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Chapter 1

Preliminaries

2

1.3

Functions and Their Graphs
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Function

y = f(x)

f  represents function (a rule that tell us how 
to calculate the value of y from the variable x

x : independent variable (input of f )

y : dependent variable (the correspoinding
output value of f at x)

4

Definition     Domain of the function

The set of D of all possible input values

Definition     Range of the function

The set of all values of f(x) as x varies throughout D
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Natural Domain

When a function y = f(x)is defined and the 
domain is not stated explicitly, the domain is 
assumed to be the largest set of real x-values 
for the formula gives real y-values.

e.g. compare “y = x2” c.f. “y = x2, x≥0”

Domain may be open, closed, half open, 
finite, infinite.
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Verify the domains and ranges of these 
functions
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Graphs of functions

Graphs provide another way to visualise a 
function

In set notation, a graph is 

{(x,f(x)) | x ∈D}

The graph of a function is a useful picture of 
its behaviour.

10
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Example 2 Sketching a graph

Graph the function y = x2 over the interval 

[-2,2]

Chapter 01 Preliminaries



13

The vertical line test

Since a function must be single valued over 
its domain, no vertical line can intersect the 
graph of a function more than once.

If a is a point in the domain of a function f, the 
vertical line x=a can intersect the graph of f in 
a single point (a, f(a)).

14
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Piecewise-defined functions

The absolute value function

0

0

x x
x

x x

≥⎧
= ⎨− <⎩
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Graphing piecewise-defined functions

Note: this is just one function with a domain 
covering all real number

( ) 2

0

0 1

1 1

x x

f x x x

x

− <⎧
⎪= ≤ ≤⎨
⎪ >⎩
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The greatest integer function

Also called integer floor function

f = [x], defined as greatest integer less than 
or equal to x.

e.g. 

[2.4] = 2

[2]=2

[-2] = -2, etc.

20

Note: the graph is the blue colour lines, 
not the one in red 
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Writing formulas for piecewise-defined 
functions

Write a formula for the function y=f(x) in 
Figure 1.33

22
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1.4

Identifying Functions; 

Mathematical Models

24

Linear functions

Linear function takes the form of 

y=mx + b

m, b constants

m slope of the graph

b intersection with the y-axis

The linear function reduces to a constant 
function f = c when m = 0,  

Chapter 01 Preliminaries
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Power functions

f(x) = xa

a constant

Case (a): a = n, a positive integer

28

go back
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Power functions

Case (b): 

a = -1 (hyperbola)

or a=-2

30
go back
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Power functions

Case (c): 

a = ½, 1/3, 3/2, and 2/3

f(x) = x½ = √x (square root) , domain = [0 ≤ x < ∞)

g(x) = x1/3 = 3√x(cube root),  domain = (-∞ < x < ∞)

p(x) = x2/3= (x1/3)2, domain = ? 

q(x) = x3/2= (x3)1/2  domain = ?

32
go back
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Polynomials

p(x)= anx
n + an-1x

n-1 + an-2x
n-2 +… a1x + a0

n nonnegative integer (1,2,3…)

a’s coefficients (real constants)

If an ≠ 0, n is called the degree of the 
polynomial

34
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Rational functions

A rational function is a quotient of two 
polynomials:

f(x) = p(x) / q(x)

p,q are polynomials.

Domain of f(x) is the set of all real number x
for which q(x) ≠ 0.

36
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Algebraic functions

Functions constructed from polynomials 
using algebraic operations (addition, 
subtraction, multiplication, division, and 
taking roots)

38
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Trigonometric functions

More details in later chapter

40
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Exponential functions

f(x) = ax

Where a > 0 and a ≠ 0. a is called the ‘base’.

Domain (-∞, ∞)

Range (0, ∞)

Hence, f(x) > 0

More in later chapter

42

Note: graphs in (a) are reflections of the 
corresponding curves in (b) about the y-axis. This 
amount to the symmetry operation of x ↔ -x.
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Logarithmic functions

f(x) = loga x
a is the base
a≠ 1, a >0
Domain (0, ∞)
Range (-∞, ∞)
They are the inverse functions of the 
exponential functions (more in later chapter)

44
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Transcendental functions

Functions that are not algebraic

Include: trigonometric, inverse trigonometric, 
exponential, logarithmic, hyperbolic and 
many other functions

46

Example 1

Recognizing Functions

(a) f(x) = 1 + x – ½x5

(b) g(x) = 7x

(c) h(z) = z7

(d) y(t) = sin(t–π/4)

Chapter 01 Preliminaries
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Increasing versus decreasing functions

A function is said to be increasing if it rises as 
you move from left to right

A function is said to be decreasing if it falls as 
you move from left to right

48

y=x2, y=x3; y=1/x, y=1/x2; y=x1/2, y=x2/3
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Recognising even and odd functions

f(x) = x2 Even function as (-x)2 = x2 for all x, 
symmetric about the all x, symmetric about
the y-axis.

f(x) = x2 + 1 Even function as (-x)2 + 1 = x2+ 1 
for all x, symmetric about the all x, symmetric
about the y-axis.

52

Recognising even and odd functions

f(x) = x. Odd function as (-x) = -x for all x, 
symmetric about origin.

f(x) = x+1. Odd function ?

Chapter 01 Preliminaries
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1.5

Combining Functions; 

Shifting and Scaling Graphs
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Sums, differences, products and quotients

f, g are functions

For x ∈D(f )∩D(g), we can define the functions 
of 

(f +g) (x) = f(x) + g(x)

(f - g) (x) = f(x) - g(x)

(fg)(x) = f(x)g(x),

(cf)(x) = cf(x), c a real number 

( ) ( )
( ) ( ),   0

f xf
x g x

g g x

⎛ ⎞
= ≠⎜ ⎟

⎝ ⎠
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Example 1

f(x) = √x, g(x) = √(1-x),

The domain common to both f,g is

D(f )∩D(g) = [0,1] (work it out)

Chapter 01 Preliminaries
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Composite functions

Another way of combining functions
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Example 2

Viewing a function as a composite

y(x) = √(1 – x2) is a composite of 

g(x) = 1 – x2 and f(x) = √x

i.e. y(x) = f [g(x)] = √(1 – x2)

Domain of the composite function is |x|≤ 1, 
or [-1,1]

Is f [g(x)] = g [f(x)]?

Chapter 01 Preliminaries
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Example 3

Read it yourself

Make sure that you know how to work out the 
domains and ranges of each composite 
functions listed

66

Shifting a graph of a function
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Example 4

(a) y = x2, y = x2 +1 

(b) y = x2, y = x2 -2 

68
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Example 4

(c) y = x2, y = (x + 3)2,  y = (x - 3)2

70
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Example 4

(d) y = |x|, y = |x - 2| - 1

72
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Scaling and reflecting a graph of a function

To scale a graph of a function is to stretch or 
compress it, vertically or horizontally.

This is done by multiplying a constant c to the 
function or the independent variable

74
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Example 5(a)

Vertical stretching and compression of the 
graph y = √x by a factor or 3

76
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Example 5(b)

Horizontal stretching and compression of the 
graph y = √x by a factor of 3

78
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Example 5(c)

Reflection across the x- and y- axes

c = -1

80
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Example 6

Read it yourself

82
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1.6

Trigonometric Functions 

84

Radian measure
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Angle convention

Be noted that angle will be expressed in 
terms of radian unless otherwise specified.

Get used to the change of the unit
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The six basic trigonometric 
functions

90

sine: sinθ = y/r

cosine: cosθ = x/r

tangent: tanθ = 
y/x

cosecant: cscθ = r/y
secant: secθ = r/x
cotangent: cotθ = x/y

Define the trigo
functios in terms of 
the coordinats of the 
point P(x,y) on a circle 
of radius r

Generalised definition of the six trigo
functions

Chapter 01 Preliminaries
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Mnemonic to remember when the basic trigo
functions are positive or negative
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94
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Periodicity and graphs of the trigo
functions

Trigo functions are also periodic.

96
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Parity of the trigo functions

The parity is easily deduced 
from the graphs.
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Identities

Applying  
Pythagorean theorem 
to the right triangle 
leads to the identity

Chapter 01 Preliminaries
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Dividing identity (1) by cos2θ and sin2θ in 
turn gives the next two identities

There are also similar formulas for cos (A-B) and sin 
(A-B). Do you know how to deduce them?

100

Identity (3) is derived by setting A = B in (2)

Identities (4,5) are derived by combining (1) and (3(i))

Chapter 01 Preliminaries
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Law of cosines

c2= (acosθ - b)2 + (asinθ)2

= a2+b2 -2abcosθ

Chapter 01 Preliminaries
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Chapter 2

Limits and Continuity

2

2.1

Rates of Change and Limits

Chapter 02 Limits and Continuity
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Average Rates of change and Secant Lines

Given an arbitrary function y=f(x), we 
calculate the average rate of change of y
with respect to x over the interval [x1, x2] 
by dividing the change in the value of y, Δy, 
by the length Δx

4
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Example 4

Figure 2.2 shows how a population of fruit 
flies grew in a 50-day experiment. 

(a) Find the average growth rate from day 23 
to day 45.

(b) How fast was the number of the flies 
growing on day 23?

6
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The grow rate at day 23 is calculated by examining the 
average rates of change over increasingly short time 
intervals starting at day 23. Geometrically, this is 
equivalent to evaluating the slopes of secants from P to Q
with Q approaching P.

Slop at P ≈ (250 - 0)/(35-
14) = 16.7 flies/day

8

Limits of function values

Informal definition of limit:

Let f be a function defined on an open 
interval about x0, except possibly at x0

itself. 

If f gets arbitrarily close to L for all x
sufficiently close to x0, we say that f
approaches the limit L as x approaches x0

“Arbitrarily close” is not yet defined here 
(hence the definition is informal).

0

lim ( )
x x

f x L
→

=
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Example 5

How does the function behave near x=1?

Solution:

2 1( )
1

x
f x

x

−
=

−

( )( )1 1
( ) 1   for 1

1
x x

f x x x
x

− +
= = + ≠

−

10

We say that f(x) approaches the limit 2 as x
approaches 1,

2

1 1

1lim ( ) 2   or   lim 2
1x x

x
f x

x→ →

−
= = =

−
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Example 6
The limit value does not depend on how the 
function is defined at x0.
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Example 7

In some special cases limx→x0 f(x) can be evaluated by 
calculating f (x0). For example, constant function, 
rational function and identity function for which x=x0 is 
defined
(a) limx→2 (4) = 4 (constant function)
(b) limx→-13 (4) = 4 (constant function)
(c) limx→3 x = 3 (identity function)
(d) limx→2 (5x-3) = 10 – 3 =7 (polynomial function of 
degree 1)
(e) limx→ -2 (3x+4)/(x+5) = (-6+4)/(-2+5) =-2/3 (rational 
function)

14
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Jump Grow to 
infinities

Oscillate

Example 9
A function may fail to have a limit exist at a 
point in its domain.

16

2.2

Calculating limits using 

the limits laws
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The limit laws

Theorem 1 tells how to calculate limits of 
functions that are arithmetic combinations of 
functions whose limit are already known.

18
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Example 1 Using the limit laws

(a) limx→ c (x3+4x2-3) 

= limx→ c x
3 + limx→ c 4x2- limx→ c 3 

(sum and difference rule)

=  c3 + 4c2- 3 

(product and multiple rules)

20

Example 1

(b) limx→ c (x4+x2-1)/(x2+5)

= limx→ c (x4+x2-1) /limx→ c (x
2+5)

=(limx→c x4 + limx→cx
2-limx→ c1)/(limx→ cx

2 + limx→ c5)

= (c4 +c2 - 1)/(c2 + 5)

Chapter 02 Limits and Continuity
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Example 1

(c) limx→ -2 √(4x2-3) = √ limx→ -2 (4x2-3)     

Power rule with r/s = ½

= √ [limx→ -2 4x2 - limx→ -2 3]

= √ [4(-2)2 - 3] = √13

22
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24

Example 2

Limit of a rational function

3 2 3 2

2 21

4 3 ( 1) 4( 1) 3 0lim 0
5 ( 1) 5 6x

x x

x→−

+ − − + − −
= = =

+ − +
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Eliminating zero denominators 
algebraically

26

Example 3 Canceling a common 
factor

Evaluate

Solution: We can’t substitute x=1 since

f (x = 1) is not defined. Since x≠1, we can 
cancel the common factor of x-1:

2

21

2lim
x

x x

x x→

+ −
−

( )( )
( )

( )2

21 1 1

1 2 22lim lim lim 3
1x x x

x x xx x

x x x x x→ → →

− + ++ −
= = =

− −
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28

The Sandwich theorem
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Example 6

(a) 
The function y =sin θ is sandwiched between 
y = |θ | and y= -|θ | for all values of θ . Since 
limθ→0 (-|θ |) = limθ→0 (|θ |) = 0, we have  
limθ→0 sin θ = 0.
(b) 
From the definition of cos θ, 
0 ≤ 1 - cos θ ≤ |θ | for all θ, and we have 
the limit limx→0 cos θ = 1

Chapter 02 Limits and Continuity
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Example 6(c)

For any function f (x), if  limx→0 (|f (x) |) = 0, 
then limx→0 f (x) = 0 due to the sandwich 
theorem.

Proof: -|f (x)| ≤ f (x) ≤ |f (x)|. 

Since limx→0 (|f (x) |) = limx→0 (-|f (x) |) = 0 

⇒ limx→0 f (x) = 0 

Chapter 02 Limits and Continuity
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2.3

The Precise Definition of a Limit

34

Example 1 A linear function

Consider the linear function y = 2x – 1 near x0

= 4. Intuitively it is close to 7 when x is close 
to 4, so limx 0 (2x-1)=7. How close does x
have to be so that y = 2x -1 differs from 7 by 
less than 2 units?
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Solution

For what value of x
is |y-7|< 2? 
First, find |y-7|<2 in terms
of x: 

|y-7|<2 ≡ |2x-8|<2
≡ -2< 2x-8 < 2
≡ 3 < x < 5
≡ -1 < x - 4 < 1
Keeping x within 1 unit 
of x0 = 4 will keep y within 
2 units of y0=7.

36

Definition of limit

Chapter 02 Limits and Continuity
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Definition of limit

38

• The problem of proving L as the 
limit of f (x) as x approaches x0 is a 
problem of proving the existence of 
δ, such that whenever  

• x0 – δ < x< x0+δ, 

• L+ε < f (x) < L-ε for any arbitrarily 
small value of ε.

• As an example in Figure 2.13, given 
ε = 1/10, can we find a 
corresponding value of δ ?

• How about if ε = 1/100? ε = 1/1234? 

• If for any arbitrarily small value of ε
we can always find a corresponding 
value of δ, then we has successfully 
proven that L is the limit of f as x 
approaches x0

Chapter 02 Limits and Continuity
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Example 2 Testing the 
definition

Show that 

( )
1

lim 5 3 2
x

x
→

− =
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Solution

Set x0=1, f(x)=5x-3, L=2.

For any given ε, we have to

find a suitable δ > 0 so that

whenever 

0<| x – 1|< δ, x≠1,

it is true that f(x) is within 
distance ε of  L=2, i.e. 

|f (x) – 2 |< ε. 

42

First, obtain an open interval (a,b) in which 
|f(x) - 2|< ε ≡ |5x - 5|< ε ≡

-ε /5< x - 1< ε /5 ≡ -ε /5< x – x0< ε /5

x0x0-ε /5 x0+ ε /5
( )x

a
b

choose δ < ε / 5. This choice will guarantee that 

|f(x) – L| < ε whenever x0–δ < x < x0 + δ.

We have shown that for any value of ε given, we can

 always find an corresponding value of δ that meets the 
“challenge” posed by an ever diminishing ε. This is an  
proof of existence. 

 Thus we have proven that the limit for f(x)=5x-3 is L=2 
when x x0=1.

Chapter 02 Limits and Continuity
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Example 3(a)

Limits of the identity 

functions

Prove 

0
0lim

x x
x x

→
=

44

Solution

Let ε > 0. We must 
find δ > 0 such that for 
all x, 0 < |x-x0|< δ
implies |f(x)-x0|< ε., 
here, f(x)=x, the 
identity function.

Choose δ < ε will do 
the job.

The proof of the 
existence of δ proves

0
0lim

x x
x x

→
=

Chapter 02 Limits and Continuity



45

Example 3(b)

Limits constant functions

Prove 

0

lim   (  constant)
x x

k k k
→

=

46

Solution

Let ε > 0. We must 
find δ > 0 such that for 
all x, 0 < |x-x0|< δ
implies |f(x)- k|< ε., 
here, f(x)=k, the 
constant function.
Choose any δ will do 
the job. 
The proof of the 
existence of δ proves

0

lim
x x

k k
→

=

Chapter 02 Limits and Continuity



47

Finding delta algebraically for given 
epsilons

Example 4: Finding delta algebraically

For the limit

find a δ > 0 that works for ε = 1. That is, find a 
δ > 0 such that for all x,

5
lim 1 2
x

x
→

− =

0 5 0 1 2 1x xδ< − < ⇒ < − − <

48
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Solution

δ is found by working backward:

50

Solution

Step one: Solve the inequality |f(x)-L|<ε

Step two: Find a value of δ > 0 that places the open 
interval (x0-δ, x0+δ ) centered at x0 inside the open 
interval found in step one. Hence, we choose δ = 3 
or a smaller number

0 1 2 1 2 10x x< − − < ⇒ < <

Interval found in 
step 1

x0=5
δ =3 δ =3By doing so, the 

inequality 0<|x - 5| < δ
will automatically place 
x between 2 and 10 to 
make 0 ( ) 2 1f x< − <

Chapter 02 Limits and Continuity
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Example 5

Prove that 

( )

( )

2

2

lim 4 if 

2
1 2

x
f x

x x
f x

x

→
=

⎧ ≠
= ⎨

=⎩

52

Solution

Step one: Solve the 
inequality |f(x)-L|<ε :

Step two: Choose 
δ < min [2-√(4-ε)2, √(4+ε) –
2]

For all x, 
0 < |x - 2| < δ ⇒ |f(x)-4|<ε
This completes the proof.

20 2 4 4 , 2x x xε ε ε< − < ⇒ − < < + ≠

Chapter 02 Limits and Continuity
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2.4

One-Sided Limits and                          
Limits at Infinity

54

Two sided limit 
does not exist for y;

But 

y does has two one-
sided limits

( )
0

lim 1
x

f x
+→

=

( )
0

lim 1
x

f x
−→

= −

Chapter 02 Limits and Continuity
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One-sided limits

Right-hand limit Left-hand limit

56

Example 1

One sided limits of a semicircle

No left hand 
limit at x= -2;

No two sided 
limit at x= -2;

No right hand 
limit at x=2;

No two sided 
limit at x= 2;

Chapter 02 Limits and Continuity
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Example 2
Limits of the 
function graphed 
in Figure 2.24

Can you write 
down all the limits 
at x=0, x=1, x=2, 
x=3, x=4?

What is the limit at 
other values of x?

