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Chapter 1
Preliminaries
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1.3
Functions and Their Graphs

(1st lecture of week 06/08/07 -
11/08/07)
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Function

y = f(x)
f  represents function (a rule that tell us how 
to calculate the value of y from the variable 
x
x : independent variable (input of f )
y : dependent variable (the correspoinding
output value of f at x)
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Definition     Domain of the function

The set of D of all possible input values

Definition     Range of the function

The set of all values of f(x) as x varies throughout D
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Natural Domain

When a function y = f(x)is defined and the 
domain is not stated explicitly, the domain 
is assumed to be the largest set of real x-
values for the formula gives real y-values.
e.g. compare “y = x2” c.f. “y = x2, x≥0”
Domain may be open, closed, half open, 
finite, infinite.
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Verify the domains and ranges of these 
functions
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Graphs of functions

Graphs provide another way to visualise a 
function
In set notation, a graph is 

{(x,f(x)) | x ∈D}
The graph of a function is a useful picture 
of its behaviour.
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Example 2 Sketching a graph

Graph the function y = x2 over the interval 
[-2,2]
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The vertical line test

Since a function must be single valued over 
its domain, no vertical line can intersect the 
graph of a function more than once.
If a is a point in the domain of a function f, 
the vertical line x=a can intersect the graph 
of f in a single point (a, f(a)).
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Piecewise-defined functions

The absolute value function

0
0

x x
x

x x
≥⎧

= ⎨− <⎩
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Graphing piecewise-defined functions

Note: this is just one function with a domain 
covering all real number
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The greatest integer function

Also called integer floor function
f = [x], defined as greatest integer less than 
or equal to x.
e.g. 
[2.4] = 2
[2]=2
[-2] = -2, etc.
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Note: the graph is the blue colour lines, 
not the one in red 
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Writing formulas for piecewise-defined 
functions

Write a formula for the function y=f(x) in 
Figure 1.33
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1.4
Identifying Functions; 
Mathematical Models

(1st lecture of week 06/08/07 - 11/08/07)
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Linear functions

Linear function takes the form of 
y=mx + b
m, b constants
m slope of the graph
b intersection with the y-axis
The linear function reduces to a constant 
function f = c when m = 0,  
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Power functions

f(x) = xa

a constant
Case (a): a = n, a positive integer
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go back
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Power functions

Case (b): 
a = -1 (hyperbola)
or a=-2
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go back
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Power functions

Case (c): 
a = ½, 1/3, 3/2, and 2/3
f(x) = x½ = √x (square root) , domain = [0 ≤ x < ∞)
g(x) = x1/3 = 3√x(cube root),  domain = (-∞ < x < ∞)

p(x) = x2/3= (x1/3)2, domain = ? 
q(x) = x3/2= (x3)1/2  domain = ?
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go back
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Polynomials

p(x)= anxn + an-1xn-1 + an-2xn-2 +… a1x + a0

n nonnegative integer (1,2,3…)
a’s coefficients (real constants)
If an ≠ 0, n is called the degree of the 
polynomial
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Rational functions

A rational function is a quotient of two 
polynomials:
f(x) = p(x) / q(x)
p,q are polynomials.
Domain of f(x) is the set of all real number x
for which q(x) ≠ 0.
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Algebraic functions

Functions constructed from polynomials 
using algebraic operations (addition, 
subtraction, multiplication, division, and 
taking roots)
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Trigonometric functions

More details in later chapter
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Exponential functions

f(x) = ax

Where a > 0 and a ≠ 0. a is called the 
‘base’.
Domain (-∞, ∞)
Range (0, ∞)
Hence, f(x) > 0
More in later chapter
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Note: graphs in (a) are reflections of the 
corresponding curves in (b) about the y-axis. This 
amount to the symmetry operation of x ↔ -x.
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Logarithmic functions

f(x) = loga x
a is the base
a≠ 1, a >0
Domain (0, ∞)
Range (-∞, ∞)
They are the inverse functions of the 
exponential functions (more in later 
chapter)
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Transcendental functions

