
l L Il 1 L 1 1 1 l

L

1
5 10

> X

——2 NOT TO SCALE

FIGURE 2.33 The graph of the function
in Example 8. The graph approaches the
line y = 5/3 as|x|increases.

go back
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Example 9

Degree of numerator less than degree of
denominator

11/ x) +( 2/ x*
nggizzﬁm( )+ )—O+O—o

e 2x0 =1 e 2-(1/%°) S 2-0

75

FIGURE 2.34 The graph of the
function in Example 9. The graph

approaches the x-axis as | x| increases.
76
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Horizontal asymptote

X-axis is a horizontal
asymptote

FIGURE 2.31 The graphof y = 1/x.

77

DEFINITION  Horizontal Asymptote

A line y = b is a horizontal asymptote of the graph of a function y = f(x) if
either

linolO fx)=»b or lirlloo f(x) = b.

Figure 2.33 has the line y=5/3 as a horizontal

asymptote on both the right and left because

imf()=>lim f(x):g

X—>00 3 X—>—0
78
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Oblique asymptote

Happen when the degree of the numerator
polynomial is one greater than the degree of
the denominator

By long division, recast f (x) into a linear
function plus a remainder. The remainder
shall — 0 as x — o=, The linear function is
the asymptote of the graph.

79

Example 12
X
i
Find the obllque asymptote
—3 ::2x2——3
f( )-— 2L Y= Tx+ 4

Xx+4

Solution /
| L 5y

linear function

2x*-3 (2 8 ~115
f(x)= S Y P
Ix+4 \7° 49) 49(7x+4)

. ) 2 8 . -115
lim £(x) = lim{ Zx——~ |+ lim ——=>__
X—>o0 x>\ 7 49 X—>+o0 49(7)( + 4)

) 2 8 ) 2 8
=lim|=x—-—1[+0=1lim| =x——
X—>=00 7 49 X—>F00 7 49

FIGURE 2.36 The function in Example
12 has an oblique asymptote.
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2.5

Infinite Limits and Vertical Asymptotes

81

Infinite limit

> =

You can get as high
as you want by
taking x close enough
to 0. No matter how
high B is, the graph
goes higher.

> X

\fo

2@ ——
e
I
==

No matter how
low —B is, the
graph goes lower.

You can get as low as| ¢ —B

you want by taking
x close enough to 0.

FIGURE 2.37 One-sided infinite limits:

1
Iim — = ©0
x_)0+x

lim L
x—0" X

and = —00

82




Chapter 02 Limits and Continuity

>

Example 1
1

. ] 1 i
Find |im—— and lim—
xo1" X —1 xo1m X —1 1

\10

FIGURE 2.38 Nearx = 1, the function
y = 1/(x — 1) behaves the way the
function y = 1/x behaves near x = 0. Its
graph is the graph of y = 1/x shifted 1
unit to the right (Example 1).

83

Example 2 Two-sided infinite limit

Discuss the behavior of

(a) f(x):i2 near x =0
X

(b) g(x)= 1 ~ near X =-3
(x+3)
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2.4

No matter how
Be—— high B is, the graph
goes higher.

v

(x+ 32 Y
5 -
4 -
3F FIGURE 2.39 The graphs of the
2F functions in Example 2. (a) f(x)
1+ approaches infinity as x — 0. (b) g(x)
ST g g e approaches infinity as x — —3.
(b) 85
Example 3

Rational functions can behave in various
ways near zeros of their denominators

@i i i
O™ ) )
(©) lim ):‘2‘_34: 'xiig(x_)z()_(;z) ——w (note: x>2)
(@) lim X"Z‘_i: m(x_’z‘)‘(;z) — 4+ (note: 0<x<2)
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Example 3

e legg xX2—4_ leig(x—)z()_(iJr ) limit does not exist
) 2— X—2 ) 1

f)lim T == >=—lim 5 =—0
x—>2(x_2) X—2 (X 2)()(_2) X—2 (X—2)

87

Precise definition of infinite limits

DEFINITIONS Infinity, Negative Infinity as Limits

1. We say that f(x) approaches infinity as x approaches x;, and write
lim f(x) = oo,
XX

if for every positive real number B there exists a corresponding 8 > 0 such
that for all x

0<|x—x| <8 = f(x) > B.

2. We say that f(x) approaches negative infinity as x approaches x,, and write
lim f(x) = —o0,
X—>Xxgo
if for every negative real number —B there exists a corresponding 6 > 0 such
that for all x

0 < |x—x <6 = f(x) < —B.

oo
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.
r

y=f&)

P e

/ / xD

7 xo-a

FIGURE 2.40 Forxp — 0 <x <xy + 0,
the graph of f(x) lies above the line y = B.

XO"I"S

89

FIGURE 2.41 Forxy — o0 <x <xy + &,
the graph of f(x) lies below the line

y = —B.

90
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Example 4

Using definition of infinite limit
Prove that 1

x—0 ¥

Given B>0, we want to find >0 such that

O0<|x-0]<o Implies iz> B
X

Example 4

Now

2 S Bifand onlyif x* <1/B =|x|<1/\/B
X

By choosing 5=1/~/B
(or any smaller positive number), we see that

| X|< o 1mplies

1
x2>5ZZB
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Ver th al a Symp to te\%rtical asymptote

1

IIm — =0
x—0" X

.1

IIm —=—o0
x—0" X

y

Horizontal 1
asymptote

x=0

Horizontal
asymptote,
y=0

Vertical asymptote,

FIGURE 2.42 The coordinate axes are
asymptotes of both branches of the

hyperbola y = 1/x.

)

DEFINITION Vertical Asymptote

A line x = a is a vertical asymptote of the graph of a function y = f(x) if either

lim_f(x) = 00

X—q

or lim f(x) = +£00.
x—a

94
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Example 5

Looking for asymptote

Find the horizontal and vertical asymptotes of

the curve
X+3
. X+ 2
Solution:
1
y=l4—"
X+ 2
95
y
Vertical /
asymptote, 6
x=-2 SF._x+3
4l r= x+2
o o+ L
orizontal 3 x+2
asymptote, 271
y= 1 —

FIGURE 2.43 Thelines y = 1 and
x = —2 are asymptotes of the curve
y = (x + 3)/(x + 2) (Example 5).
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Asymptote need not be two-sided

Example 6

8

e

Solution:

f(x):—ziz— :
X*—2 (X—2)(X+2)

97

y
A
8
y=-
x2— 4
Vertical
Vertical asymptote, x = 2
asymptote, Horizontal
x=-

asymptote, y = 0

L1 | > X

|
1 23

FIGURE 2.44 Graph of

y = —8/(x* — 4). Notice that the curve
approaches the x-axis from only one side.
Asymptotes do not have to be two-sided
(Example 6).
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Example 8

A rational function with degree of freedom
of numerator greater than degree of
denominator

f(X) == X" -3

2X—4

Solution:
Imear remalnder

_____________________________

f(x)———.;+1:

________________________

99

The vertical distance
between curve and
line goes to zero as x — o

Oblique
asymptote

3

|
|
|
|
|
|
]
x FIGURE 2.47 The graph of

-1 ‘ f(x) = (x* — 3)/(2x — 4) has a vertical
2+ Vertical asymptote and an oblique asymptote
asymptote,

3k r=2 (Example 8).

100
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2.6

Continuity

101

.
>

N

20 %/
=

0 5 10

Elapsed time (sec)

Distance fallen (m)
N
<)
©
\‘

FIGURE 2.49 Connecting plotted points
by an unbroken curve from experimental
data Oy, 0>, O3, ... for a falling object.
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Continuity at a point

Example 1

Find the points at which the function f in
Figure 2.50 is continuous and the points at
which f is discontinuous.

103

0 1 2 3 4

FIGURE 2.50 The function is continuous
on [0, 4] exceptatx = 1,x = 2, and
x = 4 (Example 1).

104
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f continuous: f discontinuous:

Atx=0 Atx=1

Atx =3 At x =2

AtO<c<4,c#1,2 Atx =4
O0>c,c>4
Why?

105

To define the continuity at a point in a
function’s domain, we need to

define continuity at an interior point
define continuity at an endpoint

106
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Continuity
from the right

Two-sided

continuity Continuity

— from the left
m

I
|
|
|
1
a

FIGURE 2.51 Continuity at points a, b,

and c.

107

DEFINITION Continuous at a Point

Interior point: A function y = f(x) is continuous at an interior point ¢ of its

domain if

lim f(x) = f(e).

Endpoint: A function y = f(x) is continuous at a left endpoint a or is

continuous at a right endpoint b of its domain if

lim, f() = f(a)

lif%, f(x) = f(b), respectively.
x—)

108
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Example 2

A function continuous throughout its domain

f(X)=v4-x°

109

y
A
y=V4 - x?
2
-/\ )
-2 0 2

FIGURE 2.52 A function
that is continuous at every
domain point (Example 2).

110
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Example 3

The unit step function has a jump |

discontinuity

y = UX)
16—

or

FIGURE 2.53 A function
that is right-continuous,
but not left-continuous, at
the origin. It has a jump
discontinuity there
(Example 3).

111

Summarize continuity at a point in the
form of a test

Continuity Test
A function f(x) is continuous at x = c¢ if and only if it meets the following three

conditions.
1.  f(c) exists (c lies in the domain of f)
2. lim,—, f(x) exists (f has a limit as x — ¢)

3. lim—, f(x) = f(c) (the limit equals the function value)

For one-sided continuity and continuity at an
endpoint, the limits in parts 2 and parts 3 of
the test should be replaced by the appropriate
one-sided limits:
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y
EXample 4 r y=intx ._
3+ or ——o0
y = [x]
= The greatest integer function, * o
= y=[x] T
= The function is T I
not continuous at the T
—_— 2+

integer points since limit
does not exist there (left  FIGURE 2.54  The greatest integer

. o function is continuous at every
and ”g ht I|m ItS not ag I’ee) noninteger point. It is right-continuous,
but not left-continuous, at every integer
point (Example 4).

113

‘ y y y

20-
y=f) y = f(x)
y = flx)
/ / / 1‘
/ 0 > X / 0 > X / 0 > X O > X

(c) (d)

>

\
I

:H

-

)

—

(e)

FIGURE 2.55 The function in (a) is continuous at x = 0; the functions in (b) through (f)
~arenot.
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Discontinuity types

(b), (c) removable discontinuity
(d) jump discontinuity

(e) infinite discontinuity

(f) oscillating discontinuity

115

Continuous functions

A function is continuous on an interval if and

only if it is continuous at every point of the
Interval.

Example: Figure 2.56

1/x not continuous on [-1,1] but continuous
over (-=,0) (0, <0)

)
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FIGURE 2.56 The function y = 1/xis
continuous at every value of x except
x = 0. It has a point of discontinuity at

x = 0 (Example 5).

117

Example 5

|dentifying continuous function
(@) f(x)=1/x

(b) f(x)=x
Ask: Is 1/x continuous over its domain?
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THEOREM 9 Properties of Continuous Functions

If the functions f and g are continuous at x = ¢, then the following combinations
are continuous at x = c.

1. Sums: fte

2. Differences: f—g

3. Products: f-g

4. Constant multiples: k- f, for any number k&

5. Quotients: f/g provided g(c) # 0

6. Powers: I rhs provided it is defined on an open interval

containing c, where r and s are integers

119

Example 6

Polynomial and rational functions are
continuous

(a) Every polynomial is continuous by
@ 1limP(x)=P(c)
(i) Theorem 9

(b) If P(x) and Q(x) are polynomial, the
rational function P(x)/Q(x) is continuous
whenever it is defined.
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Example 7

Continuity of the absolute function
f(x) = |x| is everywhere continuous

Continuity of the sinus and cosinus function

f(x) = cos x and sin x is everywhere
continuous

121

Composites

All composites of continuous functions are
continuous

THEOREM 10 Composite of Continuous Functions

If f 1s continuous at ¢ and g is continuous at f(c), then the composite g ° f is
continuous at c.
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g
Continuous ﬂm
R atc . at f(c) o
c S g(f(c)

FIGURE 2.57 Composites of continuous functions are continuous.

123

Example 8

Applying Theorems 9 and 10

Show that the following functions are

continuous everywhere on their respective
domains.

2/3
(@)y=x*-2x-5 (b)y=——
1+x
X—2 XSin X

C - d =
©)y Xz_z‘ dy=1"7->
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FIGURE 2.58 The graph suggests that
y =l SiIUC)/(x2 + 2)| is continuous
(Example 8d).

125

THEOREM 11 The Intermediate Value Theorem for Continuous Functions

A function y = f(x) that is continuous on a closed interval [a, b] takes on every

value between f(a) and f(b). In other words, if y is any value between f(a) and
f(b), then yo = f(c) for some ¢ in [a, b].

>

y =[x

f(b)

Yo

fla)
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.
>

0 1 2 3 4

FIGURE 2.61 The function
2x—2, 1=x<2
f(x)_{3, 2=x=4
does not take on all values between
f(1) = 0and f(4) = 3; it misses all the

values between 2 and 3.
127

Consequence of root finding

A solution of the equation f(x)=0 is called a root.

For example, f(X)= x? + X - 6, the roots are x=2, x=-3
since f(-3)=f(2)=0.

Say f is continuous over some interval.

Say a, b (with a < b) are in the domain of f, such that
f(a) and f(b) have opposite signs.

This means either f(a) < 0 < f(b) or f(b) < 0 < f(a)
Then, as a consequence of theorem 11, there must

exist at least a point c betweenaand b, i.e.a<c<
b such that f(c)= 0. x=c is the root.
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y

f(a)<0 oA X

129

Example

Consider the function f(x) = x - cos X

Prove that there is at least one root for f(x) in the interval [0,
72].

Solution

f(x) is continuous on (-o°, <°),

Saya=0,b=m2.

f(x=0) = -1; f(Xx = 7/2) = /2

f(a) and f(b) have opposite signs

Then, as a consequence of theorem 11, there must exist at

least a point ¢ between a and b, i.e. a=0 < ¢ < b= 72 such
that f(c)= 0. x=c is the root.
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2.7

Tangents and Derivatives

131

‘ What is a tangent to a curver

Secants

P
hhﬁ\:§\\\‘\ Tangent

Secants

Tangent

Q

FIGURE 2.65 The dynamic approach to tangency. The tangent to the curve at P is the line
through P whose slope is the limit of the secant slopes as Q — P from either side.
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DEFINITIONS Slope, Tangent Line
The slope of the curve y = f(x) at the point P(xp, f(xg)) is the number

. Jxo + h) = flxo)
m = lim
h—0 h

(provided the limit exists).

The tangent line to the curve at P is the line through P with this slope.

133

L
r

y=fx)
Q(JCO + h, f(JCO + h))

|
:f(xo + h) — f(xo)

P(xg, f(xq)

FIGURE 2.67 The slope of the tangent
+ h) —
line at Pis lim fxo }: flxo)
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Example 1: Tangent to a parabola

Find the slope of the parabola y=x? at the
point P(2,4). Write an equation for the
tangent to the parabola at this point.

135

Finding the Tangent to the Curve y = f(x) at (xo, ¥o)
1. Calculate f(xo) and f(xo + /).
2. Calculate the slope

. fxo + h) = flxo)
m = lim .
h—0 h

3. If the limit exists, find the tangent line as

y =y + m(x — xp).
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2+ h)?*—4

=h+ 4.
h

Secant slope is

NOT TO SCALE

y :\4x -4

FIGURE 2.66 Finding the slope of the parabola y = x? at the point P(2, 4) (Example 1).

137

Example 3

Slope and tangent to y=1/x, xz0
(a) Find the slope of y=1/x at x = a #0
(b) Where does the slope equal -1/4?

(c) What happens to the tangent of the curve
at the point (a, 1/a) as a changes?
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T
slope is 4

: ].
1 1
slope is

FIGURE 2.68 The two tangent lines to

y = 1/x having slope —1/4 (Example 3).
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o

-1

o1
slope 1s -

FIGURE 2.69 The tangent slopes, steep
near the origin, become more gradual as

the point of tangency moves away.
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Chapter 3

Differentiation

3.1

The Derivative as a Function
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DEFINITION Derivative Function

The derivative of the function f(x) with respect to the variable x is the function
f" whose value at x is

flx +h) — fx)

1) = Jim h

provided the limit exists.

The limit f " f
lim (X0+ )_ (XO)

h—0

when it existed, is called the Derivative if f at x,.
View-derivative-as-a function-derived-from-f

If f' exists at x, f Is said to be differentiable
(has a derivative) at x

If f ' exists at every point in the domain of f, f
IS said to be differentiable.
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If write g =x + / then h = - x

Alternative Formula for the Derivative

f’(x) — ll_r)r-lx f(zg : i(x)
y = fx)

Secant slope is

f@) —f
0(z f(2) . =X
P(x, f(x)) f@) — f(x)
AN
|l<—h =z — x—>:
| |
S N—— ®
X Z
Derivative of fat x is
' R T f(x+h)_f(x)
T =, 7
(€ (€)) f(x')
T Z—x

Z—)JC

FIGURE 3.1 The way we write the
difference quotient for the derivative of a
function f depends on how we label the
points involved.
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Calculating

derivatives from the definition

Differentiation: an operation performed on a
functiony = f (x)
d/dx operates on f (x)

Write as

f'is taken

d
e )

d f(x)
dx _
as a shorthand notation for

Example 1: Applying the definition

Differentiate

Solution:

f(x+h)— f(x)

f’(x):lhirrg

GEElac=)

X+h-1 X—1
h

=Tim - S —
S0 (x+h—1)(x-1) (x—1)°

=lim
h—0
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Example 2: Derivative of the square root

function

(a) Find the derivative of
(b) Find the tangent line to the curve Y =/x

atx=4
Y
y==>x+1
4
\
\
4.2)  y=Vax
—H
| ] | | | 3
0 4 >

FIGURE 3.2 The curve y = Vx and its
tangent at (4, 2). The tangent’s slope is
found by evaluating the derivative at x = 4
(Example 2).

10
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Notations

)=y =99 - bfx) =D, f(x)
dx dx dx
dy|  df d
flla)==| =2 - f(x
( ) dx X=a dx X=a dx ( )x:a

11

Differentiable on an Interval; One

sided derivatives
A function y = f (x) is differentiable on an

open interval (finite or infinite) if it has a
derivative at each point of the interval.

It is differentiable on a closed interval [a,b]
If it is differentiable on the interior (a,b) and
if the limits

i f@+h) - (@)

h—»0* h
i L 0+0)— f ()
exist at the endpoints

12
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A function has a derivative at a point if an
only if it has left-hand and right-hand
derivatives there, and these one-sided
derivatives are equal.

13

Slope =
lim f(b+ h) — f(b)
h—0" h

Slope =
St h) — f@ x(
h—0" h |

|
|
|
|
|
|
|
|
|
|
|

|
|
I
|
|
I
|
|
I
|
] | |
b+h b
h>0 h<0

|
|
|
|
|
1
a a+h

FIGURE 3.5 Derivatives at endpoints are
one-sided limits.
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Example 5

y = |x| is not differentiable at x = 0.

Solution;

For x>0, y ]
e

For x < 0, X OX
d|x| d
== (=) =-1
dx dx( X)

At x = 0, the right hand derivative and left hand
derivative differ there. Hence f(x) not differentiable at
X = 0 but else where.

15

y'not defined at x = 0:
right-hand derivative
# left-hand derivative

FIGURE 3.6 The function y = |x|is
not differentiable at the origin where
the graph has a “corner.”
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Example 6

o y = \& IS not differentiable at x = 0

= The graph has a vertical tangentat x =0

17

When Does a function not have a
dertvative at a point?

1. a corner, where the one-sided 2. a cusp, where the slope of PQ
derivatives differ. approaches oo from one side and — o0
from the other.

18
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3. avertical tangent, where the slope of PQ approaches oo from both sides or
approaches — 00 from both sides (here, —00).

4. adiscontinuity.

19

‘ Differentiable functions are
continuous

THEOREM 1 Differentiability Implies Continuity
If f has a derivative at x = ¢, then f is continuous at x = c.

The converse is false: continuity
does not necessarily implies

differentiability

20
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Example

y = |X| is continuous everywhere, including X
= 0, but it is not differentiable there.

21

The equivalent form of Theorem 1

y

A

If f is not continuous at
X = ¢, then f is not Y= U
differentiable at x = c. 1¢

Example: the step

function is

discontinuous at x = 0, o[ >
hence not differentiable

at x =0. FIGURE 3.7 The unit step

function does not have the
Intermediate Value Property and
cannot be the derivative of a

function on the real line.
22
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The intermediate value property of
derivatives

THEOREM 2 Darboux’s Theorem

If @ and b are any two points in an interval on which f is differentiable, then f’
takes on every value between f'(a) and f'(b).

= See section 4.4

23

3.2

Differentiation Rules

24
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Powers, multiples, sums and
differences

RULE 1 Derivative of a Constant Function
If f has the constant value f(x) = c, then

af  d, .
a = a(c) = (.
Example 1
y
c (x, c) x4+ h,c)
| | =
| |
| |
| |
| |
I I
' h ' > X
0 X X+ h

FIGURE 3.8 Therule (d/dx)(c) = Ois
another way to say that the values of
constant functions never change and that
the slope of a horizontal line is zero at

every point.
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If n is a positive integer, then

RULE 2 Power Rule for Positive Integers

n n—1

ix=nx
dx

RULE 3 Constant Multiple

Rule

If u 1s a differentiable function of x, and c is a constant, then

i(cu)=c@
dx dx’

In particular,

d
ifu= x”,d—(cx”) =cx"™
X

27

Example 3

i(3x2):3-2x
dx

di(xz) = 2x* = 2X
X

>

y = 3x2

Slope = 3(2x)

= 6x
(1,3) /

=6(1)=6

2-1 — 6X

(LD

I
I
I
I
I
I L 5y
1

0

FIGURE 3.9 The graphs of y = x? and

the slope (Example 3).

y = 3x?. Tripling the y-coordinates triples —

28
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RULE 4 Derivative Sum Rule

If u and v are differentiable functions of x, then their sum u# + v is differentiable
at every point where # and v are both differentiable. At such points,
_ du | dv

d du | dv
dx(u—l—v) dx+dx'

29

Example 5

y:x3+%x2—5x+1

dy d, 5, d 4, d d
— =—(X)+—(=xX)——0BX))+—(1
dx dx( ) dx(3 ) dx( ) dx()

:3x2+§x—5
3

30
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Example 6

Does the curve y = x* - 2x? + 2 have any
horizontal tangents? If so, where?

31

y=x*—2x2+2

e

0, 2)

FIGURE 3.10 The curve
y = x* — 2x% + 2 and its horizontal
tangents (Example 6).

32
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Products and quotients

= Note that ’ '
&(x x):&(xz):Zx
d d, .\ d

RULE 5 Derivative Product Rule
If u and v are differentiable at x, then so is their product uv, and

A, dv.  du
%(uv)—udx+vdx.

33

‘ Example 7

= Find the derivative of 1 1
(e

34
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Example 8: Derivative from numerical
values
Lety =uv. Find y '(2) if u(2) =3, u'(2)=-4,
vi2)=1,v'(2) =2

35

Example 9

Find the derivative of
y=(x*+1)(x*+3)

36
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RULE 6 Derivative Quotient Rule

If u and v are differentiable at x and if v(x) # 0, then the quotient u/v is differ-
entiable at x, and

4 ()i
dx v U2 )

37

‘ Negative integer powers of x

= The power rule for negative integers is the
same as the rule for positive integers

RULE 7 Power Rule for Negative Integers
If n 1s a negative integer and x # 0, then

i ny — n—1
dx(x) nx""".
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Example 11

39

Example 12: Tangent to a curve

Find the tangent to the curve Y= X+;
at the point (1,3)

40
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FIGURE 3.11 The tangent to the curve
y = x + (2/x) at (1, 3) in Example 12.
The curve has a third-quadrant portion
not shown here. We see how to graph

functions like this one in Chapter 4. y

Example 13

(x—l)(x2 —2x)
Find the derivative of Y= o

42
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Second- and higher-order derivative

Second derivative

-3 =X)Ly

x2  dx\dx) dx
=y"=D*(f)(x)=D; f (x)
nth derivative

n d n— dn n
y™ :&y( l)zd_x2/=D y

43

Example 14

y=x>-3x"+2
y' =3x° —6X
y'=6x—6

y" =6

y(4):O

44
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3.3

The Derivative as a Rate of Change

45

Instantaneous Rates of Change

DEFINITION Instantaneous Rate of Change
The instantaneous rate of change of f with respect to x at xj is the derivative

h —
(o) = }}i_n%f(xo + }1 f(xo),

provided the limit exists.

46
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Example 1: How a circle’s area changes
with its diameter
A = 7D?/4

How fast does the area change with respect
to the diameter when the diameter is 10 m?

47

Motion along a line

Position s = f(t)

Displacement, As = f(t+ At) - (t)
Average velocity

V,, = AS/At = [f(t+ At) - f(t)] /At

The instantaneous velocity is the limit of
Vav

when At — 0O

48
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Position at time 7 ... and at time f + At
| As |
° L
s = f() s+ As =f(t + Ap

FIGURE 3.12 The positions of a body
moving along a coordinate line at time ¢
and shortly later at time ¢ + Atz.

49

DEFINITION

Velocity

Velocity (instantaneous velocity) is the derivative of position with respect to
time. If a body’s position at time ¢is s = f(¢), then the body’s velocity at time ¢ is

50
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3

800 /
600
g 500 Secant slope is
3 average velocity
3 400 for interval from 3/
2 t=2ltot=5. Tangent slope
A 300 \ / is speedometer
200 A reading att = 2
%/ (instantaneous
é velocity).
100 %
0= >t

1 2 3 4 5 6 7 8
Elapsed time (sec)

FIGURE 3.13 The time-to-distance graph for
Example 2. The slope of the tangent line at P is the

instantaneous velocity at £ = 2 sec.

51

L
>
>

0 0
s increasing: s decreasing:
positive slope so negative slope so
moving forward moving backward

FIGURE 3.14 For motion s = f(¢) along a straight line, v = ds/dt is
positive when s increases and negative when s decreases.
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DEFINITION Speed
Speed is the absolute value of velocity.

Speed = |v(z)| =

ds

dt

53

‘ Example 3

= Horizontal motion

54
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v

[ [ |
MOVES FORWARD [ | FORWARD |
>0 : f .
; v
I v =f : ]
| | | | |
| | |
L Speeds_>:<_Steady _Jl_(_ 310w5_}I :{_ Speeds_):
up (v = const), “OWR : : up |
| | | I
! I I
: L Stands_)l I
| still | :
| | : 1 ©=9; :
t (sec
0 1 2 3 4 5 6 7 (sec)

Greatest
speed

\

Speeds | Slows

up | down
|

|
MOVES BACKWARD
(v <0)

FIGURE 3.15 The velocity graph for Example 3.

55

DEFINITIONS Acceleration, Jerk

Acceleration is the derivative of velocity with respect to time. If a body’s posi-

tion at time 7is s = f(¢), then the body’s acceleration at time ¢ is

_dv _ d’s
a(t) = i g

Jerk is the derivative of acceleration with respect to time:
N _da _ d

56
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Example 4

Modeling free fall

Consider the free fall ofzagheavy ball released
fromrestatt = 0 sec.

(a) How many meters does the ball fall in the
first 2 sec?