Chapter 02 Limits and Continuity
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Precise definition of one-sided limits

60
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Limits involving (sinθ)/θ

Chapter 02 Limits and Continuity



63

Proof

Area ΔOAP = ½ sinθ

Area sector OAP = θ /2

Area ΔOAT = ½ tanθ

½ sinθ <θ /2 < ½ tanθ

1 <θ /sinθ < 1/cosθ

1 > sinθ /θ > cosθ

Taking limit θ 0±, 

00

sin sinlim 1 lim
θθ

θ θ
θ θ± →→

= =

64

Example 5(a)

Using theorem 7, show that 

0

cos 1lim 0
h

h

h→

−
=

Chapter 02 Limits and Continuity
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Example 5(b)

Using theorem 7, show that 

0

sin 2 2lim
5 5x

x

x→
=

66

Finite limits as x→±∞

Chapter 02 Limits and Continuity
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Precise definition

68

Example 6

Limit at infinity for 

(a) Show that

(b) Show that  

1( )f x
x

=

1lim 0
x x→∞

=

1lim 0
x x→−∞

=

Chapter 02 Limits and Continuity
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70
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Example 7(a)

Using Theorem 8

1 1lim 5 lim5 lim 5 0 5
x x xx x→∞ →∞ →∞

⎛ ⎞+ = + = + =⎜ ⎟
⎝ ⎠

72

Example 7(b)

2 2

3 1lim 3 lim

1 13 lim lim

3 0 0 0

x x

x x

x x

x x

π π

π

π

→∞ →∞

→∞ →∞

=

= ⋅

= ⋅ ⋅ =
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Limits at infinity of rational functions

Example 8

( ) ( )
( )

( ) ( )
( )

22

2 2

2

2

5 8/ 3/5 8 3lim lim
3 2 3 2 /

5 lim 8/ lim 3/ 5 0 0 5
3 0 33 lim 2/

x x

x x

x

x xx x

x x

x x

x

→∞ →∞

→∞ →∞

→∞

+ −+ −
= =

+ +

+ − + −
= = =

++

74

go back
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Example 9

Degree of numerator  less than degree of 
denominator

( ) ( )
( )

2

3 2

11/ 2 /11 2 0 0lim lim 0
2 1 2 02 1/x x

x xx

x x→∞ →∞

++ +
= = =

− −−

76
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1lim 0
x x→∞

=

1lim 0
x x→−∞

=

Horizontal asymptote

x-axis is a horizontal 
asymptote

78

Figure 2.33 has the line y=5/3 as a horizontal 
asymptote on both the right and left because 

5lim ( )
3x

f x
→∞

=
5lim ( )
3x

f x
→−∞

=

Chapter 02 Limits and Continuity
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Oblique asymptote

Happen when the degree of the numerator 
polynomial is one greater than the degree of 
the denominator

By long division, recast f (x) into a linear 
function plus a remainder. The remainder 
shall → 0 as x → ±∞. The linear function is 
the asymptote of the graph.

80

Find the oblique asymptote for

Solution

22 3( )
7 4
x

f x
x

−
=

+

( )

( )

linear function

22 3 2 8 115( )
7 4 7 49 49 7 4

2 8 115lim ( ) lim lim
7 49 49 7 4

2 8 2 8               lim 0 lim
7 49 7 49

x x x

x x

x
f x x

x x

f x x
x

x x

→±∞ →±∞ →±∞

→±∞ →±∞

− −⎛ ⎞= = − +⎜ ⎟+ +⎝ ⎠

−⎛ ⎞= − +⎜ ⎟ +⎝ ⎠

⎛ ⎞ ⎛ ⎞= − + = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

64748

Example 12
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2.5

Infinite Limits and Vertical Asymptotes

82

Infinite limit
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Example 1
Find 

1 1

1 1lim  and lim
1 1x xx x+ −→ →− −

84

Example 2 Two-sided infinite limit

Discuss the behavior of 

( )

2

2

1( )      ( )  near 0

1( )      ( )  near 3
3

a f x x
x

b g x x
x

= =

= = −
+
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86

Example 3

Rational functions can behave in various 
ways near zeros of their denominators

( ) ( )
( )( )

( )
( )

( )( ) ( )

( )( )

( )( )

2 2

22 2 2

22 2 2

2 22

2 22

2 2 2
( ) lim = lim lim 0

4 2 2 2
2 2 1 1( ) lim = lim lim
4 2 2 2 4
3 3( ) lim = lim    (note: >2)
4 2 2
3 3( ) lim = lim   (note: 0< <2)
4 2 2

x x x

x x x

xx

xx

x x x
a

x x x x

x x
b

x x x x

x x
c x

x x x

x x
d x

x x x

+

−

→ → →

→ → →

→→

→→

− − −
= =

− − + +

− −
= =

− − + +

− −
= −∞

− − +

− −
= +∞

− − +
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Example 3

( )( )

( ) ( )( ) ( )

22 2

3 2 22 2 2

3 3( ) lim = lim     limit does not exist
4 2 2

2 2 1( ) lim lim lim
2 2 2 2

x x

x x x

x x
e

x x x

x x
f

x x x x

→ →

→ → →

− −
− − +

− −
= − = − = −∞

− − − −

88

Precise definition of infinite limits
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90
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Example 4

Using definition of infinite limit

Prove that 

20

1lim
x x→

= ∞

2

Given >0, we want to find >0 such that 
10 | 0 |       implies       

B

x B
x

δ

δ< − < >

92

Example 4

2
2

2 2

Now 
1  if and only if 1/ | | 1/

By choosing =1/    
(or any smaller positive number), we see that 

1 1| |   implies 

B x B x B
x

B

x B
x

δ

δ
δ

> < ≡ <

< > ≥
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Vertical asymptotes

0

0

1lim

1lim

x

x

x

x

+

−

→

→

= ∞

= −∞

94
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Example 5 Looking for asymptote

Find the horizontal and vertical asymptotes of 
the curve

Solution:

3
2

x
y

x

+
=

+

11
2

y
x

= +
+

96
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Asymptote need not be two-sided

Example 6

Solution:

2

8( )
2

f x
x

= −
−

2

8 8( )
2 ( 2)( 2)

f x
x x x

= − = −
− − +

98
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Example 8

A rational function with degree of freedom 
of numerator greater than degree of 
denominator

Solution:

2 3( )
2 4
x

f x
x

−
=

−

2 3 1( ) 1
2 4 2 2 4
x x

f x
x x

−
= = + +

− −

remainderlinear

100
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2.6

Continuity

102
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Continuity at a point

Example 1

Find the points at which the function f in 
Figure 2.50 is continuous and the points at 
which f is discontinuous. 

104
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f continuous:

At x = 0

At x = 3

At 0 < c < 4, c ≠ 1,2

f discontinuous:

At x = 1

At x = 2

At x = 4

0 > c, c > 4

Why?

106

To define the continuity at a point in a 
function’s domain, we need to

define continuity at an interior point

define continuity at an endpoint

Chapter 02 Limits and Continuity
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Example 2

A function continuous throughout its domain

2( ) 4f x x= −

110
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Example 3
The unit step function has a jump 
discontinuity

112

Summarize continuity at a point in the 
form of a test

For one-sided continuity and continuity at an 
endpoint, the limits in parts 2 and parts 3 of 
the test should be replaced by the appropriate 
one-sided limits.
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Example 4

The greatest integer function, 

y=[x]

The function is 

not continuous at the 

integer points since limit

does not exist there (left

and right limits not agree)

114
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Discontinuity types

(b), (c) removable discontinuity

(d) jump discontinuity

(e) infinite discontinuity

(f) oscillating discontinuity

116

Continuous functions

A function is continuous on an interval if and 
only if it is continuous at every point of the 
interval.

Example: Figure 2.56

1/x not continuous on [-1,1] but continuous 
over (-∞,0)     (0, ∞) 

∪

Chapter 02 Limits and Continuity
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Example 5

Identifying continuous function

(a) f(x)=1/x

(b) f(x)= x

Ask: is 1/x continuous over its domain? 
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120

Example 6

Polynomial and rational functions are 
continuous
(a) Every polynomial is continuous by 
(i)
(ii) Theorem 9 
(b) If P(x) and Q(x) are polynomial, the 
rational function P(x)/Q(x) is continuous 
whenever it is defined. 

lim ( ) ( )
x c

P x P c
→

=
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Example 7

Continuity of the absolute function

f(x) = |x| is everywhere continuous

Continuity of the sinus and cosinus function

f(x) = cos x and sin x is everywhere 
continuous

122

Composites

All composites of continuous functions are 
continuous

Chapter 02 Limits and Continuity
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Example 8

Applying Theorems 9 and 10

Show that the following functions are 
continuous everywhere on their respective 
domains.

2 / 3
2

4

2 2

( ) 2 5      ( )
1

2 sin( )               (d) 
2 2

x
a y x x b y

x
x x x

c y y
x x

= − − =
+

−
= =

− +
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Consequence of root finding

A solution of the equation f(x)=0 is called a root.
For example, f(x)= x2 + x - 6, the roots are x=2, x=-3 
since  f(-3)=f(2)=0.
Say f is continuous over some interval.
Say a, b (with a < b) are in the domain of f, such that 
f(a) and f(b) have opposite signs. 
This means either f(a) < 0 < f(b) or f(b) < 0 < f(a)
Then, as a consequence of theorem 11, there must 
exist at least a point c between a and b, i.e. a < c < 
b such that f(c)= 0. x=c is the root.

Chapter 02 Limits and Continuity
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x

y

f(a)<0 a

f(b)>0

b

f(c)=0

c

130

Example

Consider the function f(x) = x - cos x
Prove that there is at least one root for  f(x) in the interval [0, 
π/2].

Solution
f(x) is continuous on (-∞, ∞).
Say a = 0, b = π/2. 
f(x=0) = -1; f(x = π/2) = π/2
f(a) and f(b) have opposite signs
Then, as a consequence of theorem 11, there must exist at 
least a point c between a and b, i.e. a=0 < c < b= π/2 such 
that f(c)= 0. x=c is the root.

Chapter 02 Limits and Continuity
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2.7

Tangents and Derivatives

132

What is a tangent to a curve?

Chapter 02 Limits and Continuity



133

134

Chapter 02 Limits and Continuity



135

Example 1: Tangent to a parabola

Find the slope of the parabola y=x2 at the 
point P(2,4). Write an equation for the 
tangent to the parabola at this point.

136
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y = 4x - 4

138

Example 3

Slope and tangent to y=1/x, x≠0

(a) Find the slope of y=1/x at x = a ≠0

(b) Where does the slope equal -1/4?

(c) What happens to the tangent of the curve 
at the point (a, 1/a) as a changes?
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Chapter 3

Differentiation

2

3.1

The Derivative as a Function

Chapter 03 Differentiation



3

The limit 

when it existed, is called the Derivative if f at x0.
View derivative as a function derived from f

0 0

0

( ) ( )lim
h

f x h f x

h→

+ −

4

If f ' exists at x, f is said to be differentiable 
(has a derivative) at x

If f ' exists at every point in the domain of f, f 
is said to be differentiable.

Chapter 03 Differentiation
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If write z = x + h, then h = z - x

6
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Calculating derivatives from the definition

Differentiation: an operation performed on a 
function y = f (x)

d/dx operates on f (x)

Write as

f ' is taken as a shorthand notation for 

( )d
f x

dx

( )d
f x

dx

8

Example 1: Applying the definition

Differentiate 

Solution:
( )

1
x

f x
x

=
−

0

0

20

( ) ( )( ) lim

1 1lim

1 1lim
( 1)( 1) ( 1)

h

h

h

f x h f x
f x

h
x h x

x h x
h

x h x x

→

→

→

+ −′ =

+⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟+ − −⎝ ⎠ ⎝ ⎠=

− −
= =

+ − − −
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Example 2: Derivative of the square root 
function

(a) Find the derivative of

(b) Find the tangent line to the curve         

at x = 4

y x=

10
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Notations

( ) ( ) ( ) ( )x

dy df d
f x y f x Df x D f x

dx dx dx
′ ′= = = = = =

( ) ( )
x a x a x a

dy df d
f a f x

dx dx dx= = =

′ = = =

12

Differentiable on an Interval; One 
sided derivatives

A function y = f (x) is differentiable on an 
open interval (finite or infinite) if it has a 
derivative at each point of the interval. 

It is differentiable on a closed interval [a,b] 
if it is differentiable on the interior (a,b) and 
if the limits 

exist at the endpoints

0

0

( ) ( )lim

( ) ( )lim

h

h

f a h f a

h
f b h f b

h

+

−

→

→

+ −

+ −
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A function has a derivative at a point if an 
only if it has left-hand and right-hand 
derivatives there, and these one-sided 
derivatives are equal.

14
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Example 5

y = |x| is not differentiable at x = 0.
Solution:
For x > 0,

For x < 0,

At x = 0, the right hand derivative and left hand 
derivative differ there. Hence f(x) not differentiable at 
x = 0 but else where.

| | ( ) 1d x d
x

dx dx
= =

| | ( ) 1d x d
x

dx dx
= − = −

16
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Example 6

is not differentiable at x = 0

The graph has a vertical tangent at x = 0

y x=

18

When Does a function not have a 
derivative at a point?
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20

Differentiable functions are 
continuous 

The converse is false: continuity 
does not necessarily implies 
differentiability

Chapter 03 Differentiation
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Example

y = |x| is continuous everywhere, including x 
= 0, but it is not differentiable there.

22

The equivalent form of Theorem 1

If f is not continuous at 
x = c, then f is not 
differentiable at x = c.

Example: the step 
function is 
discontinuous at x = 0, 
hence not differentiable 
at x = 0.

Chapter 03 Differentiation
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The intermediate value property of 
derivatives

See section 4.4

24

3.2

Differentiation Rules

Chapter 03 Differentiation
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Powers, multiples, sums and 
differences

26

Example 1 
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1In particular, if , ( )n n nd
u x cx cx

dx
−= =

28

Example 3

2 2 1(3 ) 3 2 6d
x x x

dx
−= ⋅ =

2 2 1( ) 2 2d
x x x

dx
−= =
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30

Example 5

3 2

3 2

2

4 5 1
3

4( ) ( ) (5 ) (1)
3

8       =3 5
3

y x x x

dy d d d d
x x x

dx dx dx dx dx

x x

= + − +

= + − +

+ −

Chapter 03 Differentiation
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Example 6

Does the curve y = x4 - 2x2 + 2 have any 
horizontal tangents? If so, where?

32
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Products and quotients

Note that 

( ) ( )

( ) ( ) ( )

2 2

1

d d
x x x x

dx dx
d d d

x x x x
dx dx dx

⋅ = =

⋅ ≠ ⋅ =

34

Example 7

Find the derivative of 
21 1

y x
x x
⎛ ⎞= +⎜ ⎟
⎝ ⎠

Chapter 03 Differentiation



35

Example 8: Derivative from numerical 
values

Let y = uv. Find y '(2) if u(2) =3, u'(2)=-4,  

v(2) = 1, v '(2) = 2

36

Example 9

Find the derivative of 
( )( )2 31 3y x x= + +

Chapter 03 Differentiation
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Negative integer powers of x

The power rule for negative integers is the 
same as the rule for positive integers

Chapter 03 Differentiation
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Example 11

( ) ( )

( ) ( )

1 1 1 2

3 3 1 4
3

1 1

4 4 4 3 12

d d
x x x

dx x dx

d d
x x x

dx x dx

− − − −

− − − −

⎛ ⎞ = = − = −⎜ ⎟
⎝ ⎠
⎛ ⎞ = = − ⋅− =⎜ ⎟
⎝ ⎠

40

Example 12: Tangent to a curve

Find the tangent to the curve

at the point (1,3)

2
y x

x
= +

Chapter 03 Differentiation
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42

Example 13

Find the derivative of
( )( )2

4

1 2x x x
y

x

− −
=
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Second- and higher-order derivative

Second derivative

nth derivative

( )
2

2

2 2

''( ) '

         '' ( )( ) ( )x

d y d dy d
f x y

dx dx dx dx

y D f x D f x

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

= = =

( ) ( 1)
n

n n n
n

d d y
y y D y

dx dx
−= = =

44

Example 14

3 2

2

(4)

3 2
3 6
6 6
6
0

y x x

y x x

y x

y

y

= − +

′ = −
′′ = −
′′′ =

=
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3.3

The Derivative as a Rate of Change

46

Instantaneous Rates of Change
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Example 1: How a circle’s area changes 
with its diameter

A = πD2/4

How fast does the area change with respect 
to the diameter when the diameter is 10 m?

48

Motion along a line

Position s = f(t)

Displacement, Δs = f(t+ Δt) - f(t)

Average velocity 

vav = Δs/Δt = [f(t+ Δt) - f(t)] /Δt

The instantaneous velocity is the limit of 
vav

when Δt → 0

Chapter 03 Differentiation
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50

Chapter 03 Differentiation



51

52
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Example 3

Horizontal motion
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56
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Example 4

Modeling free fall

Consider the free fall of a heavy ball released 
from rest at t = 0 sec.

(a) How many meters does the ball fall in the 
first 2 sec?

(b) What is the velocity, speed and 
acceleration then?

21
2

s gt=

58
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Modeling vertical motion

A dynamite blast blows a heavy rock straight up with 
a launch velocity of 160 m/sec. It reaches a height 
of s = 160t – 16t2 ft after t sec.
(a) How high does the rock go?
(b) What are the velocity and speed of the rock 
when it is 256 ft above the ground on the way up? 
On the way down?
(c) What is the acceleration of the rock at any time t 
during its flight?
(d) When does the rock hit the ground again?

60
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3.4

Derivatives of Trigonometric Functions

62

Derivative of the sine function

0

sin( ) sinsin lim
h

d x h x
x

dx h→

+ −
= =L
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Derivative of the cosine function

0

cos( ) coscos lim
h

d x h x
x

dx h→

+ −
= =L

64
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Example 2

( ) 5 cos
( ) sin cos

cos( )
1 sin

a y x x

b y x x

x
c y

x

= +
=

=
−

66

Derivative of the other basic 
trigonometric functions
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Example 5

Find d(tan x)/dx

68

Example 6

Find y'' if y = sec x
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Example 7

Finding a trigonometric limit

0

2 sec 2 sec0lim
cos( tan ) cos( tan 0)

2 1 3     3
cos( 0) 1

x

x

xπ π

π

→

+ +
=

− −

+
= = = −

− −

70

3.5

The Chain Rule and                       
Parametric Equations
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Differentiating composite functions

Example: 

y = f(u) = sin u

u = g(x) = x2 – 4

How to differentiate F(x) = f ◦ g = f [g(x)]?

Use chain rule

72

Derivative of a composite function

Example 1 Relating derivatives

y = (3/2)x = (1/2)(3x) 

= g[u(x)]

g(u) = u/2; u(x) = 3x

dy/dx = 3/2;

dg/du = ½; du/dx = 3;

dy/dx = (dy/du)⋅(du/dx) (Not an accident)

Chapter 03 Differentiation
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Example 2

4 2 2 29 6 1 (3 1)y x x x= + + = +
2 2; 3 1y u u x= = +

( )

2 3

4 2 3

2 6

            2(3 1) 6 36 12
c.f.

9 6 1 36 12

dy du
u

du dx

x x x x

dy d
x x x x

dx dx

⋅ = ⋅

= + ⋅ = +

= + + = +

Chapter 03 Differentiation
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Example 3

Applying the chain rule

x(t)= cos(t2 + 1). Find dx/dt.