Functions that are not algebraic
Include: trigonometric, inverse 
trigonometric, exponential, logarithmic, 
hyperbolic and many other functions
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Example 1

Recognizing Functions
(a) f(x) = 1 + x – ½x5

(b) g(x) = 7x

(c) h(z) = z7

(d) y(t) = sin(t–π/4)
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Increasing versus decreasing functions

A function is said to be increasing if it rises 
as you move from left to right
A function is said to be decreasing if it falls 
as you move from left to right
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y=x2, y=x3; y=1/x, y=1/x2; y=x1/2, y=x2/3
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Recognising even and odd functions

f(x) = x2 Even function as (-x)2 = x2 for all x, 
symmetric about the all x, symmetric about
the y-axis.
f(x) = x2 + 1 Even function as (-x)2 + 1 = x2+ 
1 for all x, symmetric about the all x,
symmetric about the y-axis.
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Recognising even and odd functions

f(x) = x. Odd function as (-x) = -x for all x, 
symmetric about origin.
f(x) = x+1. Odd function ?
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1.5
Combining Functions; 

Shifting and Scaling Graphs
(2nd lecture of week 06/08/07 - 11/08/07)
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Sums, differences, products and quotients

f, g are functions
For x ∈D(f )∩D(g), we can define the functions 
of 
(f +g) (x) = f(x) + g(x)
(f - g) (x) = f(x) - g(x)
(fg)(x) = f(x)g(x),
(cf)(x) = cf(x), c a real number 

( ) ( )
( ) ( ),   0

f xf x g x
g g x

⎛ ⎞
= ≠⎜ ⎟

⎝ ⎠
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Example 1

f(x) = √x, g(x) = √(1-x),
The domain common to both f,g is
D(f )∩D(g) = [0,1] (work it out)
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Composite functions

Another way of combining functions
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Example 2

Viewing a function as a composite
y(x) = √(1 – x2) is a composite of 
g(x) = 1 – x2 and f(x) = √x
i.e. y(x) = f [g(x)] = √(1 – x2)
Domain of the composite function is |x|≤ 1, 
or [-1,1]
Is f [g(x)] = g [f(x)]?
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Example 3

Read it yourself
Make sure that you know how to work out 
the domains and ranges of each composite 
functions listed
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Shifting a graph of a function
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Example 4

(a) y = x2, y = x2 +1 
(b) y = x2, y = x2 -2 
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Example 4

(c) y = x2, y = (x + 3)2,  y = (x - 3)2
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Example 4

(d) y = |x|, y = |x - 2| - 1
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Scaling and reflecting a graph of a function

To scale a graph of a function is to stretch 
or compress it, vertically or horizontally.
This is done by multiplying a constant c to 
the function or the independent variable
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Example 5(a)

Vertical stretching and compression of the 
graph y = √x by a factor or 3
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Example 5(b)

Horizontal stretching and compression of 
the graph y = √x by a factor of 3
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Example 5(c)

Reflection across the x- and y- axes
c = -1
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Example 6

Read it yourself
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1.6
Trigonometric Functions 

(2nd lecture of week 06/08/07 -
11/08/07)
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Radian measure



Slide  1 - 85Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley



Slide  1 - 86Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley



Slide  1 - 87Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley



Slide  1 - 88Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

Angle convention

Be noted that angle will be expressed in 
terms of radian unless otherwise specified.
Get used to the change of the unit
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The six basic trigonometric functions
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sine: sinθ = y/r
cosine: cosθ = x/r
tangent: tanθ = y/x

cosecant: cscθ = r/y
secant: secθ = r/x
cotangent: cotθ = x/y

Generalised definition of the six trigo
functions

Define the trigo
functios in terms of 
the coordinats of the 
point P(x,y) on a circle 
of radius r
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Mnemonic to remember when the basic trigo
functions are positive or negative
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Periodicity and graphs of the trigo functions

Trigo functions are also periodic.
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Parity of the trigo functions

The parity is easily deduced 
from the graphs.
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Identities