(b) What is the velocity, speed and
acceleration then?

t (seconds) s (meters)
t=0 @ o
t=1 1 5
— 10
— 15

t=2 ) 20
— 25
— 30
— 35
— 40

t=3 ) 45
v

FIGURE 3.16 A ball bearing
falling from rest (Example 4).
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Modeling vertical motion

A dynamite blast blows a heavy rock straight up with
a launch velocity of 160 m/sec. It reaches a height
of s = 160t — 16t? ft after t sec.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock
when it is 256 ft above the ground on the way up?
On the way down?

(c) What is the acceleration of the rock at any time t
during its flight?

(d) When does the rock hit the ground again?

256 @8 j =1

Height (ft)

(a)

6A FIGURE 3.17 (a) The rock in Example 5.
(b) The graphs of s and v as functions of
time; s is largest when v = ds/dt = 0.The
graph of s is not the path of the rock: Itis a

3 plot of height versus time. The slope of the
plot is the rock’s velocity, graphed here as
a straight line.

_160L v=2 _ 160 - 321
dt

(b) 60
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3.4

Derivatives of Trigonometric Functions

61

Derivative of the sine function

The derivative of the sine function is the cosine function:

4 (sinx) = cosx
dx )

d . . sin(x+h) —sin x
—sinx=1m =...
dx h—0 h

62
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Derivative of the cosine function

The derivative of the cosine function is the negative of the sine function:

d%(cosx) = —sinx
d . Ccos(X+h)—cosx
—cos X =Ilim =
dx h—0 h
y
11 y = COS X
L N/ >y
-7 I 0 | (!
~N A 1=
! | | |
| | Y | |
| | A | | "= —sinx
| | | Y
: I
//17 0 |l T > X
_1 L

FIGURE 3.23 The curve y’ = —sinx as
the graph of the slopes of the tangents to
the curve y = cosx.
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Example 2

(a)y =5x+cosXx
(b)y =sin xcos x
COS X

c)y=—
)y 1-sinXx

65

Derivative of the other basic
trigconometric functions

Derivatives of the Other Trigonometric Functions

d C e
e (tanx) = sec”x

d _
. (secx) = secxtanx

c‘;'.lx (cotx) = —csc?x

i(cscx) = —cscxcotx
dx

66
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Examptllg 5

= Find d(tan x)/dx

67

‘ Example 6

= Find y" iIf y = sec X

68
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Example 7

Finding a trigonometric limit

. \J24+secx J2 +secO

[im =
x-0 cos(z —tanx) cos(z —tan0)
cos(z—0) -1

69

3.5

The Chain Rule and
Parametric Equations

70
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Ditterentiating composite functions

Example:

y=f(u) =sinu

u=gXx)=x°-4

How to differentiate F(x) =f - g =f [g(X)]?
Use chain rule

71

Dertvative of a composite function

Example 1 Relating derivatives
y = (3/2)x = (1/2)(3x)
= glu(x)]
g(u) = u/2; u(x) = 3x
dy/dx = 3/2;
dg/du = Y%2; du/dx = 3;
dy/dx = (dy/du)-(du/dx) (Not an accident)

72
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2

C:yturns  B: uturns A: x turns

FIGURE 3.26 When gear A makes x
turns, gear B makes u turns and gear C

makes y turns. By comparing circumferences
or counting teeth, we see that y = u/2

(C turns one-half turn for each B turn)

and ¥ = 3x (B turns three times for A’s

one), so y = 3x/2.Thus, dy/dx = 3/2 =
(1/2)(3) = (dy/du)(du/dy).

73

Example 2

y=9x" +6X° +1=(3x" +1)°
y=uu=3x"+1

dy du_

du dx

c.f.

dy _d
dx

dx

2U -6

=2(3x* +1)-6x = 36X +12x

(9x4 +6x? +1) = 36x% +12x

74
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THEOREM 3 The Chain Rule

If f(u) is differentiable at the point ¥ = g(x) and g(x) is differentiable at x, then
the composite function (f ° g)(x) = f(g(x)) is differentiable at x, and

(f > 8)'(x) = f'(g(x)g'(x).
In Leibniz’s notation, if y = f(u) and u = g(x), then

dy _ 4y du
dx du dx’
where dy/du is evaluated at u = g(x).

75

Composite fo g

Rate of change at
xis f(g(x)) - g(x).

g f
Rate of change m
at x is g'(x). at g(x) is f'(g(x)). ———
X u = gx) y =Jfu) = f(gx)

FIGURE 3.27 Rates of change multiply: The derivative of f ¢ g at x is the
derivative of f at g(x) times the derivative of g at x.
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Example 3

Applying the chain rule
X(t)= cos(t? + 1). Find dx/dt.
Solution:

Xx(u)= cos(u); u(t)=t2 + 1;
dx/dt = (dx/du)-(du/dt) = ...

77

Alternative form of chain rule

If y =f[g(x)], then
dy/dx =1"[g(X)]- 9" (X)

Think of f as ‘outside function’, g as ‘inside-
function’, then

dy/dx = differentiate the outside function and
evaluate it at the inside function let alone; then
multiply by the derivative of the inside function.

78
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Example 4

Differentiating from the outside In

isin (X* +X) =cos(X* +X)- (2x +1)
dX . ) N RN g

inside insial:a deriva\tfive of
left alone left alone the inside
79
Example 5

A three-link ‘chain’

Find the derivative of
g(t) =tan(5—sin 2t)

80
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Example §

Applying the power chain rule
d 3 4\7
(a) ——(5x"-Xx7)
dx

d 1 d
() dx(Bx—Zj dx(BX 2)

81

Example 7

(a) Find the slope of tangent to the curve
y= sin>x at the point where x = /3

(b) Show that the slope of every line tangent
to the curve y = 1/(1-2x)3 is positive

82
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Parametric equations

A way of expressing both the coordinates of a
point on a curve, (x,y) as a function of a third
variable, t.

The path or locus traced by a point particle
on a curve is then well described by a set of
two equations:

x=1(t), y = 9(t)

83

DEFINITION  Parametric Curve
If x and y are given as functions

x=f(), y=gQ
over an interval of t-values, then the set of points (x, y) = (f(¢), g(¢)) defined by
these equations is a parametric curve. The equations are parametric equations
for the curve.

The variable t is a parameter for the curve

84
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\

Position of particle

at time ¢ T (f(0), g(®)

FIGURE 3.29 The path traced by a
particle moving in the xy-plane is not
always the graph of a function of x or a
function of y.

85

Example 9

Moving
counterclockwise on a
circle

Graph the parametric
curves

X=CO0St, y =sint,
O<st<2rx

FIGURE 3.30 The equations x = cos t
and y = sin ¢ describe motion on the circle
x? + y? = 1. The arrow shows the
direction of increasing ¢ (Example 9).
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Example 10 /

Moving along a
parabola

Xx=Vt,y=t, 0 <t
Determine the relation
between x and y by
eliminating t. f=0
y=t=()?=x2

The path traced out
by P (the locus) is
only half the parabola,
x =0

FIGURE 3.31 The equations x = V7
and y = ¢ and the interval + = 0 describe
the motion of a particle that traces the
right-hand half of the parabola y = x>
(Example 10).
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Slopes of parametrized curves

A parametrized curved x = f(t), y = g(t) Is
differentiable at t if f and g are differentiable
at t.

At a point on a differentiable parametrised
curve where y is also a differentiable function

of x, l.e. y = y(x) = y[x(D)],
chain rule relates dx/dt, dy/dt, dy/dx via

dy dy dx
dt dx dt

88
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Parametric Formula for dy /dx
If all three derivatives exist and dx/dr # 0,

dy  dy/dt )
dx = dejdi @)

89

Example 12

Differentiating with a parameter

If x=2t+ 3 and y =t2-1, find the value of
dy/dx at t = 6.

90
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Parametric Formula for d?y /dx*
If the equations x = f(¢), y = g(¢) define y as a twice-differentiable function of
x, then at any point where dx/dt # 0,

d¥y dy'/dt

o2 dvar 3

(3) is just the parametric formula (2) by
y — dy/dx

91

Example 14

Finding d?y/ dx? for a parametrised curve
Find d?y/ dx? as a function of t if x =t - t?,
y=t-t.
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3.6

Implicit Differentiation

93

Implicit Differentiation

1. Differentiate both sides of the equation with respect to x, treating y as a differ-
entiable function of x.

2. Collect the terms with dy/dx on one side of the equation.
3. Solve for dy/dx.

94
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EXam 16 1: * Slope = L = L
. b . " N2V = Va
Differentiating T
|
implicitly | ‘
0 | >
|
: . L 0(x, —V)
Find dy/dx if y? = ' = Vi
Slope = 2%’2 = —ﬁ

FIGURE 3.37 The equation y?> — x = 0,
or y? = x as it is usually written, defines
two differentiable functions of x on the
interval x = 0. Example 1 shows how to
find the derivatives of these functions

without solving the equation y? = x for y.
95

Example 2

Slope of a circle at a point
Find the slope of circle x? + y2 = 25 at
(3’ _4)
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Example 3

Differentiating
implicitly

Find dy/dx if

y? = X? + sin xy

y? = x* + sin xy

FIGURE 3.39 The graph of
y? = x? + sinxy in Example 3. The
example shows how to find slopes on this

implicitly defined curve. .

Lenses, tangents, and normal lines

If slop of
tangent is m,, the
slope of normal,
m., IS given by
the relation

m m=-1, or

m,=-1/m,

Tangent

Light ray

Curve of lens

surface
Normal line

” Point of entry

FIGURE 3.40 The profile of a lens,
showing the bending (refraction) of a ray
of light as it passes through the lens

surface.
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Example 4

Tangent and normal to the folium of
Descartes

Show that the point (2,4) lies on the curve

X% +y3 - 9xy = 0. The find the tangent and
normal to the curve there.

99

FIGURE 3.41 Example 4 shows how to
find equations for the tangent and normal

to the folium of Descartes at (2, 4).
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Derivative of higher order

Example 5
Finding a second derivative implicitly
Find d2y/dx? if 2x3 - 3y? = 8.

101

Rational powers of differentiable functions

THEOREM 4 Power Rule for Rational Powers

If p/q is a rational number, then xP/1 is differentiable at every interior point of the
domain of x®/?9~! and

d pla — P _p/g-1
dxx =3~ .

Theorem 4 is proved based on d/dx(x") = nx"-!
(where n is an integer) using implicit differentiation

102
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Theorem 4 provide a extension of the power
chain rule to rational power:

iup/q :Eu(p/q)—ld_u
dx q dx
u=0 if (p/q) < 1, (p/q) rational number, u a

differential function of x

103

Example 6

Using the rational power rule

(a) d/dx (x12) = 1/2x Y2 for x > 0
(b) d/dx (x%3) = 2/3 x 3 for x = 0
(c) d/dx (x#3) = -4/3 x"3 for x # 0

104
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Proof of Theorem 4

Let p and g be integers with g > 0 and
y:Xp/q — yq — xP

Explicitly differentiating both sides with
respect to x...

105

Example 7

Using the rational power and chain rules
(a) Differentiate (1-x2)1/4
(b) Differentiate (cos x)-/5

106
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Chapter 4

Applications of Derivatives

4.1

Extreme Values of Functions




Chapter 04 Applications of Derivatives

DEFINITIONS  Absolute Maximum, Absolute Minimum
Let f be a function with domain D. Then f has an absolute maximum value on

D at a point ¢ if
f(x) = f(e) for all x in D

and an absolute minimum value on D at ¢ if
f(x) = f(ec) forall x in D.

L
>

y =sinx
y =cosx

FIGURE 4.1 Absolute extrema for
the sine and cosine functions on
[—/2, /2]. These values can depend
on the domain of a function.
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Example 1

Exploring absolute extrema

The absolute extrema of the following
functions on their domains can be seen in
Figure 4.2

y y
2 2
y=x y=2Xx
D = (-, x) D =[0,2]
:'2 > x :'2 x
(a) abs min only (b) abs max and min
y y
2 2
y=x" y=x
D =(0,2] D =(0,2)
1 > 1 .
7 S
(c) abs max only (d) no max or min

FIGURE 4.2 Graphs for Example 1.
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THEOREM 1 The Extreme Value Theorem

If f is continuous on a closed interval [a, b], then f attains both an absolute max-
imum value M and an absolute minimum value m in [a, b]. That is, there are
numbers x; and x; in [a, b] with f(x;) = m, f(x;) = M,andm = f(x) = M for
every other x in [a, b] (Figure 4.3).

y=fx)

M

I

I

I

/ |

% |
1 1 I m
. x ! b a b
m] . .
| Maximum and minimum
at endpoints

(xy, m)
Maximum and minimum

at interior points

I
I
I
I
I
I
I
I
I
I
I
1

b

Maximum at interior point, Minimum at interior point,
minimum at endpoint maximum at endpoint

FIGURE 4.3 Some possibilities for a continuous function’s maximum and
minimum on a closed interval [a, b].
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y
4 No largest value

FIGURE 4.4 Evenas
discontinuity can keep

ingle point of
a function from

having either a maximum or minimum

> X value on a closed interval. The function
Smallest value x, 0=x<1
y = 0 .
, x=1

is continuous at every point of [0, 1]

exceptx = 1, yetits g

raph over [0, 1]

does not have a highest point.

9

Local (relative) extreme values

Absolute maximum

No greater value of f anywhere.
Local maximum Also a local maximum.

No greater value of
f nearby.

Absolute minimum
No smaller value of
f anywhere. Also a |

local minimum. :
|

| Local minimum

I No smaller value of
: f nearby. :
|

Local minimum
No smaller value
of f nearby.

e d

\
\
\
\
\
\
\
\
\
\
|
C

a

FIGURE 4.5 How to classify maxima and minima.

b
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DEFINITIONS  Local Maximum, Local Minimum
A function f has a local maximum value at an interior point ¢ of its domain if

fx) = f(c) for all x in some open interval containing c.
A function f has a local minimum value at an interior point ¢ of its domain if

fx) = f(e) for all x in some open interval containing c.

11

Finding Extrema

THEOREM 2 The First Derivative Theorem for Local Extreme Values

If f has a local maximum or minimum value at an interior point ¢ of its domain,
and if f’ is defined at c, then

f'(e) = 0.

12
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Local maximum value

pd
\
\
\
\
|

|
Secant slopes = 0
(never positive)

!

Secant slopes = 0
(never negative)

a ____________________\‘:‘-

\
\ !
\ !
\ !
: —> X

x x

FIGURE 4.6 A curve with a local
maximum value. The slope at c,
simultaneously the limit of nonpositive
numbers and nonnegative numbers, is zero.
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DEFINITION Critical Point

An interior point of the domain of a function f where f' is zero or undefined is a
critical point of f.

How to find the absolute extrema of a continuous
function f on a finite closed interval

Evaluate f at all critical point and endpoints
Take the largest and smallest of these values.

14
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Example : Fmdmg absolute extrema

Find the absolute maximum and minimum of
f(x) = x? on [-2,1].

15

]EE)(ELrIlI)lfi ! (1,7)

v

Absolute extrema at endpomt<‘
Y 1

Find the absolute
extrema values of
g(t) =8t - t* on
[-2,1].

-2,-32
( ) L

FIGURE 4.7 The extreme values of
g(r) = 8t — t*on[—2, 1] (Example 3).
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Example 4: Finding absolute extrema on a
closed interval

Find the absolute maximum and minimum
values of f (x) = x%2 on the interval [-2,3].

Absolute maximum;
Local also a local maximum
maximum 2 [

| I | > x

-2 -1 0 1 2 3
Absolute minimum:;
also a local minimum

FIGURE 4.8 The extreme values of
f(x) = x*? on[—2, 3] occur at x = 0 and
x = 3 (Example 4).




Chapter 04 Applications of Derivatives

Not every critical point
or endpoints signals the
presence of an extreme
value.

FIGURE 4.9 Critical points without
extreme values. (a) y' = 3x?is 0 at
x = 0, but y = x* has no extremum there.

(b) y' = (1/3)x% is undefined at x = 0,

but y = x'/? has no extremum there.

4.2

The Mean Value Theorem

20
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THEOREM 3 Rolle’s Theorem

Suppose that y = f(x) is continuous at every point of the closed interval [a, b]
and differentiable at every point of its interior (a, b). If

fla) = f(b),

then there is at least one number ¢ in (a, b) at which

f'(c) = 0.

21

>

fe)=0

FIGURE 4.10 Rolle’s Theorem says that
a differentiable curve has at least one
horizontal tangent between any two points
where it crosses a horizontal line. It may
have just one (a), or it may have more (b).
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3

y=fx)

> "<t

SN

3
>

y = fx)

y=f(x)

L1 >x

a b

(a) Discontinuous at an
endpoint of [a, 5]

a

)Cob

a x3 b

(c) Continuous on [a, b] but not

(b) Discontinuous at an
interior point of [a, b]

differentiable at an interior
point

FIGURE 4.11 There may be no horizontal tangent if the hypotheses of Rolle’s Theorem do not hold.
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Example 1 EAC
Horizontal tangents of a
cubit polynomial
3 3
N
f(x) =?—3X
(V3,-2V3)

FIGURE 4.12 As predicted by Rolle’s
Theorem, this curve has horizontal
tangents between the points where it
crosses the x-axis (Example 1).
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Example 2 Solution of an equation f{x)=0

Show that the equation

X°+3Xx+1=0
has exactly one real solution.

Solution
Apply Intermediate value theorem to show that

there exist at least one root
Apply Rolle’s theotem to prove the uniqueness of

the root.

25

FIGURE 4.13 The only real zero of the
polynomial y = x> + 3x + 1 is the one
shown here where the curve crosses the

x-axis between —1 and 0 (Example 2).
26




Chapter 04 Applications of Derivatives

The mean value theorem

THEOREM 4 The Mean Value Theorem

Suppose y = f(x) is continuous on a closed interval [a, b] and differentiable on

the interval’s interior (a, b). Then there is at least one point ¢ in (a, b) at which

fb) — fla)
5 g - f.

(1)

27

Tangent parallel to chord

A
Slope f'(c) B

' |
| _
Slope L&) 1@
: i b—a
| |
| |
] | 3

0| K a c b >

y = Jf(x)
FIGURE 4.14 Geometrically, the Mean

Value Theorem says that somewhere
between A and B the curve has at least

one tangent parallel to chord 4B.
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FIGURE 4.17 The function f(x) =

V1 — x? satisfies the hypotheses (and
conclusion) of the Mean Value Theorem

on [—1, 1] even though f is not
differentiable at —1 and 1.

29

Example 3

The function f(X) =X°
IS continuous for 0 < x<<2 and differentiable
forO<x< 2.

30
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y
h

B(2,4
ni (2,4)
3

y=x?
2_
I (1, D

L —
A0, 0) 1 2

FIGURE 4.18 As we find in Example 3,
¢ = 1 is where the tangent is parallel to

the chord.
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‘Mathematical consequences

COROLLARY 1 Functions with Zero Derivatives Are Constant

If f'(x) = 0 at each point x of an open interval (a, b), then f(x) = C for all
x € (a, b), where C is a constant.

COROLLARY 2 Functions with the Same Derivative Differ by a Constant
If f'(x) = g’(x) at each point x in an open interval (a, b), then there exists a con-
stant C such that f(x) = g(x) + C forall xe (a, b). That is, f — g is a constant
on (a, b).
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Corollary 1 can be proven using the Mean
Value Theorem

Say x,, X,€(a,b) such that x, < X,

By the MVT on [X;,X,] there exist some point c
between x, and x, such that f'(c)= (f (x,) —f

(X)) (X5 - Xy)

Since f'(c) = 0 throughout (a,b),

f (x,) —f(xy) =0, hence f (x,) = f (x,) for xy,
X,€(a,b).

This is equivalent to f(x) = a constant for xe(a,b).

33

Proot ot Corollary 2

At each point xe(a,b) the derivative of the
difference between function h=f-g is

h'(x) =1'(x) -g'(x) =0

Thus h(x) = C on (a,b) by Corollary 1. That
Is f (X) —g(x) = C on (a,b), so f(x) =
C + g(x).
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y=x>+C K c=2
C=1
C=0
C=-1
C=-2
2

FIGURE 4.20 From a geometric point of
view, Corollary 2 of the Mean Value
Theorem says that the graphs of functions

> x with identical derivatives on an interval
can differ only by a vertical shift there.
The graphs of the functions with derivative
2x are the parabolas y = x> + C, shown
here for selected values of C.
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Example 5

Find the function f(x) whose derivative is sin x
and whose graph passes through the point
(0,2).

36
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4.3

Monotonic Functions and
The First Derivative Test

37

Increasing functions and decreasing
functions

DEFINITIONS  Increasing, Decreasing Function
Let f be a function defined on an interval 7 and let x; and x; be any two points in /.

1. If f(x;) < f(x;) whenever x; < x5, then f is said to be increasing on /.
2. If f(xp) < f(x1) whenever x; < x;, then f is said to be decreasing on /.

A function that 1s increasing or decreasing on / is called monotonic on /.
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y
h
2
=x
AL y
: 3r :
Function Function
decreasing increasing
2 -
y'<0 y'>0
1 -
| | | 1 5
2 1 o, 1 2 ¥

FIGURE 4.21 The function f(x) = x2is
monotonic on the intervals (—o0, 0] and
[0, 00), but it is not monotonic on

(—o00, 00),

39

COROLLARY 3 First Derivative Test for Monotonic Functions
Suppose that f is continuous on [a, b] and differentiable on (a, b).

If f'(x) > 0 at each point x € (a, b), then f is increasing on [a, b].
If f'(x) < 0 at each point x € (a, b), then f is decreasing on [a, b].

Mean value theorem is used to prove Corollary 3
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Example 1

Using the first derivative test for monotonic
functions f(x)=x*-12x-5

Find the critical point of  f(x) =x*-12x-5
and identify the intervals on which fis
iIncreasing and decreasing.

SOIUtON 4 ) 3 (x+2)(x-2)

f'"+ for —o<x<=-2
f'—12 for —2<x<?2
f"+ for2<x<w

41

(2,-21)

FIGURE 4.22 The function f(x) =
x* — 12x — 5 is monotonic on three
separate intervals (Example 1).
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First derivative test for local extrema

Absolute max
f' undefined
Local max

=0

No extreme
f1=0

Local min

Absolute min

Q
2]
o
(&)
Xl
%)
£
o
")
===

FIGURE 4.23 A function’s first derivative tells how the graph rises and falls.
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First Derivative Test for Local Extrema

Suppose that ¢ is a critical point of a continuous function f, and that f is differen-
tiable at every point in some interval containing ¢ except possibly at c itself.
Moving across ¢ from left to right,

1. if f' changes from negative to positive at ¢, then f has a local minimum at ¢;
2. if f’ changes from positive to negative at ¢, then f has a local maximum at c;

3. if f’ does not change sign at ¢ (that is, f’ is positive on both sides of ¢ or
negative on both sides), then f has no local extremum at c.
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Example 2: Using the first derivative test
for local extrema

Find the critical point of

f (X) _ X1/3 (X _ 4) _ X4/3 _ 4X1/3
Identify the intervals on which f is
iIncreasing and decreasing. Find the

function’s local and absolute extreme
values.

1:,:4(x—1)_

W f'—ve forx<O;

f'—ve forO<x<Lf'+ve forx>1

45

y =x"3(x — 4)

2 |-
1 L
L : > X

11
-1 0f 1 2 3 44

(1, =3)

FIGURE 4.24 The function f(x) =
x!3(x — 4) decreases when x < 1 and
increases when x > 1 (Example 2).
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4.4

Concavity and Curve Sketching

47

Concavity

> X

FIGURE 4.25 The graph of f(x) = x3is
concave down on (—00, 0) and concave up

90 back on (0, c0) (Example 1a).
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DEFINITION Concave Up, Concave Down
The graph of a differentiable function y = f(x) is

(a) concave up on an open interval / if f’ is increasing on /

(b) concave down on an open interval / if f' is decreasing on 1.

49

The Second Derivative Test for Concavity
Let y = f(x) be twice-differentiable on an interval /.

1. If f” > 0on [ the graph of f over [ is concave up.
2. If f" < 0onl, the graph of f over [ is concave down.

50
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Example 1(a) Applymg the concavity test

Check the concavity of the curve y = x3
Solution: y" = 6x
y" <0forx<0;y">0forx>0;

Link to Figure 4.25

51

Example 1(b): Applying the

concavity test
Check the concavity of

the curve y = x?
Solution:y"=2>0

FIGURE 4.26 The graph of f(x) = x? is
concave up on every interval (Example
1b).
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y
Example 2 Y y=3+ sinx
4 -
3
= Determining concavity ,L
= Determine the 1k
concavity of L1 L1 .x
: 0 2
y =3+ sinxon 1Lk 7 ™
y" = —sinx
[0, 27. ot

FIGURE 4.27 Using the graph of y” to
determine the concavity of y (Example 2).

53

‘ Point of inflection

DEFINITION Point of Inflection

A point where the graph of a function has a tangent line and where the concavity
changes is a point of inflection.
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Example 3

y

A y — x4
An inflection point 2+
may not exist where
An inflection point 1L
may not exist where ' =0
y =0 ' ' > X
The curve y = x* has -1 0 1

no inflection point at

x=0. Even though y" = FIGURE 4.28 The graph of y = x* has
12x2 is zero there, it no inflection point at the origin, even
does not change sign. though y” = 0 there (Example 3).
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Example 4
y
An inflection point y" does not y = x1/3
may not occur where  €Xist ~__
y" = 0 does not exist > X

0
The curve y = x1® has /
a point of inflection at

x=0 but y" does not

exist there. FIGURE 4.29 A point where " fails
y" = (2/9)x53 to exist can be a point of inflection
(Example 4).




Second detrivative test for local
extrema

THEOREM 5  Second Derivative Test for Local Extrema
Suppose f” is continuous on an open interval that contains x = c.

1. Iff'(¢) = 0and f"(¢) < 0, then f has a local maximum at x = c.
2. Iff'(¢) = 0and f"(¢) > 0, then f has a local minimum at x = c.

3. If f'(¢) = 0and f"(c) = 0, then the test fails. The function f may have a
local maximum, a local minimum, or neither.

f'=0,f"<0 f'=0,f">0
= local max = local min

57

Example 6: Using /' and /" to graph f

Sketch a graph of the function
f(X)=x4-4x3+ 10

using the following steps.
ldentify where the extrema of f occur

Find the intervals on which f is increasing and
the intervals on which f is decreasing

Find where the graph of fis concave up and
where it is concave down.

Sketch the general shape of the graph for f.
Plot the specific points. Then sketch the graph.
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[ Inflection

_10} point
_15+
al 3,-17)
20 Local
minimum

FIGURE 4.30 The graph of f(x) =
x* — 4x3 + 10 (Example 6).
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Example

Using the graphing strategy
Sketch the graph of
f(X)=(Xx+1)?/(x+1).
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y Point of inflection
) (1.2) where x = V3
22/
1 y=1
Horizontal
asymptote
’ | > X
/-1 1
Point of inflection
where x = —V3
(x + 1)
FIGURE 4.31 The graphof y = ———-
1 + x

(Example 7).
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Learning about functions from derivatives

y = flx) y=flx)
Differentiable = ¥' > 0 = rises from ¥' < 0 = falls from
smooth, connected; graph left to right; left to right;
may rise and fall may be wavy may be wavy

SN TN K
y" changes sign

¥" > 0 = concave up ¥" < 0 = concave down Inflection point
throughout; no waves; graph | throughout; no waves;
may rise or fall graph may rise or fall

X O
y' changes sign = graph y'=0and y'<0 y'=0and y"=0
has local maximum or local at a point; graph has at a point; graph has
minimum local maximum local minimum
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4.5

Applied Optimization Problems

63

Example 1

An open-top box is to be cutting small
congruent squares from the corners of a 12-
In.-by-12-in. sheet of tin and bending up the
sides. How large should the squares cut from
the corners be to make the box hold as much
as possible?
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FIGURE 4.32  An open box made by
cutting the corners from a square sheet of
tin. What size corners maximize the box’s
volume (Example 1)?