Solution:

x(u)= cos(u); u(t)= t2 + 1; 

dx/dt = (dx/du)⋅(du/dt) = …

78

Alternative form of chain rule

If y = f [g(x)], then 

dy/dx = f ' [g(x)]⋅ g' (x)

Think of f as ‘outside function’,  g as ‘inside-
function’, then 

dy/dx = differentiate the outside function and 
evaluate it at the inside function let alone; then 
multiply by the derivative of the inside function.
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Example 4

Differentiating from the outside In

2 2

inside inside derivative of 
left alone left alone the inside

sin ( ) cos( ) (2 1)d
x x x x x

dx
+ = + ⋅ +

14243 14243 123

80

Example 5

A three-link ‘chain’
Find the derivative of 

( ) tan(5 sin 2 )g t t= −

Chapter 03 Differentiation
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Example 6

Applying the power chain rule

( )

3 4 7

1

( ) (5 )

1( ) 3 2
3 2

d
a x x

dx
d d

b x
dx x dx

−

−

⎛ ⎞ = −⎜ ⎟−⎝ ⎠

82

Example 7

(a) Find the slope of tangent to the curve 

y= sin5x at the point where x = π/3

(b) Show that the slope of every line tangent 
to the curve y = 1/(1-2x)3 is positive

Chapter 03 Differentiation
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Parametric equations

A way of expressing both the coordinates of a 
point on a curve, (x,y) as a function of a third 
variable, t. 

The path or locus traced by a point particle 
on a curve is then well described by a set of 
two equations:

x = f(t), y = g(t)

84

The variable t is a parameter for the curve
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Example 9

Moving 
counterclockwise on a 
circle

Graph the parametric 
curves

x=cos t, y = sin t, 

0 ≤ t ≤ 2π
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Example 10
Moving along a 
parabola

x= √ t, y = t,  0 ≤ t

Determine the relation 
between x and y by 
eliminating t.

y = t = (t)2 = x2

The path traced out 
by P (the locus) is 
only half the parabola, 
x ≥ 0

88

Slopes of parametrized curves

A parametrized curved x = f(t), y = g(t) is 
differentiable at t if f and g are differentiable 
at t.

At a point on a differentiable parametrised
curve where y is also a differentiable function 
of x, i.e. y = y(x) = y[x(t)], 

chain rule relates dx/dt, dy/dt, dy/dx via 

dy dy dx

dt dx dt
= ⋅

Chapter 03 Differentiation



89

90

Example 12

Differentiating with a parameter

If x = 2t + 3 and  y = t2 – 1, find the value of 
dy/dx at t = 6.
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(3) is just the parametric formula (2) by 

y → dy/dx

92

Example 14

Finding d2y/ dx2 for a parametrised curve

Find d2y/ dx2 as a function of t if x = t - t2, 

y = t - t3. 

Chapter 03 Differentiation
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3.6

Implicit Differentiation

94
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Example 1:
Differentiating 
implicitly

Find dy/dx if y2 = x

96

Example 2

Slope of a circle at a point

Find the slope of circle x2 + y2 = 25 at 

(3, -4)
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Example 3

Differentiating 
implicitly

Find dy/dx if 

y2 = x2 + sin xy

98

Lenses, tangents, and normal lines

If slop of 
tangent is mt, the 
slope of normal, 
mn, is given by 
the relation 

mnmt= - 1, or 

mn = - 1/ mt

Chapter 03 Differentiation
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Tangent and normal to the folium of 
Descartes

Show that the point (2,4) lies on the curve 

x2 + y3 - 9xy = 0. The find the tangent and 
normal to the curve there.

Example 4

100
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Example 5

Finding a second derivative implicitly

Find d2y/dx2 if 2x3 - 3y2 = 8. 

Derivative of higher order

102

Rational powers of differentiable functions

Theorem 4 is proved based on  d/dx(xn) = nxn-1

(where n is an integer) using implicit differentiation

Chapter 03 Differentiation
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Theorem 4 provide a extension of the power 
chain rule to rational power:

u≠ 0 if (p/q) < 1, (p/q) rational number,  u a 
differential function of x

/ ( / ) 1p q p qd p du
u u

dx q dx
−=

104

Example 6

Using the rational power rule

(a) d/dx (x1/2) = 1/2x-1/2 for x > 0

(b) d/dx (x2/3) = 2/3 x-1/3 for x ≠ 0

(c) d/dx (x-4/3) = -4/3 x-7/3 for x ≠ 0

Chapter 03 Differentiation
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Proof of Theorem 4

Let p and q be integers with q > 0 and 

Explicitly differentiating both sides with 
respect to x…

/p q q py x y x= ≡ =

106

Example 7

Using the rational power and chain rules

(a) Differentiate (1-x2)1/4

(b) Differentiate (cos x)-1/5

Chapter 03 Differentiation
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Chapter 4

Applications of Derivatives

2

4.1

Extreme Values of Functions
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4
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Example 1

Exploring absolute extrema

The absolute extrema of the following 
functions on their domains can be seen in 
Figure 4.2

6
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8
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Local (relative) extreme values
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Finding Extrema
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How to find the absolute extrema of a continuous 
function f on a finite closed interval

1. Evaluate f at all critical point and endpoints

2. Take the largest and smallest of these values.
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Example 2: Finding absolute extrema

Find the absolute maximum and minimum of 
f(x) = x2 on [-2,1].

16

Example 3: 
Absolute extrema at endpoints

Find the absolute 
extrema values of 

g(t) = 8t - t4 on 

[-2,1].
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Example 4: Finding absolute extrema on a 
closed interval

Find the absolute maximum and minimum 
values of f (x) = x2/3 on the interval [-2,3].

18
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Not every critical point 
or endpoints signals the 
presence of an extreme 
value.

20

4.2

The Mean Value Theorem
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Example 1

3

( ) 3
3
x

f x x= −

Horizontal tangents of a 
cubit polynomial
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Example 2 Solution of an equation f(x)=0

Show that the equation 

has exactly one real solution.

Solution
1. Apply Intermediate value theorem to show that 

there exist at least one root
2. Apply Rolle’s theotem to prove the uniqueness of 

the root.

3 3 1 0x x+ + =

26
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The mean value theorem

28
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30

Example 3

The function 

is continuous for 0 ≤ x≤2 and differentiable 
for 0 < x < 2.  

2( )f x x=

Chapter 04 Applications of Derivatives
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Mathematical consequences
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Corollary 1 can be proven using the Mean 
Value Theorem

Say x1, x2∈(a,b) such that x1 <  x2

By the MVT on [x1,x2] there exist some point c
between x1 and x2 such that            f '(c)= (f (x2) –f 
(x1))/(x2 - x1) 
Since  f '(c) = 0 throughout (a,b), 
f (x2) – f (x1) = 0, hence f (x2) = f (x1) for x1, 
x2∈(a,b). 
This is equivalent to f(x) = a constant for x∈(a,b). 

34

Proof of Corollary 2

At each point x∈(a,b) the derivative of the 
difference between function h=f – g is 

h'(x) = f '(x) –g'(x) = 0

Thus h(x) = C on (a,b) by Corollary 1. That 
is f (x) –g(x) = C on (a,b), so              f (x) = 
C + g(x). 
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Example 5

Find the function f(x) whose derivative is sin x 
and whose graph passes through the point 
(0,2).
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4.3

Monotonic Functions and                        
The First Derivative Test

38

Increasing functions and decreasing 
functions
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Mean value theorem is used to prove Corollary 3
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Example 1

Using the first derivative test for monotonic 
functions 

Find the critical point of 

and identify the intervals on which f is 
increasing and decreasing.

Solution

3( ) 12 5f x x x= − −

( )( )( ) 3 2 2f x x x′ = + −
   for 2
12   for 2 2
   for 2

f x

f x

f x

′ + −∞ < < −
′ − − < <
′ + < < ∞

3( ) 12 5f x x x= − −

42
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First derivative test for local extrema

44
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Example 2: Using the first derivative test 
for local extrema 

Find the critical point of 

Identify the intervals on which f is 
increasing and decreasing. Find the 
function’s local and absolute extreme 
values.

( )1/ 3 4 / 3 1/ 3( ) 4 4f x x x x x= − = −

2/3

4( 1) ; ve   for 0;
3x

ve   for 0 1; ve   for 1

x
f f x

f x f x

−′ ′= − <

′ ′− < < + >

46
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4.4

Concavity and Curve Sketching

48

Concavity

go back
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Example 1(a): Applying the concavity test

Check the concavity of the curve y = x3

Solution: y'' = 6x

y'' < 0 for x < 0; y'' > 0 for x > 0;

Link to Figure 4.25

52

Example 1(b): Applying the 
concavity test
Check the concavity of 
the curve y = x2

Solution: y'' = 2 > 0
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Example 2

Determining concavity

Determine the 
concavity of 

y = 3 + sin x on

[0, 2π].

54

Point of inflection
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Example 3

An inflection point 
may not exist where 
An inflection point
may not exist where
y'' = 0
The curve y = x4 has 
no inflection point at 
x=0. Even though y'' = 
12x2 is zero there, it 
does not change sign. 

56

Example 4

An inflection point 
may not occur where 
y'' = 0 does not exist

The curve y = x1/3 has 
a point of inflection at 
x=0 but y''  does not 
exist there. 

y'' = (2/9)x-5/3
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Second derivative test for local 
extrema

58

Example 6: Using f ' and f '' to graph f

Sketch a graph of the function                               
f (x) = x4 - 4x3 + 10

using the following steps.
(a) Identify where the extrema of f occur
(b) Find the intervals on which f is increasing and 

the intervals on which f is decreasing
(c) Find where the graph of f is concave up and 

where it is concave down.
(d) Sketch the general shape of the graph for f.
(e) Plot the specific points. Then sketch the graph.
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Example 

Using the graphing strategy

Sketch the graph of

f (x) = (x + 1)2 / (x + 1). 
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Learning about functions from derivatives
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4.5

Applied Optimization Problems

64

Example 1

An open-top box is to be cutting small 
congruent squares from the corners of a 12-
in.-by-12-in. sheet of tin and bending up the 
sides. How large should the squares cut from 
the corners be to make the box hold as much 
as possible?
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Example 2

Designing an efficient 
cylindrical can

Design a 1-liter can 
shaped like a right 
circular cylinder. What 
dimensions will use 
the least material?

68
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Example 3

Inscribing rectangles

A rectangle is to be 
inscribed in a semicircle 
of radius 2. What is the 
largest area the 
rectangle can have, and 
what are its dimensions?

70

4.6

Indeterminate Forms and                               
L’ Hopital’s Rule^
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Indeterminate forms 0/0

72

Example 1

Using L’ Hopital’s Rule

(a)

(b) 
0

0

3 sin 3 coslim 2
1x

x

x x x

x→
=

− −
= =

0

0

1
1 1 12 1lim

1 2x

x

x x
x→

=

+ − += =

Chapter 04 Applications of Derivatives



73

74

Example 2(a)

Applying the stronger form of L’ Hopital’s rule

(a) 

1/ 2

20 0

3/ 2

0

1 1 / 2 (1/ 2)(1 ) 1/ 2lim lim
2

(1/ 4)(1 ) 1lim
2 8

x x

x

x x x

x x

x

−

→ →

−

→

+ − − + −
=

− + −
= =
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Example 2(b)

Applying the stronger form of L’ Hopital’s rule

(b) 

30

sinlim
x

x x

x→

−

76
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Example 3

Incorrectly applying the stronger form of   L’
Hopital’s

20

1 coslim
x

x

x x→

−
+
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Example 4

Using l’ Hopital’s rule with one-sided limits

20 0

20 0

sin cos( ) lim lim ...
2

sin cos( ) lim lim ...
2

x x

x x

x x
a

x x
x x

b
x x

+ +

− −

→ →

→ →

= =

= =

80

If f ±∞ and g ±∞ as x a, then

a may be finite or infinite

( ) ( )lim lim
( ) ( )x a x a

f x f x

g x g x→ →

′
=

′

Indeterminate forms ∞/∞, ∞⋅0, ∞-
∞
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/ 2

2( / 2) ( / 2) ( / 2)

( / 2)

sec( ) lim
1 tan
sec sec tanlim lim lim sin 1

1 tan sec
seclim . ...

1 tan

x

x x x

x

x
a

x
x x x

x
x x

x

x

π

π π π

π

− − −

+

→

→ → →

→

+

= = =
+

=
+

Example 5
Working with the indeterminate form 
∞/∞

82

Example 5(b)

2

2

2( ) lim ...
3 5x

x x
b

x x→∞

−
=

+
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Example 6

Working with the indeterminate form ∞⋅0

1lim sin
x

x
x→∞

⎛ ⎞
⎜ ⎟
⎝ ⎠

84

Example 7

Working with the indeterminate form ∞ - ∞

0 0

1 1 sinlim lim ...
sin sinx x

x x

x x x x→ →

−⎛ ⎞ ⎛ ⎞− = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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4.8

Antiderivatives

86

Finding antiderivatives
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Example 1

Finding antiderivatives

Find an antiderivative for each of the 
following functions

(a) f(x) = 2x

(b) f(x) = cos x

(c) h(x) = 2x + cos x

88
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Example 2 Finding a particular 
antiderivative

Find an antiderivative of f (x) = sin x that 
satisfies F(0) = 3

90
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Example 3 Finding antiderivatives using 
table 4.2

Find the general antiderivative of each of the 
following functions.

(a) f (x) = x5

(b) g (x) = 1/x1/2

(c) h (x) =  sin 2x

(d) i (x) =  cos (x/2)

92

Example 4 Using the linearity rules for 
antiderivatives

Find the general antiderivative of 

f (x) = 3/x1/2 + sin 2x
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Example of indefinite integral notation 

2

2

2  

cos  sin

(2 cos ) sin

x dx x C

x dx x C

x x dx x x C

= +

= +

+ = + +

∫
∫
∫
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Example 7 Indefinite integration done 
term-by term and rewriting the constant of 
integration

Evaluate

( )2 22 5 2 5 ...x x dx x dx xdx dx− + = − + =∫ ∫ ∫ ∫
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Chapter 5

Integration

2

5.1

Estimating with Finite Sums

Chapter 5 Integration
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Riemann Sums
Approximating area bounded by the graph 
between [a,b]

4

Partition of [a,b] is the set of 

P = {x0, x1, x2, … xn-1, xn}

a = x0< x1< x2 …< xn-1 < xn=b

cn∈[xn-1, xn]

||P|| = norm of P = the largest 
of all subinterval width

Area is approximately given by

f(c1)Δx1 + f(c2)Δx2+ f(c3)Δx3+ … + f(cn)Δxn

Chapter 5 Integration
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Riemann sum for f on [a,b]

Rn = f(c1)Δx1 + f(c2)Δx2+ 
f(c3)Δx3+ … +f(cn)Δxn

6

Let the true value of the 
area is R

Two approximations to R:
cn= xn corresponds to case 
(a). This under estimates 
the true value of the area 
R if n is finite.

cn= xn-1 corresponds to 
case (b). This over 
estimates the true value of 
the area S if n is finite.

go back

Figure 5.4
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Limits of finite sums

Example 5 The limit of finite approximation to 
an area

Find the limiting value of lower sum 
approximation to the area of the region R
below the graphs f(x) = 1 - x2 on the interval 
[0,1] based on Figure 5.4(a)

8

Solution

Δxk = (1 - 0)/n= 1/n ≡Δx; k = 1,2,…n
Partition on the x-axis: [0,1/n], [1/n, 2/n],…, [(n-1)/n,1].
ck = xk = kΔx = k/n
The sum of the stripes is 

Rn = Δx1 f(c1) + Δx2 f(c2) + Δx3 f(c3) + …+ Δxn f(cn) 
= Δx f(1/n) + Δx f(2/n) + Δx f(3/n) + …+ Δxn f(1) 
= ∑k=1

n Δx f(kΔx) = Δx ∑k=1
n f (k/n)

= (1/ n) ∑k=1
n [1 - (k/n)2]

= ∑k=1
n  1/ n - k2/n3  = 1 – (∑k=1

n k2)/ n3

= 1 – [(n) (n+1) (2n+1)/6]/ n3 = 1 – [2 n3 + 3 n2+n]/(6n3)

∑k=1
n k2 = (n) (n+1) (2n+1)/6

Chapter 5 Integration
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Taking the limit of n → ∞

The same limit is also obtained if cn = xn-1 is chosen 
instead.

For all choice of cn ∈ [xn-1,xn] and partition of P, the 
same limit for S is obtained when n ∞

3 2

3

2 3lim 1 1 2 / 6 2 /3
6n

n

n n n
R R

n→∞

⎛ ⎞+ +
= = − = − =⎜ ⎟

⎝ ⎠

10

5.3

The Definite Integral
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“The integral from a to b of f of x with 
respect to x”
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The limit of the Riemann sums of f on [a,b] 
converge to the finite integral I

We say f is integrable over [a,b]
Can also write the definite integral as 

The variable of integration is what we call a 
‘dummy variable’

|| || 0 1
lim ( ) ( )

n b

k k aP
k

f c x I f x dx
→

=

Δ = =∑ ∫

( ) ( ) ( )

(what ever)   (what ever)

b b b

a a a

b

a

I f x dx f t dt f u du

f d

= = =

=

∫ ∫ ∫
∫

14

Question: is a non continuous 
function integrable?
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Integral and nonintegrable functions

Example 1

A nonintegrable function on [0,1]

Not integrable

1, if  is rational
( )

0, if  is irrational
x

f x
x

⎧
= ⎨

⎩

16

Properties of definite integrals
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Example 3 Finding bounds for an integral

Show that the value of 

is less than 3/2

Solution

Use rule 6 Max-Min Inequality

1

0
1 cos xdx+∫

20

Area under the graphs of a nonnegative 
function

Chapter 5 Integration
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Example 4 Area under the line y = x

Compute             (the 
Riemann sum)

and find the area A
under y = x over the 
interval [0,b], b>0

0

b
xdx∫

22

Solution

( )

( ) ( )

1 1

1 1
2

2

1 1

2 2

2 2

Riemann sum:

lim ( ) lim ( )

lim lim

lim lim

1 1
lim lim

2 2
1lim 1

2 2

n n

k k
n n

k k

n n

k
n n

k k

n n

n n
k k

n n

n

x f c x f x

x x x k x

b
x k k

n

n n n nb b

n n

b b

n

→∞ →∞
= =

→∞ →∞
= =

→∞ →∞
= =

→∞ →∞

→∞

Δ = Δ

= Δ = Δ Δ

⎛ ⎞= Δ = ⎜ ⎟
⎝ ⎠

+ +⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= + =⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

∑ ∑

By geometrical consideration:

A=(1/2)×high×width= (1/2)×b×b= 
b2/2 

{ }0 1 2 1

Choose partition of  subinterval with equal width:
0 , , , , /n k k k

n

x x x x b x x x x b n−= = Δ = − = Δ =K
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Using geometry, the area 
is the area of a trapezium 
A= (1/2)(b-a)(b+a)

= b2/2 - a2/2

Using the additivity rule 
for definite integration:

0 0

2 2

0 0

,
2 2

b a b

a

b b a

a

xdx xdx xdx

b a
xdx xdx xdx a b

= +

→ = − = − <

∫ ∫ ∫

∫ ∫ ∫

Both approaches to 
evaluate the area agree

24

One can prove the following Riemannian sum 
of the functions f(x)=c and f(x)= x2:

Chapter 5 Integration



25

Average value of a continuous function 
revisited

Average value of nonnegative continuous 
function f over an interval [a,b] is

In the limit of n ∞, the average =

1 ( )
b

a

f x dx
b a− ∫

1 2

1

1 1

( ) ( ) ( ) 1 ( )

1( ) ( )

n
n

k
k

n n

k k
k k

f c f c f c
f c

n n

x
f c xf c

b a b a

=

= =

+ +
=

Δ
= = Δ

− −

∑

∑ ∑

L

26
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Example 5 Finding average value

Find the average value 
of

over [-2,2]

2( ) 4f x x= −

Chapter 5 Integration
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5.4

The Fundamental Theorem of Calculus

30

Mean value theorem for definite integrals
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32
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Example 1 Applying the mean value 
theorem for integrals

Find the average value of 
f(x)=4-x on [0,3] and where 
f actually takes on this value 
as some point in the given 
domain.