Applying  
Pythagorean theorem 
to the right triangle 
leads to the identity
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Dividing identity (1) by cos2θ and sin2θ in 
turn gives the next two identities

There are also similar formulas for cos (A-B) and sin 
(A-B). Do you know how to deduce them?
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Identity (3) is derived by setting A = B in (2)

Identities (4,5) are derived by combining (1) and (3(i))
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Law of cosines

c2= (acosθ - b)2 + (asinθ)2

= a2+b2 -2abcosθ
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Chapter 2
Limits and Continuity
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2.1
Rates of Change and Limits

(3rd lecture of week 06/08/07 -
11/08/07)
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Average Rates of change and Secant Lines

Given an arbitrary function y=f(x), we 
calculate the average rate of change of y
with respect to x over the interval [x1, x2] by 
dividing the change in the value of y, ∆y, by 
the length ∆x
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Example 4

Figure 2.2 shows how a population of fruit 
flies grew in a 50-day experiment. 
(a) Find the average growth rate from day 
23 to day 45.
(b) How fast was the number of the flies 
growing on day 23?
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The grow rate at day 23 is calculated by examining the 
average rates of change over increasingly short time 
intervals starting at day 23. Geometrically, this is 
equivalent to evaluating the slopes of secants from P to Q
with Q approaching P.

Slop at P ≈ (250 - 0)/(35-
14) = 16.7 flies/day
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Limits of function values

Informal definition of limit:
Let f be a function defined on an open 
interval about x0, except possibly at x0 itself. 
If f gets arbitrarily close to L for all x
sufficiently close to x0, we say that f
approaches the limit L as x approaches x0

“Arbitrarily close” is not yet defined here 
(hence the definition is informal).

0

lim ( )
x x

f x L
→

=
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Example 5

How does the function behave near x=1?

Solution:

2 1( )
1

xf x
x

−
=

−

( )( )1 1
( ) 1   for 1

1
x x

f x x x
x

− +
= = + ≠

−
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We say that f(x) approaches the limit 2 as x
approaches 1,

2

1 1

1lim ( ) 2   or   lim 2
1x x

xf x
x→ →

−
= = =

−
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Example 6
The limit value does not depend on how the 
function is defined at x0.
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Example 7

In some special cases limx→x0 f(x) can be evaluated by 
calculating f (x0). For example, constant function, rational 
function and identity function for which x=x0 is defined
(a) limx→2 (4) = 4 (constant function)
(b) limx→-13 (4) = 4 (constant function)
(c) limx→3 x = 3 (identity function)
(d) limx→2 (5x-3) = 10 – 3 =7 (polynomial function of 
degree 1)
(e) limx→ -2 (3x+4)/(x+5) = (-6+4)/(-2+5) =-2/3 (rational 
function)
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Jump Grow to 
infinities

Oscillate

Example 9
A function may fail to have a limit exist at a 
point in its domain.
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2.2
Calculating limits using 

the limits laws
(3rd lecture of week 06/08/07 - 11/08/07)
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The limit laws

Theorem 1 tells how to calculate limits of 
functions that are arithmetic combinations 
of functions whose limit are already known.
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Example 1 Using the limit laws

(a) limx→ c (x3+4x2-3) 
= limx→ c x3 + limx→ c 4x2- limx→ c 3 

(sum and difference rule)

=  c3 + 4c2- 3 
(product and multiple rules)
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Example 1

(b) limx→ c (x4+x2-1)/(x2+5)
= limx→ c (x4+x2-1) /limx→ c (x2+5)

=(limx→c x4 + limx→cx2-limx→ c1)/(limx→ cx2 + limx→ c5)
= (c4 +c2 - 1)/(c2 + 5)



Slide  2 - 21Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

Example 1

(c) limx→ -2 √(4x2-3) = √ limx→ -2 (4x2-3)     
Power rule with r/s = ½

= √ [limx→ -2 4x2 - limx→ -2 3]
= √ [4(-2)2 - 3] = √13
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Example 2