65

Maximum
y
A
y = x(12 — 2x)%,
g 0=x=6
=
©
>
min
min
AN L /> X
0 2 6
NOT TO SCALE

FIGURE 4.33 The volume of the box in
Figure 4.32 graphed as a function of x.
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Example 2 i 2r |

-

= Designing an efficient
cylindrical can

= Design a 1-liter can h
shaped like a right
circular cylinder. What -———— "~ -9
dimensions will use =

the least material?

I“\.

FIGURE 4.34 This 1-L can uses the least
material when 2 = 2r (Example 2).

67

Tall and
thin can

Short and
wide can

/

, r>=>0

b — 3

Tall and thin

I |
= |
i ﬁ ' >r
B 0 3/500
' ™

Short and wide

FIGURE 4.35 The graph of 4 = 27r* + 2000/r is concave up.
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Example 3

-
ra

Inscribing rectangles
A rectangle is to be /N*/“ N xz)

inscribed in a semicircle
of radius 2. What is the 2
largest area the

rectangle can have, and2 —x 0
what are its dimensions?

FIGURE 4.36 The rectangle inscribed in

the semicircle in Example 3.
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4.6

Indeterminate Forms and
L’ Hopital’s'Rule

70
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Indeterminate forms 0/0

THEOREM 6  L'Hopital’s Rule (First Form)
Suppose that f(a) = g(a) = 0, that f'(a) and g'(a) exist, and that g’(a) # 0.
Then

L0 @

—a gx)  g'la)

71

‘ Example 1

= Using L’ Hopital’s Rule
= (a)

. 3x—-sinx 3—-cosx
lim =

x—0 X 1 Y0

= (b)
1
lim \/1+x—1: 21+ X 1

x—0 X 1 2

x=0
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THEOREM 7  L'Hopital’s Rule (Stronger Form)

Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open inter-
val [ containing a, and that g’(x) # 0 on/ifx # a.Then
fx) f'(x)

lim “—— = Ii
et g’

assuming that the limit on the right side exists.

73

Example 2(a)

Applying the stronger form of L’ Hopital’s rule
(a)

1 -1/2
Iim\/1+x 21 x/2:“m(1/2)(1+x) 1/2

x—0 X x—0 2X
B 312

i A

x—0 2?2 8
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Example 2(b)

= Applying the stronger form of L' Hopital’s rule
= (b)

X —Sin X
3

lim

Xx—0 X

75

THEOREM 8 Cauchy’s Mean Value Theorem
Suppose functions f and g are continuous on [a, b] and differentiable throughout
(a, b) and also suppose g'(x) # 0 throughout (a, b). Then there exists a number ¢
in (a, b) at which

f1(e) _ fb) ~ fla)

g'(c)  g(b) — gla)
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Using L’Hopital’s Rule
To find
. fx)

lim ——

x—a g (x)
by I’Hopital’s Rule, continue to differentiate f and g, so long as we still get the
form 0/0 at x = a. But as soon as one or the other of these derivatives is differ-
ent from zero at x = a we stop differentiating. U’ Hopital’s Rule does not apply
when either the numerator or denominator has a finite nonzero limit.

77

Example 3

Incorrectly applying the stronger form of L’
Hopital’s

. 1-—cosx
Ilm—2
x>0 X+ X
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Example 4

Using I' Hopital’s rule with one-sided limits

sin X COSX _

(@) im ——=lim
x—0" X x—>0+ 2X
sin X COSX _

(b) lim 222 = lim

X—0" X X—0" 2 X

79

Indeterminate forms o /o0 o0.() oo

oo

If f>+oc and g2+ as x—>a, then

lim ) _ jim £ X)
=ag(x) =2 g'(x)

a may be finite or infinite
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Example 5
Working with the indeterminate form

oo/oo

. sec X
a) lim ———

x->7/2] 4 tan X

. sec X . sec xtan x . .

Iim —— = |Im > = lim sinx=1
x>(z/2)"14+tan X x—(z/2)~ Sec” X x—(712)”

. Sec X

Iim ————.=...

x—>(z/2)" 14+ tan X

81

Example 5(b)

. X=2X°
b) lim =...
( )Hoo 3X° + 5x
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Example 6

Working with the indeterminate form -0

. ( . 1)
lim| xsin—
X—>00 X

83

Example 7

Working with the indeterminate form oo - o

: 1 1 . [ X=sInX
lIim| ————|=Ilim _ =..
x>0\ §INX X ) x>0 XSInX
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4.8

Antiderivatives

85

‘ Finding antiderivatives

DEFINITION Antiderivative

A function F is an antiderivative of f on an interval / if F'(x) = f(x)
forall xin /.
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Example 1

Finding antiderivatives
Find an antiderivative for each of the

following functions
(@) f(x) = 2x
(b) f(x) = cos x

(c) h(x) = 2x + cos X

87

If F 1s an antiderivative of f on an interval /, then the most general antiderivative

of fon/is

where C is an arbitrary constant.

F(x) + C
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Example 2 Finding a particular
antiderivative

Find an antiderivative of f (x) = sin x that
satisfies F(0) = 3

TABLE 4.2 Antiderivative formulas

Function General antiderivative

xn+1

1 x" + C, n # —1, nrational
n—+1

2. sin kx - % + C, kaconstant,k # 0

3. cos kx Sll}(kx + C, kaconstant,k # 0

4. sec’ x tanx + C

5, csc? x —cotx + C

6. sec x tan x secx + C

7. csc x cot x —cscx + C
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Example 3 Finding antiderivatives using
table 4.2

Find the general antiderivative of each of the
following functions.

(@) f(x) =x°

(b) g (x) = 1/x1/2

(c) h (X) = sin 2x
(d) 1 (X) = cos (x/2)

91

Example 4 Using the linearity rules for
antiderivatives

Find the general antiderivative of
f (X) = 3/x12 + sin 2x
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DEFINITION Indefinite Integral, Integrand
The set of all antiderivatives of f is the indefinite integral of f with respect to x,

denoted by
/ fx) dx.

The symbol f is an integral sign. The function f is the integrand of the inte-
gral, and x is the variable of integration.

93

‘ Example of indefinite integral notation

[2x dx =x2+C

cosx dx=sinx+C

[ (2x +cosx) dx = x? +sinx+C
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Example 7 Indeﬁmte integration done

term-by term and rewriting the constant of

integration
= Evaluate
j(xz - 2x+5)dx :fxzdx —_[2xdx+ j5dx =...
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Chapter 5

Integration

5.1

Estimating with Finite Sums
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Riemann Sums
Approximating area bounded by the graph

between [4,0]

N\
y=fx
a b a
FIGURE 5.8 A typical continuous function y = f(x) over a closed interval [a, b].
3
Area is approximately given by
f(Cr)AXy +(Cr)AxX,+ f(C5)Axg+ ... + T(C,)AX,
3 ¥ = flx)
7:.\/ Kﬂ w))
(ep fffg))/ E AN
LT
il m\uij/ = Partition of [a,b] is the set of

(€2, flca)) —_
m P ={Xp X35 Xo, «on Xpgy X}
FIGURE 5.9 The rectangles approximate the region between the graph of the function

v = f(x) and the x-axis. m a= X0< X1< X2 < Xn—l < Xn:b
m C,E[X,.1, X,]
= ||P|| = norm of P = the largest
of all subinterval width
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¥

A

y=f(x)

y =fx)

> X

Q

(b)

> X

Riemann sum for f on [a,b]

R, = 1(Cy)AX, + 1(Cp)Ax,+
f(cg)Ax+ ... +f(C)AX,

FIGURE 5.10 The curve of Figure 5.9 with
rectangles from finer partitions of [a, b].
Finer partitions create collections of
rectangles with thinner bases that approx-
imate the region between the graph of f and
the x-axis with increasing accuracy.

e

» Figure 5.4

N ,v=1—.1'2
N
N

(a)

<] _\'=1—_\rl

(b)

Let the true value of the
areais R

Two approximations to R:

C,= X, corresponds to case
(a). This under estimates
the true value of the area
R if n is finite.

C,= X,.; corresponds to
case (b). This over
estimates the true value of
the area S if n is finite.

go back
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I imits of finite sums

Example 5 The limit of finite approximation to
an area

Find the limiting value of lower sum
approximation to the area of the region R
below the graphs f(x) = 1 - x? on the interval
[0,1] based on Figure 5.4(a)

Solution

AX, = (1-0)/n=1/n =Ax; k=1,2,...n
Partition on the x-axis: [0,1/n], [1/n, 2/n],..., [(n-1)/n,1].
C, = X, = KAX = k/n
The sum of the stripes is
R, = AX, f(c,) + Ax, f(c,) + Ax; f(c3) + ...+ AX,, f(c,)
= AX f(1/n) + Ax f(2/n) + Ax f(3/n) + ...+ AX,, f(1)
Y =" AX f(kAX) = Ax X ;" T (K/n)
(1/n) =" [1 - (kKnY]
X" Un- kP =1-(X,,"k)/n3
=1-[(n) (n+1) 2n+1)/6])/ n3= 1 — [2 n? + 3 n?+n]/(6N3)

Y K2 = () (N+1) (2n+1)/6
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Taking the limit of n — <o

ImR =R=

N—o0

3 2
(1— al +63'2 +'"j=1—2/6:2/3
n

The same limit is also obtained if ¢, = X, is chosen
instead.

For all choice of c, € [X,;,X,] and partition of P, the
same limit for S is obtained when n - o

5.5

The Definite Integral

10
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DEFINITION The Definite Integral as a Limit of Riemann Sums
Let f(x) be a function defined on a closed interval [a, b]. We say that a number /
is the definite integral of f over [a, b] and that / is the limit of the Riemann
sums > 7=1f(cr) Axy if the following condition is satisfied:

Given any number € > 0 there is a corresponding number 6 > 0 such that
for every partition P = {xo, x, ..., x,} of [a, b] with |P| < & and any choice of
¢ in [xg—1, x;], we have

n

Ef(ck) Ax, — I < €.

k=1
1
o ) The function is the integrand.
Upper limit of integration
T~ b / x is the variable of integration.
Integral sign \/ f ( ) d /
a
o . / When you find the value
Lower limit of integration N J ;

' of the integral, you have

Integral of f from a to b evaluated the integral.

“The integral from a to b of f of x with
respect to x”

12
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The limit of the Riemann sums of f on [a,b]
converge to the finite integral |

n

lim > f (c)Ax =1 =] f(x)dx

a
IPI—0 &=

We say f is integrable over [a,b]
Can also write the definite integral as

=" fedx=[ fdt =] f(u)du

_(° f (what ever% d (what ever)
Theaariable of integration is what we call a

‘dummy variable’

13

THEOREM 1 The Existence of Definite Integrals
A continuous function is integrable. That is, if a function f is continuous on an
interval [a, b], then its definite integral over [a, b] exists.

Question: Is a non continuous
function integrable?

14
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Integral and nonintegrable functions

= Example 1
= A nonintegrable function on [0,1]

1, if x is rational
f(x)= e e
0, ifxisirrational

= Not integrable

15

‘ Properties of definite integrals

THEOREM 2
When f and g are integrable, the definite integral satisfies Rules 1 to 7 in Table 5.3.

16
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4. Sum and Difference

5. Additivity:

7. Domination:

TABLE 5.3 Rules satisfied by definite integrals

a b
1. Order of Integration: / f(x)dx = —/ flx) dx A Definition
b a
a
2. Zero Width Interval: / f(x) dx=0 Also a Definition
a
b b
3. Constant Multiple: / kf(x} dx = / f(x) dx Any Number &

6. Max-Min Inequality: 1f f has maximum value max f and minimum value

b
minf-(b—a)E/f(x)de max f+(b — a).

b b
/ —f{x)de—/f(x)dx k =

b b b
: /(f(x):I:g(x))dx=/f(x)dx:l:/g(x)dx

b e c
/f(x)dx+£f(x)dx=/f(x)dx

min f on [a, b], then

b b
f(x) = g(x) on[a, b] =»'/}’(Jc}dx2_/g{x}abc

b
f(x) =0on[a,b] = j f(x)dx = 0 (Special Case)

17
4 4 y=2fx) 4
y = flx) + glx)
y =) /\/‘
y=zgx)
y=1x)
¥ = filx)
ol a o ol a b 0l a b
(a) Zero Width Interval: (b) Constant Multiple: (c) Sum:
] b ] b ] ]
/f(x)dx =0. / kf(x) dx =k/ f(x) dx. f (flx) + glx))dx = [ f(x)dx +fg(x)dx
(The area over a point is 0.) (Shown fork = 2.) (Areas add)
¥,
¥ y
max f y=flx)
/\/\ y= f(_t)
min f
& y=3g)
0 0l a b Ola b
(d) Additivity for definite integrals: (e) Max-Min Inequality: (f) Domination:
b ¢ o b
/ flx)dx + ﬁ flx)dx = f flx) dx min f- (b —a) = f flx) dx f(x) = g(x)on[a, b]
d a i h ]
=max f+(b— a) =>f f(x}drz/g(r)dt
FIGURE 5.11 a a

18




Chapter 5 Integration

Example 3 Finding bounds for an integral

= Show that the value of

f 1+ cos xdx

IS less than 3/2 0

= Solution
= Use rule 6 Max-Min Inequality

19

Area under the graphs of a nonnegative
function

DEFINITION Area Under a Curve as a Definite Integral

If y = f(x) is nonnegative and integrable over a closed interval [a, b], then the
area under the curve y = f(x) over [a, b] is the integral of f from a to b,

A= /bf(x)dx.

20




Chapter 5 Integration

Example 4 Area under the line y = x

b
Compute IO XdX  (the
Riemann sum)

and find the area A
under y = x over the
interval [0,b], b>0

FIGURE 5.12 The region in
Example 4 is a triangle.

21

Solution

By geometrical consideration:
A=(1/2)xhighxwidth= (1/2)xbxb=

Choose partition of n subinterval with equal width:

{0=X%5,%,%,,...X, =b}, A, =X, —X_, =Ax=b/n

Riemann sum:

lim ZAxf (c)= IlmAxZ f(x)

N—o0

= IlmAxek = IlmAkaAx

n—oo n—oo

= lim(Ax) Zk_m\o( jzn:k

n—>oo
k

_ |im(9)2”(”—+l): Iim(E)z n(n+1)

n 2 n—x{ 2

y

Al /

FIGURE 5.12 The region in

Example 4 is a triangle.
22




Chapter 5 Integration

Using the additivity rule
for definite integration:

jxdx::a[xdx+jlxdx
0 0 a

b b a b2 aZ
—>'a[xdx=£xdx—£xdx:?—?,a<b

Using geometry, the area
IS the area of a trapezium
A= (1/2)(b-a)(b+a)

= b?/2 - a?/2
Both approaches to
evaluate the area agree

0 a b

<—b —a—]

FIGURE 5.13 The area of

this trapezoidal region is
A = (b? — a?))2.

23

One can prove the following Riemannian sum
of the functions f(x)=c and f(x)= x*

b
/ cdx = c(b — a), ¢ any constant
a

b 3
/‘;xzdx=%—

a<hb

(2)

(3)

24




Chapter 5 Integration

Average value of a continuous function
revisited

Average value of nhonnegative continuous
function f over an interval [a,b] is

f(C1)+ f(C2)+"' f(Cn) _ 1if(ck)

n n

AX 1
—ak§=1 (c.) b—ak§=1 (c)

In the limit of n o=, the average =

1b
—— | f(x)dx
b_a£ (x)

25

FIGURE 5.14 A sample of values of a
function on an interval [a, b].

26




Chapter 5 Integration

DEFINITION The Average or Mean Value of a Function

If f is integrable on [a, b], then its average value on [a, b], also called its mean
value, is

| b
av(f) = m] f(x) dx.

27

Example 5 Finding average value

= Find the average value ! 7
of f(X)= 42 2| () =V4—x
over [-2,2] |

FIGURE 5.15 The average value of
f(x) = V4 — x?on[—2,2] is 7/2

(Example 5).

28




Chapter 5 Integration

5.4

The Fundamental Theorem of Calculus

29

Mean value theorem for definite integrals

THEOREM 3 The Mean Value Theorem for Definite Integrals
If f is continuous on [a, b], then at some point ¢ in [a, b],

1 b
fle) = m/ fx) dx.

30




Chapter 5 Integration

A
y = fx)
|
/
|
[ f(c), average
: height
|
0] a c b >
f——b—a—

FIGURE 5.16 The value f(c) in the

Mean Value Theorem is, in a sense, the
average (or mean) height of f on [a, b].
When f = 0, the area of the rectangle
is the area under the graph of f from a

to b,

31

not assumed

' > X

.
—

2

FIGURE 5.17 A discontinuous function
need not assume its average value.

32




Chapter 5 Integration

Example 1 Applying the mean value

theorem for integrals

Find the average value of
f(x)=4-x on [0,3] and where
f actually takes on this value
as some point in the given
domain.

Solution
Average = 5/2
Happens at x=3/2

»
\4)‘;
3
2 |
- |
|
|
|
= :
| \
|
I
[ > x
0 1 3 2 3 z\
2

FIGURE 5.18 The area of the rectangle

with base [0, 3] and height

5/2 (the average

value of the function f(x) = 4 — x) is
equal to the area between the graph of f
and the x-axis from 0 to 3 (Example 1).

Fundamental theorem Part 1

Define a function F(x): F(x)=] f®at
X,a € |, an interval over which f(t) > 0 is

Integrable.

The function F(x) is the area under the
graph of f(t) over [a,x], x>a =0

34




Chapter 5 Integration

y area = F(x)

L
>

y=f(

N

Ol a

> [
X b

FIGURE 5.19 The function F(x) defined
by Equation (1) gives the area under the
graph of f from a to x when f is
nonnegative and x > a.

35

Fundamental thegrem Part 1 (cont.)

A

Nny(t)

F(x+h)—F(x)=hf(x) S
F(X+h)—F(X zf()() f(x)
LimF(XJrh)—F(x):F,(X):?(Xf xx+h b

The above result
holds true even if f
IS not positive
definite-over{a,b]

FIGURE 5.20 In Equation (1), F(x) is
the area to the left of x. Also, F(x + h) is
the area to the left of x + 4. The
difference quotient [F(x + &) — F(x)]/h
is then approximately equal to f(x), the
height of the rectangle shown here.

36




Chapter 5 Integration

THEOREM 4 The Fundamental Theorem of Calculus Part 1
If f is continuous on [a, b] then F(x) = j;x f(¢) dt is continuous on [a, b] and
differentiable on (a, b) and its derivative is f(x);

Fla) =4 / 0 di = ), @)

Note: Convince yourself that
(1) F(x) 1s an antiderivative of f(x)?

(iDf(x) is an derivative of F(x)?

37

f(x) 1s an

d/dx derivative
/\ of F(x)
F(x) f(x) = F'(x)

F(x) Is an
antiderivative of
f(x) because
F'()=109

38




Chapter 5 Integration

Example 3 Applying the fundamental

theorem

Use the fundamental theorem to find

de 1
dx-[1+t2

a

d X
(a)— j costdt (b)

dy .. o dy .. %
c)— iIfy=|3tsintdt d)—= if y= | costdt
©) ify j (@) ify j

39

Example 4 Constructing a tunction with a
otven derivative and value

Find a function y = f(x) on the domain (-7/2,
72) with derivative dy/dx = tan x

that satisfy f(3)=5.
Solution K(X) = jtantdt

Set the constant a = 3, and then add to k(3) =
0 a value of 5, that would make k(3) +5=5

Hence the function that will do the job is

f(x):k(x)+5=_"tantdt+5
3

40




Chapter 5 Integration

Fundamental theorem, part 2 (The
evaluation theorem)

THEOREM 4 (Continued)  The Fundamental Theorem of Calculus Part 2

If f is continuous at every point of [a, b] and F is any antiderivative of f on [a, b],
then

b
/ f&x) dx = F(b) — F(a).

41

‘ To calculate the definite integral of fover
|4,0], do the following

= 1. Find an antiderivative F of f, and
= 2. Calculate the number

T f (x)dx = F (b) - F(a)

42




Chapter 5 Integration

To summarise

ij f ()t = SE )
dx

I(dF(t)jdt =j f (t)dt = F(x) - F(a)

- f(x)

Example 5 Evaluating integrals

(a) J' COS Xdx
0

0
(b) j sec x tan xdx

-rl4

(c)j(gx/_—%jdx




Chapter 5 Integration

Example 7 Canceling areas

Compute y
(a) the definite integral |
of f(x) over [0,27]

(b) the area between Area = 2 /

the graph of f(x) and 0 N\, !
the x-axis over [0,27]
1k

FIGURE 5.22 The total area between

y = sinx and the x-axis for 0 = x = 27
is the sum of the absolute values of two
integrals (Example 7).

3

~ y =sinx

45

Example 8 Finding area using
antiderivative

Find the area of the region between the x-
axis and the graph of f(x) = x3 - x? — 2x,

Sl S X< 2.

Solution
First find the zeros of f.
f(x) = x(x+1) (x-2)

46




Chapter 5 Integration

FIGURE 5.23 The region between the

curve y = x° — x? — 2x and the x-axis

(Example 8).

47

5.5

Indefinite Integrals and the Substitution
Rule

48




Chapter 5 Integration

Note

The indefinite integral of f with respect to x,

| £ (dx

IS a function plus an arbitrary constant

b
A definite integral [ f(x)dx is a number.

49

The power rule in integral form

From

d(u™ ~du ( ndu] u™t
— =u ——>_[ u"— |dx =
dx\ n+1 dx dx n+1

j u"— —j —dx Iu”du differential of u(x),du is du=d—udx
dx

we obtaln the followmg rule

If u 1s any differentiable function, then

un+1 )
/u du—n+ 0 +C (n # —1, n rational).




Chapter 5 Integrati

Examlfl)le 1 Using the power rule

j\/1+ y* -2y dy =_fxﬂ3—; dy
:jJadu:m

51

Example 2 Adjusting the integrand by a
constant

_[\/Hdt:j%\/r—l- Adt
d
:%j\/a(d_fj dt%fﬁ du=...

52




Chapter 5 Integration

Substitution: Running the chain rule
backwards

THEOREM 5 The Substitution Rule
If u = g(x) is a differentiable function whose range is an interval / and f is con-
tinuous on /, then

/f(g(x))g'(x) dx = /f(u) du.

let u=g(x; [ Flg0l- g'(dx = f (u) -3—udx ~[ ()du
X

Used to find the integration with the integrand in the

form of the product of f[g(x)]-g'(x)dx

J fl90a]-g'(9dx = | f (u)du

f(u) du

53

Example 3 Using substitution

jcos(7x+5) dx =Icosu W _Lsnu+c =£sin(7x+5)+C
— ;d" 77 7
7

54




Chapter 5 Integration

Example 4 Using substitution

szsin x> dx =_[sin x° X%dx =
—_— ——
u 1
§du

55

Example 5 Using Identities and
substitution

o

J L dx=.|'se022xdx:fseczg§ X =

coS% 2X

{

! du

N |-

1jsec2 u du =lfd(tan u) :ltanu +C =1tan 2Xx+C
29— 2 2 2

itanu

du

56




Chapter 5 Integration

Example 6 Using different
substitutions

3 2
z2°+1 ~

u71/3

27 ({2 -1/3 _ [ Y3y —
j dz_j(z +1) J %’,d_z' fu du =...

57

The integrals of sinx and cos®x

Example 7

Jsin2 X dx =%II—COSZX dx

58




Chapter 5 Integration

The integrals of sin’x and cos?x

Example 7(b)

Icosz X dx =%jc052x +1ldx=...

59

Example 8 Area beneath the curve
y=sin x? 3
For Figure 5.24, find

(a) the definite integral
of g(x) over [0,27].

(b) the area between
the graph and the x-
axis over [0,27].

1+ y = sin“x

[T L

1
T
2

FIGURE 5.24 The area beneath the
curve y = sin® x over [0, 277] equals 7
square units (Example 8).




Chapter 5 Integration

5.6

Substitution and
Area Between Curves

61

‘ Substitution formula

THEOREM 6 Substitution in Definite Integrals
If g’ is continuous on the interval [a, b] and f is continuous on the range of g, then

b g(b)
/ He)-g')ar = [ du

gl

X=b u=g(b)

let u:g(x);I f[g(x)]- g'(x)dx = j f[u]-j—udx: j f (u)du

x=a u=g(a)

62




Chapter 5 Integration

Example 1 Substitution

Evaluate
J3X2\/X3 +1 dx

-1

u(x=1)

=1
I\/x3+1-3x2dx= j u’?.du =...

x=—1 U2 du u(x=-1)

63

Example 2 Using the substitution formula

X=xl2
j cot xcsc? xdx = ?

x=rl4

2
u
fcotxcsc2 xdx =Icotx-csc2 xdx =—'|.udu ———+¢
u —du 2
2

_cot’x
7[/2 2 7[/2 2 7[/4
cot” x cot” x 1
.[ cot xcsc? xdx = — = == COt2(7Z'/4)—COt2(7Z'/2)
72'/4 /4 2 /2 2 ~ _ “ ~ 9
T T l 0

64




Chapter 5 Integrat ion

Detinite integrals of symmetric

functions
K y
[\ . o
—a 0 a >
(a) (b)

FIGURE 5.26 (a) feven, [ f(x)dx = 2y f(x)dx (b) fodd, [* f(x)dx =0

65

Theorem 7

Let f be continuous on the symmetric interval [—a, a].

(a) If f is even, then /a f(x)dx = 2/af(x) dx.
—a 0

(b) If f is odd, then / ’ f(x) dx = 0.

66




Chapter 5 Integration

Example 3 Integral of an even
function

2

Evaluate j(x4 _4x% + 6)dx
e

Solution;

f(X)=x*—4x*+6;
f(—x)= (—x)4 —4(—x)2 +6=x"—4x"+6=f(X)
even function

How about integration of the same
function from x=-1to x=2

67

Area between curves

y
Upper curve

y=fx)

Lower curve
y = gx)

FIGURE 5.27 The region between
the curves y = f(x) and y = g(x)
and the lines x = aand x = b.
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|Chapter 5 Integration

A
y =f(jc/)_, = (cx f(cr))
)% %
Flep) — gep)
a=xy | // %Ll //: Cx gcf
s ~ > X AA I ‘
N \ A / a k |
%) | b — xn S| / Cl | b’x
| e |
e T .
(Ckvg(ck))

Axk

FIGURE 5.28 We approximate the  FIGURE 5.29 The area A; of the kth
region with rectangles perpendicular rectangle is the product of its height,
to the x-axis. fler) — g(cx), and its width, Axy.

ASY A =) A [(1(6)-9(c,)]

‘u!a'umoLAXkL“(Ck) gc) =] [F(0=g()]ax

DEFINITION Area Between Curves

If f and g are continuous with f(x) = g(x) throughout [a, b], then the area of
the region between the curves y = f(x) and y = g(x) from a to b is the inte-
gral of (f — g) from a to b:

b
= / [f(x) — g(x)] dx.
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Chapter 5 Integration

Example 4 Area between intersecting

curves
Find the area of the

region enclosed by
the parabolay =2 -
x? and the line y = -x.