Solution

Average = 5/2

Happens at x=3/2

34

Fundamental theorem Part 1

( ) ( )
x

a

F x f t dt= ∫Define a function F(x): 

x,a ∈ I, an interval over which f(t) > 0 is 
integrable.

The function F(x) is the area under the 
graph of f(t) over [a,x], x > a ≥ 0

Chapter 5 Integration
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( ) ( )
( ) ( )

( ) ( )
h 0

( )

( )

lim ( ) ( )

F x h F x hf x

F x h F x
f x

h
F x h F x

F x f x
h→

+ − ≈

+ −
≈

+ −
′= =

Fundamental theorem Part 1 (cont.)

The above result 
holds true even if f
is not positive 
definite over [a,b]

Chapter 5 Integration
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Note: Convince yourself that 

(i) F(x) is an antiderivative of f(x)?

(ii)f(x) is an derivative of F(x)?

38

F(x) is an 
antiderivative of 
f(x) because 
F'(x)= f(x)

F(x) f(x) = F'(x)

d/dx
f(x) is an 
derivative 
of F(x)

Chapter 5 Integration
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Example 3 Applying the fundamental 
theorem

Use the fundamental theorem to find

2

2

5

1

1( ) cos                     ( )
1

( )  if 3 sin         ( )  if cos

x x

a a

x

x

d d
a tdt b dt

dx dx t

dy dy
c y t tdt d y tdt

dx dx

+

= =

∫ ∫

∫ ∫

40

Example 4 Constructing a function with a 
given derivative and value

Find a function y = f(x) on the domain (-π /2, 
π/2) with derivative dy/dx = tan x

that satisfy f(3)=5.

Solution

Set the constant a = 3, and then add to k(3) = 
0 a value of 5, that would make k(3) + 5 = 5

Hence the function that will do the job is

( ) tan
x

a

k x tdt= ∫

3

( ) ( ) 5 tan 5
x

f x k x tdt= + = +∫
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Fundamental theorem, part 2 (The 
evaluation theorem)

42

To calculate the definite integral of f over 
[a,b], do the following

1. Find an antiderivative F of f, and 

2. Calculate the number 

( ) ( ) ( )
b

a

f x dx F b F a= −∫

Chapter 5 Integration
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To summarise

( )( ) ( )

( ) ( ) ( ) ( )

x

a

x x

a a

d dF x
f t dt f x

dx dx

dF t
dt f t dt F x F a

dt

= =

⎛ ⎞ = = −⎜ ⎟
⎝ ⎠

∫

∫ ∫

44

Example 5 Evaluating integrals

2

0
0

/ 4

2
1

( ) cos

( ) sec tan

3 4( )
2

x

a xdx

b x xdx

c x dx
x

π

π−

⎛ ⎞−⎜ ⎟
⎝ ⎠

∫

∫

∫
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Example 7 Canceling areas

Compute

(a) the definite integral 
of f(x) over [0,2π]

(b) the area between 
the graph of f(x) and 
the x-axis over [0,2π]

46

Example 8 Finding area using 
antiderivative

Find the area of the region between the x-
axis and the graph of f(x) = x3 - x2 – 2x, 

-1 ≤ x ≤ 2.

Solution

First find the zeros of f. 

f(x) = x(x+1) (x-2)

Chapter 5 Integration
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5.5

Indefinite Integrals and the Substitution 
Rule
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Note

The indefinite integral of f with respect to x, 

is a function plus an arbitrary constant

A definite integral             is a number.

( )f x dx∫

( )
b

a

f x dx∫

50

The power rule in integral form

From 

we obtain the following rule

1 1

1 1

n n
n n

n n n

d u du du u
u u dx

dx n dx dx n

du du
u dx u dx u du

dx dx

+ +⎛ ⎞ ⎛ ⎞⎛ ⎞= → =⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫

∫ ∫ ∫ differential of ( ),  is du
u x du du dx

dx
=
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Example 1 Using the power rule

21 2   

 ...

du
y y dy u dy

dy

u du

+ ⋅ = ⋅ ⋅

= =

∫ ∫

∫

52

Example 2 Adjusting the integrand by a 
constant

14 1 4 1  4
4

1 1  ...
4 4

t dt t dt

du
u dt u du

dt

− = − ⋅

⎛ ⎞= ⋅ = =⎜ ⎟
⎝ ⎠

∫ ∫

∫ ∫

Chapter 5 Integration
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Substitution: Running the chain rule 
backwards

Used to find the integration with the integrand in the 
form of the product of 

let  ( ); [ ( )] ( ) ( ) ( )du
u g x f g x g x dx f u dx f u du

dx
′= ⋅ = ⋅ =∫ ∫ ∫

( )

[ ( )] '( ) ( )
f u du

f g x g x dx f u du⋅ =∫ ∫14243 14243

[ ( )] '( )f g x g x dx⋅

54

Example 3 Using substitution

{ ( )
1
7

1 1cos(7 5)   cos sin sin 7 5
7 7 7

u du

du
x dx u u C x C+ = ⋅ = + = + +∫ ∫14243

Chapter 5 Integration
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Example 4 Using substitution

{ {
2 3 3 2

1
3

sin  sin  
u

du

x x dx x x dx= =∫ ∫

56

Example 5 Using Identities and 
substitution

{ {
2 2

2
1
2

2

tan

1  sec 2  sec 2  
cos 2

1 1 1 1sec  (tan ) tan tan 2
2 2 2 2

u
du

d
u

du

dx x dx x dx
x

u du d u u C x C

= = =

= = + = +

∫ ∫ ∫

∫ ∫123

Chapter 5 Integration
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Example 6 Using different 
substitutions

( ) {
1/ 3

1/ 32 1/ 3
3

2

2  1  2 ...
1 du

u

z
dz z zdz u du

z −

− −= + = =
+

∫ ∫ ∫14243

58

The integrals of sin2x and cos2x

Example 7

{{

2

1
2

1     sin  1 cos2  
2

1                      = cos2
2 2

1                      = cos ...
2 4

u
du

x dx x dx

x
x dx

x
udu

= −

−

− =

∫ ∫

∫

∫

Chapter 5 Integration



59

The integrals of sin2x and cos2x

Example 7(b)

2 1     cos  cos2 1 ...
2

x dx x dx= + =∫ ∫

60

Example 8 Area beneath the curve 
y=sin x2

For Figure 5.24, find 

(a) the definite integral 
of g(x) over [0,2π].

(b) the area between 
the graph and the x-
axis over [0,2π].

Chapter 5 Integration
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5.6

Substitution and                                     
Area Between Curves

62

Substitution formula

( )

( )

let  ( ); [ ( )] ( ) [ ] ( )
u g bx b x b

x a x a u g a

du
u g x f g x g x dx f u dx f u du

dx

== =

= = =

′= ⋅ = ⋅ =∫ ∫ ∫

Chapter 5 Integration
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Example 1 Substitution

Evaluate 1
2 3

1

3 1 x x dx
−

+∫

{
1/ 2

( 1)1
3 2 1/ 2

1 ( 1)

1 3 ...
u xx

dux u xu

x x dx u du
==

=− =−

+ ⋅ = ⋅ =∫ ∫123

64

Example 2 Using the substitution formula

{

( ) ( )

/ 2
2

/ 4

2
2 2

2

/ 2 / 4/ 2 2 2
2 2 2

/ 4 / 4 / 2 1 0

cot csc ?

cot csc cot csc
2

cot
2

cot cot 1 1cot csc cot / 4 cot / 2
2 2 2 2

x

x

u du

x xdx

u
x xdx x xdx udu c

x
c

x x
x xdx

π

π

π ππ

π π π

π π

=

=

−

=

= ⋅ = − = − +

= − +

⎡ ⎤
⎢ ⎥= − = = − =
⎢ ⎥⎣ ⎦

∫

∫ ∫ ∫

∫

14243

14243 14243

Chapter 5 Integration
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Definite integrals of symmetric 
functions

66
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Example 3 Integral of an even 
function

( )

( ) ( )

2
4 2

2

4 2

4 2 4 2

Evaluate 4 6

Solution:
( ) 4 6;

( ) 4 6 4 6 ( )
even function

x x dx

f x x x

f x x x x x f x

−

− +

= − +

− = − − − + = − + =

∫

How about integration of the same 
function from x=-1 to x=2

68

Area between curves
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( )

( ) [ ]
1 1

|| || 0 1

( ) (

lim ( ) ( ( ) ( )

n n

k k k k
k k

n b

k k k aP
k

A A x f c g c

A x f c g c f x g x dx

= =

→
=

⎡ ⎤≈ Δ = Δ −⎣ ⎦

⎡ ⎤= Δ − = −⎣ ⎦

∑ ∑

∑ ∫

70
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Find the area of the 
region enclosed by 
the parabola y = 2 –
x2 and the line y = -x.

Example 4 Area between intersecting 
curves

{ {

( )
2

0
1

2

1
2

2 2

1

lim ;

[ ( ) ( )]

   2 ...

n A

kn
k

b

a
xx

A A dA

A f x g x dx

x x dx

→∞
=

≡

≡−
−

−

= Δ =

= −

= − − =

∑ ∫

∫

∫

( )( ) ( )A f x g x xΔ = − ⋅ Δ

72

Find the area of the 
shaded region

Example 5 Changing the integral to 
match a boundary change

2

0

4

2

;

( 2)

Area A B

A xdx

B x x dx

= +

=

= − −

∫
∫
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( )

( ) [ ]
1 1

|| || 0 1

( ) (

lim ( ) ( ( ) ( )

n n

k k k k
k k

n d

k k k cP
k

A A y f c g c

A y f c g c f y g y dy

= =

→
=

⎡ ⎤≈ Δ = Δ −⎣ ⎦

⎡ ⎤= Δ − = −⎣ ⎦

∑ ∑

∑ ∫

kAΔ

74

Example 6 Find the area of the region in 
Example 5 by integrating with respect to y

( ( ) ( ))A f y g y yΔ = − ⋅ Δ

( ) ( )

4

0
1

2 2

0

lim [ ( ) ( )]

   2 ...

n y

k yn
k

A A f y g y dy

y y dy

=

=→∞
=

= Δ = −

= + − =

∑ ∫

∫
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6.3

Lengths of Plane Curves

2

Length of a parametrically defined 
curve

|| || 0
lim

n

k
P

k

L L
→

= ∑

Lk the line segment 
between Pk and Pk-1

Chapter 6 Lengths of Plane Curves
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1( ) ( )k kf t f t −= −

1( ) ( )k kg t g t −= −

4

( ) ( )

( ) ( )

|| || 0

2 2* **

|| || 0

2 2
2 2

lim lim

lim '( ) '( )

'( ) '( )

n n

k kn P
k k

n

k kP
k

b b

a a

L L L

t g t f t

dy dx
g t f t d t d t

d t d t

→ ∞ →

→

= =

= Δ +

⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑

∑

∫ ∫

( )
( )

* *
1 1

** **
1 1

( ) ( ) '( ) '( ) ;

( ) ( ) '( ) '( )
due to mean value theorem

k k k k k k k

k k k k k k k

y g t g t g t t t g t t

x f t f t f t t t f t t

− −

− −

Δ = − = ⋅ − = ⋅Δ

Δ = − = ⋅ − = ⋅Δ

( ) ( ) ( ) ( )2 22 2 * **'( ) '( )k k k k kL y x t g t f t= Δ + Δ = Δ +

Chapter 6 Lengths of Plane Curves
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6

Example 1 The circumference of a 
circle

Find the length of the circle of radius r
defined parametrically by

x=r cos t    and y=r sin t, 0 ≤ t ≤ 2π

( ) ( )
2 2 2

2 2

0

2

0

cos sin

2

b

a

dy dx
L d t r t r t d t

d t d t

r d t r

π

π

π

⎛ ⎞ ⎛ ⎞= + ≡ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= =

∫ ∫

∫
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Length of a curve y = f(x)

2 2

2 2 2

A ssign  the param eter , the leng th  o f the cu rve 
( )  is  then  g iven  by 

[ ( )]       1

b

a

b

a

x t

y f x

dy dx
L d t

d t d t

dy dy dx dy dx
y y x t

d t dx d t dx d t

dy dx dx dy
L d t dx

dx d t d t dx

=
=

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= ⇒ = ⋅ = =⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫

∫

Q

[ ]2

1

'( ) 1

b

a

b

a

dx f x

+

= +

∫

∫

8
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Example 3 Applying the arc length 
formula for a graph

Find the length of the curve

3 / 24 2 1,    0 1
3

y x x= − ≤ ≤

10

Dealing with discontinuity in dy/dx

At a point on a curve where dy/dx fails to 
exist and we may be able to find the curve’s 
length by expressing x as a function of y and 
applying the following

Chapter 6 Lengths of Plane Curves
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Example 4 Length of a graph which has a 
discontinuity in dy/dx

Find the length of the curve y = (x/2)2/3 from x 
= 0 to x = 2.

Solution

dy/dx = (1/3) (2/x)1/3 is not defined at x=0.

dx/dy = 3y1/2 is continuous on [0,1].

12
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Chapter 7

Transcendental Functions

2

7.1

Inverse Functions and                          
Their Derivatives

Chapter 7 Transcendental Functions



3

4

Example 1 Domains of one-to-one 
functions

(a) f(x) = x1/2 is one-to-one on any domain of 
nonnegative numbers

(b) g(x) = sin x is NOT one-to-one on [0,π] but 
one-to-one on [0,π/2].

Chapter 7 Transcendental Functions



5

6
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8
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1. Solve the equation y =f(x) for x. This gives 
a formula x = f -1(y) where x is expressed as 
a function of y.

2. Interchange x and y, obtaining a formula y = 
f -1(x) where f -1(x) is expressed in the 
conventional format with x as the 
independent variable and y as the dependent 
variables.

Finding inverses

10

Example 2 Finding an inverse 
function

Find the inverse of y = x/2 + 1, expressed as a 
function of x.

Solution
1. solve for x in terms of y: x = 2(y – 1)
2. interchange x and y: y = 2(x – 1)
The inverse function f-1(x) = 2(x – 1)
Check: f -1[f(x)] = 2[f(x) – 1] = 2[(x/2 + 1) – 1] = x = f 
[f-1 (x)]

Chapter 7 Transcendental Functions
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12

Example 3 Finding an inverse 
function

Find the inverse of y = x2, x ≥ 0, expressed 
as a function of x. 

Solution

1. solve for x in terms of y: x = √y

2. interchange x and y: y = √x

The inverse function f-1(x) = √x

Chapter 7 Transcendental Functions
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14

Derivatives of inverses of differentiable 
functions

From example 2 (a linear function)

f(x) = x/2 + 1; f-1(x) = 2(x + 1);

df(x)/dx = 1/2; df -1(x)/dx = 2,

i.e. df(x)/dx = 1/df -1(x)/dx

Such a result is obvious because their graphs are 
obtained by reflecting on the      y = x line.

In general, the reciprocal relationship between the 
slopes of f and f-1 holds for other functions.

Chapter 7 Transcendental Functions
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16

slope at 
x a

df
x a

dx =

= =

1
1slope at ( )

x b

df
x b f a

dx

−
−

=

= = =

Chapter 7 Transcendental Functions
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18

Example 4 Applying theorem 1

The function f(x) = x2, x ≥ 0 and its inverse f 
-1(x) = √x have derivatives f '(x) = 2x, and 

(f -1)'(x) = 1/(2√x). 

Theorem 1 predicts that the derivative of 

f -1(x) is 

(f -1)'(x) =  1/ f '[f -1(x)] = 1/ f '[√x] 

= 1/(2√x)

Chapter 7 Transcendental Functions
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20

Example 5 Finding a value of the inverse 
derivative

Let f(x) = x3 – 2. Find the value of df -1/dx at x
= 6 = f(2) without a formula for f -1.
The point for f is (2,6); The corresponding 
point for f -1 is (6,2).
Solution
df /dx =3x2

df -1/dx|x=6 = 1/(df /dx|x=2)= 1/(df/dx|x= 2)
= 1/3x2|x=2 = 1/12

Chapter 7 Transcendental Functions
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22

7.2

Natural Logarithms
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Definition of natural logarithmic 
fuction

24
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ln x is an increasing function since          dy/dx
= 1/x > 0

Domain of ln x = (0,∞)

Range of ln x = (-∞,∞)

26

e lies between 2 
and 3

ln x = 1

Chapter 7 Transcendental Functions
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28

By definition, the antiderivative of ln x is just 1/x

Let u = u (x). By chain rule, 

d/dx [ln u(x)] = d/du(ln u)⋅du(x)/dx

=(1/u)⋅du(x)/dx 

Chapter 7 Transcendental Functions
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Example 1 Derivatives of natural 
logarithms

2

( ) ln 2

1( )   3; ln

d
a x

dx
d du

b u x u
dx dx u

=

= + = =

30

Properties of logarithms

Chapter 7 Transcendental Functions
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Example 2 Interpreting the properties of 
logarithms

( )
( )

3

( ) ln 6 ln 2 3 ln 2 ln3;

( ) ln 4 ln5 ln 4 /5 ln 0.8

( ) ln(1/8) ln1 ln 2 3ln 2

a

b

c

= ⋅ = +

− = =

= − = −

32

Example 3 Applying the properties to 
function formulas

( )

( )

3 1/ 3

( ) ln 4 lnsin ln 4sin ;
1( ) ln ln 1 ln(2 3)

2 3
1( ) ln(sec ) ln ln cos

cos

( ) ln 1 ln( 1) (1/3)ln( 1)

a x x

x
b x x

x

c x x
x

d x x x

+ =

+
= + − −

−

= = −

+ = + = +

Chapter 7 Transcendental Functions
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Proof of ln ax = ln a + ln x 

ln ax and  ln x have the same derivative:

Hence, by the corollary 2 of the mean 
value theorem, they differs by a constant C

We will prove that C = ln a by applying the 
definition ln x at x = 1.