Limit of a rational function

3 2 3 2

2 21

4 3 ( 1) 4( 1) 3 0lim 0
5 ( 1) 5 6x

x x
x→−

+ − − + − −
= = =

+ − +
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Eliminating zero denominators algebraically
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Example 3 Canceling a common factor

Evaluate
Solution: We can’t substitute x=1 since
f (x = 1) is not defined. Since x≠1, we can 
cancel the common factor of x-1:

2

21

2lim
x

x x
x x→

+ −
−

( )( )
( )

( )2

21 1 1

1 2 22lim lim lim 3
1x x x

x x xx x
x x x x x→ → →

− + ++ −
= = =

− −
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The Sandwich theorem
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Example 6

(a) 
The function y =sin θ is sandwiched between y = 
|θ | and y= -|θ | for all values of θ . Since limθ→0 (-
|θ |) = limθ→0 (|θ |) = 0, we have  limθ→0 sin θ = 0.
(b) 
From the definition of cos θ, 
0 ≤ 1 - cos θ ≤ |θ | for all θ, and we have the 
limit limx→0 cos θ = 1
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Example 6(c)

For any function f (x), if  limx→0 (|f (x) |) = 
0, then limx→0 f (x) = 0 due to the sandwich 
theorem.
Proof: -|f (x)| ≤ f (x) ≤ |f (x)|. 
Since limx→0 (|f (x) |) = limx→0 (-|f (x) |) = 0 
⇒ limx→0 f (x) = 0 
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2.3
The Precise Definition of a Limit

(1st lecture of week 13/08/07-
18/08/07)
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Example 1 A linear function

Consider the linear function y = 2x – 1 near 
x0 = 4. Intuitively it is close to 7 when x is 
close to 4, so limx 0 (2x-1)=7. How close 
does x have to be so that y = 2x -1 differs 
from 7 by less than 2 units?
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Solution
For what value of x
is |y-7|< 2? 
First, find |y-7|<2 in terms
of x: 

|y-7|<2 ≡ |2x-8|<2
≡ -2< 2x-8 < 2
≡ 3 < x < 5
≡ -1 < x - 4 < 1
Keeping x within 1 unit 
of x0 = 4 will keep y within 
2 units of y0=7.
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Definition of limit
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Definition of limit
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• The problem of proving L as the 
limit of f (x) as x approaches x0 is a 
problem of proving the existence of 
δ, such that whenever  

• x0 – δ < x< x0+δ, 

• L+ε < f (x) < L-ε for any arbitrarily 
small value of ε.

• As an example in Figure 2.13, given 
ε = 1/10, can we find a 
corresponding value of δ ?

• How about if ε = 1/100? ε = 1/1234? 
• If for any arbitrarily small value of ε

we can always find a corresponding 
value of δ, then we has successfully 
proven that L is the limit of f as x 
approaches x0
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Example 2 Testing the 
definition

Show that 
( )

1
lim 5 3 2
x

x
→

− =
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Solution

Set x0=1, f(x)=5x-3, L=2.
For any given ε, we have to
find a suitable δ > 0 so that
whenever 
0<| x – 1|< δ, x≠1,
it is true that f(x) is within 
distance ε of  L=2, i.e. 
|f (x) – 2 |< ε. 



Slide  2 - 42Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

First, obtain an open interval (a,b) in which 
|f(x) - 2|< ε ≡ |5x - 5|< ε ≡

-ε /5< x - 1< ε /5 ≡ -ε /5< x – x0< ε /5

x0x0-ε /5 x0+ ε /5
( )x

a
b

choose δ < ε / 5. This choice will guarantee that 
|f(x) – L| < ε whenever x0–δ < x < x0 + δ.
We have shown that for any value of ε given, we can

 always find an corresponding value of δ that meets the 
“challenge” posed by an ever diminishing ε. This is an  
proof of existence. 