AA:(f(x)—g(x))oAx/

A=lim> AA = [ dA
k=1

N—00 =

A=[IE )
2—X

='[_21(2— X =x)dx=".

(x) - 9 (]Jdx

2
(5 f(2)
/ y=2—x?
A/
| ] | > X
-1 0] 1 2
[(x, g())
| y=-x\(2,-2

FIGURE 5.30 The region in

Example 4 with a typical
approximating rectangle.

Example 5 Changing the integral to
match a boundary change

Find the area of the
shaded region

Area=A+B
A:IOZ\/;dx;
B = L“&— (X = 2)dx

4
Area=/(\/)_c—x+2)dx
2
2 y=\/1_c
2F Area = [Vadx \ (x, f(0) N
% B
y=x-2

Yy

(4,2)
(x, f(x))
S

- (x, g(x))

® L x
0 / y=072 4

(x, g(x))

FIGURE 5.31 When the formula for a
bounding curve changes, the area integral
changes to become the sum of integrals to
match, one integral for each of the shaded
regions shown here for Example 5.
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Integration with Respect to y

If a region’s bounding curves are described by functions of y, the approximating rectangles
are horizontal instead of vertical and the basic formula has y in place of x.

For regions like these A ZAAk - ZAyk |:( f(c)-a(c ):|

; Y A= lim ZAyk[ fle)-a(c)]=[ [f () -a(y]dy

IPlI—>0 4

d
¥ dl L -
x=fy) o e g('é = f(y)
x = g(y) > X

x = g(y)
e cr & \

0 g 0

q>
-

use the formula

d
4= / [f(y) — g(»)]dy.

_In this equation f always denotes the right-hand curve and g the left-hand curve, so

f(») — g(y) is nonnegative.
73

Example 6 Find the area of the region in
Example 5 by integrating with respect to y

A

(4,2)

AA=(T(y)-a(y))-Ay 2k _ 2 :
x=y+

—"mZAAk [im- oy )y H(y)f”g(y)j“@)’”

:.[o(y+2)_(y2)dy:"' Of y=0 2 4

FIGURE 5.32 It takes two
integrations to find the area of this
region if we integrate with respect to
x. It takes only one if we integrate
with respect to y (Example 6).




Chapter 6 Lengths of Plane Curves

0.3

Lengths of Plane Curves

‘ Length of a parametrically defined

curve

. the line segment
» between P, and P, ,

0

» X
n
FIGURE 6.24 The curve C defined L — Ilm Lk
IPI->0 Zk

parametrically by the equations x = f(¢)

and y = g(t),a = t = b. The length of
the curve from 4 to B is approximated by
the sum of the lengths of the polygonal
path (straight line segments) starting at
A = Py, then to Py, and so on, ending at

B:

Py




Chapter 6 Lengths of Plane Curves

Ly

Py = (f(te-1), 8(t—1))

Axy = f(t)

Py = (f(t), 8(10)

: Ayr=(¢ (tk) —d (tk—l)

()

> X

0

FIGURE 6.25 The arc P,— Py 1s

approximated by the straight line segment

shown here, which has length
Ly = V(Ax)? + (Ayp)?.

=g(t)-9(t_)=9't)-(t
Ax = f(t)— fFt_)=f't)-(t

due to mean value theorem

~t,)=9'(t)- AL,
—t.,)=f'(t)) At

L=y (A% ) =ty (@) + (1)
L= LLTOZI(: L = |LI||TOZ L
= i A \/ f
“P|Hm0 ty(9' ) (t, ))

— j:\/(g ) + (1) dt= f\/(z—i’]z + (‘;—)t‘jzdt




Chapter 6 Lengths of Plane Curves

DEFINITION  Length of a Parametric Curve

If a curve C is defined parametrically by x = f(¢) and y = g(t),a =t = b,
where f' and g’ are continuous and not simultaneously zero on [a, b], and C is
traversed exactly once as 7 increases from ¢ = a to ¢t = b, then the length of C is

the definite integral

b
=/ VIfOF + [g'(0)F dt

Example 1 The circumference of a

circle
Find the length of the circle of radius r
defined parametrically by
x=rcost andy=rsint, 0<t<2r

i ( j +[3—)t(j2dtsZf\/(rcost)2+(rsint)2dt

fdt— 2wr

0




Chapter 6 Lengths of Plane Curves

Length of a curve y = f(x)

Assign the parameter x = t,the length of the curve
y = f(x) is then given by

—I\/ jdt

dy dy dx _dy (”dx j

= X (t = —
V= YIXOI= 5= 45 90~ dx

b 2 b 2
szdt (d_y d—Xj +(d_xj =Idx (d_yj +1
" dx dt dt . dx

E dxyJ[ £ 00T +

Formula for the Length of y = f(x), a=x=h

If f is continuously differentiable on the closed interval [a, 4], the length of the

curve (graph) y = f(x) fromx = atox = bis

b dy 2 b
=/ 1+ (E) dx=/ V1 + [f'(x)] dx.

(2)




Chapter 6 Lengths of Plan

Example 3 Applymg the arc length
formula for a graph

Find the length of the curve

-1, 0<x<1

_AV2 g
3

Dealing with discontinuity in dy/ dx

At a point on a curve where dy/dx falls to
exist and we may be able to find the curve’s

length by expressing x as a function of y and
applying the following

Formula for the Length of x = g(y), c=y=d

If g is continuously differentiable on [¢, d], the length of the curve x = g(y)
fromy =ctoy =dis

d 2 d
L—f 1+ (;’—;) dy—/ V1 + [P dy. 3)

10




Chapter 6 Lengths of Plan

Example 4 Length of a graph which has a
discontinuity in dy/dx

Find the length of the curve y = (x/2)%3 from X
=0tox=2.

Solution

dy/dx = (1/3) (2/x)12 is not defined at x=0.

dx/dy = 3y'2 is continuous on [0,1].

11

0 1 2

FIGURE 6.27 The graph of y = (x/2)%3
from x = 0 to x = 2 is also the graph of
x =2 fromy=0toy =1
(Example 4).

12
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Chapter 7

Transcendental Functions

7.1

Inverse Functions and
Their Derivatives




Chapter 7 Transcendental Functions

DEFINITION One-to-One Function

A function f(x) is one-to-one on a domain D if f(x;) # f(x;) whenever x; # x;
in D.

Example 1 Domains of one-to-one
functions
(a) f(x) = x12 is one-to-one on any domain of
nonnegative numbers

(b) g(x) = sin xis NOT one-to-one on [0, 7] but
one-to-one on [0, 42].




Chapter 7 Transcendental Functions

The Horizontal Line Test for One-to-One Functions
A function y = f(x) is one-to-one if and only if its graph intersects each hori-
zontal line at most once.

One-to-one: Graph meets each
horizontal line at most once.

y y=_x2

Same y-value

/1N y
Same y-value

N1 I / \
| | x AN FIGURE 7.1 Using the horizontal line test, we

I > X
-1 0| 1 ™ 57\
6 6 see that y = x° and y = Vx are one-to-one on
g their domains (— o0, 60) and [0, ©0), but y = x?
y =sinx . .
and y = sinx are not one-to-one on their

Not one-to-one: Graph meets one or —— domains (—oc, 00)
. . » o
more horizontal lines more than once.
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DEFINITION Inverse Function

Suppose that f is a one-to-one function on a domain D with range R. The inverse

function f~! is defined by

fa) = b if f(b) = a.
The domain of f~!is R and the range of f~!is D.

¥ =fix)

ANGE OF f°
e
A

MaINOF f !
=

,x=f"m

¥

Y

x
DOMAIN OF f

(a) To find the value of fat x, we start at x,
2o up to the curve, and then over to the y-axis.

>

I

=
RANGE OF f 1

(b) The graph of fis already the graph of !,
but with x and y interchanged. To find the x

that gave y, we start at y and go over to the curve
and down to the x-axis. The domain of £~ is the
range of f. The range of f~' is the domain of f.

(c) To draw the graph of ! in the
more usual way, we reflect the

y in the line y = x.

¥
II‘l;‘_‘ //"\" o 1}
=] 4 s _ y=f"(x)
B a, y T
€ |97, A=t S
< s E
o 7/ =
7 =
/ s (b, a) Z
s =
ol
/7 £ 0 £
3 =1 -1
i DOMAIN OF DOMAIN OF f
//
s
4
rd

(d) Then we interchange the letters x and y.
We now have a normal-looking graph of /!
as a function of x.

FIGURE 7.2 Determining the graph of y = £ !(x) from the graph of y = f(x).
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Finding inverses

1. Solve the equation y =f(x) for x. This gives
a formula x = f -1(y) where x is expressed as
a function of y.

2. Interchange x and y, obtaining a formula y =
f -1(x) where f -}(x) is expressed in the
conventional format with x as the
iIndependent variable and y as the dependent
variables.

Example 2 Finding an inverse

function

Find the inverse of y = x/2 + 1, expressed as a
function of x.

Solution

1. solve for x interms of y: x =2(y - 1)

2. interchange xand y: y = 2(x — 1)

The inverse function f1(x) = 2(x — 1)

Check: f1f(x)] = 2[f(x) = 1] = 2[(x/2 + 1) - 1] =x =f
[F* ()]

10
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FIGURE 7.3 Graphing

f(x) = (1/2)x + land f'(x) = 2x — 2
together shows the graphs’ symmetry with
respect to the line y = x. The slopes are
reciprocals of each other (Example 2).

11

Example 3 Finding an inverse

function

Find the inverse of y = x2, x = 0, expressed
as a function of x.

Solution

1. solve for x in terms of y: X =y
2. interchange x and y: y = VX
The inverse function f1(x) = Vx

12




/6

FIGURE 7.4 The functions y = Vx and

y = x2, x = 0, are inverses of one

another (Example 3).

Derivatives of inverses of differentiable
functions

From example 2 (a linear function)

f(x) =x/2 + 1; F1(X) = 2(x + 1);

df(x)/dx = 1/2; df -}(x)/dx = 2,

l.e. df(x)/dx = 1/df -1(x)/dx

Such a result is obvious because their graphs are
obtained by reflecting on the y =xline.

In general, the reciprocal relationship between the
slopes of f and f* holds for other functions.
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/s
Ve
Ve
Ve
Ve
Ve
/
Ve
/7
/
- y=mx+b
-1 Slope = m

FIGURE 7.5 The slopes of nonvertical
lines reflected through the line y = x are
reciprocals of each other.

15

df
slope at X = as—

X
P
slopeatx=b="f"(a)=
dx o
b, /
a =f_'(b)————————(—a—)|/
S y=5w
| > X
0 b
The slopes are reciprocal: (f‘l)'(b) = ,1 or (f_])’(b) = f—l
’ b £ A 0)

FIGURE 7.6 The graphs of inverse functions have reciprocal
slopes at corresponding points.

16
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THEOREM 1 The Derivative Rule for Inverses

If f has an interval / as domain and f'(x) exists and is never zero on /, then f ! is
differentiable at every point in its domain. The value of (f ')’ at a point b in the
domain of ! is the reciprocal of the value of f’ at the pointa = f 1(b):

=1y h) = 1
v (71 ®)
or
it |
dx |,—p d_T )
dx | x=\(p)

17

Example 4 Applying theorem 1

The function f(x) = x?, x = 0 and its inverse f
‘1(x) = Vx have derivatives f '(x) = 2x, and

(f-1)'(x) = 1/(2x).
Theorem 1 predicts that the derivative of
f-1(x) is
(F-1)'(x) = 1/ f[fF1(x)] = 1/ f '[VX]
= 1/(2X)

18
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> "=

y=x%x=0

4 Slope4¢(2,4)

1
Slope 7

\ _
14,2 y=Vx

1F

1
0 1

|
!
\
L
3 4

|
|
|
|
|
|
|
i
|
|
I
2

FIGURE 7.7 The derivative of

f~!(x) = Vx at the point (4, 2) is the
reciprocal of the derivative of f(x) = x? at
(2, 4) (Example 4).

19

Example 5 Finding a value of the inverse
derivative

Let f(X) = x3 — 2. Find the value of df -/dx at x

= 6 = f(2) without a formula for f -1,
The point for f is (2,6); The corresponding
point for f -1is (6,2).
Solution
df /dx =3x?
df -4/dx|,_s = 1/(df /dx|,,)= 1/(df/dx]|,- ,)
= 1/3x?|,-, = 1/12

20
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A y= x3-2
6 (2,6)¢ Slope 3x> =3(2)% =12

/ Reciprocal slope: 1

12
| /

_2 0 /

-2

— (6.2
FIGURE 7.8 The derivative of

f(x) = x> — 2 atx = 2 tells us the
derivative of f ! at x = 6 (Example 5).

> X

i
l
6

21

7.2

Natural Logarithms

22




Chapter 7 Transcendental Functions

Definition of natural logarithmic
fuction

DEFINITION  The Natural Logarithm Function

lnx=/%dt, x>0
1

X x 1
IO < x < 1, then In x :/ Lar= / Lar
1 X
gives the negative of this area.
Ifx>1,thenlnx =
gives this area. y=Inx
1 -
> X
0 1\ X
1
Ifx = 1,thenlnx=/ Lar=o.
1

FIGURE 7.9 The graph of y = Inx and its
relation to the function y = 1/x,x > 0. The
graph of the logarithm rises above the x-axis as x

moves from 1 to the right, and it falls below the
axis as x moves from 1 to the left.
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In X is an increasing function since dy/dx
=1/x>0

Domain of In x = (0, °)
Range of In X = (-0, 0)

25

lnx=/ %dx
1

TABLE 7.1 Typical 2-place
values of ln x
X In x
0 undefined
0.05 —3.00
0.5 —0.69
1 0
e lies between2, 2 0.69 | | Inx=1
and 3 3 1.10
4 1.39
10 2.30

26
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DEFINITION  The Number e
The number e is that number in the domain of the natural logarithm satisfying

In(e) = 1

27

By definition, the antiderivative of In x is just 1/x

il _1
dx nx = X"
d _ 1du
dxlnu_udx’ u>0 (1)

Let u = u (x). By chain rule,
d/dx [In u(x)] = d/du(In u)-du(x)/dx
=(1/w)-du(x)/dx

28
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Example 1 Derivatives of natural

logarithms
d
a)—In2x =
( )dx
) u=x’+3Liny=uL_
dx dx u

29

‘ Properties of logarithms

THEOREM 2  Properties of Logarithms

For any numbers a > 0 and x > 0, the natural logarithm satisfies the following
rules:

1. Product Rule: Inax = Ina + Inx
2. Quotient Rule: ln% =Ina — Inx
3. Reciprocal Rule: ln% = —Inx Rule 2 witha = 1

4. Power Rule: Inx" = rlnx 7 rational

30
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Example 2 Interpreting the properties of
logarithms

(a)in6=In(2-3)=In2+In3;
(b)In4—In5=In(4/5)=1In0.8
(c)In(1/8) =In1-1In2°=-3In2

31

Example 3 Applying the properties to

function formulas

(a)In4+Insinx=In(4sinx);

X+1
(b)In 3 In(x+1)—In(2x-3)
(c)In(secx) = Ini =—Incos x

COS X
(@)In VX +1=In(x+1) ¥*= (1/3) In(x +1)

32
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Proofoflnax =lna+ ln x

In ax and In x have the same derivative:

d d(ax) 1 1 1 d
—Ilnax = —a—=—=—1InX
dx dx ax ax x dx

Hence, by the corollary 2 of the mean
value theorem, they differs by a constant C

Inax=Inx+C
We will prove that C = In a by applying the
definition In x at x = 1.

33

Estimate the value of In 2

21
y In2=[=dx
_ 1 X
K—E !
1 21
—.2-D<|=dx<1-(2-1)=1
L y @< <1
l<In2<1
1 2
2
0 1 2 7

FIGURE 7.10 The rectangle of height
y = 1/2 fits beneath the graph of y = 1/x
for the interval 1 = x = 2.

34




Chapter 7 Transcendental Functions

The integral I (1/4) du

d 1 du
From —Ilnu==—

dx u dx
Letu>0

Taking the integration on both sides gives
| 9 inudx = j id—“d
dx

. d
J.dlnu=J.T—>lnu+C ZITU

Foru<0:

—-u>0,

d B 1 d(-u)
j&m( u)dx = j( o o dx

[d |n(—u)=jd——>|n(—u)+c"=jd—“
u u
Combining both cases of u >0,u <0,

J'd—u=ln|u|+C
u

35

n+1

u i
recall: _[u”du = +C,n rational, = -1

n+1

If u 1s a differentiable function that is never zero,

/Llldu=ln\u| + C.

From Iu‘ldu =In|u|+C.

let u = f (x).
df (x)

Ly du pdf(x)
Iu OIu_ju _J f(x) I f(x)

F'o)
:If(x)dx_ln|f(x)|+c

36
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Example 4 Applying equation (5)

2xdx ¢ d(x*=5)
(a)sz_Szj =N =5]+C

w2

(b) J~ 4cos X
J,3+2sinX

dx =...

37

The integrals of tan x and cot x

tanu du = —In |cosu| + C = In |secu| + C

cotudu = In |sinu| + C = —In|cscx| + C

/
/

38
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Example 5

—EECOSZX
_[taand _jsm2x dx = [—2.dX dx
COS 2X COS2X
=——IdC052X=——I—:——In|u|+C
COS2X

:—%In|0052x|+C

:%In |sec2x|+C

39

Example 6 Using logarithmic
differentiation

Find dy/dx if (x +1)(X+3)1/2
y = 1 xX>1

Iny =In(x*+1)+(1/2)In(x+3)-In(x—1)
d d 1d d
d—yln y_d—yln(x2 +1)+§d—yln(x+3)—d—yln(x—1)

40
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7.3

The Exponential Function

41

The inverse of In x and the number ¢

In X IS one-to-one, hence it has an inverse.
We name the inverse of In X, Int x as exp (x)

limin?x=o0, limInx=0

X—>0 X—>—0

42
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y The graph of the inverse of In x

8- y=1In"lx
o aDefinitionofeasIne = 1.

TH x=Iny
0So, e = In1(1) = exp (1)
De = 2.718281828459045...
(an irrational number)

OThe approximate value for e is
obtained numerically (later).

FIGURE 7.11 The graphs of y = Inx and
y = In"'x = exp x. The number e is
In'1 = exp (1).

43

The function y = ¢

Raising the number e to a rational power r:

e2=e-e, e2=1/e?, el2 =\e etc.

Taking the logarithm of e, we get

Ine'=In(e-e -e-e..)
=lne+lne+lne+..tlne=rine=r

From In e" =r, we take the inverse to obtain

It (Ine") =In1(r)

e'=1In1(r) = expr, forr rational.

How do we define e* where X is irrational?

This can be defined by assigning ex as exp x since In1 (X) is
defined (as the inverse function of In x is defined for all real x).

44
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DEFINITION  The Natural Exponential Function
For every real number x, ¢* = In"!x = expx.

For the first time we have a precise
meaning for an irrational exponent.

(previously #*1s defined for only rational x)

Note: please do make a distinction between e* and exp x. They have
different definitions.

eX is the number e raised to the power of real number x.

exp X is defined as the inverse of the logarithmic function, exp x = Int x

45

Typical values of &*

X e” (rounded)
—1 0.37
0 1
1 2.72
2 7.39
10 22026
100 2.6881 x 10%

46
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Inverse Equations for ¢* and In x
el = x (allx > 0) (2)
In(e*) =x (all x) (3)

(2) follows from the definition:

From eX=exp X, let x —In x

e"x = In [exp x] = x (by definition). (2)
From e* = exp X, take logarithm both sides,
— |n eX=In [exp X] = X (by definition)

47

Example 1 Using inverse equations

(a)lne® =2

(b)Ine™ =-1
(c)Inve =Ine¥2=1/2
(d)Ine’™* =sin x
(f)e"? =2

()"
(h)e¥"? =e"? = 2% =8

(i)eslnz _ g3In2 :(eln2)3 _92%_g

=x>+1

48
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Example 2 Solving for an exponent

= Find k if e2k=10.

49

‘The general exponential function &*

= Since a = e for any positive number a
m aX= (elna)x — exlna

DEFINITION  General Exponential Functions
For any numbers @ > 0 and x, the exponential function with base a is

a* = exlna'

50




Chapter 7 Transcendental Functions

Example 3 Evaluating exponential
functions

NG
()2 =(e")" =P x % £ 3.32

(b)zﬂ _ (elnz)” _ 72 o218 _gg

51

| Laws of exponents

THEOREM 3 Laws of Exponents for e*
For all numbers x, x;, and x;,, the natural exponential e* obeys the following laws:

1. eY-e2=¢vtn

- 1
2 e"=?
X1
e _
3. —(—=e"™
e™

4. (exl)xz — exlxz — (exz)xl

52
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Laws of exponents

THEOREM 3 Laws of Exponents for e*
For all numbers x, x;, and x,, the natural exponential e* obeys the following laws:

1. eY-e2=¢vtn

2, e*= 1

e

e

3. (Y =e"™
e

4. (exl)xz — exlxz — (exZ)Jﬂ

Theorem 3 also valid for a*

53

Proof of law 1

Y1 = e", Yo = e”

:>x1:Iny1,x2 :Inyz

=X +X=Iny +Iny, =Inyy,
— eXp(X1 T Xz) — exp(ln ylyz)
" =y )y, =e"e”

54




Chapter 7 Transcendental Functions

Example 4 Applying the exponent

laws

(a)ex+ln 2 _
(b)e—ln X _
€

0% -
e

@(F)

X

55

The dertvative and integral of ¢~

f(x)=Inx,y=e*=In""x=f (X)

dy d d ., 1
— = =— 1" (X)=
dx dx dx () df (x)
dx x="f7(x)
1 1 )
y==¢€

T . N B W), -

(5)

56
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Example 5 Differentiating an exponential

d /cox
&<5€ ):

57

By the virtue of the chain rule, we
obtain

If u is any differentiable function of x, then

d ud
ae =e d—;‘ (6)

f(u)=e";u :u(x)'

d (o0 df(u)du(x) , du
dx( ) f()_ dx edx

/e“du=e“+C.

This is the integral equivalent of (6)

58
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Example 7 Integrating exponentials

In2

(a) [ e¥dx=

7l2 _ 7l2 _

(b) f e’ cosx dx = _[ ™" cos xdx
0 0 ef®™  df(x)
f(z/12) f(x12)
j e df (x) = j de'™

£ (0) £(0)

_af(0 Hxi2) _ o (712) _ af(0) _ gsin(z/2) _ osin0) _ o _q

f(0)

59

' The number ¢ expressed as a limit

THEOREM 4 The Number e as a Limit
The number e can be calculated as the limit

e = lim (1 + x)'~,
x—0

60
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Proof

If f(x) = In x, then f'(x) = 1/x, so f'(1) = 1.
But by definition of derivative,

fFly+h)—T(y)
h

f'(y) = lim

h—0

I [ ESVERIC)

x—0 X

In(1+ x)

f'(1) = lim

h—0

_ i@+ %)~ In@)

f(L+h)— f (1)
h

=lim

x—0 X x—0 X
1

= Ixiirg[ln(1+ x)]é = In{lxigg(l+ x)X} =1 (sincef'(l)=1)

1
limL+ x)* = |im(1+1)y —e
x—=0 y—o0 y

61

ninx

Define x" for any real x >0 as x" =e
Here n need not be rational but can be any real number

as long as x Is positive.

Then we can take the logarithm of x" :

Inx" =In(e"™)=nlnx.

Note:c.f the power rule in theorem 2.
Can you tell the difference?
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Once x" is defined via x" =e"™*, we can take its differentiation :

u(x)
ixn:i em :d_uﬂzﬂenmx:ﬂx = NX
dx dx dx du X X

d _
= —X"=nx""
dx

Note : Can you tell the difference between this formula
and the one we discussed in earlier chapters?

63

By virtue of chain rule,

u=u(x);
d . _du(x)du” du(x) ™
dx dx du dx

Power Rule (General Form)

If u is a positive differentiable function of x and # is any real number, then u” is a
differentiable function of x and

64
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Example 9 using the power rule with
irrational powers

d f dU d_unun—l
dx “dx dx

au = %\/Exﬁ‘l —J2x"*1
dx dx

(@

(b)i(2+5|n 3x)” Ed_u :d_unun—l
dx  dx
du  na_d(@+sin3x)

dx dx

=37(2 +5sin3x)" " cos 3x

65

7.4

ax and log, X

66
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The derivative of &°

xlna

a* =e

d d{ =] d d
—a'=—]e"™ |=—(xIna)—(e"
dx dx( j dx( )du( )
—e'Ina=e""?lna=a*Ina

By virtue of the chain rule,

d .o dud ! du
—a'¥=——(a')=a'lna—
dx dx du dx

If a > 0 and u is a differentiable function of x, then a* is a differentiable function
of x and

u

d uw_ uy,,, U
Kd T4 Ina T (1)

Example 1 Differentiating general
exponential functions

() L3 - i[eﬁ’aj = i(x In 3)i(e”)

dx dx dx du
=In3-e*™ =3*In3
s 4 g Gy 4y
dx d(—x) du du

=-3'In3=-3"%In3=-In3/3"

(C)i3m:d_uigu :d(smx)
dx dx du dx

3'In3=3"*In3.cos X
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Other power functions

Example 2 Differentiating a general power
function

Find dy/dx if y = xX, x > 0.
Solution: Write x* as a power of e
XX = exlnx

d( smx|_dud ., d '
&[e | j:d_iﬁ(e ):&(xlnx)-(e )=..

69

Integral ot &”

From ia“(x) =a'In ad—u, devide by Ina:
dx dx

ii i) = qu d_u

=
Ina dx dx

d du . :
= d—a““) =a"lIn a integrate both sides wrp to dx:
X X

= '(ia“jdx =I(a“ Inad—ujdx:
S\ dx dx

= [da" :Inaja”du+C

u

. 1 a
= |a"du =—|da" =
J Ina Ina
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Example 3 Integrating general exponential

functions
(8)[2"dx = 2 c
In2

(b)j2$j§l117 :jzu@lu:...

71

‘ Logarithm with base «

DEFINITION  log, x

For any positive number a # 1,

log, x is the inverse function of a”*.

Inverse Equations for a* and log, x
alo%* = x (x > 0) (3)

log, (a*) = x (all x) (4)
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FIGURE 7.13 The graph of 2* and its
inverse, log, x.

73

‘ Example 4 Applying the inverse equations

(a)log,2° =5
(0)2°%° =3
(c)log,, 104" = -7
(d)10°%* = 4

74




Chapter 7 Transcendental Functions

Evaluation of log x

Taking In on both sides of a'*%* = x gives

In(a®%*) = In x

LHS, In(a"%*) = log, xIna.
Equating LHS to RHS yields
log, xIna=Inx
log,x = ﬁ- Inx = E—z (5)

Example: log,,2=In 2/ In10

75

TABLE 7.2 Rules for base a
logarithms

For any numbers x > 0 and
y >0,

1.