( ) 1 1 1ln lnd d ax d
ax a x

dx dx ax ax x dx
= = = =

ln lnax x C= +

34

Estimate the value of ln 2

2

1

1ln 2 dx
x

= ∫
2

1

1 1(2 1) 1 (2 1) 1
2
1 ln 2 1
2

dx
x

⋅ − < < ⋅ − =

< <

∫
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The integral Û(1/u) du
1From ln

Let 0
Taking the integration on both sides gives

1ln

ln ln ' ;

For 0 :
0,

1 ( )ln( )
( )

ln( ) ln( ) ''

Combining both cases 

d du
u

dx u dx
u

d du
udx dx

dx u dx
du du

d u u C
u u

u

u

d d u
u dx dx

dx u dx

du du
d u u C

u u

=

>

=

= → + =

<
− >

−
− =

−

− = → − + =

∫ ∫

∫ ∫ ∫

∫ ∫

∫ ∫ ∫
of 0, 0,

ln | |

u u

du
u C

u

> <

= +∫

36

1

recall: ,  rational, 1
1

n
n u

u du C n
n

+

= + ≠ −
+∫

1

1

From ln | | .

let ( ).
( )

( )
( ) ( )

'( ) ln | ( ) |
( )

u du u C

u f x

df x
dxdu df x dxu du

u f x f x

f x
dx f x C

f x

−

−

= +

=

= = =

⇒ = +

∫

∫ ∫ ∫ ∫

∫
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Example 4 Applying equation (5)

2
2

2 2

2 ( 5)(a) ln | 5 |
5 5

xdx d x
x C

x x

−
= = − +

− −∫ ∫
/ 2

/ 2

4cos(b) ...
3 2sin

x
dx

x

π

π−

=
+∫

38

The integrals of tan x and cot x
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Example 5

1 cos2sin 2 2tan 2
cos2 cos2

1 cos2 1 1 ln | |
2 cos2 2 2
1 ln | cos2 |
2

1 ln | sec2 |
2

d
xx dxxdx dx dx

x x
d x du

u C
x u

x C

x C

−
= =

= − = − = − +

= − +

= +

∫ ∫ ∫

∫ ∫

40

Example 6 Using logarithmic 
differentiation

Find dy/dx if ( )( )1/ 22 1 3
, 1

1
x x

y x
x

+ +
= >

−

( ) ( )

( ) ( ) ( )

2

2

ln ln 1 (1/ 2)ln 3 ln( 1)

1ln ln 1 ln 3 ln 1
2

...

y x x x

d d d d
y x x x

dy dy dy dy

= + + + − −

= + + + − −

=
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7.3

The Exponential Function

42

The inverse of ln x and the number e

ln x is one-to-one, hence it has an inverse. 
We name the inverse of ln x, ln-1 x as exp (x)

1 1limln , lim ln 0
x x

x x− −

→∞ →−∞
= ∞ =
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Definition of e as ln e = 1. 
So, e = ln-1(1) = exp (1)
e = 2.718281828459045…

(an irrational number)
The approximate value for e is 

obtained numerically (later).

The graph of the inverse of ln x

44

The function y = ex

Raising the number e to a rational power r:
e2 =e⋅ e, e-2 =1/ e-2, e1/2 =√e etc.
Taking the logarithm of er, we get 
ln er = ln (e⋅ e ⋅ e ⋅ e…)

= ln e + ln e + ln e+…+ln e = r ln e = r 
From ln er = r, we take the inverse to obtain 
ln-1 (ln er) = ln-1 (r) 
er = ln-1 (r) = exp r, for r rational.
How do we define ex where x is irrational? 
This can be defined by assigning ex as exp x since ln-1 (x) is 
defined (as the inverse function of ln x is defined for all real x).
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Note: please do make a distinction between ex and exp x. They have 
different definitions.

ex is the number e raised to the power of real number x.

exp x is defined as the inverse of the logarithmic function, exp x = ln-1 x

For the first time we have a precise 
meaning for an irrational exponent. 
(previously ax is defined for only rational x)

46
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(2) follows from the definition:

From ex = exp x, let x → ln x

eln x = ln [exp x] = x (by definition). (2)

From ex = exp x, take logarithm both sides, 
→ ln ex = ln [exp x] = x (by definition)

48

Example 1 Using inverse equations

( )

( )

2

3

2

1

1/ 2

sin

ln 2

ln 1 2

3ln 2 ln 2 3

33ln 2 3 ln 2 ln 2 3

( ) ln 2
( ) ln 1

( ) ln ln 1/ 2
( ) ln sin
( ) 2

( ) 1

( ) 2 8

( ) 2 8

x

x

a e

b e

c e e

d e x

f e

g e x

h e e

i e e e

−

+

⋅

=

= −

= =

=

=

= +

= = =

= = = =
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Example 2 Solving for an exponent

Find k if e2k=10.

50

The general exponential function ax

Since a = elna for any positive number a

ax = (elna)x = exlna
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Example 3 Evaluating exponential 
functions

( )
( )

33 ln 2 3 ln 2 1.20

ln 2 ln 2 2.18

( )2 3.32

( )2 8.8

a e e e

b e e e
ππ π

= = ≈ ≈

= = ≈ ≈

52

Laws of exponents
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Laws of exponents

Theorem 3 also valid for ax

54

Proof of law 1

1 2

1 2 1

1 2

1 1 2 2

1 2 1 2 1 2

1 2 1 2
2

1 2

,
ln , ln

ln ln ln
exp( ) exp(ln )

x x

x x x x

y e y e

x y x y

x x y y y y

x x y y

e y y e e+

= =
⇒ = =
⇒ + = + =
⇒ + =

= =
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Example 4 Applying the exponent 
laws

( )

ln 2

ln

2

3

( )
( )

( )

( )

x

x

x

x

a e

b e

e
c

e

d e

+

−

=

=

=

=

56

The derivative and integral of ex

1

1

1 1

1

( )

( )

( ) ln , ln ( )
1( )

( )

1 1
(1/ ) (1/ )

x

x

x f x

x

x f x x y

f x x y e x f x

dy d d
e f x

df xdx dx dx
dx

y e
x x

−

−

− −

−

=

= =

= = = =

= = =

= = = =
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Example 5 Differentiating an exponential

( )5 xd
e

dx
=

58

By the virtue of the chain rule, we 
obtain

( )( )

( ) ; ( );
( ) ( )( )

u

u x u

f u e u u x

d d df u du x du
e f u e

dx dx du dx dx

= =

= = =

This is the integral equivalent of (6)
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Example 7 Integrating exponentials

{
( )

ln 2
3

0
/ 2 / 2

sin sin

( )0 0

( / 2) ( / 2)
( ) ( )

(0) (0)

( / 2)( ) ( / 2) (0) sin( / 2) sin(0)

(0)

( )

( ) cos  cos

( )

1

f x

x

x x

df xe

f f
f x f x

f f

ff x f f

f

a e dx

b e x dx e xdx

e df x de

e e e e e e

π π

π π

π π π

=

=

= =

= = − = − = −

∫

∫ ∫

∫ ∫

123
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The number e expressed as a limit
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Proof

If f(x) = ln x, then f '(x) = 1/x, so f '(1) = 1. 
But by definition of derivative, 

[ ]

0

0 0

0 0

11

0 0

1

0

( ) ( )( ) lim

(1 ) (1) (1 ) ( )(1) lim lim

ln(1 ) ln(1) ln(1 )lim lim

lim ln(1 ) ln lim(1 ) 1   (since (1) 1)

1lim(1 ) lim(1 )

h

h x

x x

xx
x x

yx

x y

f y h f y
f y

h
f h f f x f x

f
h x

x x

x x

x x f

x e
y

→

→ →

→ →

→ →

→ →∞

+ −′ =

+ − + −′ = =

+ − +
= =

⎡ ⎤
′= + = + = =⎢ ⎥

⎣ ⎦

+ = + =

62

( )

ln

ln

Define  for any real 0 as  = .
Here  need not be rational but can be any real number 
as long as  is positive.
Then we can take the logarithm of :

ln ln ln .

: .  the power rule i

n n n x

n

n n x

x x x e

n

x

x

x e n x

Note c f

>

= =

n theorem 2. 
                 Can you tell the difference? 
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}( )

ln

ln ln 1

1

Once  is defined via  = , we can take its differentiation :
u x

n n n x

u
n n x n x n n

n n

x x e

d d du de n n
x e e x nx

dx dx dx du x x

d
x nx

dx

−

−

⎛ ⎞
= = = = =⎜ ⎟⎜ ⎟

⎝ ⎠

⇒ =

: Can you tell the difference between this formula
and the one we discussed in earlier chapters? 
Note

64

By virtue of chain rule, 

1

( );
( ) ( )n

n n

u u x

d du x du du x
u nu

dx dx du dx
−

=

= =
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Example 9 using the power rule with 
irrational powers

2 1

1 2 1 2 1

1

1 1 1

( )

2 2

( ) (2 sin3 )

(2 sin3 ) 3 (2 sin3 ) cos3

n
n

n

n
n

n

d du du
a x nu

dx dx dx
du dx

nu x x
dx dx

d du du
b x nu

dx dx dx
du d x

nu u x x
dx dx

π

π ππ π

−

− − −

−

− − −

≡ =

≡ =

+ ≡ =

+
≡ = +

66

7.4

ax and loga x
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The derivative of ax

}

( ) ( )

ln

ln

ln

 =

ln

ln ln ln

u

x x a

x x a u

u x a x

a e

d d d d
a e x a e

dx dx dx du

e a e a a a

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
= = =

By virtue of the chain rule, 
( )( ) lnu x u ud du d du

a a a a
dx dx du dx

= =

68

Example 1 Differentiating general 
exponential functions

}

( ) ( )

( )
( )
}

}

ln 3

ln 3

( )

sin sin

( ) 3 ln3

ln3 3 ln3

( ) 3 3 3 3

3 ln3 3 ln3 ln3/3

(sin )( ) 3 3 3 ln3 3 ln3 cos

u

u

u

x x u

x x

xx u u

u x x

x u u x

d d d d
a e x e

dx dx dx du

e

d d d d
b

dx d x du du

d du d d x
c x

dx dx du dx

−−

−

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
= ⋅ =

= − = − = −
−

= − = − = −

= = = ⋅
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Other power functions

Example 2 Differentiating a general power 
function

Find dy/dx if y = xx, x > 0.

Solution: Write  xx as a power of e

xx =  exlnx

}

( ) ( )ln ( ln ) ...
u

x x u ud du d d
e e x x e

dx dx du dx

⎛ ⎞
= = ⋅ =⎜ ⎟

⎝ ⎠

70

Integral of au

( )

( )

( )

From ln ,  devide by ln :

1 
ln

 ln ,  integrate both sides wrp to :

 ln :

 ln

1 
ln ln

u x u

u x u

u x u

u u

u u

u
u u

d du
a a a a

dx dx
d du

a a
a dx dx

d du
a a a dx

dx dx

d du
a dx a a dx

dx dx

da a a du C

a
a du da

a a

=

⇒ =

⇒ =

⎛ ⎞ ⎛ ⎞⇒ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⇒ = +

⇒ = =

∫ ∫

∫ ∫

∫ ∫
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Example 3 Integrating general exponential 
functions

}}
sin

2(a) 2  
ln 2

( ) 2 cos  2 ...
u

x
x

du

x u

dx C

b dx du

= +

= =

∫

∫ ∫

72

Logarithm with base a
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74

Example 4 Applying the inverse equations

2

10

5
2

log 3

( 7)
10

log 4

( ) log 2 5

( )2 3
( ) log 10 7

( )10 4

a

b

c

d

−

=

=

= −

=
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Evaluation of loga x

log

log

log

Taking ln on both sides of   gives
ln( ) ln
LHS,ln( ) log ln .
Equating LHS to RHS yields
log ln ln

a

a

a

x

x

x
a

a

a x

a x

a x a

x a x

=

=

=

=

Example: log102= ln 2/ ln10 

76

Proof of rule 1:

( )

( )

ln ln ln  
divide both sides by ln
ln ln ln

ln ln ln
log log loga a a

xy x y

a

xy x y

a a a
xy x y

= +

= +

= +
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Derivatives and integrals involving loga x

( ) ( )

( ) ( )

( )

log
log

ln 1 1 1log ln
ln ln ln

1 1 1 1log
ln ln

a
a

a

a

d ud du
u

dx dx du
d d u d

u u
du du a a du a u

d du du
u

dx dx a u a u dx

=

⎛ ⎞= = =⎜ ⎟
⎝ ⎠
⎛ ⎞ ⎛ ⎞= ⋅ = ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

78

Example 5

( ) ( )

( ) ( )

{
{

10
10

2

(ln )

log
( ) log 3 1

ln1 3 13 1
ln10 ln10 (3 1)

log 1 1( ) ln ...
ln 2 ln 2

u

u
d x du

d ud du
a x

dx dx du

d ud
x

dx du x

x dx
b dx x udu

x x
≡

⎛ ⎞
⎜ ⎟+ =
⎜ ⎟
⎝ ⎠

= + =
+

= = =∫ ∫ ∫

678

Chapter 7 Transcendental Functions



79

7.5

Exponential Growth and Decay

80

The law of exponential change

For a quantity y increases or decreases at a 
rate proportional to it size at a give time t
follows the law of exponential change, as per 

( ) ( ).dy dy
y t ky t

dt dt
∝ ⇒ =

0

 is the proportional constant. 
Very often we have to specify the value of  at 
some specified time, for example the initial condition

( 0)

k

y

y t y= =
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Rearrange the equation :

1 1

1 ln | | ln

, .kt kt

dy
ky

dt

dy dy
k dt kdt

y dt y dt

dy k dt kt y kt C
y

y Ce Ae A C

=

= → =

→ = = → = +

→ = ± = = ±

∫ ∫

∫ ∫

0

0
0 0

Put in the initial value of  at 0 is :

(0) k kt

y t y

y y Ae A y y e⋅

=

→ = = = → =

82

Example 1 Reducing the cases of 
infectious disease

Suppose that in the course of any given year 
the number of cases of a disease is reduced 
by 20%. If there are 10,000 cases today, how 
many years will it take to reduce the number 
to 1000? Assume the law of exponential 
change applies.
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Example 3 Half-life of a radioactive 
element

The effective radioactive lifetime of polonium-
210 is very short (in days). The number of 
radioactive atoms remaining after t days in a 
sample that starts with y0 radioactive atoms is 
y= y0 exp(-5×10-3t). Find the element’s half 
life. 

84

Solution

Radioactive elements decay according to the 
exponential law of change. The half life of a given 
radioactive element can be expressed in term of the 
rate constant k that is specific to a given radioactive 
species. Here k=-5×10-3.
At the half-life, t= t1/2, 
y(t1/2)= y0/2 = y0 exp(-5×10-3 t1/2)
exp(-5×10-3 t1/2)  = 1/2
ln(1/2) = -5×10-3 t1/2 

t1/2 =  - ln(1/2)/5×10-3 = ln(2)/5×10-3 = …
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7.7

Inverse Trigonometric Functions

86

Defining the inverses

Trigo functions are periodic, hence not one-
to-one in the their domains.

If we restrict the trigonometric functions to 
intervals on which they are one-to-one, then 
we can define their inverses.
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Domain 
restriction that 
makes the 
trigonometric 
functions one-
to-one

88

Domain 
restriction that 
makes the 
trigonometric 
functions one-
to-one
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Inverses for the restricted trigo
functions

1

1

1

1

1

1

sin arcsin
cos arccos
tan arctan
cot arccot
sec arcsec
csc arccsc

y x x

y x x

y x x

y x x

y x x

y x x

−

−

−

−

−

−

= =

= =

= =

= =

= =

= =

90

The graphs of the 
inverse trigonometric 
functions can be 
obtained by reflecting 
the graphs of the 
restricted trigo
functions through the 
line y = x.
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Some specific values of sin-1 x and cos-1 x
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=θ

φ =π − θ =

θ
θ = cos-1x; 

cosφ = cos (π − θ) = − cosθ

φ = cos-1(− cosθ ) = cos-1(−x)

Add up θ and φ:

θ +φ = cos-1x + cos-1(-x)

π = π = coscos--11x + x + coscos--11((--xx))

96

= θ 

= π/2 −θ

1 1

1 1

cos ;sin ;
2

cos sin =     
2 2

x x

x x

πθ θ

π πθ θ

− −

− −

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

⎛ ⎞+ + = + −⎜ ⎟
⎝ ⎠
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Some specific values of tan-1 x

104

Example 4

Find cos α, tan α, sec α, 
csc α if α = sin-1 (2/3).

sin α = 2/3
...
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The derivative of y = sin-1 x

( )

1 1

1
( )

( )

1 2

2

1

2

( ) sin ( ) sin ;
( ) 1 1 1

cos cos ( )( )

Let ( ) sin sin cos 1
1 1 1

cos( ( )) cos 1
1sin

1

x f x

x f x

f x x f x x

df x

dx x f xdf x

dx

y f x x x y y x

f x y x
d

x
dx x

− −

−
=

=

−

−

= ⇒ =

= = =

= = → = ⇒ = −

= =
−

∴ =
−
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( )1

2

1sin
1

d
x

dx x

− =
−

Note that the graph is not 
differentiable at the end 
points of x=±1 because 
the tangents at these 
points are vertical.

108

The derivative of y = sin-1 u

( )

1

1

1 1

2

If ( ) is an diffrentiable function of ,

sin ?  

Use chain rule: Let sin
1sin sin

1

u u x x

d
u

dx

y u

d du d du
u u

dx dx du dx u

−

−

− −

=

=

=

= =
−

Note that |u |<1 for the formula to apply
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Example 7 Applying the derivative 
formula

1 2sin =...d
x

dx
−

110

The derivative of y = tan-1 u

1

2

2 2

tan tan

1 (tan ) sec

cos 1/(1 )

y x x y

d dy
y y

dx dx
dy

y x
dx

−= ⇒ =

= =

= = − x

1

√(1-x2)
y

2 2cos 1/(1 )y x= −

By virtue of chain rule, we obtain
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Example 8

1

16

( ) tan .

?
t

x t t

dx

dt

−

=

=

=

112

The derivative of y = sec-1 x

1

2 2

1

2

2

sec sec

1 (sec ) sec tan

tan sec 1 1
1 1sec cos cot

( 1)

0 (from Figure 7.30),

1 1
| | ( 1)

y x x y

d dy
y y y

dx dx

y y x

d
x y y

dx x x

dy

dx
dy

dx x x

−

−

= ⇒ =

= =

= ± − = ± −

= = ±
−

>

=
−

Q
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The derivative of y = sec-1 u

By virtue of chain rule, we obtain

114

Example 5 Using the formula

( )1 4sec 5 ...d
x

dx
− =
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Derivatives of the other three

The derivative of cos-1x, cot-1x, csc-1x can be 
easily obtained thanks to the following 
identities:

116
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Example 10 A tangent line to the 
arccotangent curve

Find an equation for the tangent to the graph 
of y = cot-1 x at x = -1.

118

Integration formula

By integrating both sides of the derivative 
formulas in Table 7.3, we obtain three 
useful integration formulas in Table 7.4.
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Example 11 Using the integral 
formulas

3 / 2

22 / 2

1

20

2

22 / 3

( )
1

( )
1

( )
1

dx
a

x
dx

b
x

dx
c

x x

=
−

=
+

=
−

∫

∫

∫

120

Example 13 Completing the square

2 2 2

2 2 2

4 ( 4 ) [( 2) 4]

...
4 ( 2) 2

dx dx dx

x x x x x

dx du

x u

= =
− − − − − −

= = =
− − −

∫ ∫ ∫

∫ ∫
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Example 15 Using substitution

( ) ( )

( ) ( ) ( )

2 22

2 22 2

6 6

1 1 ...
6 6

x
x

x

x
x

dx dx

e e

de du

e u
e u

= =
− −

= =
− −

∫ ∫

∫ ∫
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7.8

Hyperbolic Functions

Chapter 7 Transcendental Functions



123

Even and odd parts of the exponential 
function

f (x) = ½ [f (x) + f (-x)] + ½ [f (x) - f (-x)]
½ [f (x) + f (-x)] is the even part
½ [f (x) - f (-x)] is the odd part

f (x) = ex = ½ (ex + e-x) + ½ (ex – e-x)
The odd part ½ (ex - e-x) ≡ cosh x (hyperbolic cosine 
of x)
The odd part ½ (ex + e-x) ≡ sinh x (hyperbolic sine 
of x)

124
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Proof of 
sinh 2 2cosh sinhx x x=

4
2 2

2

2 2

1 1 ( 1)sinh 2 ( )
2 2

1 ( 1) ( 1) 2 1 ( )( )
2 2 2

1 12 ( ) ( ) 2sinh cosh
2 2

x
x x

x

x x
x x x x

x x

x x x x

e
x e e

e

e e
e e e e

e e

e e e e x x

−

− −

− −

−
= − =

− +
= = ⋅ − +

= ⋅ − ⋅ + =

126
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Derivatives and integrals

128

sinh sinh

1 1sinh ( ) ( ) cosh
2 2

sinh cosh

x x x x

d du d
u x

dx dx dx
d d

x e e e e x
dx dx

d du
u x

dx dx

− −

=

= − = + =

∴ =
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Example 1 Finding derivatives and 
integrals

}

( )
{

}

2

2

1

( ) tanh 1 tanh

1 1 cosh  ( ) coth5 coth
5 5 sinh

sinh1 1 1 1ln | | ln | sinh5 |
5 sinh 5 5 5

1( ) sinh  (cosh 2 1) ...
2

( ) 4 sinh  4  2  
2

u

u

dv

v

u

x x
x x

d du d
a t u

dx dx du

u du
b x dx udu

u

d u dv
v C x C

u v

c x dx x dx

e e
d e x dx de u u d

−
−

+ =

= =

= = = + = +

= − =

−
= = −

∫ ∫ ∫

∫ ∫

∫ ∫

∫ ∫

678

64748

2
2 2 22 ln | | ( ) ln 2

2
x x x

u

u
u C e e C e x C

⎛ ⎞
= − + = − + = − +⎜ ⎟

⎝ ⎠

∫

130

Inverse hyperbolic functions

The inverse is useful in integration.
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Useful Identities
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Proof

1 1

1

1

1

1

1

1 1 1 1 1

1sech cosh . 