 Thus we have proven that the limit for f(x)=5x-3 is L=2 
when x x0=1.
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Example 3(a)

Limits of the identity 
functions
Prove 

0
0lim

x x
x x

→
=
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Solution

Let ε > 0. We must 
find δ > 0 such that for 
all x, 0 < |x-x0|< δ
implies |f(x)-x0|< ε., 
here, f(x)=x, the 
identity function.
Choose δ < ε will do 
the job.
The proof of the 
existence of δ proves

0
0lim

x x
x x

→
=
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Example 3(b)

Limits constant functions
Prove 

0

lim   (  constant)
x x

k k k
→

=
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Solution
Let ε > 0. We must 
find δ > 0 such that for 
all x, 0 < |x-x0|< δ
implies |f(x)- k|< ε., 
here, f(x)=k, the 
constant function.
Choose any δ will do 
the job. 
The proof of the 
existence of δ proves

0

lim
x x

k k
→

=
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Finding delta algebraically for given epsilons

Example 4: Finding delta algebraically
For the limit
find a δ > 0 that works for ε = 1. That is, 
find a δ > 0 such that for all x,

5
lim 1 2
x

x
→

− =

0 5 0 1 2 1x xδ< − < ⇒ < − − <
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Solution
δ is found by working backward:
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Solution
Step one: Solve the inequality |f(x)-L|<ε

Step two: Find a value of δ > 0 that places the open 
interval (x0-δ, x0+δ ) centered at x0 inside the open 
interval found in step one. Hence, we choose δ = 3 or 
a smaller number

0 1 2 1 2 10x x< − − < ⇒ < <

Interval found in 
step 1

x0=5
δ =3 δ =3By doing so, the 

inequality 0<|x - 5| < δ
will automatically place 
x between 2 and 10 to 
make 0 ( ) 2 1f x< − <
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Example 5

Prove that 
( )

( )

2

2

lim 4 if 

2
1 2

x
f x

x x
f x

x

→
=

⎧ ≠
= ⎨

=⎩
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Solution
Step one: Solve the inequality 
|f(x)-L|<ε :

Step two: Choose 
δ < min [2-√(4-ε)2, √(4+ε) – 2]

For all x, 
0 < |x - 2| < δ ⇒ |f(x)-4|<ε
This completes the proof.

20 2 4 4 , 2x x xε ε ε< − < ⇒ − < < + ≠
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2.4
One-Sided Limits and                          

Limits at Infinity
(1st lecture of week 13/08/07-18/08/07)
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Two sided limit 
does not exist for y;

But 

y does has two one-
sided limits

( )
0

lim 1
x

f x
+→

=

( )
0

lim 1
x

f x
−→

= −
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One-sided limits

Right-hand limit Left-hand limit
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Example 1

One sided limits of a semicircle

No left hand 
limit at x= -2;

No two sided 
limit at x= -2;

No right hand 
limit at x=2;

No two sided 
limit at x= 2;
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Example 2
Limits of the 
function graphed in 
Figure 2.24
Can you write 
down all the limits 
at x=0, x=1, x=2, 
x=3, x=4?
What is the limit at 
other values of x?
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Precise definition of one-sided limits
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Limits involving (sinθ)/θ
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Proof
Area ∆OAP = ½ sinθ

Area sector OAP = θ /2

Area ∆OAT = ½ tanθ

½ sinθ <θ /2 < ½ tanθ

1 <θ /sinθ < 1/cosθ

1 > sinθ /θ > cosθ

Taking limit θ 0±, 

00

sin sinlim 1 lim
θθ

θ θ
θ θ± →→

= =
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Example 5(a)

Using theorem 7, show that 
0

cos 1lim 0
h

h
h→

−
=
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Example 5(b)

Using theorem 7, show that 
0

sin 2 2lim
5 5x

x
x→

=
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Finite limits as x→±∞
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Precise definition
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Example 6

Limit at infinity for 

(a) Show that

(b) Show that  

1( )f x
x

=

1lim 0
x x→∞

=

1lim 0
x x→−∞

=
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Example 7(a)

Using Theorem 8
1 1lim 5 lim5 lim 5 0 5

x x xx x→∞ →∞ →∞

⎛ ⎞+ = + = + =⎜ ⎟
⎝ ⎠
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Example 7(b)