Product Rule:
log, xy = log,x + log,y

Quotient Rule:

logajc—, = log,x — log,y

Reciprocal Rule:

1
logay = —log,y

Power Rule:
log, x” = ylog,x

Proof of rule 1:
Inxy=Inx+Iny
divide both sides by Ina
In(xy) Inx JIny

Ina Ina Ina
log, (xy)=1log, x+log, y

76




Chapter 7 Transcendental

Functions

Derivatives and integrals involving log x

d
g _
dx( ogau)

d
A _
du(ogau)

du d(log,u)

dx du

d (Inu 1 d 11
—| — :——(Inu):——
du\lna Ina du Inau

d du 11 1 (1) du
—(log,u)= e il
dx dx Inau Ina u,/ dx

_ 1 ldu
(lOg" ) Ina udx

77

Example 5

d ——
(a)dx{loglo (3x +1)] =3

4 (gq L dUny) 3 1
dx In10 du In10 (3x+1)
log, X dx 1
—d — I — == =...
(b)j In 2 " X In2 judu

du d (Ioglo U)
du

——
d(Inx)=du
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7.5

Exponential Growth and Decay

79

The law of exponential change

For a quantity y increases or decreases at a
rate proportional to it size at a give time t
follows the law of exponential change, as per

k is the proportional constant.
Very often we have to specify the value of y at
some specified time, for example the initial condition

Y(t :O) = Yo
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Rearrange the equation (;—)t/ =ky:

1dy 1 dy
T —k - jy tdt_jkolt

> [Ldy=k[dt =kt > In| y |=kt-+InC
y

— y=+Ce" = Ae", A=+C.
Put in the initial value of y att=01isy,:

= y(0)=y, = A"’ = Ay =y,e"

The Law of Exponential Change

y = yoe*! (2
Growth: £ >0 Decay: k<0

The number £ is the rate constant of the equation.

Example 1 Reducing the cases of
infectious disease

Suppose that in the course of any given year
the number of cases of a disease is reduced
by 20%. If there are 10,000 cases today, how
many years will it take to reduce the number
to 1000? Assume the law of exponential
change applies.
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Example 3 Half-life of a radioactive
element

The effective radioactive lifetime of polonium-
210 is very short (in days). The number of
radioactive atoms remaining after t days in a
sample that starts with y, radioactive atoms is
Y=Y, exp(-5x10-3t). Find the element’s half

life.

83

Solution

Radioactive elements decay according to the
exponential law of change. The half life of a given
radioactive element can be expressed in term of the
rate constant k that is sgecific to a given radioactive
species. Here k=-5x10-°.

At the half-life, t=t,,,
Y(ty2)= Yol2 = Yo €Xp(-5x107°t, )
exp(-5x103t,,) = 1/2

- In(1/2) = -5x103t,,

> t,,= -In(1/2)/5x103 = In(2)/5x103 = ...
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1.7

Inverse Trigonometric Functions

85

Detining the inverses

Trigo functions are periodic, hence not one-
to-one in the their domains.

If we restrict the trigonometric functions to
Intervals on which they are one-to-one, then
we can define their inverses.
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Functien: sinx Domain: [-m/2, m/2] Range : [-1, 1]

Chapter 7 Transcendental Functions

Domain

restriction that

makes the

Functicon: cosx Domain: [0, m] Range : [-1, 1]

trigonometric
functions one-

to-one L \ x

Functien: tanx Domain: [-m/2, m/2] Range : (-, w«)

4

®
_1.57«!" 0.5 1 1.5
-z
III
|
I

-4

Function: cotx Domain: [0, m] Range : (-, «)

Domain : \

restriction tha T \\

makes the

Function: secx Domain: [0, #/2) |J(x/2, m] Range: (-», -1], [1, =)

trigonometric
functions one- . /

to-one e
£ /

Function: cosecx Domain: [-m/2, 0)|J(0, m/2] Range: (-«, -1]1 U [1, =)
1|
4 \
2
x
-1.5 -1 -0.5 0.5 1 1.5




Chapter 7 Transcendental Functions

Inverses for the restricted trigo
functions

y =sin~ x =arcsin x
Yy =CO0S ™ X = arccos X
y = tan~" x = arctan x
y =cot ™" x =arccot X
y =Sec™" X = arcsec X
y =CSC ™' X = arccscx

89

The graphs of the
inverse trigonometric
functions can be
obtained by reflecting
the graphs of the
restricted trigo
functions through the
liney = x.

FIGURE 7.17 Graphs of the six basic inverse trigonometric
functions.
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Chapter 7 Transcendental Functions

DEFINITION  Arcsine and Arccosine Functions

1

y = sin™ " x is the number in [—7/2, /2] for which siny = x.

y = cos ! x is the number in [0, 7] for which cos y = x.

91

y
A
x=siny
y = sin"'x
T Domain: [-1, 1]
y y = sin x, —g =x= % 2 Range: [-7/2, /2]
Domain: [-7/2, 7/2] | : .
Range: [-1,1 -1 0 1 i
1 -
‘\\\ aT
| | . =
NI 0 (L N 2
L2 2 b
—1+
() (b)

FIGURE 7.18 The graphs of (a) y = sinx, —7/2 = x = 7r/2, and (b) its inverse,
y = sin ' x. The graph of sin” ! x, obtained by reflection across the line y = x, is a
portion of the curve x = sin y.
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Chapter 7 Transcendental Functions

A
X = COSY
mr 1
Y y=cosx,0=x=m y=Ccos x

Domain: [0, 7] Domain: [-1, 1]

: [0, ok .
1| Range: [-1,1] 5 Range: [0, 7]

// ' : > X
— 5 7 TR -1 0| 1
N 2\/

(a) (b)

FIGURE 7.19 The graphs of (a) y = cosx, 0 = x = 7, and (b) its
inverse, y = cos | x. The graph of cos™! x, obtained by reflection across
the line y = x, is a portion of the curve x = cos y.
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Some specific values of sin! x and cos™! x

x sin! x x cos x
\/5/2 /3 \/5/2 /6
\/5/2 /4 \/5/2 /4

1/2 /6 1/2 /3
~1/2 —7/6 ~1/2 27/3
-V2/2 —7/4 —\V2/2 37/4
—V3/2 —m/3 -V3/2 57/6
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Chapter 7 Transcendental Functions

¥

p=m—0=cos }(-x) |
cos 'x =0
0= cosx; —1\—-=x 0 1 7
CoS¢ = cos (7 — 6) =— cosd
¢ = cos1(— cosé) = cost(—x)
Add up dand ¢: FIGURE 7.20 cos™' x and cos™'(—x) are

supplementary angles (so their sum is ).

6 +¢ = cos1x + cos(-x)

7 = COSIX + cosI(-x)

95

sin"lx= 72 -0 N

FIGURE 7.21 sin 'xandcos ! xare

complementary angles (so their sum is 7/2).
_ . T
cos ' x = @;sin~" x :(E_Hj;

COS ' X +Sin~tx+= 0+(£_9j:£
2 2
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Chapter 7 Transcendental Functions

DEFINITION  Arctangent and Arccotangent Functions
y = tan~!x is the number in (—/2, 7/2) for which tany = x.

y = cot™!x is the number in (0, 77) for which coty = x.

97

y= tan"lx
?i Domain: (—oo, o)
_______ |l _lia_nge: (—m/2, w/2)
2
0 > X
_______ T
2

FIGURE 7.22 The graph of y = tan ! x.
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Chapter 7 Transcendental Functions

y= cot™lx
Domain: (—oo, o)
Range: (0, m)

FIGURE 7.23 The graph of y = cot™ ' x.

99

y= sec”x
Domain: |x

Range: [0, 7/2) U (7/2, 7]

=1

FIGURE 7.24 The graph of y = sec ! x.
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Chapter 7 Transcendental Functions

Domain: |x| =1
Range: OSysw,yig
y
A
_______________________ 37
2
B
7T —
i\/
e N T
0 2
y = sec”'x ——/‘
| ! > x
-1 0 [N -

S~ - FIGURE 7.26 There are several logical
) choices for the left-hand branch of
N y = sec”! x. With choice A,

) sec”' x = cos™! (1/x), a useful identity
-7 employed by many calculators.
N 3m
2
101
y = csc”x
Domain: |x| =1
Range: [-#@/2,0) U (0, /2]
Yy
A
w
2

1

7
2

FIGURE 7.25 The graph of

1

y = csc  x.
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Chapter 7 Transcendental Functions

Some specific values of tan™! x

X tan ' x
V3 /3
1 /4
\/3/3 /6
—V3/3 —m/6
—1 —/4
-3 —/3
‘ Example 4

= Find cos ¢, tan ¢, sec ¢,

sin a=2/3
csc a if a=sint (2/3). ) “

FIGURE 7.27 Ifa = sin™' (2/3), then
the values of the other basic trigonometric
functions of a can be read from this
triangle (Example 4).
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Chapter 7 Transcendental Functions

EXAMPLE 5  Find sec (tan'3).

Solution Welet@® = tan ' (x/3) (to give the angle a name) and picture 6 in a right trian-

gle with
tan # = opposite/adjacent = x/3.

The length of the triangle’s hypotenuse is

Vx2+32=Vx*+09.

\/m sec § = xé+ 9
Thus,
sec (ta,nl %) = sec
Y x2+9 ~ hypotenuse
N 3 ) secl = adjacent
The detivative of y = sin! x
f(x)=sin"x= f*(X)=sinx;
df (x) _ 1 11
dx  df *(x) cosX| ., ©0sf(x)
dX x=f(x)
Lety = f(Xx)=sin"'x > x=siny=>cosy =+/1—x
1 1 1
cos(f(x)) cosy /1—x?
i(sin‘1 X) 1
dx 1— x>
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Chapter 7 Transcendental Functions

\\ | — 1
3 \ )]’D:ms;inm'x_l =x=1 _X(Sln X) B 1— %2
Range: -m2 <y < 7/2
] I . Note that the graph is not
differentiable at the end
i points of x=+1 because
" the tangents at these
: points are vertical.

FIGURE 7.29 The graph of y = sin ' x.
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The derivative of y = sin™! #

If u=u(x) is an diffrentiable function of x,

isin‘lu =7

dx

Use chain rule: Lety =sin™"u

9 ginty =d—ui(sin‘1u) _du 1
dx dx du dx /1—y?2

Note that |u |<1 for the formula to apply

% (sin”'u) =

—u

1 du
= T lu| < 1.




Chapter 7 Transcendental Functions

Example 7 Applying the derivative
formula

d . _
—sintx%=...
dx

109

The derivative of y = tan™! #

y=tan'x= x=tany COS2 y=1/(1—X2)

_d _ WY e 1

1_dx (tany) dxseC y

d_y_ 2 _ . 2 X

dX_cos y=1/(1-x°) Y(
V(1-x?)

By virtue of chain rule, we obtain

1 du
1 + u?dx’

% (tan"'u) =

110




Chapter 7 Transcendental Functions

Example 8

X(t) = tan* .
dx
dt s

111

The dertvative of y = sec

y=sec ' X=>X=secy

d dy
1=—~/sec =—secvtan
i (secy) = w ytany

tany =

d
—sec ' x=cosycoty=+=

dx X
dy .

-— >0 (from Figure 7.30),
dx

dy

1 1
dx [ x| J(x?-1)

+y/sec’y —1=+x" -

-1 v
y
A y=secTx
i
:’_%_/ _____________ T
1 ' /f‘;x
—— -1 0 1
J(x*=1)

FIGURE 7.30 The slope of the curve
y = sec ! xis positive for both x < —1

and x > 1.

112




Chapter 7 Transcendental Functions

The derivative of y = sec’! #

By virtue of chain rule, we obtain

du

d _ 1
~—(sec”' u) = -,
dx |u|\/u2_ ldx

|u] > 1.

113

‘ Example 5 Using the formula

%sec‘1 (5x4) =..

114




Chapter 7 Transcendental Functions

Derivatives of the other three

The derivative of cos1x, cotix, cscix can be
easily obtained thanks to the following
Identities:

Inverse Function—Inverse Cofunction Identities
cos 'x = m/2 —sin'x
cot 'x = /2 — tan 'x

csc'x = w/2 — sec'x

115

TABLE 7.3 Derivatives of the inverse trigonometric functions

dsin'u)  dufdx

e — lu| <1
d(cos™ ! u) du/dx
2. 7 = - , Jul <1
X A\ /1 _ uZ
3 d(tan™! u) _ dufdx
) dx 142
4 d(cot™ u) B du/dx
) dx 1 + u?
5 d(sec™' u) du/dx .-
& e
1 —du/d
6. d(csc 'u) u/dx ] > 1

dx _|u|\/u2—1’
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Chapter 7 Transcendental Functions

Example 10 A tangent line to the
arccotangent curve

Find an equation for the tangent to the graph
of y =cot! x at x = -1.

117

Integration formula

By integrating both sides of the derivative
formulas in Table 7.3, we obtain three
useful integration formulas in Table 7.4.

TABLE 7.4 Integrals evaluated with inverse trigonometric functions

The following formulas hold for any constant a # 0.

du PO 7 . 2 2
1. / =sin ||+ C (Valid for u“ < a“)
Va? — u? (a)

2. / 2‘? 5 = %tan_l (%) + C (Valid for all u)
a u

=lsec_1|%| + C  (Validfor |u| > a > 0)

3 / du
uNVu? — a? a

118




Example 11 Using the integral
formulas

J3r2 - dx

(a)jflz N

Example 13 Completing the square

I dx _ dx :j dx
Jax=x* * J=(x=4x) 7 J-(x-2)-4]
:j dx :J' du _
JA—(x=2)2 7 J22-u?




Example 15 Using substitution

J.\/ezT @)2:

| ¢<ex>2_<@2 ;

7.8

Hyperbolic Functions




Chapter 7 Transcendental Functions

Even and odd parts of the exponential
function
f(x)=%I[f(x) +f(-X)] +%[f(X) - (-x)]

Y [f (X) + f (-X)] Iis the even part
Y [f (X) - f (-X)] is the odd part

f(X)=ex=1% (eX+eX) + Y% (eX-eX
The odd part ¥z (ex - e*) = cosh x (hyperbolic cosine
of x)

The odd part 2 (e* + e*) = sinh x (hyperbolic sine
of X)

123

TABLE 7.6 Identities for
hyperbolic functions

cosh’x — sinh®*x = 1
sinh 2x = 2 sinh x cosh x
cosh 2x = cosh?x + sinh®x

cosh? x = cosh 22x + 1
sinh?x = cosh 22x — 1

tanh’x = 1 — sech®x
coth?x = 1 + csch?x
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Chapter 7 Transcendental Functions

Proof of
sinh 2x = 2cosh xsinh X

4% .
sinh 2x = i(e2X —e ) = %(e_le)
e

—l(ezx_l) (ezle)—g l(e —e¥)(e*+e7¥)
e e 2

X

N

=2- %( —e )—(e +e7") =2sinh xcosh x

125

TABLE 7.5 The six basic hyperbolic functions FIGURE 7.31

T = ; &=
Hyperbolic sine of x: sinhx = TR

: i &+ e ¥ y=coshs
Hyperbolic cosine of ;1 coshy = = T \ |/

(b
H sinhy _ e’ —e™ y
Hyperbolic tangent: tanhx = ==
e o-aage coshx ¢ + ™ i coth ¢
anh x
T
Hyperbolic cotangent: cothx = goshx _ g +
s &5 “ sinhx  ¢*
t o ; P L 2 y
Hyperbolic secant: sechx = —— = ——
coshy ¢ +e al-
1
e
x
1of {1
ech x
i}
. 1 ¥
Hyperbolic cosecant: eschy = =—— = \
sinhx ' — \
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Chapter_7 Transcen(iental Fungtions

Dertvatives and integrals

TABLE 7.7 Derivatives of
hyperbolic functions

d - du
I (sinhu) = coshu i

du

d .
I (coshu) = sinhu I

du

A — corh
e (tanh ) = sech” u I

d o enp2 ., du
dx(coth u) = —csch U

d _ du
x (sechu) = —sech u tanh u -
d _ du
e (cschu) = —csch u coth u -

TABLE 7.8 Integral formulas for
hyperbolic functions

/sinhudu =coshu + C
coshudu = sinhu + C
sech®u du = tanhu + C

esch®u du = —cothu + C

— T T T

sechutanhu du = —sechu + C

cschucothudu = —cschu + C

127

d . du d .
—sinhu =——sinh x
dx dx dx

dx

isinh U= d—ucosh X
dx dx

isinh X = il(eX —e ") = 1(eX +e ") =cosh x
dx 2 2
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Chapter 7 Transcendental Functions

Example 1 Finding derivatives and

inte
(a)—tanhF—d—iiuta“h
~ 1 coshu du
(b)jcoth5xdx:gjcothudu: I sinhu
dv
_1d(sinhu) :_Iﬂzlm |+C_—In|smh5x|+C
5 smhu

PR | -
(c)[sinh xdx—EI(coshZX—l) dx =...

u
—~

(d) [ 4¢*sinh x dx =4jex‘2

€ ge* :2_|.u—u‘1 du

2
:Z(U?—In|u|J+C:(ex)z—lne2X+C:e2X—2x+C

129

Inverse hyperbolic functions

¥ y = cosh x,
Y y=sinhx y=x x=0 y=x
L g 8- x
= // T f.-r
B ,7 y=sinh x 6 P
E 4 (x = sinh y) 5 o
) S 4+ v
1 |7 3+ 3
L1111 T T e B
& 2+ }—cosh X
ks _% = 2 &8 = (x = cosh y, y = 0)
7 B NN N B
v § 0l 12345678
p B
P - (b)
# —
s
Fi

—
=
—

FIGURE 7.32 The graphs of the inverse hyperbolic sine, cosine, and secant of x. Notice the symmetries about
the line y = x.

The inverse is useful in integration.
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Chapter 7 Transcendental Functions

x=cothy | x =cschy

y = coth™'x | y = csch™'x

1 -1

(a) (b) (©)

FIGURE 7.33 The graphs of the inverse hyperbolic tangent, cotangent, and cosecant of x.
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‘ Useful Identities

TABLE 7.9 Identities for inverse
hyperbolic functions

_ 11
sech ' x = cosh 1}
— - — 1
csch™!'x = sinh 1}

coth™' x = tanh™! %

132




Chapter 7 Transcendental Functions

Proof

_ .1
sech™*x=cosh™=.
X

Take sech of cosh‘ll.
X

sech (cosh‘1 1

sech (cosh‘1 lj =X
X

Take sech™ on both sides:

cosh™* =

)

J

1

[HEN

= X

X

sech™ (sech (c:osh‘1 ED =sech'x= (c:osh‘1 i) =sech'x

X

X

133

TABLE 7.10 Derivatives of inverse hyperbolic functions

d(sinh ' u) 1 du
dx V1 + u? dx
d(cosh™ u) B 1 du
& N dx
d(tanh™! ) 1 du
dx 1 — y2dx’
d(coth™ u) _ 1 du
dx 1 — y2dx’
d(sech'u)  —dujdx
dx uV1 — u? ’
d(csch™'u)  —du/dx

dx _|u|\/1+u2’

Integrating these formulas
will allows us to obtain a list
of useful integration formula

“= 1" jinvolving hyperbolic

functions
lu| <1 eq.

#—isinh‘lx
lu| > 1 Ji+x2  dx

1 d .

— | —=——dx = | —sinh™x dx

o<u<l j\/1+x2 jdx
1 ]
——dx=sinh™*x+C

u# 0 V1+x?
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Proof

isinh‘lx— !
dx i+ X2
let y =sinh™x
. d d . dy
X =Sinh — X =—-3Iinhy=—-cosh
y_)dx dx y dx y
—>d—y:sech

1 1 1
y: = =
dx coshy f1+sinh®y 1+ x?

= By virtue of chain rule,

9 ginh iy =301
dx dX /1 + u?

135

Example 2 Dertvative of the inverse
hyperbolic cosine

Show that

icosh‘lu __1

dx Ji+u?

Let y=cosh™x...

136




Chapter 7 Transcendental Functions

Example 3 Using table 7.11

Jl- 2dx

2 V3 +4X°

Let y=2x

j- 2dx ZJZ‘ dy
o3 +4AX2 543+Y°

Scale it again to normalise the constant 3 to 1
y 2 dy B 213 \/§dz 2143 dz
== J

V3 TaBryr 4 B3+322 4 A1+7?
=sinh™ z‘z/ﬁ =sinh%(2/+/3) —sinh*(0) =sinh *(2/~/3) -0
=sinh 5(27+/3)

137

sinh*(2/+/3) =2
Let q=sinh™(2/~/3)

i 1 2
sinhg=2/+3 > =(e%-e%)=—
q \/7 2( ) \/§
A
e?l——e?-1=0
J3
4 \/( 4j2 4 [29
=+l = | —4(-D +
RN f _3 a ) 2682

sinh™(2/~/3) = q = In2.682 = 0.9866
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Chapter 7 Transcendental Functions

TABLE 7.11 Integrals leading to inverse hyperbolic functions

du .1 (u
1. f7=smh -+ C, a>0
\Va? + u? (a)

du _ -1 (U
2. /—m—cosh (a)+C, u>a=>0

., 1 tanh™! (%) +C if u? < a?

u _
3 [az—uz_ 1 1 (U ) 2

7 coth 2]t G ifu > a

4. /#\/%uz=—%sech_l (%)-I—C, 0<u<a
5. f#\/“Tuzz—%csch—ll%Hc, u# 0anda > 0
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Chapter 8

Techniques of Integration

3.1

Basic Integration Formulas




Chapter 8 Techniques of Integration

TABLE 8.1 Basic integration formulas

1. /du=u+C 13. cotudu = In |sinu| + C

2. /kdu =hku+ C (any number k) = ~In|oscu] + C

e'du=¢e"+C

” 15.fa"du=l"—"+c (a>0,a%1)
4/udu= +C  (n# -1 f g

14.
3/(du+du) fdu+[a‘u
n+1
d 16. sinhudu = coshu + C
u —
5 w =hjul +C
17. coshudu = sinhu + C
6. fsinudu = —cosu + C
du 1 (u)
18. = sin =14+ C
7. /cosua’u=sinu+C Via? — u? i
du 1. (H)
19. / ==tan (7] +C
8. /secgudu=tanu+C at+u @
du 1 4 lu
20. —_——=gee ||+ C
9. ]csczndu = —cotu + C /u\ (gt =gt 9@ a
du Lo fu
. —= = + >
10. /secutanua’u =secu + C 21 22 + ul snh (a) e (@>0)
du 3 (u)
_ 22. ————==cosh' |Z ]|+ C (# >a>0)
11. /cscucotudu— cscu + C NG = g2 a
12. /tanudu = —In |cosu| + C

= In [secu| + C

‘ Example 1 Making a simplifying
substitution

U

_[ 2X—9 I d(x —9x)
VX2 —-9x+1 VX 9x+

Tt

=2u+D)"2 +C=2(x -9x+1) +C
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Example 2 Completing the square

r dx :J- dx _
" \VBx—x’ \/16—(x—4)2
d(x—4) du

N T e W

= sin‘1%+ C =sin™ (%4)4- C

Example 3 Expanding a power and using a
trigonometric identity

I(sec X + tan x)*dx

= J(sec2 X +tan® x + 2sec x tan x)dx.

d d
Racall:tan’x = sec? x —1;d—tan X = sec? x;d—secx = tan Xsec X;
X X

= J(Zsec2 X —1+ 2sec x tan x)dx

=2tan X+ —-x+2secx+C
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Example 4 Eliminating a square root

wl4

j J1+cos4xdx =

0
cos4x = cos2(2x) = 2cos®(2x) -1
zl4 zl4 nl4
j\/1+cos4xdx= j\/200322xdx=x/§.[|0052x|x
0 0 0

zl4

=ﬁ f cos2xdx =...
0

Example 5 Reducing an improper fraction

:1x2—3x+2ln|x+g|+c
2 3
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Example 6 Separating a fraction

J‘3X+2
V1-X
2
:Sjﬁdx-i_-‘.ﬁdx
fd(x)
=3 2
J.\/1 x " J-\/1 x? g
——'[ é+23m x+C jﬁ=—2(l—u)m+c'

= E[_Z(l_ u)“z] +2sin x+C"

= -3J(L=x?) +2sin"tx+C"

Example 7 Integral of y = sec x

—
.[ secxdx =" d sec x = sec x tan xdx

d tan x = sec® xdx = sec xsec xdx
d(sec x + tan x) = sec x(sec x + tan x)dx

d(sec x + tan x)
Sec X + tan x

sec Xdx =

d(sec x + tan x)

=In|secx+tanx|+C
sec X + tan x

J'secxdx=j

10
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TABLE 8.2 The secant and cosecant integrals

1. secudu = In |secu + tanu| + C

2. cscudu = —In |cscu + cotu| + C

Procedures for Matching Integrals to Basic Formulas

PROCEDURE EXAMPLE

Making a simplifying —sz;g—dx = "37;‘:
substitution Vxs—9% + 1 u
Completing the square V8x — x* = V16 — (x — 4)

Using a trigonometric (secx + tanx)? = sec’x + 2secxtanx + tan®x
identity = sec’x + 2secxtanx

+ (sec’x — 1)

= 2sec’x + 2secxtanx — 1

Eliminating a square root V1 + cosdx = V2cos?2x = V2 |cos 2x|
. . -7 6
Redqcmg an improper wr2 ¥ 3+ T
fraction
3x +2 3x 2

+

‘\/l—x2 \/l—xz V11— x?
secx + tanx
secx + tanx

Separating a fraction

Multiplying by a form of 1 SECX = Secx -

_ seczx + secxtanx
secx + tanx
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3.2

Integration by Parts

13

Product rule in integral form

S (9091 = 900 (0] + £ (0=Tg(x]
X dx dx
0 0090018 =] 900~ F (Ie+ | () Ta (1

f()9(x)=[9(x) f (R)dx+ [ F(x)g (x)

f g () d = f()gl) — / F (<)) d )

Integration by parts formula

14
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Alternative form of the integration by

| parts formula
—[f(X)G(X)] g(X)—[f ()]+ f(X)—[g(X)]

I LT (09001dx =] g(X)&[f(x)]dx+ jux)&[g(x)]dx
f ()99 = [g(x)df (x)+ [ f (x)dg(x)

Let u = f (x);v=g(x).The above formular is recast into the form
uv =_[vdu +judv

Integration by Parts Formula

/udv=uv —/vdu (2)

15

Example 4 Repeated use of integration
by parts

szexdx =7

16




Chapter 8 Techniques of Integration

Example 5 Solving for the unknown

integral

jex cos xdx =?

17

Evaluating by parts for definite
integrals

Integration by Parts Formula for Definite Integrals

b b
/ f)g' () dx = f(x)gx)]] — / f/(x)g(x) dx (3)

18
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Example 6 Finding area

= Find the area of the region in Figure 8.1
y

A

1+

05F y=xe"

FIGURE 8.1 The region in Example 6.

19

‘ Solution

4
Jxe‘xdx =..
0

20




Chapter 8 Techniques of Integration

Example 9 Using a reduction formula

Evaluate ;
jcos Xdx

21

3.3

Integration of Rational Functions by
Partial Fractions

22
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General description of the method

A rational function f(x)/g(x) can be written as a sum
of partial fractions. To do so:

(a) The degree of f(x) must be less than the degree
of g(x). That is, the fraction must be proper. If it isn’t,
divide f(x) by g(x) and work with the remainder term.

We must know the factors of g(x). In theory, any
polynomial with real coefficients can be written as a

product of real linear factors and real quadratic
factors.

23

Reducibility of a polynomial

A polynomial is said to be reducible if it is the product of
two polynomials of lower degree.

A polynomial is irreducible if it is not the product of two
polynomials of lower degree.

THEOREM (Ayers, Schaum’s series, pg. 305)

Consider a polynomial g(x) of order n = 2 (with leading
coefficient 1). Two possibilities.

g(x) = (x-r)h(x), where h,(x) is a polynomial of degree n-1,
or

g(x) = (x2+px+q) h,(x), where h,(x) is a polynomial of
degree n-2, with the irreducible quadratic factor (x2+px+q).