1Take sech of cosh .

1 1 1sech cosh 11cosh cosh

1sech cosh

Take sech  on both sides:

1 1sech sech cosh sech cosh sech

x
x

x

x
x

xx

x
x

x x
x x

− −

−

−

−

−

−

− − − − −

=

⎛ ⎞ = = =⎜ ⎟ ⎛ ⎞⎝ ⎠
⎜ ⎟
⎝ ⎠

⎛ ⎞ =⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⇒ =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

134

Integrating these formulas 
will allows us to obtain a list 
of useful integration formula 
involving hyperbolic 
functions

1

2

1

2

1

2

. .
1 sinh

1
1 sinh  

1
1 sinh

1

e g

d
x

dxx
d

dx x dx
dxx

dx x C
x

−

−

−

=
+

→ =
+

= +
+

∫ ∫

∫
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Proof

1

2

1

2 2

1

2

1sinh . 
1

let  sinh

sinh sinh cosh

1 1 1sech 
cosh 1 sinh 1

By virtue of chain rule,
1sinh

1

d
x

dx x

y x

d d dy
x y x y y

dx dx dx
dy

y
dx y y x

d du
u

dx dx u

−

−

−

=
+

=

= → = =

→ = = = =
+ +

⇒

=
+

136

Example 2 Derivative of the inverse 
hyperbolic cosine

Show that 

1

2

1

1cosh . 
1

Let  cosh ...

d
u

dx u

y x

−

−

=
+

=
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Example 3 Using table 7.11

1

2
0

1 2

2 2
0 0

2 2 / 3 2 / 3

2 2 2
0 0 0

2 / 31 1 1 1

0

1

2  
3 4

Let  2

2
3 4 3

Scale it again to normalise the constant 3 to 1

3Let  
3 3 3 3 1

sinh sinh (2 / 3) sinh (0) sinh (2 / 3) 0

sinh (2 / 3)

dx

x
y x

dx dy

x y

y dy dz dz
z

y z z

z− − − −

−

+
=

=
+ +

= → = =
+ + +

= = − = −

=

∫

∫ ∫

∫ ∫ ∫

138

( )

1

1

2

2

1

sinh (2 / 3) ?

Let  sinh (2 / 3)
1 2sinh 2 / 3
2 3

4 1 0
3

4 4 4 2964( 1)
3 3 93 2.682

2 2
sinh (2 / 3) ln 2.682 0.9866

q q

q q

q

q

q e e

e e

e

q

−

−

−

−

=

=

= → − =

− − =

⎛ ⎞+ − − − +⎜ ⎟
⎝ ⎠= = =

= = =
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Chapter 8

Techniques of Integration

2

8.1

Basic Integration Formulas
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4

Example 1 Making a simplifying 
substitution

( )

2

2 2

1/ 2

1/ 21/ 2 2

2 9 ( 9 )
9 1 9 1

( 1) 2
1 1

2( 1) 2 9 1

u

x d x x
dx

x x x x
du d u dv

v C
u u v

u C x x C

− −
=

− + − +
+

= = = = +
+ +

= + + = − + +

∫ ∫

∫ ∫ ∫

678
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Example 2 Completing the square

2 2

2 2 2

1 1

8 16 ( 4)
( 4)

16 ( 4) 4

4sin sin
4 4

dx dx

x x x

d x du

x u

u x
C C− −

= =
− − −

−
=

− − −

−⎛ ⎞= + = +⎜ ⎟
⎝ ⎠

∫ ∫

∫ ∫

6

Example 3 Expanding a power and using a 
trigonometric identity

2

2 2

2 2 2

2

(sec tan )

(sec tan 2sec tan ) .

Racall:tan sec 1; tan sec ; sec tan sec ;

(2sec 1 2sec tan )

2 tan 2sec

x x dx

x x x x dx

d d
x x x x x x x

dx dx

x x x dx

x x x C

+

= + +

= − = =

= − +

= + − + +

∫
∫

∫
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Example 4 Eliminating a square root

/ 4

0

1 cos4xdx
π

+ =∫

2

/ 4 / 4 / 4
2

0 0 0

/ 4

0

cos4 cos2(2 ) 2cos (2 ) 1

1 cos4 2cos 2 2 | cos2 |

2 cos2 ...

x x x

xdx xdx x x

xdx

π π π

π

= = −

+ = =

= =

∫ ∫ ∫

∫

8

Example 5 Reducing an improper fraction

23 7
3 2
x x

dx
x

−
+∫

2

23
2 /3

1 23 2ln | |
2 3

x dx
x

x x x C

= − +
+

= − + + +

∫

63
3 2

x dx
x

= − +
+∫

Chapter 8 Techniques of Integration
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Example 6 Separating a fraction

2

3 2
1
x

dx
x

+

−
∫

2 2

23
1 1

x
dx dx

x x
= +

− −
∫ ∫

2

2 2

1 ( ) 123 2
1 1

d x
dx

x x
= +

− −
∫ ∫

13 2sin
2 1

du
x C

u
−= + +

−∫
1/ 2 1

2 1

3[ 2(1 ) ] 2sin ''
2
3 (1 ) 2sin ''

u x C

x x C

−

−

= − − + +

= − − + +

1/ 2
1/ 2 2(1 ) '

(1 )
du

u C
u

= − − +
−∫

10

Example 7 Integral of y = sec x

sec ?xdx =∫
2

sec sec tan
tan sec sec sec
(sec tan ) sec (sec tan )

(sec tan )sec
sec tan

d x x xdx

d x xdx x xdx

d x x x x x dx

d x x
xdx

x x

=

= =
+ = +

+
=

+

(sec tan )sec ln | sec tan |
sec tan

d x x
xdx x x C

x x

+
= = + +

+∫ ∫

Chapter 8 Techniques of Integration
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12
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8.2

Integration by Parts

14

Product rule in integral form

[ ( ) ( )] ( ) [ ( )] ( ) [ ( )]

[ ( ) ( )] ( ) [ ( )] ( ) [ ( )]

( ) ( ) ( ) '( ) ( ) '( )

d d d
f x g x g x f x f x g x

dx dx dx
d d d

f x g x dx g x f x dx f x g x dx
dx dx dx

f x g x g x f x dx f x g x dx

= +

= +

= +

∫ ∫ ∫

∫ ∫

Integration by parts formula

Chapter 8 Techniques of Integration



15

Alternative form of the integration by 
parts formula
[ ( ) ( )] ( ) [ ( )] ( ) [ ( )]

[ ( ) ( )] ( ) [ ( )] ( ) [ ( )]

( ) ( ) ( ) ( ) ( ) ( )

Let ( ); ( ).The above formular is recast into the form

d d d
f x g x g x f x f x g x

dx dx dx
d d d

f x g x dx g x f x dx f x g x dx
dx dx dx

f x g x g x df x f x dg x

u f x v g x

uv vdu udv

= +

= +

= +

= =

= +

∫ ∫ ∫

∫ ∫

∫ ∫

16

Example 4 Repeated use of integration 
by parts

2 ?xx e dx =∫

Chapter 8 Techniques of Integration
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Example 5 Solving for the unknown 
integral

cos ?xe xdx =∫

18

Evaluating by parts for definite 
integrals

Chapter 8 Techniques of Integration
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Example 6 Finding area
Find the area of the region in Figure 8.1

20

Solution

4

0

...xxe dx− =∫

Chapter 8 Techniques of Integration
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Example 9 Using a reduction formula

Evaluate
3cos xdx∫

22

8.3

Integration of Rational Functions by 
Partial Fractions

Chapter 8 Techniques of Integration
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General description of the method

A rational function f(x)/g(x) can be written as a sum 
of partial fractions. To do so:
(a) The degree of f(x) must be less than the degree 
of g(x). That is, the fraction must be proper. If it isn’t, 
divide f(x) by g(x) and work with the remainder term. 
We must know the factors of g(x). In theory, any 
polynomial with real coefficients can be written as a 
product of real linear factors and real quadratic 
factors.

24

Reducibility of a polynomial

A polynomial is said to be reducible if it is the product of 
two polynomials of lower degree.
A polynomial is irreducible if it is not the product of two 
polynomials of lower degree.

THEOREM (Ayers, Schaum’s series, pg. 305)
Consider a polynomial g(x) of order n ≥ 2 (with leading 
coefficient 1). Two possibilities.

1. g(x) = (x-r)h(x), where h1(x) is a polynomial of degree   n-1, 
or

2. g(x) = (x2+px+q) h2(x), where h2(x) is a polynomial of 
degree n-2, with the irreducible quadratic factor (x2+px+q).

Chapter 8 Techniques of Integration



25

Example

{

3

linear factor poly. of degree 2

3 2

poly. of degree 1irreducible quadratic factor

4 2

irreducible quadratic factor poly. or d

( ) 4 ( 2) ( 2)

( ) 4 ( 4)

( ) 9 ( 3) ( 3)( 3)

g x x x x x x

g x x x x x

g x x x x x

= − = − ⋅ +

= + = + ⋅

= − = + ⋅ + −

123 14243

14243

14243

{

egree 2

3 2 2

linear factor poly. or degree 2

( ) 3 3 ( 1) ( 2)g x x x x x x= − − + = + −

1442443

14243

26

Quadratic polynomial

A quadratic polynomial (polynomial or order n 
= 2) is either reducible or not reducible.

Consider: g(x)= x2+px+q. 

If (p2-4q) ≥ 0, g(x) is reducible, i.e.         g(x) 
= (x+r1)(x+r2).

If (p2-4q) < 0, g(x) is irreducible.

Chapter 8 Techniques of Integration
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In general, a polynomial of degree n can 
always be expressed as the product of  
linear factors and irreducible quadratic 
factors:

1 2

1 2

1 2

2 2 2
1 1 2 2

( ) ( ) ( ) ...( )

            ( ) ( ) ...( )

l

k

nn n
n l

mm m
k k

P x x r x r x r

x p x q x p x q x p x q

= − − − ×

+ + + + + +

1 2 1 2( ... ) 2( ... )l ln n n n m m m= + + + + + + +

28

Integration of rational functions by 
partial fractions

Chapter 8 Techniques of Integration
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Example 1 Distinct linear factors

2 4 1 ...
( 1)( 1)( 3)

x x
dx

x x x

+ +
=

− + +∫
2 4 1 ...

( 1)( 1)( 3) ( 1) ( 1) ( 3)
x x A B C

x x x x x x

+ +
= + + =

− + + − + +

30

Example 2 A repeated linear factor

2

6 7 ...
( 2)

x
dx

x

+
=

+∫

2 2

6 7
( 2) ( 2) ( 2)

x A B

x x x

+
= +

+ + +

Chapter 8 Techniques of Integration
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Example 3 Integrating an improper 
fraction

3 2

2

2 4 3 ...
2 3

x x x
dx

x x

− − −
=

− −∫
3 2

2 2

2 4 3 5 32
2 3 2 3

x x x x
x

x x x x

− − − −
= +

− − − −

2

5 3 5 3 ...
2 3 ( 3)( 1) ( 3) ( 1)

x x A B

x x x x x x

− −
= = + =

− − − + − +

32

Example 4 Integrating with an irreducible 
quadratic factor in the denominator

2 2

2 4 ...
( 1)( 1)

x
dx

x x

− +
=

+ −∫

2 2 2 2

2 4 ...
( 1)( 1) ( 1) ( 1) ( 1)

x Ax B C D

x x x x x

− + +
= + + =

+ − + − −

Chapter 8 Techniques of Integration
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Example 5 A repeated irreducible 
quadratic factor

2 2 2 2 2

1 ...
( 1) ( 1) ( 1)

A Bx C Dx E

x x x x x

+ +
= + + =

+ + +

2 2

1 ?
( 1)

dx
x x

=
+∫

34

Other ways to determine the 
coefficients

Example 8 Using 
differentiation

Find A, B and C in the 
equation

2

3 3

2

2

( 1) ( 1) 1
( 1) ( 1)

( 1) ( 1) 1
1 2
( 1) ( 1) 1
( 1) 1

[ ( 1) ] (1) 0

0
1

A x B x C x

x x

A x B x C x

x C

A x B x x

A x B

d d
A x B

dx dx
A

B

+ + + + −
=

+ +

⇒ + + + + = −
= − → = −

⇒ + + + = +
⇒ + + =

+ + = =

=
=

3 2 3

1
( 1) ( 1) ( 1) ( 1)

x A B C

x x x x

−
= + +

+ + + +

Chapter 8 Techniques of Integration
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Example 9 Assigning numerical values to 
x

Find A, B and C in

2

2

2

2

( 2)( 3) ( 1)( 3) ( 1)( 2) ( )
1

(1) 2 1 1 2 1
(2) 2 1 5; 5
(3) 2 3 1 10; 5

A x x B x x C x x f x

x

f A A

f B B

f C C

− − + − − + − − ≡

= +

= + = + = ⇒ =

= − = + = ⇒ = −

= = + = ⇒ =

2 1
( 1)( 2)( 3)

( 1) ( 2) ( 3)

x

x x x

A B C

x x x

+
− − −

= + +
− − −

36

8.4

Trigonometric Integrals
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38

Example 1 m is odd

3 2sin cos   ?x x dx =∫
( )

( )

3 2 2 2

2 2

2 2

sin cos   sin cos   cos

(cos 1)cos   cos

( 1) ...

x x dx x x d x

x x d x

u u du

= −

= −

= − =

∫ ∫
∫
∫

Chapter 8 Techniques of Integration
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Example 2 m is even and n is odd

5cos   ?x dx =∫
( ) ( )

{

25 4 2

2 2

2 2 4 2

cos  cos cos  cos  sin

(1-sin )  sin

(1- )  1+ 2  ...
u

x dx x x dx x d x

x d x

u du u u du

= = =

=

= = − =

∫ ∫ ∫
∫

∫ ∫

40

Example 3 m and n are both even

2 4cos sin   ?x x dx =∫

( )( )

( )

2 4

2

2

2 3

cos sin  

1-cos2 1+cos2  
2 2

1 1-cos2 1+cos2  
4
1 1 cos 2 cos2 cos 2  ...
4

x x dx

x x
dx

x x dx

x x x dx

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

=

= + − − =

∫

∫

∫

∫

Chapter 8 Techniques of Integration
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Example 6 Integrals of powers of tan x 
and sec x 3sec ?xdx =∫

{

{

3 2

2 2

2

2

2

Use integration by parts.

sec sec sec ;

sec sec tan

sec sec tan

sec sec

sec tan tan sec tan

sec tan tan sec

sec tan (sec 1)sec

u dv

u dv

du

xdx x xdx

dv xdx v xdx x

u du x xdx

x xdx

x x x x xdx

x x x xdx

x x x x

= ⋅

= → = =

= → =

⋅

= − ⋅

= −

= − −

∫ ∫

∫

∫

∫

∫

14243

14243

14243

3 3sec sec tan sec sec ...

dx

xdx x x xdx xdx= − +

∫
∫ ∫ ∫

2

(tan sec )sec sec
tan sec

(sec tan sec )
tan sec

(sec tan )
tan sec

ln | sec tan |

x x
xdx x dx

x x

x x x
dx

x x
d x x

x x
x x C

+
=

+
+

=
+

+
=

+
= + +

∫ ∫

∫

∫

42

Example 7 Products of sines and 
cosines

cos5 sin3 ?x xdx =∫
[ ]

[ ]

[ ]

1sin sin cos( ) cos( ) ;
2
1sin cos sin( ) sin( ) ;
2
1cos cos cos( ) cos( )
2

mx nx m n x m n x

mx nx m n x m n x

mx nx m n x m n x

= − − +

= − + +

= − + +

cos5 sin3

1 [sin( 2 ) sin8 ]
2
...

x xdx

x x dx= − +

=

∫

∫

Chapter 8 Techniques of Integration
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8.5

Trigonometric Substitutions

44

Three basic substitutions

2 2 2 2 2 2, ,a x a x x a− + −Useful for integrals involving

Chapter 8 Techniques of Integration
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Example 1 Using the substitution x=atanθ

2

2 2

2
2

2

2(tan 1)
4 4 tan 4 4 tan

(tan 1) sec | sec |
1 tan

ln | sec tan |

dx y
dy

y y

y
dy ydy y dy

y

y y C

+
=

+ +

+
= = =

+

= + +

∫ ∫

∫ ∫ ∫

2
?

4
dx

x
=

+
∫

2 22 tan 2sec 2(tan 1)x y dx ydy y dy= → = = +

46

Example 2 Using the substitution x = 
asinθ

2 2

2 2

2

2

2

9sin 3cos  
9 9 9sin

sin cos  9
1 sin

9 sin ...

x dx y y dy

x y

y y dy

y

ydy

⋅
= =

− −

⋅
=

−

= =

∫ ∫

∫

∫

2

2
?

9
x dx

x
=

−
∫

3sin 3cos  x y dx y dy= → =

Chapter 8 Techniques of Integration
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Example 3 Using the substitution x = 
asecθ

2 2 2

2

2 sec tan  1 sec tan  
5 525 4 4sec 4 sec 1

1 sec tan  1 sec  
5 5sec 1
1 ln | sec tan | ...
5

dx y y dy y y dy

x y y

y y dy
y dy

y

y y C

= =
− − −

= =
−

= + + =

∫ ∫ ∫

∫ ∫

2
?

25 4
dx

x
=

−
∫

2 2sec sec tan  
5 5

x y dx y y dy= → =

48

Example 4 Finding the volume of a 
solid of revolution

( )
2

22
0

16 ?
4

dx
V

x
π= =

+
∫

Chapter 8 Techniques of Integration
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Solution

( )
2

22
0

16 ?
4

dx
V

x
π= =

+
∫

( ) ( )
/ 4 / 42 2

2 22 2
0 0

/ 4
2

0

2sec 2sec

tan 1 sec

2 cos ...

ydy ydy
V

y y

ydy

π π

π

π π

π

= =
+

= =

∫ ∫

∫

2Let 2 tan 2secx y dx ydy= → =

50

8.6

Integral Tables

Chapter 8 Techniques of Integration
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Integral tables is provided at the back of 
Thomas’

T-4 A brief tables of integrals

Integration can be evaluated using the tables 
of integral.