2 2

3 1lim 3 lim

1 13 lim lim

3 0 0 0

x x

x x

x x

x x

π π

π

π

→∞ →∞

→∞ →∞

=

= ⋅

= ⋅ ⋅ =
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Limits at infinity of rational functions

Example 8
( ) ( )

( )
( ) ( )

( )

22

2 2

2

2

5 8/ 3/5 8 3lim lim
3 2 3 2 /

5 lim 8/ lim 3/ 5 0 0 5
3 0 33 lim 2/

x x

x x

x

x xx x
x x

x x

x

→∞ →∞

→∞ →∞

→∞

+ −+ −
= =

+ +

+ − + −
= = =

++
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go back
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Example 9

Degree of numerator  less than degree of 
denominator

( ) ( )
( )

2

3 2

11/ 2 /11 2 0 0lim lim 0
2 1 2 02 1/x x

x xx
x x→∞ →∞

++ +
= = =

− −−
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1lim 0
x x→∞

=

1lim 0
x x→−∞

=

Horizontal asymptote

x-axis is a horizontal 
asymptote
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Figure 2.33 has the line y=5/3 as a horizontal 
asymptote on both the right and left because 

5lim ( )
3x

f x
→∞

=
5lim ( )
3x

f x
→−∞

=



Slide  2 - 79Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

Oblique asymptote

Happen when the degree of the numerator 
polynomial is one greater than the degree of 
the denominator
By long division, recast f (x) into a linear 
function plus a remainder. The remainder 
shall → 0 as x → ±∞. The linear function is 
the asymptote of the graph.
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Find the oblique asymptote for

Solution

22 3( )
7 4
xf x
x

−
=

+

( )

( )

linear function

22 3 2 8 115( )
7 4 7 49 49 7 4

2 8 115lim ( ) lim lim
7 49 49 7 4

2 8 2 8               lim 0 lim
7 49 7 49

x x x

x x

xf x x
x x

f x x
x

x x

→±∞ →±∞ →±∞

→±∞ →±∞

− −⎛ ⎞= = − +⎜ ⎟+ +⎝ ⎠

−⎛ ⎞= − +⎜ ⎟ +⎝ ⎠

⎛ ⎞ ⎛ ⎞= − + = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

64748

Example 12
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2.5
Infinite Limits and Vertical Asymptotes
(2nd lecture of week 13/08/07-18/08/07)
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Infinite limit
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Example 1
Find 

1 1

1 1lim  and lim
1 1x xx x+ −→ →− −
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Example 2 Two-sided infinite limit

Discuss the behavior of 

( )

2

2

1( )      ( )  near 0

1( )      ( )  near 3
3

a f x x
x

b g x x
x

= =

= = −
+
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Example 3
Rational functions can behave in various 
ways near zeros of their denominators

( ) ( )
( )( )

( )
( )

( )( ) ( )

( )( )

( )( )

2 2

22 2 2

22 2 2

2 22

2 22

2 2 2
( ) lim = lim lim 0

4 2 2 2
2 2 1 1( )lim = lim lim
4 2 2 2 4
3 3( ) lim = lim    (note: >2)
4 2 2
3 3( ) lim = lim   (note: 0< <2)
4 2 2

x x x

x x x

xx

xx

x x x
a

x x x x
x xb
x x x x
x xc x
x x x
x xd x
x x x

+

−

→ → →

→ → →

→→

→→

− − −
= =

− − + +

− −
= =

− − + +

− −
= −∞

− − +

− −
= +∞

− − +
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Example 3

( )( )

( ) ( )( ) ( )

22 2

3 2 22 2 2

3 3( ) lim = lim     limit does not exist
4 2 2

2 2 1( ) lim lim lim
2 2 2 2

x x

x x x

x xe
x x x

x xf
x x x x

→ →

→ → →

− −
− − +

− −
= − = − = −∞

− − − −



Slide  2 - 88Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

Precise definition of infinite limits
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Example 4