24
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Example

g(x) =X’ —4x= (x=2) - X(x+2)
Iineam‘actor poly. of\aegree 2
g)=x’+4x= (xX*+4) - X
H_/
irreducible quadratic factor poly. of degree 1

g =x"-9= (xX*+3) -(x+3)(x-+3)

%f_/ ~~
irreducible quadratic factor poly. or degree 2
g(x)=x>=3x"—=x+3= (x+1) (x-2)°

- N v
linear factor poly. or degree 2

25

Quadratic polynomial

A quadratic polynomial (polynomial or order n
= 2) is either reducible or not reducible.

Consider: g(x)= x?+px+q.

If (p%-49) = 0, g(X) is reducible, i.e. g(Xx)
= (XHry)(X+r,).

If (p?-4q) < 0, g(x) is irreducible.

26
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In general, a polynomial of degree n can
always be expressed as the product of
linear factors and irreducible quadratic
factors:
P (X)=(x- rl)nl(x_ rz)n2 (X rl)nI X
(X + pyx+0)™ (X + X+ )™ (X + p X+, )

n=(n+n,+..+n)+2(m+m,+...+m,)

my

27

Integration of rational functions by
F’ar\q%@ﬁlad j(tqua'lg};][(lgglln%s (f(x)/g(x) Proper)

1. Letx — rbe alinear factor of g(x). Suppose that (x — )™ is the highest
power of x — r that divides g(x). Then, to this factor, assign the sum of the
m partial fractions:
AI i A2 E— Am .
T fr—ap ="

Do this for each distinct linear factor of g(x).

2. Letx? + px + g be a quadratic factor of g(x). Suppose that (x> + px + g)"
is the highest power of this factor that divides g(x). Then, to this factor,
assign the sum of the n partial fractions:

Bix + C; + Byx + C; B,x + C,
2 +px+q X+ px+q) (x> + px + g
Do this for each distinct quadratic factor of g(x) that cannot be factored into
linear factors with real coefficients.

3. Set the original fraction f(x)/g(x) equal to the sum of all these partial
fractions. Clear the resulting equation of fractions and arrange the terms in
decreasing powers of x.

4. Equate the coefficients of corresponding powers of x and solve the resulting
equations for the undetermined coefficients. -
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Example 1 Distinct linear factors

I X2 +4x+1 -
(X=D(x+1(x+3)
X* +4x+1 A B C

= + + =...
(X=D(x+D(x+3) (x-1) (x+1) (x+3)

29

Example 2 A repeated linear factor

J'6X+7
(X +2)°
6X+7: A N B
(x+2)° (x+2) (x+2)°

30
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Example 3 Integrating an improper
fraction

2x3 —4x* —x -3
J' > dx =...
X —2X—-3
2x3 —4x* —x-3 5x —3
> =2X+—;
X*—2X—-3 X°—2X—-3
5x -3 5x -3 A B

X _2x—3  (x=3)(x+1) (x=3)  (x+1)

31

Example 4 Integrating with an irreducible
quadratic factor in the denominator

—2Xx+4
_[ 2 N2 X=
(x“+1)(x-1)
-2x+4  Ax+B C D

= + + =...
(xX*+D)(x-1)° (xX*+1 (x-1) (x-1)°

32
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Example 5 A repeated irreducible
quadratic factor

1
dx="?
jx(x2+1)2
1 _é Bx+C Dx+E
x(xX*+1)* x (xX*+1) (x +1)?

33

Other ways to determine the

coefficients

Example 8 Using

2
differentiation A(x+1)"+B(x+)+C _ x-1

_ _ (x+1)° (x+1)°
Find A, B and C in the ,
: = A(Xx+1)“+B(x+1)+C=x-1
eguation
X=-1->C=-2
= A(X+1)°+B(x+1) =x+1
Xx—1 A B C

(X+l)3_(x+1)+(x+l)2+(x+1)3 = A(x+1)+B=1

i[A(x+1)+ B] :i(l) =0
dx dx

A=0

B=1

34
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Example 9 Assigning numerical values to
X

Find A, Band C in
x?+1
(X=D(x-2)(x-3)
A B C
+ +
(x=1) (x-=2) (x-3)

A(X=2)(x-3)+B(x-1)(x-3)+C(x-1)(x—-2) = f(x)
=x*+1

f)=2A+=1"+1=2= A=1
f(2)=-B=2°+1=5=>B=-5
f(3)=2C=3*+1=10;=C =5

35

3.4

Trigonometric Integrals

36
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Products of Powers of Sines and Cosines

We begin with integrals of the form:
/ sin™ x cos” x dx,

where m and n are nonnegative integers (positive or zero). We can divide the work into
three cases.

Case 1 If m is odd, we write m as 2k + 1 and use the identity sin®x = 1 — cos®x to
obtain

2k+1

sin” x = sin?**!'x = (sin?x)*sinx = (1 — cos?x)*sinx. (1)

Then we combine the single sin x with dx in the integral and set sin x dx equal to —d (cos x).

Case 2 Ifmisevenandnis odd in j sin™ x cos” x dx, we write n as 2k + 1 and use the
identity cos>x = 1 — sin’ x to obtain

cos” x = cos? 1 x = (cos?x)fcosx = (1 — sin®x)* cos x.
We then combine the single cos x with dx and set cos x dx equal to d(sin x).
Case 3 Ifboth m and n are even in f sin” x cos” x dx, we substitute

1 — ;os 2x’ cos x = 1 + ;oslx )

to reduce the integrand to one in lower powers of cos 2x.

sin’x =

37

Example 1 »1s odd

J'sin3 XCOS*X dx="7?

jsin3 XCOS°X dX = —jsin2 XC0s*X d (cos x)

= [ (cos® x—1) cos®x d (cosx)

= [(u? -Du’du=..
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Example 2 7 1s even and 7 is odd

j Cos°x dx="?
jcosSX dx = jcos“xcosx dx = j(coszx)2 d(sinx)=

= [ (2-sin?x)? d'sin x

u

= [ (1-u?)? du :J'l+u4 —2u° du =...

39

Example 3 7 and 7 are both even

jcoszxsin4 X dx="?

cosxsin*x dx =

-(1-0032xj(1+c032xj2
dx
. 2 2

'(1-0032x)(1+c032x)2 dx

.(1+ c0s? 2X — oS 2X — cos® 2x) dx = ...

40
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Example 6 Integrals of powers of tan x

and sec Xx jsec3 wdx = ?

Use integration by parts.

I sec’ xdx = '[ sec x -sec? xdx:
—_

u dv Isec xdx = _[ Sec x

dv =sec’ xdx —> Vv = J'sec2 xdx = tan x

(tan X + secx)
dx
tan X +sec x

_ J'(secxtanx+sec2 X) 4y
U =sec — du =sec x tan xdx tan X + SeC X
Isecx-sec2 xdx _ Id(secx+tan X)
W tan X + sec x
—secxtan x — [ tan x - sec x tan xdx =In[secx+tanx|+C

du

=sec xtan x — | tan? xsec xdx

=sec xtan X — | (sec” x —1)sec xdx

J sec® xdx = sec xtan X — jsec3 xdX + _[ sec Xxdx...

41

Example 7 Products of sines and
cosines
J'cos 5XsIin3xdx = ?

sin mxsin nx :%[cos(m —n)x—cos(m+n)xJ;
. 1,. .
sin mxcos nx :E[sm(m —n)x+sin(m+n)x];

COSMX COS NX = %[cos(m —n)x+cos(m+n)x]
jcos 5xsin 3xdx

= %I[sin(—Zx) +sin8xJdx

42
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3.5

Trigonometric Substitutions

43

Three basic substitutions

a X
x x2 — 42
7, 0
a a’ — x? a
x = qtan @ x=asin@ x=asecé

Va? + x* = a|sec 6] Va? — x* = alcos 6| Vx? — a* = altan 6

FIGURE 8.2 Reference triangles for the three basic substitutions
identifying the sides labeled x and a for each substitution.

Useful for integrals involving va? -x,va? + x*,J/x* -a?

44
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Example 1 Using the substitution x=atan@

J‘ dx _n

V4 + X2

X =2tan y — dx = 2sec” ydy = 2(tan’ y + 1)dy

J' J-Z(tan y+1)
\/4+4tan2y \/4+4tan y

(tan’y +1)
:I\/lth@szdyz'[\/sec2 ydy:f|secy|dy

=In|secy+tany|+C

45

Example 2 Using the substitution x =
asin®

J‘ x*dx
Joox

X=3siny —>dx=3cosy dy

J- x>dx :I9sin2y-3c:osy dy _
zgjsinzy-cosydy
J1-sin®y

= 9Isin2 ydy =...

46
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Example 3 Using the substitution x =
asect

IL:’?
V25x* -4

x:ésecy—> dx:ésec ytany dy

J- Isecytanydy 1J-secytanydy
\/25x 5 \/4sec y—4 9° fsec’y-1

secytany dy 1
I m jsecy dy

:%In|secy+tany|+C=...

47

Example 4 Finding the volume of a
solid of revolutien 4

V =167 .
y (x +4)
_ 4
1 y_x2+4
|
|
M |
0 2 W/ |
[

(a) (b)

FIGURE 8.7 The region (a) and solid (b) in Example 4.
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Solution

S dx
V =16
ﬂ'c[(x2+4)

Let X = 2tan y — dx = 2sec” ydy

=7
2 H

zl4 2 zl4 2
v :”I Zsezc ydy2 :”j 23ec2 ydzy
o (tan®y+1) o (sec’y)
wl4

=27 _[ cos® ydy =...
0

49

3.0

Integral Tables
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Integral tables is provided at the back of
Thomas’

T-4 A brief tables of integrals

Integration can be evaluated using the tables
of integral.

51

EXAMPLE 1  Find

/x(2x + 5)7 1 dx.

We use Formula 8 (not 7, which requires n # —1):

/x(ax+b)_1dx=g—bzln|ax—l—b| + C.

a

Solution

Witha = 2and b = 5, we have

/x(Zx + 5)_1dx=%—%ln|2x+5| + C.
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EXAMPLE 2 Find
/ dx
xV2x +4 .

Solution We use Formula 13(b):

/ dx =lln‘\/ax+b—\/l;
Vax+b Vb IVax+b+ Vb

Witha = 2 and b = 4, we have

+ C, ifb > 0.

/ dx :1ln‘\/2x+4—\/i+c
NV +4 V4 IV +4+ V4

V2x +4 —2
V2x +4 + 2

+ C.

_1
—2ln‘

53

EXAMPLE 3 Find

dx
/ xV2x — 4
Solution We use Formula 13(a):

/ dx 2 . 1 Jax—b
xVax—b Vb b

Witha = 2 and b = 4, we have

dx 2 -1 [2x — 4 B 1 [x—2
= tan + C = tan + C.
fx\/Zx—4 V4 Vo4 N 2

+ C.
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EXAMPLE 4  Find

dx
/ Vo — 4
Solution  We begin with Formula 15:

/ dx _ _Nax+b a dx
*Vax + b bx 2b) xNax + b

Witha = 2 and b = —4, we have

+ C.

/ e _ _NVx-—4 2/ |
x>V2x — 4 —4x 2:4) x\V2x — 4

We then use Formula 13(a) to evaluate the integral on the right (Example 3) to obtain

dx = 2JC_4+ltan_1 x—2+C
w2\ 2% — 4 4x 4 2 '

55

EXAMPLE5  Find

/ xsin ' x dx.

Solution ‘We use Formula 99:

Gt o L a " _
l/th axdx—n+lbln ax -] l—azxZ, n#*-—1.
Withn = 1 anda = 1, we have

x«in_lxci?t=x—zs.in_'x—i xzi

A 2 2] s =22

The integral on the right is found in the table as Formula 33:

2 2

x _at . fx\_1 /72

]7mdx 2sm (a) 7 ¥Va x* + C.
Witha = 1,
2

xi,]‘ix—xz=%sin_lx —%x\/l -x2+C.

The combined result is

/xsin_'xdx = %sin_'x - % (lsin_'x - %x\/l - x4+ C)

2

= %—%)sin"x+ Iwvi—2+ ¢,

4
56
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3.8

Improper Integrals

57

>

02+ y=""5

FIGURE 8.17 Are the areas under these infinite curves finite?
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y

A

Infinite limits of integratiQn

—T

A(2) = lim A(b) = lim2 - 2e™*"* = 2

(a)

Area = —2¢ 24 2

b
A(b) = j e dx=..=2-2e"7 |
0

(b)

FIGURE 8.18 (a) The area in the first

quadrant under the curve y = e/ is

(b) an improper integral of the first type.

59

DEFINITION Type I Improper Integrals
Integrals with infinite limits of integration are improper integrals of Type 1.

1. If f(x) is continuous on [a, ©0), then

[ e = im [ e

2. If f(x) is continuous on (—00, b], then

b b
/ fx)dx = _1111’100/ flx) dx.

3. If f(x) is continuous on (—00, 00), then

/mf(x)dx - f F) s + /oof(x)dx,

where ¢ is any real number.

In each case, if the limit is finite we say that the improper integral converges and
that the limit is the value of the improper integral. If the limit fails to exist, the
improper integral diverges.

60
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Example 1 Evaluating an improper
integral on [1,°°]

Is the area under the curve y=(In x)/x? from
1 to <= finite? If so, what is it?

\ b
| . rlInx
0.2 y:% ||m —ZdX:?
b—)ool X
0.1F
> X
0 1 b >

FIGURE 8.19 The area under this curve
1s an improper integral (Example 1).

61

Solution
b b Inb
In x dx In x
I d :J' d(Inx):‘[iudu u=Inx,x=¢"
1 X X 1 X In1e
Inb
Inb Inb
ue'du=u(-e™" — | (—e™")du
Jusdu=uien) —f e
Inb
0 Inb
=ue " +Ie‘“du:ue‘u —e™
Inb ] Inb 0

=—Inb-e" —(e™"" —1):—£Inb—£+1
b b

b—oo X2 b—o0

1

b
lim In—xdx=lim{—ilnb—1+1}:1
b b

62
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Example 2 Evaluating an integral on |[-

2
C1+X
0 0 - b dX {
-[o 1+X° _j b%oo-[ 1+X°
b
. dx
=2lim > Area =
b & 1+ X
> X
NOT TO SCALE
FIGURE 8.20 The area under this curve
is finite (Example 2).
63
Solution

Using the integral table (Eq. 16)

dx 1 X
j ——=—tan"'=+C
a+x° a a

¢ dx _ 1 ,P 1(h 10 =tan"*(b
_C[ 2_[tan x]o_tan (b)-tan™"0=tan™(b).

1+x2 e 2 y

'[ dx —2limtantb=2-Z =7

1
y=tan‘b=b=tany

R _ T
limtan™*bh==
b—w 2 64
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DEFINITION  Type II Improper Integrals

Integrals of functions that become infinite at a point within the interval of inte-
gration are improper integrals of Type 11

1. If f(x) is continuous on (a, b] and is discontinuous at a then

/f(x)dx— llm/ f(x)dx.

2. If f(x) is continuous on [a, b) and is discontinuous at b, then

/Ibf(x) dx = l_i;rg_/cf(x) dx.

3. If f(x) is discontinuous at ¢, where a < ¢ < b, and continuous on
[a, c) U (c, b], then

b c b
/f(x)dx=ff(x)dx+[f(x)dx.

In each case, if the limit is finite we say the improper integral converges and that
the limit is the value of the improper integral. If the limit does not exist, the inte-
gral diverges.

65

y Example 3 Integrands with

_ 1 vertical asymptotes
y=—L
Vx

FIGURE 8.21 The area under this curve

1S
1
Area =2 — 2Va 1im/(i)dx=2,
a=0"Ja \\V/x

an improper integral of the second kind.

1 -
> X

0| a 1
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Example 4 A divergent improper

integral
\ //y =1 x Investigate the

convergence of ; dx

7 1-X

FIGURE 8.22 The limit does not exist:

1 b
1 /( I )dx=lim/ L =
o \I —x b—1" Jo 1 —x

The area beneath the curve and above the
x-axis for [0, 1) is not a real number

0 b 1 > * (Example 4).
—
Solution
1 b
X im [~ tim[in | x-1 ]

1-x bor91-X b—1"
=—lim[In|b-1|-In]0-1[]

b—1"

— _h 11 _ _ — h 111
= tl)ljp_[le 1|-In|0-1]] tl)gp[ln|b 1" |

) 1
=|Im[|n—}=<>0
>0 E
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Example 5 Vertical asymptote at an

y interior point

-1
(x _ 1)2:"3

! TR

FIGURE 8.23 Example 5 shows the
convergence of

3 1
—dx
/0- (x — 1)*?

so the area under the curve exists (so it is a
real number).

=3+ 3V2,

- | <=

69

Example 5 Vertical asymptote at an

y nterior point

1

- x— 1)?

(X 1)2/3 '([(X 1)2/3 !(X 1)2/3

b

[=
e - {301 ] -

[rei ey

lim [3(b ~)"-3(-1)"° | = lim [0+3]=3;

( r d : 3P
!(x 1)%3 H1+.[ﬁ=cllﬂrp[3(x—l) ]C

|m |:3(3 1)1/3 3(C 1)1/3] 22/3
c—>1

3

j e =3(1+2%%)
> (x—

> X

- |«
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Example 7 Finding the volume of an
infinite solid

y
A

The cross section of 21

the solid in Figure G

8.24 perpendicular to y=e > \

the x-axis are circular ,_,X«:r»"*‘

disks with diameters -~

i |
reaching from the x- S St \\
axis to the curvey = (Trll:x-__

eX -0 <x<In 2. Find In2 >x
the volume of the
horn. FIGURE 8.24 The calculation in

Example 7 shows that this infinite horn
has a finite volume.

71

Example 7 Finding the volume of an
infinite solid
volume of a slice of disk of thickness dx,diameter y

v In2 _ 5 })i
V=[av =2 lim | myoeen dv = z(y/2)"dx

In2
== lim | 7ze*dx

4 b——o0

~Lim [ﬂe“]:z

b——o

1. 2
= gblirﬂo[@z — 7re ]
1 . . .
—Zxzlim(4—e®) = i FIGURE 8.24 The ca101.113tt10'n n
Example 7 shows that this infinite horn
has a finite volume.
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What u a sequence

A sequence is a list of numbers
al,az,ag,...,an,...

In a given order.

Each a is a term of the sequence.

Example of a sequence:

2,4,6,8,10,12,...,2n,...

n is called the index of a,

DEFINITION Infinite Sequence

An infinite sequence of numbers is a function whose domain is the set of positive
integers.

In the previous example, a general term a,
of index nin the sequence is described by
the formula

a,= 2n.
We denote the sequence in the previous
example by {a,} = {2, 4,6,8,...}
In a sequence the order is important:
2,4,6,8,... and ...,8,6,4,2 are not the same
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Other example of sequences

{a,} ={V1,v2,4/3,4/4,/5,--- \/n,--}a, =n;

1 1 1 n+11 n+11
b = 11__1_1__1” ’ _1 e 1b = _1 _1
{ n} { 2 3 4 ( ) n } n ( ) n
1234 n- n—
(e} =05 5 g FE =T
{dn}:{1’_1’1’_111’“"(—1 o }id, :(_1)n+1;
an‘?
1 Diverges
| (i| ay ay dgds g: . -
0 1 2 o
a,=Vn L1111y,
o 1 2 3 4 5
“n Converges to 0
a3 dy a 3
—l— ee— ¢ > 1F e
0 1
| R . > n
Ay =n 0 1 2 3 4 5
e Converges to 0
TS N
1 ? >
= ( l)u+ll Ol | l : >

FIGURE 11.1 Sequences can be represented as points on the real line or as
points in the plane where the horizontal axis » is the index number of the
term and the vertical axis a, is its value.
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DEFINITIONS Converges, Diverges, Limit
The sequence {a,} converges to the number L if to every positive number € there
corresponds an integer N such that for all »,

n>N = la, — L| < €.
If no such number L exists, we say that {a,} diverges.

If {a,} converges to L, we write lim,—o0a, = L, or simply a, — L, and call
L the limit of the sequence (Figure 11.2).

arl
r 3
L+ €
S T (n,a,)-2-g——-
P L ]
L—¢
o o ®(N, ay)
o
[ ]
1 | | | | | > n
0 1 2 3 N n

FIGURE 11.2 aq,—Lify =Lisa
horizontal asymptote of the sequence of
points {(n, a,)} . In this figure, all the a,’s

after ay lie within € of L.
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DEFINITION  Diverges to Infinity

The sequence {a,} diverges to infinity if for every number M there is an integer
N such that for all n larger than N, a, > M. If this condition holds we write
lim @, = 00 or dy—> 0,
n—0o
Similarly if for every number m there is an integer N such that for alln > N we
have a, < m, then we say {a,} diverges to negative infinity and write

lim a, = —00 or a, —> —00,
n—00

THEOREM 1

Let {a,} and {b,} be sequences of real numbers and let 4 and B be real numbers.
The following rules hold if lim,—o @, = 4 and lim,—c b, = B.

1. Sum Rule: lim,—oo(a, + b,) = A + B

2. Difference Rule: lim,—co(a, — b,) = A — B

3. Product Rule: lim,—oo(a,*b,) = A*B

4. Constant Multiple Rule: lim,—oo(k*b,) = k+B (Any number k)

5. Quotient Rule: lim,,—c0 ? = % if B#0

10
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EXAMPLE 3 Applying Theorem 1

By combining Theorem 1 with the limits of Example 1, we have:

(a) lim (— %) = —1- 1' % ==1-0=0 Constant Multiple Rule and Example 1a

n—00 — 00

. n— 1 1 1 Difference Rule

(b) lim = lim (1-7)=lim1— limz=1-0=1 "

n—>00 n—00 n—00 and Example la

5 1 _

(C) lim - = =5+ lim H‘ lim n- 5:.0:0=20 Product Rule

n—>20 n n—>00 n—00

_ 7,6 4/n® — 7 _
@ lim A=77° _ (4/n°) _0-—7

= |lim = = -7, Sum and Quotient Rules
n—co p® +3 o0l + (3/m% 1+0

11

THEOREM 2 The Sandwich Theorem for Sequences

Let {a,}, {bn}, and {c,} be sequences of real numbers. If a, = b, = ¢, holds
for all n beyond some index N, and if lim,—w a, = lim,—w ¢, = L, then
lim,—c b, = L also.

12
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EXAMPLE 4  Applying the Sandwich Theorem

Since 1/n — 0, we know that

(a) CO,? L) because —% = Coj n %;
(b) %—’0 because 0 < % < %;
(c) (—1)"%—3'0 because —%5(—1)’3%5%.

13

THEOREM 3 The Continuous Function Theorem for Sequences

Let {a,} be a sequence of real numbers. If a, — L and if f is a function that is
continuous at L and defined at all a,,, then f(a,) — f(L).

Example 6: Applying theorem 3 to show that the sequence
{21m} converges to 0.

Taking a,= 1/n, =lims.a,=0=1L

Define f(x)=2*. Note that f(x) is continuous on x=L, and is
defined for all x= a,= 1/n

According to Theorem 3,

limy.. f(a,) = (L)

LHS: lim, ., f(a,) = lim, .. f(1/n) = lim ., 2"
RHS =f(L)=2L=20=1

Equating LHS = RHS, we have lim 5. 2/ =1
= the sequence {2} converges to 1

14
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U=
b=

FIGURE 11.3 Asn— 00, 1/n— 0 and

21/m — 20 (Example 6).

THEOREM 4
Suppose that f(x) is a function defined for all x = ng and that {a,} is a sequence
of real numbers such that @, = f(n) forn = ny. Then

lim f(x) =L =» lim a, = L.
x—00 n—00
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Example 7: Applying I’Hopital rule
Show that tim™" =0

n—oo n

Solution: The function f(x):'”_x Is defined

for x = 1 and agrees with the sequence
{a,=Inn/n} forn = 1.

Applying I’Hopital rule on f(x):

im X _jim X _iml oo

Xx—o X e | X— X

By virtue of Theorem 4,

. Inx :
im—=0=1lima, =0

X—>0 X N—ao

17

Example 9 Applying I"'Hopital rule to

determine convergence

. n+1Y'
Does the sequence whose nth termis a, = (—J converge?
n —

If so, find lima,.

n—oo

18
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Solution: Use I’Hopital rule

Sn f(x)=x|n(x—+lj
x—1

Let f(x)=(x—+ij so that f(n)=a, forn>1.

|n(x+1j
lim £ (x) = Iimxln(x—Hj —lim—X=1/

X—>00 X—>00 X —1 X—>00 1/ X

)
2 2
_im X =Y im 22X,

x>0 -1/ X2 X—>00 X2 -1
By virtue of Theorem 4, lim f (x)=2= lima, =2

X—>00 n—oo

19

THEOREM 5
The following six sequences converge to the limits listed below:
. Inn _
1. nli)ngo )
2. lim VVn =1
n—0oQ
3. limx"=1 (x>0
H—0C0

4. lim x" =0 (x| < 1)
n—0o

5. lim (1 + %) = e* (any x)

n—0oo

n

6. lim X =0 (any x)

H—00 HI

In Formulas (3) through (6), x remains fixed as n — 00

20
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Example 10

@ (nn?)/n=2(nn)/n->20=0
(b) " /n2 =¥ ( ﬂn) — (1)’

(©) "fan="3."Yn=3""n""1.1=1
(d) (_gjuo

© (n-2 (1 @)%
(f) 100"

n!

—0

21

DEFINITION Nondecreasing Sequence

A sequence {a,} with the property that a, = a,+; for all n is called a
nondecreas gseguence.

Example 12 Nondecreasing sequence
(@) 1,2,3,4,...,n,
(b) ¥, 2/3, %, 415, ...,n/(n+1),...
(nondecreasing because a_,,-a, = 0)

() {3} ={3,3,3,...}

Two kinds of nondecreasing sequences: bounded
and non-bounded.

22
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DEFINITIONS  Bounded, Upper Bound, Least Upper Bound

A sequence {a,} is bounded from above if there exists a number M such that
a, = M for all n. The number M is an upper bound for {a,}. If M is an upper
bound for {a,} but no number less than M is an upper bound for {a,}, then M is
the least upper bound for {a,} .

Example 13 Applying the definition for
boundedness

(a) 1,2,3,...,n,...has no upper bound
(b) Y2, 2/3, %, 4/5 , ...,n/(n+1),...is bounded
from above by M = 1.

Since no number less than 1 is an upper
bound for the sequence, so 1 is the least
upper bound.

23

A
=M
M y
y=1L
L o ® .(8.)
. a
o * (5 as 8
(1,ap)®
L ]
| | | | | | | | > X
0 1 2 3 4 5 6 7 8

FIGURE 11.4 If the terms of a
nondecreasing sequence have an upper
bound M, they have a limit L = M.

24
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THEOREM 6 The Nondecreasing Sequence Theorem

A nondecreasing sequence of real numbers converges if and only if it is bounded
from above. If a nondecreasing sequence converges, it converges to its least
upper bound.

25

11.2

Infinite Series

26
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DEFINITIONS Infinite Series, nth Term, Partial Sum, Converges, Sum
Given a sequence of numbers {a,}, an expression of the form

i T gy oot gy

is an infinite series. The number g, is the nth term of the series. The sequence
{s,} defined by

51 = a

52 =a; + a

n
sy, =aytay+-+a = Za;c
k=1

is the sequence of partial sums of the series, the number s, being the nth partial
sum. If the sequence of partial sums converges to a limit L, we say that the series
converges and that its sum is L. In this case, we also write

oo
ag+tatta,+o= >a,=L.
n=1

If the sequence of partial sums of the series does not converge, we say that the
series diverges.