52
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8.8

Improper Integrals

58
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Infinite limits of integration

/ 2 / 2

0

( ) ... 2 2
b

x bA b e dx e− −= = = −∫

/ 2( ) lim ( ) lim 2 2 2b

b b
A a A b e−

→∞ →∞
= = − =

60
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Example 1 Evaluating an improper 
integral on [1,∞]

Is the area under the curve y=(ln x)/x2 from 
1 to ∞ finite? If so, what is it?

2
1

lnlim ?
b

b

x
dx

x→∞
=∫

62

{

ln

1 1 ln1
ln

ln ln

0 00
ln

0 0 ln

ln ln 0
0

ln ln

ln ln (ln )         ; ln ,

( ) ( )

1 1ln ( 1) ln 1

b b b
u

u

b
b b

u u u

dw w w

b
bu u u u

b b

b b

x dx x u
d x du u x x e

x x x e

u e du u e e du

ue e du ue e

b e e b
b b

− − −

− − − −

− −

= = = =

= − − −

= + = −

= − ⋅ − − = − − +

∫ ∫ ∫

∫ ∫

∫

123 123

Solution

2
1

ln 1 1lim lim ln 1 1
b

b b

x
dx b

x b b→∞ →∞

⎡ ⎤= − − + =⎢ ⎥⎣ ⎦∫

Chapter 8 Techniques of Integration
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Example 2 Evaluating an integral on [-
∞,∞]

2 ?
1

dx

x

∞

−∞

=
+∫

0

2 2 2
0

2
0

lim lim
1 1 1

2lim
1

b

b b
b

b

b

dx dx dx

x x x

dx

x

∞

→∞ →∞
−∞ −

→∞

= +
+ + +

=
+

∫ ∫ ∫

∫

64

( ) ( )1 1 1 1
2 0

0

1
2

tan tan tan 0 tan .
1

2lim tan 2
1 2

b
b

b

dx
x b b

x

dx
b

x

π π

− − − −

∞
−

→∞
−∞

⎡ ⎤= = − =⎣ ⎦+

= = ⋅ =
+

∫

∫

Using the integral table (Eq. 16)
1

2 2

1 tandx x
C

a x a a
−= +

+∫

Solution

1

1

tan tan

lim tan
2b

y b b y

b
π

−

−

→∞

= ⇒ =

=

y
b

1

Chapter 8 Techniques of Integration
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Example 3 Integrands with 
vertical asymptotes
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Example 4 A divergent improper 
integral

Investigate the 
convergence of 1

0 1
dx

x−∫

68

Solution

[ ]

[ ]

[ ]

1

01 1
0 0

1

1

1 1

0

lim lim ln | 1|
1 1

lim ln | 1| ln | 0 1|

lim ln | 1| ln | 0 1| lim ln | 1|

1lim ln

b
b

b b

b

b b

dx dx
x

x x

b

b b

ε ε

− −

−

− −

→ →

→

−

→ →

→

= = − −
− −

= − − − −

⎡ ⎤= − − − − = −⎣ ⎦

⎡ ⎤= = ∞⎢ ⎥⎣ ⎦

∫ ∫
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Example 5 Vertical asymptote at an 
interior point

3

2 / 3
0

?
( 1)

dx

x
=

−∫

70

Example 5 Vertical asymptote at an 
interior point

[ ]

3 1 3

2 / 3 2 / 3 2 / 3
0 0 1

1
1/ 3

2 / 3 2 / 3 01 1
0 0

1/ 3 1/ 3

1 1

3 3
31/ 3

2 / 3 2 / 31 1
1

( 1) ( 1) ( 1)

lim lim 3( 1)
( 1) ( 1)

lim 3( 1) 3( 1) lim 0 3 3;

lim lim 3( 1)
( 1) ( 1)

b
b

b b

b b

cc c
c

dx dx dx

x x x

dx dx
x

x x

b

dx dx
x

x x

− −

− −

+

→ →

→ →

→ + →

= +
− − −

⎡ ⎤= = − =⎣ ⎦− −

⎡ ⎤− − − = + =⎣ ⎦

⎡ ⎤= = −⎣ ⎦− −

=

∫ ∫ ∫

∫ ∫

∫ ∫
1/ 3 1/ 3 2 / 3

1

3
2 / 3

2 / 3
0

lim 3(3 1) 3( 1) 3 2

3(1 2 )
( 1)

c
c

dx

x

+→
⎡ ⎤− − − = ⋅⎣ ⎦

∴ = +
−∫
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Example 7 Finding the volume of an 
infinite solid

The cross section of 
the solid in Figure 
8.24 perpendicular to 
the x-axis are circular 
disks with diameters 
reaching from the x-
axis to the curve y = 
ex, -∞ < x < ln 2. Find 
the volume of the 
horn.

72

Example 7 Finding the volume of an 
infinite solid

ln 2
2

0
ln 2

2

ln 22

2

2

1 lim ( )
4

1 lim
4
1 lim
8
1 lim 4
8
1 lim (4 )
8 2

V

b
b

x

b
b

x

bb

b

b

b

b

V dV y x dx

e dx

e

e

e

π

π

π

π π

ππ

→−∞

→−∞

→−∞

→−∞

→−∞

= =

=

⎡ ⎤= ⎣ ⎦

⎡ ⎤= −⎣ ⎦

= − =

∫ ∫

∫

2( / 2)dV y dxπ=
volume of a slice of disk of thickness ,diameter dx y

dx

y
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Chapter 11

Infinite Sequences and Series

2

11.1

Sequences
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What u a sequence

A sequence is a list of numbers

in a given order.

Each a is a term of the sequence.

Example of a sequence:

2,4,6,8,10,12,…,2n,…
n is called the index of an

1 2 3, , , , ,na a a aL L

4

In the previous example, a general term an
of index n in the sequence is described by 
the formula

an= 2n.
We denote the sequence in the previous 
example by {an} = {2, 4,6,8,…}
In a sequence the order is important:
2,4,6,8,… and …,8,6,4,2 are not the same

Chapter 11 Infinite Sequences and Series
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Other example of sequences

{ }

{ } ( ) ( )

{ }

{ } ( ) ( )

1 1

1 1

{ 1, 2, 3, 4, 5, , , }, ;
1 1 1 1 1{1, , , , , 1 , }; 1 ;
2 3 4

1 2 3 4 1 1{0, , , , , , , }; ;
2 3 4 5

{1, 1,1, 1,1, , 1 , }; 1 ;

n n

n n

n n

n n

n n

n n

a n a n

b b
n n

n n
c c

n n

d d

+ +

+ +

= =

= − − − = −

− −
= =

= − − − = −

L L

L L

L L

L L

6
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8
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10
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12
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14

Example 6: Applying theorem 3 to show that the sequence 
{21/n} converges to 0.
Taking an= 1/n, ⇒limn ∞ an= 0 ≡ L
Define f(x)=2x. Note that f(x) is continuous on x=L, and is 
defined for all x= an = 1/n
According to Theorem 3, 
limn ∞ f(an) = f(L)
LHS: limn ∞ f(an) = limn ∞ f(1/n) = limn ∞ 21/n

RHS = f(L) = 2L = 20 = 1
Equating LHS = RHS, we have limn ∞ 21/n = 1
⇒ the sequence {21/n} converges to 1

Chapter 11 Infinite Sequences and Series
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Example 7: Applying l’Hopital rule

Show that 

Solution: The function                 is defined 
for x ≥ 1 and agrees with the sequence    
{an= lnn /n} for n ≥ 1.

Applying l’Hopital rule on f(x):

By virtue of Theorem 4,

lnlim 0
n

n

n→∞
=

ln( ) x
f x

x
=

ln 1/ 1lim lim lim 0
1x x x

x x

x x→∞ →∞ →∞
= = =

lnlim 0 lim 0n
x n

x
a

x→∞ →∞
= ⇒ =

18

Example 9 Applying l’Hopital rule to 
determine convergence

n

1Does the sequence whose th term is converge?
1

If so, find lim .

n

n

n

n
n a

n

a
→∞

+⎛ ⎞= ⎜ ⎟−⎝ ⎠

Chapter 11 Infinite Sequences and Series
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Solution: Use l’Hopital rule

22

2 2

1Let  ( )  so that  ( )  for 1.
1

1ln  ( ) ln  
1

1ln
1 1lim ( ) lim ln lim
1 1/

2
21lim lim 2

1/ 1
By virtue of Theorem 4, lim

x

n

x x x

x x

x

x
f x f n a n

x

x
f x x

x

x
x x

f x x
x x

xx
x x

→∞ →∞ →∞

→∞ →∞

→∞

+⎛ ⎞= = ≥⎜ ⎟−⎝ ⎠
+⎛ ⎞→ = ⎜ ⎟−⎝ ⎠

+⎛ ⎞
⎜ ⎟+ −⎛ ⎞ ⎝ ⎠= =⎜ ⎟−⎝ ⎠

−⎛ ⎞
⎜ ⎟−⎝ ⎠= = =
− −

( ) 2 lim 2nn
f x a

→∞
= ⇒ =

20
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Example 10

(a) (ln n2)/n = 2 (ln n) / n 2⋅0 = 0

(b)

(c)

(d)  

(e)

(f)

( ) ( )
2 22 2 / 1/ 1

n
n nn n n= = →

1/ 1/3 3 3 1 1 1
n n n n nn n n= ⋅ = ⋅ → ⋅ =

1 0
2

n⎛ ⎞− →⎜ ⎟
⎝ ⎠

( ) 222 1
nn

n
e

n n
−⎛ ⎞−−⎛ ⎞ = + →⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

100 0
!

n

n
→

22

Example 12 Nondecreasing sequence

(a) 1,2,3,4,…,n,…
(b) ½, 2/3, ¾, 4/5 , …,n/(n+1),…
(nondecreasing because an+1-an ≥ 0)

(c) {3} = {3,3,3,…}

Two kinds of nondecreasing sequences: bounded 
and non-bounded.
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Example 13 Applying the definition for 
boundedness
(a) 1,2,3,…,n,…has no upper bound
(b) ½, 2/3, ¾, 4/5 , …,n/(n+1),…is bounded 
from above by M = 1.
Since no number less than 1 is an upper 
bound for the sequence, so 1 is the least 
upper bound. 

24
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11.2

Infinite Series
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Example of a partial sum formed by a 
sequence {an=1/2n-1}
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30

Short hand notation for infinite series

1
,  or n k n

n k

a a a
∞ ∞

=
∑ ∑ ∑

The infinite series may converge or diverge
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Geometric series

Geometric series are the series of the form

a + ar + ar2 + ar3 + …+ arn-1 +…=

a and r = an+1/an are fixed numbers and 
a≠0. r is called the ratio. Three cases: r < 1, 
r > 1,     r =1. 

1

1

n

n

ar
∞

−

=
∑

32

Proof of                    for |r|<11

1 1
n

n

a
ar

r

∞
−

=

=
−∑

( )
( )

( ) ( )

( )

1 2 1

1

2 1 2 3 1

Assume 1.

                                ...

... ...

1

1 / 1

1
If | |<1: lim lim  (By th

1 1

k n
k n

n
k

n n n
n

n n
n n

n
n

n

nn n

r

s ar a ar ar ar

rs r a ar ar ar ar ar ar ar ar

s rs a ar a r

s a r r

a r a
r s

r r

=
− −

=

− −

→∞ →∞

≠

= = + + + +

= + + + + = + + + + +

− = − = −

= − −

−
= =

− −

∑

eorem 5.4, lim =1 for | |<1)n

n
r r

→∞
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For cases |r|≥1

( )

( )2 1

1
If | | 1: lim lim  (Because | |  if | |>1

1

If 1: ... 1
lim lim ( 1) lim( 1)

n

n
nn n

n
n

nn n n

a r
r s r r

r

r s a ar ar ar n a

s a n a n

→∞ →∞

−

→∞ →∞ →∞

−
> = = ∞ → ∞

−

= = + + + + = +

= + = + = ∞

34
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Example 2 Index starts with n=0

The series

is a geometric series with a=5, r=-(1/4).

It converges to s∞= a/(1-r) = 5/(1+1/4) = 4

( )
0 1 2 3

0

1 5 5 5 5 5 - ...
4 4 4 4 4

n

n
n

∞

=

−
= − + +∑

36

Example 5 A nongeometric but 
telescopic series

Find the sum of the series

Solution
1

1
( 1)n n n

∞

= +∑

1 1

1

1 1 1   (remember partial sum?)
( 1) ( 1)

1 1 1
( 1) ( 1)

1 1 1 1 1 1 1 1 1 1...
1 2 2 3 3 4 1 1

11
1

1 lim 1
( 1)

k k

k
n n

k
k

n

n n n n

s
n n n n

k k k k

k

s
n n

= =

∞

→∞
=

= −
+ +

= = − =
+ +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − + − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= −
+

= =
+

∑ ∑

∑
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Divergent series

Example 6
2 21 2 4 16 ... ... 

diverges because the partial sums  grows beyond every number n

n n

s L

= + + + + +∑

1

1 2 3 4 1... ... 
1 2 3

diverges because each term is greater than 1, 
2 3 4 1... ... > 1
1 2 3 n

n n

n n

n

n

∞

=

+ +
= + + + + +

+
⇒ + + + + + → ∞

∑

∑

38

The nth-term test for divergence

Let S be the convergent limit of the series, i.e. 
limn ∞ sn =      = S

When n is large, sn and sn-1 are close to S

This means an = sn – sn-1 an = S – S = 0 as 
n ∞

1
n

n

a
∞

=
∑
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Question: will the series converge if an 0?

40

Example 7 Applying the nth-term test

( ) ( )

2 2

1

1

1 1

1

1

( )  diverges because lim ,  i.e. lim  fail to exist.

1 1( )  diverges because lim =1 0.

( ) 1  diverges because lim 1 fail to exist.

( )  diverges because
2 5

n
n n

n

n
n

n n

n
n

n

a n n a

n n
b

n n

c

n
d

n

∞

→∞ →∞
=

∞

→∞
=

∞
+ +

→∞
=

∞

=

= ∞

+ +
≠

− −

−
+

∑

∑

∑

∑ 1lim = 0 (l'Hopital rule)
2 5 2n

n

n→∞

− −
≠

+
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Example 8 an 0 but the series 
diverges

{
2 terms 4 terms 2 terms

1 1 1 1 1 1 1 1 1 11 ... ... ...
2 2 4 4 4 4 2 2 2 2

n

n n n n
+ + + + + + + + + + +

1442443 144424443

The terms are grouped into clusters that 
add up to 1, so the partial sum increases 
without bound the series diverges 

Yet an=2-n 0

42

Corollary:

Every nonzero constant multiple of a divergent 
series diverges

If Σan converges and Σbn diverges, then 
Σ(an+bn) and Σ(an- bn) both diverges.
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Question:

If Σan and Σbn both diverges, must Σ(an±bn) 
diverge?

44
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11.3

The Integral Test

46

Nondecreasing partial sums

Suppose {an} is a sequence with an > 0 for all n

Then, the partial sum sn+1 = sn+an ≥ sn

⇒ The partial sum form a nondecreasing sequence

Theorem 6, the Nondecreasing Sequence Theorem 
tells us that the series           converges if and only if 
the partial sums are bounded from above. 

1 2 2
1

{ } { , , ,..., ,...}
n

n k n
k

s a s s s s
=

= =∑

1
n

n

a
∞

=
∑
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Example 1 The harmonic series
The series

diverges. 

Consider the sequence of partial sum 

The partial sum of the first 2k term in the series, sn > k/2, where 
k=0,1,2,3…
This means the partial sum, sn, is not bounded from above. 
Hence, by the virtue of Corollary 6, the harmonic series diverges

1

2 1 4 1 8 1
4 2 8 2 16 2

1 1 1 1 1 1 1 1 1 1 1 1... ...
1 2 3 4 5 6 7 8 9 10 16n n

∞

=

> = > = > =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + + + + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑
14243 1442443 144424443

1 2 4 16 2
{ , , , , , , }ks s s s sL L

1

2 1

4 2

8 4

2

1
1/ 2 1 (1/ 2)
(1/3 1/ 4) 2 (1/ 2)
(1/5 1/ 6 1/ 7 1/8) 3 (1/ 2)

...
(1/ 2)k

s

s s

s s

s s

s k

=
= + > ⋅
= + + > ⋅
= + + + + > ⋅

> ⋅
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Example 4 A convergent series

2
1 1

2 2

1
2 11 1

1  is convergent by the integral test:
1

1 1Let ( ) ,so that ( ) . ( ) is continuos,
1 1

positive, decreasing for all 1.
1( ) ... lim tan

1 2 4 4

Hence, 

n
n n

n

b

b

a
n

f x f n a f x
x n

x

f x dx dx x
x

π π π

∞ ∞

= =

∞ ∞ −

→∞

=
+

= = =
+ +

≥

⎤= = = = − =⎦+

∑ ∑

∫ ∫

2
1

1  converges by the integral test.
1n n

∞

= +∑

52

Caution

The integral test only tells us whether a given 
series converges or otherwise

The test DOES NOT tell us what the 
convergent limit of the series is (in the case 
where the series converges), as the series 
and the integral need not have the same 
value in the convergent case.
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11.4

Comparison Tests

54
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Caution

The comparison test only tell us whether a 
given series converges or otherwise

The test DOES NOT tell us what the 
convergent limit of the series is (in the case 
where the series converges), as the two 
series need not have the same value in the 
convergent case
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Example 2 continued

60

Caution

The limit comparison test only tell us whether 
a given series converges or otherwise

The test DOES NOT tell us what the 
convergent limit of the series is (in the case 
where the series converges)
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11.5

The Ratio and Root Tests

62
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Caution

The ratio test only tell us whether a given 
series converges or otherwise

The test DOES NOT tell us what the 
convergent limit of the series is (in the case 
where the series converges)
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11.6

Alternating Series, Absolute and 
Conditional Convergence

68

Alternating series

A series in which the terms are alternately 
positive and negative

( )

( )

( )

1

1

11 1 1 11
2 3 4 5

1 41 1 12 1
2 4 8 2

1 2 3 4 5 6 1

n

n

n

n

n

n

+

+

−
− + − + + + +

−
− + − + − + + +

− + − + − + − +

L L

L L

L L
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The alternating harmonic series                
converges because it satisfies the three 
requirements of Leibniz’s theorem.

( ) 1

1

1 n

n n

+∞

=

−
∑

70
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1

1

1

1

Example: 
The geometric series 

1 1 1 11 =1-  converges absolutely since
2 2 4 8

the correspoinding absolute series 

1 1 1 11  =1+    converges
2 2 4 8

n

n

n

n

−∞

=

−∞

=

⎛ ⎞− + − +⎜ ⎟
⎝ ⎠

⎛ ⎞− + + +⎜ ⎟
⎝ ⎠

∑

∑

L

L
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( )

( )

1

1

1

1 1

Example: 
The alternative harmonic series 

1 1 1 1=1-  converges (by virture of Leibniz Theorem)
2 3 4

But the correspoinding absolute series 

1 1 1 1 1 = 1+    diverges (a harmon
2 4 8

n

n

n

n n

n

n n

+∞

=

+∞ ∞

= =

−
+ − +

−
= + + +

∑

∑ ∑

L

L

( ) 1

1

ic series)

1
Hence, by definition, the alternating harmonic series 

converges conditionally.

n

n n

+∞

=

−
∑

74

In other words, if a series converges 
absolutely, it converges.