Using definition of infinite limit
Prove that 

20

1lim
x x→

= ∞

2

Given >0, we want to find >0 such that 
10 | 0 |       implies       

B

x B
x

δ

δ< − < >
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Example 4

2
2

2 2

Now 
1  if and only if 1/ | | 1/

By choosing =1/    
(or any smaller positive number), we see that 

1 1| |   implies 

B x B x B
x

B

x B
x

δ

δ
δ

> < ≡ <

< > ≥
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Vertical asymptotes

0

0

1lim

1lim

x

x

x

x

+

−

→

→

= ∞

= −∞
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Example 5 Looking for asymptote

Find the horizontal and vertical asymptotes 
of the curve

Solution:

3
2

xy
x

+
=

+

11
2

y
x

= +
+
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Asymptote need not be two-sided

Example 6

Solution:

2

8( )
2

f x
x

= −
−

2

8 8( )
2 ( 2)( 2)

f x
x x x

= − = −
− − +
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Example 8
A rational function with degree of freedom 
of numerator greater than degree of 
denominator

Solution:

2 3( )
2 4
xf x
x

−
=

−

2 3 1( ) 1
2 4 2 2 4
x xf x
x x

−
= = + +

− −

remainderlinear
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2.6
Continuity

(2nd lecture of week 13/08/07-
18/08/07)
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Continuity at a point

Example 1
Find the points at which the function f in 
Figure 2.50 is continuous and the points at 
which f is discontinuous. 
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f continuous:
At x = 0
At x = 3
At 0 < c < 4, c ≠ 1,2

f discontinuous:
At x = 1
At x = 2
At x = 4
0 > c, c > 4
Why?
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To define the continuity at a point in a 
function’s domain, we need to
define continuity at an interior point
define continuity at an endpoint
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Example 2

A function continuous throughout its 
domain 2( ) 4f x x= −
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Example 3
The unit step function has a jump 
discontinuity
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Summarize continuity at a point in the form of 
a test

For one-sided continuity and continuity at an 
endpoint, the limits in parts 2 and parts 3 of 
the test should be replaced by the appropriate 
one-sided limits.
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Example 4

The greatest integer function, 
y=[x]
The function is 
not continuous at the 
integer points since limit
does not exist there (left
and right limits not agree)
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Discontinuity types

(b), (c) removable discontinuity
(d) jump discontinuity
(e) infinite discontinuity
(f) oscillating discontinuity
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Continuous functions

A function is continuous on an interval if 
and only if it is continuous at every point of 
the interval.
Example: Figure 2.56
1/x not continuous on [-1,1] but continuous 
over (-∞,0)     (0, ∞) ∪
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Example 5

Identifying continuous function
(a) f(x)=1/x
(b) f(x)= x
Ask: is 1/x continuous over its domain? 



Slide  2 - 119Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley



Slide  2 - 120Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

Example 6

Polynomial and rational functions are 
continuous
(a) Every polynomial is continuous by 
(i)
(ii) Theorem 9 
(b) If P(x) and Q(x) are polynomial, the 
rational function P(x)/Q(x) is continuous 
whenever it is defined. 

lim ( ) ( )
x c

P x P c
→

=
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Example 7

Continuity of the absolute function
f(x) = |x| is everywhere continuous

Continuity of the sinus and cosinus function
f(x) = cos x and sin x is everywhere 
continuous
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Composites

All composites of continuous functions are 
continuous
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Example 8

Applying Theorems 9 and 10
Show that the following functions are 
continuous everywhere on their respective 
domains.

2 / 3
2

4

2 2

( ) 2 5      ( )
1

2 sin( )               (d) 
2 2

xa y x x b y
x

x x xc y y
x x

= − − =
+

−
= =

− +
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Consequence of root finding

A solution of the equation f(x)=0 is called a root.
For example, f(x)= x2 + x - 6, the roots are x=2, 
x=-3 since  f(-3)=f(2)=0.
Say f is continuous over some interval.
Say a, b (with a < b) are in the domain of f, such 
that f(a) and f(b) have opposite signs. 
This means either f(a) < 0 < f(b) or f(b) < 0 < f(a)
Then, as a consequence of theorem 11, there must 
exist at least a point c between a and b, i.e. a < c 
< b such that f(c)= 0. x=c is the root.
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x

y

f(a)<0 a

f(b)>0

b

f(c)=0

c
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Example
Consider the function f(x) = x - cos x
Prove that there is at least one root for  f(x) in the interval 
[0, π/2].