27

Example of a partial sum formed by a
sequence {a,=1/2"1}

Suggestive
expression for
Partial sum partial sum Value
First: s1 =1 2 -1 1
; - 1 _1 3
Second: s =1+ 3 2 > >
- =1.4 Ll _1 s
Third: S3_1+2+4 2 1 q
. p 1T - 1 1 2r= |
nth: sp =1+ > + 4 + 0 o1 2 Y e

28
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I 1/4

—
I I

T T L
S —

0 1 172 118 2

FIGURE 11.5 As the lengths 1, ', Y4, '%, ... are added one by one, the sum
approaches 2.

29

‘ Short hand notation for infinite series

da,>a or)a,
n k=1

= The infinite series may converge or diverge

30
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(GGeometric series

Geometric series are the series of the form
a+ar+arz+ard+ . +aml+.= Yar

. n=1
aandr=a,,/a, are fixed numbers and
a=0. r is called the ratio. Three cases: r< 1,
r>1, r=1.

If |[r| < 1, the geometric series @ + ar + ar? + --- + ar"™' + --- converges
toa/(1 — r):

- a
ZIar”_]=l_r, || < 1.
=

If|r| = 1, the series diverges.

31

[e'e) . a
Proof Of;ar 1=§ for | 7/‘| <1
Assume r #1.
k=n
5, =D ar"” —a+ar +ar’+..+ar""
k=1

rs,=r(a+ar +ar’+..+ar"")=ar+ar’+ar’+..+ar" +ar"
s,—rs,=a—ar"=a(1-r")

s,=a(l-r")/(1-r)

: _a(l-r") g :
If [r|<1: lims, =lim = (By theorem 5.4, limr"=1 for |r|<1)
r n—o0

n—oo n—oo 1_ r 1_

32
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For cases |r| =1

If r|>1: lims, = lim a(t-r')

n—o n—o 1_ r

Ifr=1s, =a+ar +ar’+..+ar" =(n+l)a

lims, =lima(n+1)=alim(n+1) =

N—00 N—o0

= oo (Because|r" |- oo if |r|>1

33

EXAMPLE 1 Index Starts withn = 1

The geometric series witha = 1/9andr = 1/3 is

34
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Example 2 Index starts with #=0

The series (-1)'5

IS a geometric series with a=5, r=-(1/4).
It converges to s_.= a/(1-r) = 5/(1+1/4) = 4

35

Example 5 A nongeometric but

telescopic series
Find the sum of the series _

1
S(iluti(in ;n(nﬂ)

n(n+1):n (n+1)
o1 k1 1
Skzzn(n+1)zz__(n+1)=

(remember partial sum?)

n=1 n=1rl
1 1 1 1 1 1 1 1 1 1
-+ |+ | — || ———
355G )
o1

k+1
i ! =lims, =
= K—o0 k

36
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Divergent sertes

Example 6
an =14+2+4+16+..n*+...

diverges because the partial sums s, grows beyond every number L

n+l1 2 3 4 n+1
— = ——+ .. +—+
n 1 2 3 n

diverges because each term is greater than 1,
4 n+1

2 3
=>—+—+—=+ —+ >> 1>
1 2 3 Z

37

The nth-term test for divergence

THEOREM 7

oo
If E a, converges, then a, — 0.

n=1

Let S be the convergent limit of the series, i.e.
lim_5 .. S, —Za =

When n is Iarge s,ands_, arecloseto S
Thismeansa,=s,—-s,;, 2a,=S-S=0as
n—> oo

38
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The nth-Term Test for Divergence
o0

E a, diverges if lim a, fails to exist or is different from zero.
n—>00

n=1

Question: will the series converge if a,>07?

39

Example 7 Applying the #th-term test

(a)>_n’ diverges because limn® =, i.e. lima, fail to exist.

N—o0 N—o0
n=1

(b)zn—+1 diverges because limM o0,
n=1

n—oo n

(c)i(—l)n+l diverges because lim(~1)"" fail to exist.
=1

n—o0

e | ) ) —n -1 ]
d ——— diverges because lim =— #0 (I'Hopital rule
( )Z_;‘Zn+5 J nso2n4+5 2 ( P )

40
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Example 8 2,20 but the series
diverges

1 1 1 1 1 1 1 1 1 1
1+—+—4+—F—F+—F—F.—F+—+—+...—+...
4 4 4 4 2" 2" 2 2"
2 te‘rrms 4 téms on tevrms

The terms are grouped into clusters that
add up to 1, so the partial sum increases
without bound —=>the series diverges

Yeta,=2"—> 0

41

THEOREM 8

If Ya, = Aand 2 b, = B are convergent series, then

1.  Sum Rule: >la, + b,) = 2a, + 2b, = A+ B

2. Difference Rule: 2ldy —by) = Zay — Xbiy =4 —B

3. Constant Multiple Rule: 2ka, = kXa, = k4 (Any number k).
Corollary:

Every nonzero constant multiple of a divergent
series diverges

If Xa, converges and Xb, diverges, then
Z(a,*+b,) and Z(a,- b,) both diverges.

42
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Question:

If Xa, and Xb, both diverges, must X(a,tb,)
diverge?

43
EXAMPLE 9  Find the sums of the following series.
-1 <« ( 1 1 )
a = —
(@) g =PI et
00 0
— 1 1 ifference Rule
= 24 o — ; = Difference Rule
1 1
= — Geometric series witha = landr = 1/2, 1/6
- (1/2) 1-(1/6)
_,_6
= 5
_4
5
<4 _ w1 ot Multinle Rule
(b) E = = 42 T Constant Multiple Rule
n=0 2 n=0 2
= 4(71 1(1/2)> Geometric series witha = 1,r = 1/2
=8

44
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11.3

The Integral Test

45

Nondecreasing partial sums

Suppose {a } is a sequence with a, > 0 for all n
Then, the partial sums_,,=s+ta, = S,
= The partial sum form a nondecreasing sequence

n
{5,228, ={8,5,,5,0: 5,3
k=1

Theorem 6, the Nondecreasing Sequence Theorem
tells us that the series Za converges if and only if
the partial sums are bounded from above.

46
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Corollary of Theorem 6

A series E:’;] a, of nonnegative terms converges if and only if its partial sums
are bounded from above.

47

Example 1 The harmonic series

Theserleil 1.1 (1+£j (1+1+1+1j (1+i+...+ij+...
_1n1234 5 6 7 8 9 10 16

diverges.

i
"8

I\)\I—\

21
>—== >—==
4 2 16 2

g:o_nlslder the sequence of patrtial sun{s 1S2184: g1 S, 3

s, =8,+1/2>1-(1/2)
s,=S,+(1/3+1/4)>2-(1/2)
Sg=S,+(1/5+1/6+1/7+1/8)>3-(1/2)

s, >k-(1/2)

The partial sum of the first 2k term in the series, s, > k/2, where
k=0,1,2,3...

This means the partial sum, s, is not bounded from above.
Hence, by the virtue of Corollary 6, the harmonic series diverges

48
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THEOREM 9  The Integral Test

Let {a,} be a sequence of positive terms. Suppose that a, = f(n), where f is a
continuous, positive, decreasmg function of x for all x = N (N a positive inte-
ger). Then the series E,,., ~ @, and the integral f N f(x) dx both converge or both
diverge.

49

EXAMPLE 3  The p-Series
Show that the p-series

1 1 1
EM_F+_+?+ R

n=1

(p a real constant) converges if p > 1, and diverges if p = 1.

Solution  Ifp > 1,then f(x) = 1/x-" is a positive decreasing function of x. Since

Tl xPd = li [ . T
,oxXPT = -p+1)]
1 1

T —pbllrm (bf"‘ ])

1
= m(o - l} = p- 1 because p 1 =0

] bP 7l — 00 a5 b— ¢

the series converges by the Integral Test. We emphasize that the sum of the p-series is not
1/(p — 1). The series converges, but we don’t know the value it converges to.
Ifp<1,thenl — p > Oand

oo

L —_ 1 3 I=p _ =
x"’dx 1 —phll-ngo{b ) = e

The series diverges by the Integral Test.

If p = 1, we have the (divergent) harmonic series

l+l+l+

1
2 3 .+n+.

We have convergence for p > 1 but divergence for every other value of p. 50
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Example 4 A convergent series

> a, =Y —— is convergent by the integral test:

n=1 n=1 n +l
Let f (X) =——,s0 that f (n) =a, =——. f (x) Is continuos,

X*+1 n

positive, decreasing for all x >1.

o e 1 T I LI R S
L f(x)dx_J‘1 " +1dx_..._!)Ln;tan x]l =>4
Hence, Z 21 converges by the integral test.

—=n +1
Caution

The integral test only tells us whether a given
series converges or otherwise

The test DOES NOT tell us what the
convergent limit of the series is (in the case
where the series converges), as the series
and the integral need not have the same
value in the convergent case.
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11.4

Comparison Tests

53

THEOREM 10 The Comparison Test

Let X a, be a series with no negative terms.

(a) Xa, converges if there is a convergent series > ¢, with a, = ¢, for all
n > N, for some integer V.

(b) Xa, diverges if there is a divergent series of nonnegative terms >.d, with
a, = d, foralln > N, for some integer N.

54
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EXAMPLE 1  Applying the Comparison Test

(a) The series

Mg
wh
-
| wh

diverges because its nth term

s __1 1
Sn—1 1 n
n

is greater than the nth term of the divergent harmonic series.

(b) The series

= 1 1 I

converges because its terms are all positive and less than or equal to the correspon-

ding terms of

< 1 11
1+ > 5=1+14+5+=+--.
202 2 2

The geometric series on the left converges and we have

I+§L,,=1+ 1 = 3.
=2 1 —(1/2)

The fact that 3 is an upper bound for the partial sums of 3,—o(1/n!) does not
mean that the series converges to 3. As we will see in Section 11.9, the series con-
verges to e.

Caution

The comparison test only tell us whether a
given series converges or otherwise

The test DOES NOT tell us what the
convergent limit of the series is (in the case
where the series converges), as the two
series need not have the same value in the
convergent case
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THEOREM 11  Limit Comparison Test
Suppose that @, > 0 and b, > 0 forall n = N (N an integer).

1. If lim Lo ¢ > 0, then Xa, and X b, both converge or both diverge.

n—>00 bn

2. lingo % = 0 and X b, converges, then >a, converges.
n—> n

3. If lim % = 00 and 2 b, diverges, then X a, diverges.
n—>00 Uy

57

EXAMPLE 2  Using the Limit Comparison Test

Which of the following series converge, and which diverge?

3.5.7 .9 - 2m+1l - 2+
@ Z+9+16% 25 A1)y D2 e
11,1, 1 -1
) +3+tg+qsto= R
Solution

(a) Let a, = (2n + l]/(n2 + 2n + 1). For large n, we expect a, to behave like
2n/n* = 2/n since the leading terms dominate for large n, so we let b, = 1/n. Since

bMs
&

[
Mg
==

diverges

and

5 ay 0 2!’!2 +n
lim == lim 5=———— =2,
n—00 by n—copn® + 2n + 1

>a, diverges by Part 1 of the Limit Comparison Test. We could just as well have

taken b, = 2/n, but 1/n is simpler.
58
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Example 2 continued

(b) Let a, = 1/(2" — 1). For large n, we expect a, to behave like 1/2", so we let
b, = 1/2". Since

e 9] [.9]

b, = L,, converges
Sbh=

n=1 n=1

and

= T /2
=1,

> a, converges by Part 1 of the Limit Comparison Test.

59

Caution

The limit comparison test only tell us whether
a given series converges or otherwise

The test DOES NOT tell us what the
convergent limit of the series is (in the case
where the series converges)

60
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11.5

The Ratio and Root Tests

61

THEOREM 12  The Ratio Test
Let X a, be a series with positive terms and suppose that

. Qp+l
lim ——=p

n—0Q an
Then
(a) the series converges if p < 1,

(b) the series diverges if p > 1 or p is infinite,
(c) the test is inconclusive if p = 1.
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EXAMPLE 1 Applying the Ratio Test

Investigate the convergence of the following series.

S on < (2n)!
(a) 223_":5 (b)zl{ﬂ)

= =~ nln!

Solution
(a) For the series 230:0(2" + 5)/3",

G _ @A) oihs 1 (24527 1.2 _
@ 2"+ 5)/3" 3 2"+5 3 \l+5-27 31

2
3

The series converges because p = 2/3 is less than 1. This does not mean that 2/3 is
the sum of the series. In fact,

o0

2"+5 (2 w5 _ 1 5 21
2w '2(3)+23“‘1—(2/3}+1—(1/3)‘2'

n=0 n=0

_ (2n)! 3 (2n + 2)!
() Ifa, = Tl ,then a,+1 = o+ Din + 1)1 and

ap+y _ n'n!(2n + 2)(2n + 1)(2n)!
- (n+ Di(n + D2n)!

_(@2n+2)2n+1) 4n+2
 m+Dr+1)  n+l

— 4,

The series diverges because p = 4 is greater than 1. e

Caution

The ratio test only tell us whether a given
series converges or otherwise

The test DOES NOT tell us what the
convergent limit of the series is (in the case
where the series converges)
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THEOREM 13 The Root Test
Let X a, be a series with @, = 0 for » = N, and suppose that

lim\'ya_,,=p.

n—o0
Then
(a) the series convergesifp < 1,
(b) the series diverges if p > 1 or p is infinite,

(c) the test is inconclusive if p = 1.

65

EXAMPLE 3 Applying the Root Test

Which of the following series converges, and which diverges?

@S2 S (c)i( : )
n=1 2" n=1 n2 n=1 1 +n

Solution
n/\2
(a) § Jm_zconwar es because n_ \n® = (\/';) -1
n=1 2" & 2" & o 2 2 ’

§ 2" [27 2 2
b = diverges because . [~—= = - =>1.
®) = n? 5 n? (\H/;)z 1
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11.6

Alternating Series, Absolute and
Conditional Convergence

67

Alternating series

A series in which the terms are alternately
positive and negative

1 1 1 1 (-1)™
e e ITE +e
23 4 5 n
_2+1_1+£_E+...+(_1) 4_|_..
2" 4 8 2"

1—2+3—4+5—6+~(—Qmﬂrr

68
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THEOREM 14  The Alternating Series Test (Leibniz’s Theorem)
The series

o0
2(—1)”“% =u —uptuy —uyt -

converges if all three of the following conditions are satisfied:

1. The u,’s are all positive.
2. U, = uy4 foralln = N, for some integer N.
3. u,—0.

n+l

-1
The alternating harmonic series Z )
converges because it satisfies the three

requirements of Leibniz’s theorem.

69

THEOREM 15 The Alternating Series Estimation Theorem
If the alternating series Eil(—l)"“un satisfies the three conditions of
Theorem 14, then forn = N,

Sp=uUp — Uy T+ (—l)n+]uﬂ

approximates the sum L of the series with an error whose absolute value is less
than u,+, the numerical value of the first unused term. Furthermore, the remain-
der, L — s,, has the same sign as the first unused term.
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EXAMPLE 2  We try Theorem 15 on a series whose sum we know:

o0
PRV IR SRS SO SRR S S S S S S S
2 ==+ T8 I6 32 6d 128 | T 756

The theorem says that if we truncate the series after the eighth term, we throw away a total
that is positive and less than 1/256. The sum of the first eight terms is 0.6640625. The sum
of the series is

11 _2

1 —(=1/2) 3/2 3°
The difference, (2/3) — 0.6640625 = 0.0026041666..., is positive and less than
(1/256) = 0.00390625.

71

DEFINITION Absolutely Convergent

A series X a, converges absolutely (is absolutely convergent) if the correspon-
ding series of absolute values, >|a,|, converges.

Example:
The geometric series

© n-1
Zl(—lj :1-1 + % - % +--- converges absolutely since

the correspoinding absolute series

& ( 1)”_ 1 1 1
DY -=] |=1+=+=+=+--- converges
s 2 2 4 8
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DEFINITION Conditionally Convergent
A series that converges but does not converge absolutely converges conditionally.

Example:
The alternative harmonic series

n+1
Z&:l_l_kl__

-1 N 2
But the correspoinding absolute series

- converges (by virture of Leibniz Theorem)

n+l
2 )

Z ZE —1+ += + ; +--- diverges (a harmonic series)
n

n=1 n=1
(_1)n+1
n

Hence, by definition, the alternating harmonic series Z
n=1

converges conditionally.

73

THEOREM 16 The Absolute Convergence Test

oo
If E | @, | converges, then Ea,, converges.

n=1 n=1

In other words, If a series converges
absolutely, it converges.

. I A R
In the previous example, we shown that the geometric series Zl(_Ej
=1

converges absolutely. Hence, by virtue of the absolute convergent test, the series
0 1 n-1

Zl(——j converges.

n=1 2
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Caution

All series that are absolutely convergent
converges.

But the converse is not true, namely, not all
convergent series are absolutely convergent.

Think of series that is conditionally
convergent. These are convergent series that
are not absolutely convergent.

75

EXAMPLE 3  Applying the Absolute Convergence Test

(a) For 2(—1)’”' % =1- % + % - % + ---, the corresponding series of absolute
n=1 n

values is the convergent series

ol _,.1.1_1 . pserieswithp=2
;nz SR Y P

The original series converges because it converges absolutely.

o f . . .
(b) For > sm;z = sn]ll + 5122 + 5133 + -+, the corresponding series of absolute
n=1 H

values is
sin n sinl| [sin2] :
2 2 1 4 T

n=1

n

which converges by comparison with So (1 /n?) because |sinn| = 1 for every n.
The original series converges absolutely; therefore it converges.
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THEOREM 17 The Rearrangement Theorem for Absolutely
Convergent Series

If E:;l a, converges absolutely, and by, b2, ..., b,, ... 1s any arrangement of the
sequence {a,}, then 2b, converges absolutely and

Eb,, = Za,,.
n=1 n=1

77

1. The nth-Term Test: Unless a, — 0, the series diverges.

2. Geometric series: Zar" converges if |#| < 1; otherwise it diverges.
3. p-series: 2 1/n” converges if p > 1; otherwise it diverges.
4

. Series with nonnegative terms: Try the Integral Test, Ratio Test, or Root
Test. Try comparing to a known series with the Comparison Test.

5. Series with some negative terms: Does > |a, | converge? If yes, so does
>a,, since absolute convergence implies convergence.

6. Alternating series: > a, converges if the series satisfies the conditions of
the Alternating Series Test.
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11.7

Power Series

79

DEFINITIONS Power Series, Center, Coefficients
A power series about x = 0 is a series of the form

o0

Ec,,x” =cot+cxtextt -+ e+

n=0

A power series about x = a is a series of the form

o

cx —a)y' =co + ci(x — a) + c(x — a2 + - + ¢yl
n=0

in which the center a and the coefficients ¢, ¢y, ¢c2,..., Cps . .-

—a)t+:--

are constants.

©)

(2)
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EXAMPLE 1 A Geometric Series
Taking all the coefficients to be 1 in Equation (1) gives the geometric power series
0
Ex”= l+x+x>+ -+ 2"+
n=0
This is the geometric series with first term 1 and ratio x. It converges to 1/(1 — x) for

|x| < 1. We express this fact by writing

1
1 —x

=l+x+xt+--+x"+-, -—-l1<x<l. (3)

Mathematica simulation
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EXAMPLE 3  Testing for Convergence Using the Ratio Test

For what values of x do the following power series converge?

(a) 2(_1)" e xz_’* " %‘ . Note: To test t_he convergence of an
n=1 alternating series, check the
) E( 1y 1L‘] N x{ + x; — ... convergence of the absolute
o . version of the series using ratio
(c)z':;—!=l+x+;—!+‘;—!+... test.

(d) Dnix" =1+ x+2Ix% + 33 + -+
Solution Apply the Ratio Test to the series 2|u, |, where u, is the nth term of the series
in question.

Up+1
Up

() = —r7IxI= .

The series converges absolutely for [x| < 1. It diverges if |[x| > 1 because the nth
term does not converge to zero. At x = 1, we get the alternating harmonic series
1 —1/2+1/3 —1/4 + ---, which converges. At x = —1 we get —1 — 1/2 —
1/3 — 1/4 — ---, the negative of the harmonic series; it diverges. Series (a) con-
verges for —1 < x = 1 and diverges elsewhere.

A L 4 ¥

] 0 1 Continued on nextslide
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Up+1
Up

_2!‘1—12 2
T+ 1r Y

(b)

The series converges absolutely for x> < 1. It diverges for x> > 1 because the nth
term does not converge to zero. At x = 1 the series becomes 1 — 1/3 +

1/5 = 1/7 + ---, which converges by the Alternating Series Theorem. It also con-
verges at x = —1 because it is again an alternating series that satisfies the conditions
for convergence. The value at x = —1 is the negative of the value at x = 1. Series (b)
converges for —1 = x = 1 and diverges elsewhere.
Fy | & X
-1 0 |
Un+1 X" nl |x|
© |, D x| - nt [ — 0 for every x.

The series converges absolutely for all x.

- L >
- >\

0

(n + 1)Ix"*!
nlx"

Up+1
Uy

(d)

= (n + 1)|x|— oo unlessx = 0.

The series diverges for all values of x except x = 0.

. 4 X

0
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The radius of convergence of a power
series

THEOREM 18  The Convergence Theorem for Power Series

o0
If the power series Ea,,x” =ay+ a;x + apx? + -+ converges for
n=0

x = ¢ # 0, then it converges absolutely for all x with |x| < |c|. If the series

diverges for x = d, then it diverges for all x with |x| > |d|.
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COROLLARY TO THEOREM 18
The convergence of the series X¢,(x — a)" is described by one of the following
three possibilities:

1. There is a positive number R such that the series diverges for x with
|x — a| > R but converges absolutely for x with [x — a| < R. The series
may or may not converge at either of the endpoints x = a — R and
x=a+ R.

The series converges absolutely for every x (R = 0),

The series converges at x = a and diverges elsewhere (R = 0).

85

R is called the radius of convergence of the
power series

The interval of radius R centered atx = a is
called the interval of convergence

The interval of convergence may be open, closed,
or half-open: [a-R, a+R], (a-R, a+R), [a-R, a+R)
or (a-R, a+R]

A power series converges for all x that lies within
the interval of convergence.
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How to Test a Power Series for Convergence

1. Use the Ratio Test (or nth-Root Test) to find the interval where the series
converges absolutely. Ordinarily, this is an open interval

|x —a|l <R of a@—=R=x=<a+tR

2. If'the interval of absolute convergence is finite, test for convergence or diver-
gence at each endpoint, as in Examples 3a and b. Use a Comparison Test, the
Integral Test, or the Alternating Series Test.

3. If the interval of absolute convergence is a — R < x < a + R, the series
diverges for |x — a| > R (it does not even converge conditionally), because
the nth term does not approach zero for those values of x.

See example 3 (previous slides and determine
their interval of convergence
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THEOREM 19 The Term-by-Term Differentiation Theorem

If Ye,(x — a)” converges fora — R < x < a + R for some R > 0, it defines
a function f:

f)=Delx—a), a—-R<x<a+R.
n=0

Such a function f has derivatives of all orders inside the interval of convergence.
We can obtain the derivatives by differentiating the original series term by term:

f'x) = 2{"6”(x —a)"”!

f'(x) = in(n — Denx — a)" 72,
n=2

and so on. Each of these derived series converges at every interior point of the in-
terval of convergence of the original series.
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EXAMPLE 4  Applying Term-by-Term Differentiation
Find series for f'(x) and f"(x) if
1

f(x)=ﬁ=l+x+x2+x3+x4+...+xn+_”
o0
— an, —]<x<1
n=0
Solution
f’(x)=(1_1x)2=1+2x+3x2+4x3+---+nx"-1+...
o0
— znxﬂ_l, _] <x<1
n=1
f(x) = a _sz =2+6x+12x2+---+nn— 1)x" 2+ -
o0
E (n = 1)x -1 <x<1
89
Caution

Power series Is term-by-term differentiable

However, in general, not all series is term-by-
term differentiable, e.g. the trigonometric
series i“”ﬁjlx) is not (it’s not a power series)
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A power series can be integrated term by
term throughout its interval of

converoence

T ALLV O ) = B g ~—g

THEOREM 20  The Term-by-Term Integration Theorem
Suppose that

fx) = ;)Cn(x - a)"

converges fora — R < x <a + R (R > 0).Then

§ (x _ a)n+1
c, ——————
~" n+1

converges fora — R < x < a + Rand

00 n+1
ff(x)dx 2 e

fora— R<x<a+R.

EXAMPLES5 A Seriesfortan™?x, -1 =x =1

Identify the function
3 5
f(x):x—x—-l-x——---, —-1=x=1.

3 5
Solution We differentiate the original series term by term and get
fx)=1-x>+x*—x0+-- -1<x<1.

This is a geometric series with first term 1 and ratio —x2, so

L
1 —(=x%) 1 +x%

f'x) =

We can now integrate f'(x) = 1/(1 + x?) to get

/f'(x)dr = / : f‘xz =tan 'x + C.

The series for f(x) is zero when x = 0, so C = 0. Hence

5 7

3
f(x):x—%ﬂ-x?—%'l‘“‘:taﬂ_lx, -1 <x<I1. (7)

— In Section 11.10, we will see that the series also converges totan™' x at x = +1. —
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EXAMPLE6 ASeriesforln(1 +x), -1 <x=1

The series

1

= — +2—3+...
1+ ¢ 1 t t t

converges on the open interval —1 < ¢ < 1. Therefore,

A 2 2 !
In(l1 + x) = dr=r——+§— — + - Theorem 20
0

+ - -1 <x<1.

It can also be shown that the series converges at x = 1 to the number In 2, but that was not
guaranteed by the theorem.
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THEOREM 21 The Series Multiplication Theorem for Power Series
If A(x) = Ei:o:c, a,x" and B(x) = 2;.10 byx" converge absolutely for [x| < R,
and

R
cn = aob, + arb,—1 + ayby—2 + - + ay—1by + ayby = Zakbn—k>
=0

then 3, ¢,x" converges absolutely to A(x)B(x) for |x| < R:

o0 o0 o0
(Eanx”)- (21),,5:") = Ec,,x".
n=0 n=0 n=0
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EXAMPLE 7  Multiply the geometric series

Wk

=1l4+x+x2+--+x"+...= N for|x| < 1,
4 1 —=x

"

by itself to get a power series for 1/(1 — x)?, for|x| < 1.

Solution Let

o0

AX) = Yax" =1 +x+x2+ -+ 2"+ = 1/(1 - x)
n=0
o0

Bx)= Xbx"=1+x+x2+-+x"+--=1/(1 —x)
n=0

and

en = dobp + arbp—y + - + by + -+ anby

n + 1 terms

l+1+--+1=n+1l.

n + | ones

Then, by the Series Multiplication Theorem,

00
2 cnx" =
n=0

I+ 2 +3x? +43 +- + (n+ Ix" +---

[+ <]
(n + 1)x"
0

Alx)-B(x)

n=

is the series for 1/(1 — x)?. The series all converge absolutely for|x| < 1.
Notice that Example 4 gives the same answer because

d 1)_ 1
de\l =x) (1 -x?
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11.8

Taylor and Maclaurin Series
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Series Representation

In the previous topic we see that an infinite series
represents a function. The converse is also true, namely:

A function that is infinitely differentiable f(x) can be
expressed as a power series ibn(x—a)”

We say: The function f(x) generates the power series Zb (x-a)’

The power series generated by the infinitely differentiable
function is called Taylor series.