1

1

1

1

1In the previous example, we shown that the geometric series 1
2

converges absolutely. Hence, by virtue of the absolute convergent test, the series

11 converges.
2

n

n

n

n

−∞

=

−∞

=

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞−⎜ ⎟
⎝ ⎠

∑

∑
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Caution

All series that are absolutely convergent 
converges.

But the converse is not true, namely, not all 
convergent series are absolutely convergent.

Think of series that is conditionally 
convergent. These are convergent series that 
are not absolutely convergent.

76

p series with p=2
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11.7

Power Series

80
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Mathematica simulation

82

Continued on next slide

Note: To test the convergence of an 
alternating series, check the 
convergence of the absolute 
version of the series using ratio 
test.
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The radius of convergence of a power 
series
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a a+R
x

a-R

RR

| x – a | < R

86

R is called the radius of convergence of the 
power series
The interval  of radius R centered at x = a is 
called the interval of convergence
The interval of convergence may be open, closed, 
or half-open: [a-R, a+R], (a-R, a+R), [a-R, a+R) 
or (a-R, a+R]
A power series converges for all x that lies within 
the interval of convergence.
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See example 3 (previous slides and determine 
their interval of convergence

88
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Caution

Power series is term-by-term differentiable

However, in general, not all series is term-by-
term differentiable, e.g. the trigonometric 
series                 is not (it’s not a power series)( )

2
1

sin !

n

n x

n

∞

=
∑
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A power series can be integrated term by 
term throughout its interval of 
convergence

92
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11.8

Taylor and Maclaurin Series
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Series Representation

In the previous topic we see that an infinite series 
represents a function. The converse is also true, namely:

A function that is infinitely differentiable f(x) can be
expressed as a power series 

We say: The function f(x) generates the power series
The power series generated by the infinitely differentiable 
function is called Taylor series. 
The Taylor series provide useful polynomial 
approximations of the generating functions

1
( )n

n
n

b x a
∞

=

−∑

1
( )n

n
n

b x a
∞

=

−∑

98

Finding the Taylor series 
representation

In short, given an infinitely differentiable function f(x), 
we would like to find out what is the Taylor series 
representation of f(x), i.e. what is the coefficients of 
bn in 
In addition, we would also need to work out the 
interval of x in which the Taylor series 
representation of f(x) converges.
In generating the Taylor series representation of a 
generating function, we need to specify the point 
x=a at which the Taylor series is to be generated.

1

( )n
n

n

b x a
∞

=

−∑
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Note: Maclaurin series is effectively a special case of Taylor 
series with a = 0.

100

Example 1 Finding a Taylor series

Find the Taylor series generated by 
f(x)=1/x at a= 2. Where, if anywhere, does 
the series converge to 1/x?

f(x) = x-1; f '(x) = -x-2; f (n)(x) = (-1)n n! x(n+1)

The Taylor series is 

( )

( ) ( ) ( ) ( )
( )

( 1)( )

0 0
2

0 1 21 0 2 1 3 2 ( 1)

2 ( 1)

1 !(2) ( 2) ( 2)
! !

1 2 ( 2) 1 2 ( 2) 1 2 ( 2) ... 1 2 ( 2) ...

1/ 2 ( 2) / 4 ( 2) /8 ... 1 ( 2) / 2 ...

k kk
k k

k k
x

k k k

k k k

k xf
x x

k k

x x x x

x x x

− +∞ ∞

= =
=

− − − − +

+

−
− = − =

− − + − − + − − + − − + =

− − + − + − − +

∑ ∑

Chapter 11 Infinite Sequences and Series



101

( )
( )

2 ( 1)

0

( )

(2) ( 2) 1/ 2 ( 2) / 4 ( 2) /8 ... 1 ( 2) / 2 ...
!

This is a geometric series with ( 2) / 2,
Hence, the Taylor series converges for | | | ( 2) / 2|<1, 
or equivalently,0 4.

(2) ( 2)
!

k
kk k k

k

k

f
x x x x

k

r x

r x

x

f
x

k

∞
+

=

− = − − + − + − − +

= − −
= −

< <

−

∑

( )
0

2 ( 1)

1/ 2 1
1 1 ( ( 2) / 2)

the Taylor series 1/ 2 ( 2) / 4 ( 2) /8 ... 1 ( 2) / 2 ...
1converges to   for 0 4.

k

k

k k k

a

r x x

x x x

x
x

∞

=

+

= = =
− − − −

⇒ − − + − + − − +

< <

∑

*Mathematica simulation
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Taylor polynomials
Given an infinitely differentiable function f, we can approximate f(x) 
at values of x near a by the Taylor polynomial of f, i.e. f(x) can be 
approximated by f(x) ≈ Pn(x), where 

Pn(x) = Taylor polynomial of degree n of f generated at x=a.
Pn(x) is simply the first n terms in the Taylor series of f.
The remainder, |Rn(x)| = | f(x) - Pn(x)| becomes smaller if higher 
order approximation is used 
In other words, the higher the order n, the better is the 
approximation of f(x) by Pn(x)
In addition, the Taylor polynomial gives a close fit to f near the point 
x = a, but the error in the approximation can be large at points that
are far away.

( )

( ) ( ) ( ) ( )

( )

0
(3) ( )

2 3

( )( )
!

( ) ( ) ( ) ( ) ( )
0! 1! 2! 3! !

kk n
k

n
k

n
n

f a
P x x a

k

f a f a f a f a f a
x a x a x a x a

n

=

=

= −

′ ′′
= + − + − + − + + −

∑

L
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Example 2 Finding Taylor polynomial 
for ex at x = 0

( )

( ) 0 0 0 0 0
0 1 2 3

0 0
2 3

( ) ( )

( )( ) ...
! 0! 1! 2! 3! !

1 ...    This is the Taylor polynomial of order  for 
2 3! !

If the limit  is taken, ( ) Taylor series

x n x

kk n
k n

n
k x

n
x

n

f x e f x e

f x e e e e e
P x x x x x x x

k n

x x x
x n e

n
n P x

=

= =

= → =

= = + + + +

= + + + +

→ ∞ →

∑

2 3

0

.

The Taylor series for  is 1 ... ... , 
2 3! ! !

In this special case, the Taylor series for  converges to  for all .

n n
x

n

x x

x x x x
e x

n n

e e x

∞

=

+ + + + + = ∑

(To be proven later)
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*Mathematica simulation
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*Mathematica simulation
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11.9

Convergence of Taylor Series;

Error Estimates
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When does a Taylor series converge to its 
generating function?

ANS:
The Taylor series converge to its generating 
function if the |remainder| =

|Rn(x)| = |f(x)-Pn(x)| 0 as n ∞

110

Rn(x) is called the remainder of order n

x
xa c

f(x)

y

0

f(a)
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f(x) = Pn(x) + Rn(x) for each x in I.

If Rn(x) 0 as n ∞, Pn(x) converges to f(x), 
then we can write

( )
( )

0

( )( ) lim ( )
!

k
k

n
n

k

f a
f x P x x a

k

∞

→∞
=

= = −∑

112

Example 1 The Taylor series for ex

revisited
Show that the Taylor series generated by 
f(x)=ex at x=0 converges to f(x) for every 
value of x.

Note: This can be proven by showing that 
|Rn| 0 when n ∞
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2 3

( 1)
1

1

1 1
0 1

1

1 ... ( )
2! 3! !

( )( )  for some  between 0 and 
( 1)!

| ( ) |  .
( 1)!

If 0,0

1
( 1)! ( 1)! ( 1)!

( )  for 0.
( 1)!

If 0,

n
x

n

n
n

n

c
n

n

n c x n
c x n

n
x

n

x x x
e x R x

n

f c
R x x c x

n

e
R x x

n

x c x

x e e x
e e e x

n n n

x
R x e x

n

x x

+
+

+

+ +
+

+

= + + + + +

=
+

=
+

> < <

⇒ = < < → < <
+ + +

→ < >
+

<
0 1 1

0 1 1

1

0

1
( 1)! ( 1)! ( 1)! ( 1)!

( ) for 0
( 1)!

c n n
x c n n

n

n

c

e e x x
e e e x x

n n n n

x
R x x

n

+ +
+ +

+

< <

⇒ < < → < = =
+ + + +

→ < <
+

x0 c

0x c

y=ex

y=ex

ex

ec
e0

e0

ec
ex
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1

1

0

Combining the result of both 0 and 0,

| ( ) |  when 0 ,
( 1)!

| ( ) |  when 0
( 1)!

Hence, irrespective of the sign of , lim | ( ) | 0 and the series

 converge to for every 
!

n
x

n

n

n

nn

n
x

n

x x

x
R x e x

n

x
R x x

n

x R x

x
e

n

+

+

→∞

∞

=

> <

< >
+

< <
+

=

∑ .x
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11.10

Applications of Power Series

120

The binomial series for powers and 
roots

Consider the Taylor series generated by 

f(x) = (1+x)m, where m is a constant:

1 2

3

( )

( )

0 0

2 3

( ) (1 )
( ) (1 ) , ( ) ( 1)(1 ) ,
( ) ( 1)( 2)(1 ) ,

( ) ( 1)( 2)...( 1)(1 ) ;
(0) ( 1)( 2)...( 1)
! !

(1 ( 1) ( 1)( 2) ...

m

m m

m

k m k

k
k k

k k

f x x

f x m x f x m m x

f x m m m x

f x m m m m k x

f m m m m k
x x

k k

m m
mx m m x m m m x

− −

−

−

∞ ∞

= =

= +

′ ′′= + = − +

′′′ = − − +

= − − − + +

− − − +
=

−
= + + − + − − + +

∑ ∑

M

1)( 2)...( 1) ...
!

km m k
x

k

− − +
+
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The binomial series for powers and 
roots

2 3

( ) (1 )
( 1)( 2)...( 1)1 ( 1) ( 1)( 2) ... ...

!

m

k

f x x

m m m m k
mx m m x m m m x x

k

= +
− − − +

= + + − + − − + + +

This series is called the binomial series, 
converges absolutely for |x| < 1. (The 
convergence can be determined by using 
Ratio test, 1

1
k

k

u m k
x x

u k
+ −

= →
+

In short, the binomial series is the Taylor series 
for f(x) = (1+x)m, where m a constant
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Taylor series representation of ln x at x = 
1

f(x)=ln x; f '(x) = x-1;

f '' (x) = (-1) (1)x-2; f ''' (x) = (-1)2 (2)(1) x-3 …
f (n)(x) = (-1) n-1(n-1)!x-n ;

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) (0) ( )
0

0 11 1 1

( 1) ( 1)

1 11
0 1 2

1 2 3

2 3

( ) ( ) ( )1 1 1
! 0! !

ln1 ( 1) ( 1)! ( 1) (1)1 0 1
0! !

( 1) ( 1) ( 1)1 1 1 ...
1 2 3

1 1 11 1 1 ... 1 1 ...
2 3

n n
n n

n nx x x

n n n n
n n

n nx

n n

f x f x f x
x x x

n n

n x
x x

n n

x x x

x x x x
n

∞ ∞

= == = =

− − − −∞ ∞

= ==

− = − + −

− − −
= + − = + −

− − −
= − + − + − +

= − − − + − − + − − +

∑ ∑

∑ ∑

*Mathematica simulation
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11.11

Fourier Series
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‘Weakness’ of power series approximation

In the previous lesson, we have learnt to approximate a given 
function using power series approximation, which give good fit if  
the approximated power series representation is evaluated near 
the point it is generated
For point far away from the point the power series being 
generated, the approximation becomes poor
In addition, the series approximation works only within the 
interval of convergence. Outside the interval of convergence, the 
series representation fails to represent the generating function
Fourier series, our next topic, provide an alternative to overcome 
such shortage

130
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A function f(x) defined on [0, 2π] can 
be represented by a Fourier series

x

y

0 2π

y = f(x)

0 0

0
1

lim ( ) lim ( ) lim cos sin

lim cos sin ,

0 2 .

n n

n k k k
n n n

k k

n

k kn
k

f x f x a kx b kx

a a kx b kx

x π

→∞ →∞ →∞
= =

→∞
=

= = +

= + +

≤ ≤

∑ ∑

∑ Fourier series 
representation of f(x)
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x

y

0 2π

0 0
If - < ,  the Fourier series lim ( ) lim cos sin

acutally represents a periodic function ( ) of a period of 2 ,

n n

k k kn n
k k

x f x a kx b kx

f x L π

→∞ →∞
= =

∞ < ∞ = +

=

∑ ∑

…
4π 6π 8π-2π

0
lim cos sin ,

n

k k
n

k

a kx b kx x
→∞

=

+ ∞ < < ∞∑
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Orthogonality of sinusoidal 
functions

( )
2

2 2 2

0 0 0
0

2 2 2

0 0

2 2

0 0

 ,  nonzero integer.
If = ,

1 1 sin 2cos cos cos cos 1 cos 2 .
2 2 2

sin sin sin

If ,

cos cos 0, sin sin 0.(can be proven using,

m k

m k

mx
mx kxdx mx mxdx mx dx x

m

mx kxdx mxdx

m k

mx kxdx mx kxdx

π
π π π

π π

π π

π

π

⎡ ⎤= = + = + =⎢ ⎥⎣ ⎦

= =

≠

= =

∫ ∫ ∫

∫ ∫

∫ ∫

2 2

0 0

2

0

 say, integration 

by parts or formula for the product of two sinusoidal functions).

In addtion, sin cos 0.

Also, sin cos 0 for all , . We say sin and cos functions are orthogon

mxdx mxdx

mx kxdx m k

π π

π

= =

=

∫ ∫
∫ al to 

each other.
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Derivation of a0

( )

( )

( )

0
1

2 2 2

00 0 0
1

2 2 2

00 0 0
1 1

0 0

0

cos sin

Integrate both sides with respect to  from 0 to 2  

cos sin

cos sin

2 0 0 2

2

n

n k k
k

n

n k k
k

n n

k k
k k

n

f x a a kx b kx

x x x

f x dx a dx a kxdx b kxdx

a dx a kxdx b kxdx

a a

a f x

π π π

π π π

π

π π

π

=

=

= =

= + +

= =

= + + =

+ +

= + + =

⇒ =

∑

∑∫ ∫ ∫

∑ ∑∫ ∫ ∫

( )

2

0

2

0 0

. 

For large enough ,  gives a good representation of ,
hence we can replace  by :

1
2

n

n

dx

n f f

f f

a f x dx

π

π

π
⇒ =

∫

∫
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Derivation of ak, k 
≥ 1( ) 0

1

2

0

cos sin

Multiply both sides by cos  (  nonzero integer),  and integrate with respect to  

from 0 to 2 . By doing so, the integral cos sin  get 'killed off ' 

due to the o

n

n k k
k

f x a a kx b kx

mx m x

x x mx kxdx
π

π

=

= + +

= =

∑

∫

2

0

rthogality property of the sinusoidal functions. 

In addtion, cos cos  will also gets 'killed off ' except for the case .mx kxdx m k
π

=∫

( )

( )

2

0

2 2 2

00 0 0
1 1

2

0

2

0

cos

cos cos cos sin cos

0 cos cos 0

1 cos  . 

n n

k k
k k

m m

m

f x mxdx

a mxdx a kx mxdx b kx mxdx

a mx mxdx a

a f x mx dx

π

π π π

π

π

π

π

= =

=

+ +

= + + =

⇒ =

∫

∑ ∑∫ ∫ ∫

∫

∫
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Derivation of bk, k 
≥ 1

( )
2

0

2 2 2

00 0 0
1 1

 is simularly derived by multiplying both sides by sin  (  nonzero integer),  
and integrate with respect to  from 0 to 2 . 

sin

sin cos sin sin si

k

n n

k k
k k

b mx m

x x x

f x mxdx

a mxdx a kx mxdx b kx

π

π π π

π

= =

= =

=

+ +

∫

∑ ∑∫ ∫ ∫

( )

2

0

2

0

n

0 0 sin sin

1 sin  .

m m

m

mxdx

b mx mxdx b

b f x mx dx

π

π

π

π

= + + =

⇒ =

∫

∫
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Fourier series can represent some 
functions that cannot be represented by 
Taylor series, e.g. step function such as 
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Fourier series representation of a function 
defined on the general interval [a,b]

For a function defined on the interval [0,2π], 
the Fourier series representation of   f(x) is 
defined as

How about a function defined on an general 
interval of [a,b] where the period is L=b-a
instead of 2π? Can we still use

to represent f(x) on 

[a,b]?

( ) 0
1

cos sin
n

k k
k

f x a a kx b kx
=

= + +∑

0
1

cos sin
n

k k
k

a a kx b kx
=

+ +∑
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Fourier series representation of a function 
defined on the general interval [a,b]

For a function defined on the interval of [a,b] the 
Fourier series representation on [a,b] is actually 

L=b - a

0
1

2 2cos sin
n

k k
k

kx kx
a a b x

L L

π π
=

+ +∑
( )

( )

( )

0
1

2 2cos

2 2sin ,  positive integer

b

a

b

m a

b

m a

a f x dx
L

mx
a f x dx

L L
mx

b f x dx m
L L

π

π

=

=

=

∫

∫

∫
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Derivation of a0

( )

( )

( ) ( )

0
1

0
1

0
1 1

0

0

2 2( ) cos sin

2 2cos sin

2 2cos sin

1 1

n

k k
k

nb b b

k ka a a
k

n nb b b

k ka a a
k k

b b

a a

kx kx
f x a a b x

L L

kx kx
f x dx a dx a dx b dx

L L

kx kx
a dx a dx b dx

L L

a b a

a f x dx f x dx
b a L

π π

π π

π π

=

=

= =

= + +

= + + =

+ +

= −

⇒ = =
−

∑

∑∫ ∫ ∫

∑ ∑∫ ∫ ∫

∫ ∫
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Derivation of ak

( )

( )

( )

0
1

0
1

2

2 2( ) cos sin

2cos

2 2 2 2 2cos cos cos sin cos

2= 0 cos 0
2

2 2cos

Similarly,
2 2sin

n

k k
k

b

a

nb b

k ka a
k

b

m ma

b

m a

b

m a

kx kx
f x a a b x

L L

mx
f x dx

L
mx kx mx kx mx

a dx a dx b dx
L L L L L

mx L
a dx a

L
mx

a f x dx
L L

mx
b f x dx

L L

π π

π

π π π π π

π

π

π

=

=

= + +

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

+ + =

⇒ =

=

∑

∫

∑∫ ∫

∫

∫

∫
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Example:

0
x

y

L 2L

( ) ,0f x mx x L= < ≤

-L

y=mL

a=0, b=L
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( ) ( )
( )

( )

2 2
0

2

2 2

0

2
2 2

1 1
2 2

cos2 12 2 2 2 2cos cos 0;
4

2 2 2 2sin sin

2 2 cos(2 ) sin 2 ;
4

sin 2( )
2

b b

a a

b b

k a a

b L

k a

m mL
a f x dx mxdx b a

L L L

L kkx m kx m
a mx dx x dx

L L L L L k
kx m kx

b f x dx x dx
L L L L

m k k k mL
L

L k k

mL mL kx
f x mx

k

ππ π
π

π π

π π π
π π

π
π

= = = − =

−
= = = =

= =

− + −⎛ ⎞= ⋅ =⎜ ⎟
⎝ ⎠

= = −

∫ ∫

∫ ∫

∫ ∫

1

1 sin 2 sin 4 sin 6 sin 2...
2 2 3

n

k

x x x n x
mL

n

π π π π
π π π π

=

⎛ ⎞= − − − − −⎜ ⎟
⎝ ⎠

∑
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*mathematica simulation
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