The Taylor series provide useful polynomial
approximations of the generating functions

97

Finding the Taylor series

representation

In short, given an infinitely differentiable function f(x),
we would like to find out what is the Taylor series
representation of f(x), i.e. what is the coefficients of
by, in 2.b,(x-2)’

In addltlon we would also need to work out the
interval of x in which the Taylor series
representation of f(x) converges.

In generating the Taylor series representation of a
generating function, we need to specify the point
x=a at which the Taylor series is to be generated.
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DEFINITIONS Taylor Series, Maclaurin Series
Let f be a function with derivatives of all orders throughout some interval con-
taining a as an interior point. Then the Taylor series generated by f at x = a is

> /Y "
k=0 : kga) (x — a)f = fla) + f'(a)(x — a) + f;!a) (x — a)?
(n)
foves & fnia)(x_a)” S,

The Maclaurin series generated by f is

o £(b)(( "(0 (0
> Lt = 10 + ro + P v s DR

the Taylor series generated by f at x = 0.

Note: Maclaurin series is effectively a special case of Taylor
serieswitha =0.

99

Example 1 Finding a Taylor series

Find the Taylor series generated by
f(x)=1/x at a= 2. Where, if anywhere, does

the series converge to 1/x?
f(x) = x1; £'(x) = -x2, f W(x) = (-1)" n! x(+D)
The Taylor series is

(x-2)" =

i f®(2) (x—2)" :i(—l) kix

=AY =S
(-1)" 27 (x=2)° +(=1) 22 (x=2)" +(-1)" 23 (x = 2)* +...(-1) 2 * D (x = 2) 4 ...=
12— (x=2)14+(x=2)"18+...(=1) (x=2) 20D 4 .
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f(k)(z) k 2 k k [ o(k+l
Z o (x=2) 2= (x=2)/ 4+ (x-2) [8+..(=1) (x=2)< 12" + ..

This is a geometric series with r =—(x—2)/2,
Hence, the Taylor series converges for |r || (x —2)/2|<1,

or equivalently,0 < x < 4.
if(k)(Z)( o) - 1/2 1
‘o 1-r 1—(—(x—2)/2) X

= the Taylor series 1/2—(x—2)/4+(x—2)*/8+ ...(—l)k (x=2)</2%D 4 ..

1
convergesto — for 0<x<4.
X ) i i
*Mathematica simulation
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Taylor polynomials

Given an infinitely differentiable function f, we can approximate f(x)
at values of x near a by the Taylor polynomial of f, i.e. f(x) can be
approximated by f(x) ~ P,(x), where

k=n £ (k)

P (X)= sz—!(a)(x— a)k

f =f¢ £ ) f( ) 3 f(n) n

é";‘) (Ia)( _a)4 1@ )( —a)+ ( L@ ay +—n|(a)(x—a)

P.(x) = Taylor polynomlal of degree n of f generated at x=a.
P,(X) is simply the first n terms in the Taylor series of f.

The remainder, |R,(X)| = | f(x) - P,(X)|] becomes smaller if higher
order approximation is used

In other words, the higher the order n, the better is the
approximation of f(x) by P,(x)

In addition, the Taylor polynomial gives a close fit to f near the point
X = a, but the error in the approximation can be large at points that
are far away.
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DEFINITION  Taylor Polynomial of Order n

Let f be a function with derivatives of order k for k = 1,2,..., N in some inter-
val containing a as an interior point. Then for any integer n from 0 through N, the
Taylor polynomial of order n generated by f at x = a is the polynomial

f”( D g

Py(x) = fla) + f'(a)(x —a) +

f‘“(a)
k!

+ (x — a)".

(n)
(x—af+- -+ fn'Ea)

103

Example 2 Finding Taylor polynomial
for ¢¥at x = 0
f(x)=e* > fM(x)=¢

() 0 0
P (X)= Zf ] 8 0 &, & e, & ey By
0! 1! 2! 3! n!

x=0

2 3 n
X X X .. :
=1+ e This is the Taylor polynomial of order n for e
n!

If the limit n — oo is taken, P, (x) — Taylor series.

X

X2 X3 Xn © Xn
The Taylor series fore* is1l+ X+—+—+..—+..= » —,

2 31 nl o N!
In this special case, the Taylor series for e* converges to e* for all x.

(To be proven later)
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y

A

3.0
2.5
2.0

1.5
FIGURE 11.12 The graph of f(x) = e*

and its Taylor polynomials
Pilx)=1+x
Py(x) =1+ x + (x%/2!)

1.0

0.5F Py(x) = 1 + x + (x?/2!) + (x*/3!).
Notice the very close agreement near the
| A | x center x = 0 (Example 2).
-0.5 0 0.5 1.0

*Mathematica simulation
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EXAMPLE 3  Finding Taylor Polynomials for cos x
Find the Taylor series and Taylor polynomials generated by f(x) = cosxatx = 0.

Solution The cosine and its derivatives are
flx) = COs X, filx) = —sin x,

fr(x) = —cos x, ) = sin x,
fP(x) = (=1Y cosx,  fPV() = (=1)"" sinx.
At x = 0, the cosines are 1 and the sines are 0, so

f0) = (=1, f@N0) = 0.
The Taylor series generated by f at 0 is

"0 (0 (0
£0) + f(0)x + fz[! ).rz +%x3 +oee f{ng ).r" +oee
2 4 2n
=l+0°x—%+0°x3+%+~»+(—1]”én)!+»--
3 oo (_]kazk
_k;o (2k)!

This is also the Maclaurin series for cos x. In Section 11.9, we will see that the series con-
verges to cos x at every x.

Because f*"*1(0) = 0, the Taylor polynomials of orders 2n and 2n + 1 are identical:

xz»

P3y(x) = Pyyir(x) = 1 —x—?-l-x—a— vt (=1

Figure 11.13 shows how well these polynomials approximate f(x) = cosx near x = 0.

Only the right-hand portions of the graphs are given because the graphs are symmetric
about the y-axis. 106
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»

FIGURE 11.13 The polynomials

n (_ 1 )kxzk
P = —
converge to cos x as n —> 00 . We can deduce the behavior of cos x
arbitrarily far away solely from knowing the values of the cosine

and its derivatives at x = 0 (Example 3). *Mathematica simulation
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11.9

Convergence of Taylor Series;
Error Estimates
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When does a Taylor series converge to its
generating function?

ANS:
The Taylor series converge to its generating
function if the [remainder| =

IR,()] = [f(X)-P(x)] > 0 as n>eo

109

Taylor's Formula
If f has derivatives of all orders in an open interval / containing a, then for each
positive integer n and for each x in /,
, f"(a)
@) = f@) + f'@)x = a) + 5= (c = a)? + -
(g
+ 09 a4 R, (1)
where
f[ﬂ+ 1 ](C)
R,(x) = TE] (x — a)""! for some ¢ between a and x. (2)
& ' R,(x) is called the remainder of order n
y
f(a)T ...... °
f(x) .

I
0 a C X
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f(x) = P, (x) + R,(x) for each x in I.
If R (X) 20 as n =<, P (x) converges to f(x),
then we can write

f () =limP, (x)=> f(kk),(a)(x—a)k

111

Example 1 The Taylor series for ¢*
revisited
Show that the Taylor series generated by

f(x)=e* at x=0 converges to f(x) for every
value of x.

Note: This can be proven by showing that
|IR,|=> 0 when n >«
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2 3 n

& =1t x4y X —+R(x)
21 31 nl
(n+1)(C)
R,(x) :WXM for some ¢ between 0 and x
n+1)!
_ c +l
IR
Ifx>0,0<c<X I f I
Xn+1 | X exXn+1 c X
=1=e’<e<e* > < "
(n+1)! " |(n+1)! (n+1)!
n+l
—|R,(x)| <€ X forx>0. el
(n+1)!
Ifx<0,x<c<0 y=eX
c |e0 n+1 | | 1
=e'<e<e’ > X" < m
(n+1)! N+ [(n+D)! (n+D)!
e

n+1

—|R,(X)|

<—+——"forx<0
+1)!

Combining the result of both x >0 and x <0,
n+1
IR (X) <& S when x>0,

(n+1

‘Xn+1
when x <0
n+1)!

R,
| (X)|<(

Hence, irrespective of the sign of x,lim| R, (x) |= 0 and the series

n

Z— converge to e*for every x.

n=0 M-
THEOREM 5
The following six sequences converge to the limits listed below:
1. lim 27—
Toamoo M THEOREM 1
2. lim i =1 Let {a,} and {b,} be sequences of real numbers and let 4 and B be real numbers.
n—00 The following rules hold if lim,— a, = A4 and lim,— b, = B.
3. lim x'" =1 (x> 0) 1. Sum Rule: lim,—~(a, + b,) =4 + B
n—)
4 lim x" = 0 (x| < 1) 2. Difference Rule: lim,—oo(a, — by) = A — B
n—00 3. Product Rule: lim,—oo(@,*b,) = A+ B
5. lim (1 + %)" — (any x) 4.  Constant Multiple Rule: limy—co(k*b,) = k*B (Any number k)
n—00 n .
n 5. Quotient Rule: lim,—oo (;— = % if B#0
X n
6. nli,ngo = 0 (any x)

In Formulas (3) through (6), x remains fixed as n — o,
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THEOREM 23 The Remainder Estimation Theorem

If there is a positive constant M such that | f"*P(¢)| = M for all # between x and
a, inclusive, then the remainder term R,(x) in Taylor’s Theorem satisfies the in-
equality

|x _ a|n+l

[Rux)| = M=C =

[f this condition holds for every n and the other conditions of Taylor’s Theorem
are satisfied by f, then the series converges to f(x).
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EXAMPLE 3  The Taylor Series for cos x at x = 0 Revisited

Show that the Taylor series for cos x at x = 0 converges to cos x for every value of x.

Solution We add the remainder term to the Taylor polynomial for cos x (Section 11.8,
Example 3) to obtain Taylor’s formula for cos x with n = 2k:

2 4
— X X k
cosx—1—2—!+4—!—---+(—l)

<2k
(2k)!

+ Rzk(x).

Because the derivatives of the cosine have absolute value less than or equal to 1, the Re-
mainder Estimation Theorem with M = 1 gives
| x|2k+l

| Ra(x)| = lm

For every value of x, Ry — 0 as k — o0, Therefore, the series converges to cos x for every
value of x. Thus,
oo k..2k
(—1)%* x2 , x* x®

cosx=’§)—(2k)! =-S5+ et (5)
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EXAMPLE 6  Calculate e with an error of less than 107°.

Solution ~ We can use the result of Example 1 with x = 1 to write

1 1
e=1+1+i+-‘-+E+Rn(l),

with

“ o+

Rﬁ( l) for some ¢ between 0 and 1.
For the purposes of this example, we assume that we know that e < 3. Hence, we are
certain that

m < R,(1) <

3
(n+ 1)
because | < e <3for0 <c¢ < 1.
By experiment we find that 1/9! > 107, while 3/10! < 107°. Thus we should take
(n + 1) to be at least 10, or n to be at least 9. With an error of less than 1076,
- e=1+1+++1 414+ 1 o708 .
2 3! 91~ ~ '
117

EXAMPLE 7  For what values of x can we replace sin x by x — (x3/3!) with an error of
magnitude no greater than 3 X 10742

Solution Here we can take advantage of the fact that the Taylor series for sin x is an al-
ternating series for every nonzero value of x. According to the Alternating Series Estima-
tion Theorem (Section 11.6), the error in truncating

sing=x -5 |+ % -
after (x*/3!) is no greater than
x| _ kE
51 120°

Therefore the error will be less than or equal to 3 X 107#if

Ix I5 —4 ,\5/7_4 Rounded down,
50 <3X 107 or x| < V360 X 107 ~ 0514, (M0

The Alternating Series Estimation Theorem tells us something that the Remainder
Estimation Theorem does not: namely, that the estimate x — (x*/3!) for sin x is an under-
estimate when x is positive because then x°/120 is positive.

Figure 11.15 shows the graph of sin x, along with the graphs of a number of its ap-

_ proximating Taylor polynomials. The graph of P3(x) = x — (x*/3!) is almost indistin-
guishable from the sine curve when —1 = x = 1.
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11.10

Applications of Power Series

119

The binomial series for powers and

roots
Consider the Taylor series generated by
f(x) = (1+x)™, where m is a constant:

f(x)=@+x)"
') =m@L+x)"", f/(x) =m(m -1+ x)™?,
f"(x) = m(m-21)(m-2)(L+ x)"3,

fOX)=m(m-)(m-2)..(m-k+D)L+x)"";

= f00) , &mm-D(m-2)..(m-k+1) ,
) k! X

m(m-)(m-2)...(m—k +1) et

=tFmx+Fmm=Dx"Fmm=D(m=2)x> ..+ O
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The binomial series for powers and

roots
f(x)=@+x)"

m(m-)(m-2)...(m—-k +1) 4

=1+mx+m(m-Dx*> +m(m-1)(m-2)x®+...+ O

This series is called the binomial series,
converges absolutely for |x| < 1. (The
convergence can be determined by using
Ratio test, m-k

k+1

uk+l
uk

X

adi

In short, the binomial series is the Taylor series
for f(x) = (1#x)™, where ma constant
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The Binomial Series
For—1 <x <1,

where we define

and
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EXAMPLE 2  Using the Binomial Series

We know from Section 3.8, Example 1, that V1 + x = 1 + (x/2) for |x| small. With
m = 1/2, the binomial series gives quadratic and higher-order approximations as well,
along with error estimates that come from the Alternating Series Estimation Theorem:

B0, B0,

1/2 _
(1+I)H—I+E+T}:+ 3

R)2)3)5),

2 x4+ ..

_+_

2 3 4
e XX X Sx

> gt T 18T

Substitution for x gives still other approximations. For example,

2 4

Vl—xzﬁl—%—% for |x?| small

% small, that is, |x| large.
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Taylor series representation of In x at x =
1
f(x)=In x; f '(X) = x1;
£ () = (1D @Mx% 7 () = (-1)2(2)(2) x3...
F() = (-1) "(n-1)Ix";

= (M (X) n FOX) o & FM(x) N
2 X=1(x—l): 5 X=1(x—l) +n§ - X=1(x—l)
In1 & (D" Y(n-1x™" N = (=D V@) n
:8!+Zl( L () =o+§( L8 (1)

D O e G
= (x-1) + > (x—1)" + 3 (x—-1) +...
:(x—l)—l(x—l)z+1(x—1)3—...+(—1)n£(X—1)n+---

2 3 n *Mathematicasimulation124
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EXAMPLE 7  Limits Using Power Series

Evaluate

. Inx
lim .
x—)] x - 1

Solution We represent In x as a Taylor series in powers of x — 1. This can be accom-
plished by calculating the Taylor series generated by In x at x = 1 directly or by replacing
x by x — 1 in the series for In (1 + x) in Section 11.7, Example 6. Either way, we obtain

Inx = (x — 1) —%(x — 17+,
from which we find that

. Inx _ .. 1, ) =
illl;llx_l—gl_rlll(l 2(x 1) + ) 1.
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EXAMPLE 8  Limits Using Power Series
Evaluate

sinx — tanx
llm —3.
x—0 X

Solution The Taylor series for sin x and tan x, to terms in x3, are

i 5 3 5
i L X X 2x
— —-_ 4+ =—— .- — 4+ == + +'
sinx = x — 3 51 A tanx = x 3 s
Hence,
sinx—tanx=—£—x—5_...=x3 _1ox
2 8 2 8
and
. sinx —tanx _ .. 1 x?
llm—B—hm ————————
x—0 X x—0 2 8
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TABLE 11.1 Frequently used Taylor series
1 el
= Sl+x+xt+ k" +00= 32 x| <1
x A=
1 z =
=l—x+xt— (=) 4= 201 k] <]
1 +x ’2; Ix|
x" - "
|+x+§+ +E+'"=;0F |x] < oo
3 5 xz.u+| _”m n+1
—_—— — — . -_— e e . =
sinx = x 3'+Sl w4 (=1) (2n+1}!+ E(gﬂ+|)l Jx| < o0
_ ¥ xt r - o Vi
cosx = 1 =57 + 7 +{1)(2")!+ =2 |x] < oo
2 3 " 2 =] a—lm
|n(|+x)=x—x?+'%—.”+(_l)ﬂ—l‘%_y”.:;—( )n r‘ “1l<x=1
1+x _ -1, = E SO P v Yoae
Inj— = 2tanh x—2(x+3+5+ +2n+l -222n+|, x| <1
3 5 (=13
= 2 L E n -
fan ¥ =x 3+5 + (- )2n+ %2"_'_1! |x|£1
Binomial Series
- 1)y - - 2yt = = -k + It
(I +xm=1 +m+m(rﬂzl 1)x +m(m 1}3{:&! 2).x . m(m 1)im 211 (mo= ko 1) o
==
=|+l§‘1(’:)ﬁ, k<1,
where
my mY\  mim = 1) mY  mlm = 1) (m = k+1)
(I)—m. (2)— T (.&)_ n fork = 3.
Note: To write the binomial series compactly, it is customary to define (’::) to be 1 and to take x” = 1 (even in the usually
excluded case where x = 0), yielding (1 + x)" = E?—g (:)x“. If m is a positive integer, the series terminates at x™ and the
result converges for all x.
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11.11

Fourier Series
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"Weakness’ of power series approximation

In the previous lesson, we have learnt to approximate a given
function using power series approximation, which give good fit if
the approximated power series representation is evaluated near
the point it is generated

For point far away from the point the power series being
generated, the approximation becomes poor

In addition, the series approximation works only within the
interval of convergence. Outside the interval of convergence, the
series representation fails to represent the generating function

Fourier series, our next topic, provide an alternative to overcome
such shortage

129

Suppose we wish to approximate a function f on the interval [0, 277] by a sum of sine
and cosine functions,

fa(x) = ag + (a;cosx + by sinx) + (a;cos2x + by sin2x) + ---
+ (a, cos nx + b, sin nx)

or, in sigma notation,
n
falx) = ag + E(ak cos kx + bysin kx). (1)
k=1

We would like to choose values for the constants ay, a1, as, . ..a, and by, by, ..., b, that
make f,(x) a “best possible” approximation to f(x). The notion of “best possible” is
defined as follows:

fa(x) and f(x) give the same value when integrated from 0 to 27r.
2. fux) cos kx and f(x) cos kx give the same value when integrated from 0 to

20 (k= 1,...,n).
3. fu(x)sin kx and f(x) sin kx give the same value when integrated from 0 to

2o (k= 1,...,n).
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We chose f, so that the integrals on the left remain the same when f, is replaced by f, so

we can use these equations to find ay, a), @z, ...a, and by, bs, . . ., b, from f:
1 2m
ap = =— (x) dx
0 27T£ /
1 27
ar = 7 f(x) cos kx dx, k=1,...,n
0
1 2
by = ¢ f(x) sin kx dx, k=1,..., n
0

(2)

(3)

(4)
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y A function f{x) defined on [0, 27| can

be represented by a Fourier series
lim f_(x)= Iimz f (X)= IimZak coskx + b, sinkx

=a, +I|m2ak coskx +b, sinkx,—— Fourier series

0<x<2r.

y = 1(x)

e representation of f(x)
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lim )" a, coskx + by sinkx,00 < X < o0
n—oo k=0
! | | | —— X
27 0 27 4 67 87
If -00<x < oo, the Fourier series lim>_ f, (x) =1im > _a, coskx +b, sinkx
nN—o0 k=0 n—oo k=0
acutally represents a periodic function f (x) of a period of L =27,
Orthogonality of sinusoidal
functions
m,k nonzero integer.
If m=k,
27 2r 1 2z 1 sin2mx |
I cos mxcoskxdx=j COS Mx cos mxdx :—j 1+cos(2mx)dx ==| x+ = .
0 0 240 2 2m |,

2z . . 2z . 2
jo smmxsmkxdx:j0 sin“mxdx =

If m=K,

2r 2z . . . .
fo cos mx cos kxdx =0, fo sin mxsin kxdx = 0.(can be proven using, say, integration

by parts or formula for the product of two sinusoidal functions).

. 2r 27
In addtion, IO sinmxdx = IO cosmxdx = 0.

27 . .
Also, IO sinmxcos kxdx =0 for all m, k. We say sin and cos functions are orthogonal to

each other.
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Derivation of «,
f,(x)=a, +>_a, coskx+b, sinkx
k=1
Integrate both sides with respect to x fromx=0tox =27

J'Ozﬂ f, (x)dx = J'OM a,dx +Zn:'|'02” a, coskxdx + b, sinkxdx =
k=1

Jozﬂ a,dx +Zn: a, IOZ” cos kxdx +Zn: b, J'Ohsin kxdx
k=1 k=1

=2na,+0+0=2ra,

= 27a, = LZ” f, (x)dx.

For large enough n, f. gives a good representation of f,
hence we can replace f, by f :

1 2z
=a, =§jo f(X)dx

135

Derivation of a,, &
f%) Jao + Zn:ak coskx + b, sinkx
k=1

Multiply both sides by cosmx (m nonzero integer), and integrate with respect to x

from x =0 to x = 2. By doing so, the integral .[02” cosmxsin kxdx get 'killed off "

due to the orthogality property of the sinusoidal functions.

In addtion, _[02” cosmx cos kxdx will also gets 'killed off * except for the case m =k.

27
fo f (x)cos mxdx =

2z n 2 n 2r
I a, Cos mxadx +Z a, '[ cos kx cos mxdx +Z b, j sin kx cos mxdx
0 k=1 0 k=1 0

27
=0+a, fo cosmxcosmxdx +0=rza,,

1 2
:>am=;jo f (x)cosmx dx.
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Derivation of 4, £

=1
b, is simularly derived by multiplying both sides by sinmx (m nonzero integer),
and integrate with respect to x from x=0 to x =27.

27 ;
_[O f (x)sin mxdx =

2 . n 27 . L 2r .
_[O a, sin mxdx +k§‘ a, jo cos kxsin mxdx +§bk IO sin kxsin mxdx
=0+0+ bmjohsin mxsinmxdx = zb,

=b, :%_[02” f (x)sinmx dx.
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Fourier series can represent some
functions that cannot be represented by
Taylor series, e.g. step function such as

}J

~

T

(a)

FIGURE 11.16 (a) The step function

I, 0=x=m
f{‘x)_{z, T < X=2mw

138




Chapter 11 Infinite Sequences and Series

EXAMPLE 1  Finding a Fourier Series Expansion

Fourier series can be used to represent some functions that cannot be represented by Taylor
series; for example, the step function f shown in Figure 11.16a.

I, if0 =x==
2, ifr<x=2m.

flx) = {

The coefficients of the Fourier series of f are computed using Equations (2), (3), and (4).

2w
ag = 1r£ f(x) cos kx dx

1 w i
= (/ cos kx dx + f 2coskx cir)
] ™

1 ([sinkx " | [2sinkx 7\ _
‘w([ k L*[ K L)‘“’ k=1

3|

27
bt=%[ £0x) sin kx dx
0
1 ar 2ar
=§U sinkxdx-i—f ESinin\')
(1] T
| cos kx |” 2coskx [*”
-3 (=l - el
_coskm — 1 _ (-1 =1
km kar 139
So
3
a =35 @ =a= = 0,
and
__2 _ __2 — __2 _
bl - IT? bz - 0) b3 - 37’ b4 - Os bs - S’ b(] - 09"'

The Fourier series is

%—%(sinx+ sm33x n sn;Sx +)

Notice that at x = 7, where the function f(x) jumps from 1 to 2, all the sine terms vanish,
leaving 3/2 as the value of the series. This is not the value of f at 77, since f(7) = 1. The
Fourier series also sums to 3/2 at x = 0 and x = 2. In fact, all terms in the Fourier se-
ries are periodic, of period 277, and the value of the series at x + 27 is the same as its
value at x. The series we obtained represents the periodic function graphed in Figure
11.16b, with domain the entire real line and a pattern that repeats over every interval of
width 27r. The function jumps discontinuously at x = nm,n = 0, £1, £2,... and at
these points has value 3/2, the average value of the one-sided limits from each side. The
~ convergence of the Fourier series of f is indicated in Figure 11.17.
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y y
2F 2
L] L ® ® L ] ®
1 1
| | x | 1 1 | | 1 > X
0 T 27 27 -m 0 T 27 3w 4w
(a) (b)
FIGURE 11.16 (a) The step function
I, 0=x=a
f(x)_{z, m<x=o2m
(b) The graph of the Fourier series for f is periodic and has the value 3/2 at each point of
discontinuity (Example 1).
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y ¥ y
2 f 2 f 2k f
1.5 fi 1.5 fa 1.5 'fs
1 1 1
1 1 L M 1 1 I =y 1 1 1 p—
0 T 27 0 T 2T 0 T 2w
(a) (b} (c)
¥ y
2+ f 21 f
L5r fo LS Sis
1 1
L L L Ly 1 I 1 M
0 T 2w 0 Ly 2
(d) (e)

1
—~FIGURE 11.17 The Fourier approximation functions fy, f3, fs, fo, and f,s of the function f(x) = { ’

2:

sx=smT |,
. < 2 ™ Example 1.
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THEOREM 24 Let f(x) be a function such that f and f' are piecewise contin-
uous on the interval [0, 27r]. Then f is equal to its Fourier series at all points
where f is continuous. At a point ¢ where f has a discontinuity, the Fourier series
converges to
fle") + flc)
2

where f(¢™) and f(c™) are the right- and left-hand limits of f at c.
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Fourier series representation ot a function
defined on the general interval [4,5]

For a function defined on the interval [0,27],
the Fourier series representation of f(x) is
defined as f(x):ao+zn:ak coskx + b, sinkx

How about a function defined on an general
Interval of [a,b] where the period is L=b-a
instead of 2n? Can we still use

a, + Zak coskx + bk sin kx to represent f(X) on
k=1
[a,b]?
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Fourier series representation of a function
defined on the general interval [4,5]

For a function defined on the interval of [a,b] the
Fourier series representation on [a,b] is actually
d 277KX . 27mkx
8, + >, Cos=———+h,sin
L 1 L

a="], f (x)dx

X

ang bf( anxlx

L Ja

% bf sm—dx m positive integer

L=b - a
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Derivation of a,

f(x)=a, +Za cosZLk in 27K

L f(x)dx=L aodx+ZJ‘a a, cos 2 k dx +b, smszde—
j a dx+2akj cos 2 x+2b j sin——d Zﬂkx
- o(b_a)

:>a0ba dx—j
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Derivation of « p

f(x)=a,+).a coszn—LkX+ b, sin 27K
k=1

jb f (x)cos

a

X

27rmx

dx

L L

— J' "a, S CLULN +Zj.b(ak cos 7% cos Zﬂinx dx +
a k=1 a

= O+am.f:coszzLLdex+O:am%

=a, =Efb f (x)cosmdx
L-a L
Similarly,

bmzzjbf(x)sinmdx
L -

b, sin

2rkx 272'ij
coS dx

L

147

Example:

>
>

\ ______

f(x)=mx,0<x<L
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201171 (=L P (57— ) -

27sz 2m L*(cos2kz —1)

__I mxe 27Z'kX ZmJ- ‘ 2k _o
L e L Ak
:_I : 27sz X_ZTm sin 27zkx ix
_2m o (—2k7rcos(2k7z) +sin 2k7zj _ —mL _
L 4k 2 7r? kz '
mL  mL & sin27zkx
(x) . kzz; ”
~ L(i_sin27zx_sin47zx_sin67zx_ _sinZnnxj
7 2w 3z nz
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. n=1 /
1 2 _\5

5

1

0.5
1 2

N
=

1
U
P
N

- *mathematica simulation
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