Solution
f(x) is continuous on (-∞, ∞).
Say a = 0, b = π/2. 
f(x=0) = -1; f(x = π/2) = π/2
f(a) and f(b) have opposite signs
Then, as a consequence of theorem 11, there must exist at 
least a point c between a and b, i.e. a=0 < c < b= π/2 such 
that f(c)= 0. x=c is the root.
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2.7
Tangents and Derivatives

(3rd lecture of week 13/08/07-
18/08/07)
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What is a tangent to a curve?
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Example 1: Tangent to a parabola

Find the slope of the parabola y=x2 at the 
point P(2,4). Write an equation for the 
tangent to the parabola at this point.
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y = 4x - 4
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Example 3

Slope and tangent to y=1/x, x≠0
(a) Find the slope of y=1/x at x = a ≠0
(b) Where does the slope equal -1/4?
(c) What happens to the tangent of the curve 
at the point (a, 1/a) as a changes?
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Chapter 3
Differentiation
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3.1
The Derivative as a Function
(3rd lecture of week 13/08/07-

18/08/07)
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The limit 

when it existed, is called the Derivative if f at x0.
View derivative as a function derived from f

0 0

0

( ) ( )lim
h

f x h f x
h→

+ −
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If f ' exists at x, f is said to be differentiable 
(has a derivative) at x
If f ' exists at every point in the domain of f, 
f is said to be differentiable.
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If write z = x + h, then h = z - x



Slide  3 - 6Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley



Slide  3 - 7Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

Calculating derivatives from the definition

Differentiation: an operation performed on a 
function y = f (x)
d/dx operates on f (x)
Write as

f ' is taken as a shorthand notation for 

( )d f x
dx

( )d f x
dx
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Example 1: Applying the definition
Differentiate 

Solution:
( )

1
xf x

x
=

−

0

0

20

( ) ( )( ) lim

1 1lim

1 1lim
( 1)( 1) ( 1)

h

h

h

f x h f xf x
h

x h x
x h x

h

x h x x

→

→

→

+ −′ =

+⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟+ − −⎝ ⎠ ⎝ ⎠=

− −
= =

+ − − −
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Example 2: Derivative of the square root 
function

(a) Find the derivative of
(b) Find the tangent line to the curve         

at x = 4
y x=
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Notations

( ) ( ) ( ) ( )x
dy df df x y f x Df x D f x
dx dx dx

′ ′= = = = = =

( ) ( )
x a x a x a

dy df df a f x
dx dx dx= = =

′ = = =
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Differentiable on an Interval; One sided 
derivatives

A function y = f (x) is differentiable on an 
open interval (finite or infinite) if it has a 
derivative at each point of the interval. 
It is differentiable on a closed interval [a,b] 
if it is differentiable on the interior (a,b) and 
if the limits 

exist at the endpoints

0

0

( ) ( )lim

( ) ( )lim

h

h

f a h f a
h

f b h f b
h

+

−

→

→

+ −

+ −
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A function has a derivative at a point if an 
only if it has left-hand and right-hand 
derivatives there, and these one-sided 
derivatives are equal.
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Example 5

y = |x| is not differentiable at x = 0.
Solution:
For x > 0,

For x < 0,

At x = 0, the right hand derivative and left hand 
derivative differ there. Hence f(x) not 
differentiable at x = 0 but else where.

| | ( ) 1d x d x
dx dx

= =

| | ( ) 1d x d x
dx dx

= − = −



Slide  3 - 16Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley



Slide  3 - 17Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

Example 6

is not differentiable at x = 0

The graph has a vertical tangent at x = 0

y x=
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When Does a function not have a derivative at 
a point?
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Differentiable functions are continuous 

The converse is false: continuity does 
not necessarily implies differentiability
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Example

y = |x| is continuous everywhere, including x 
= 0, but it is not differentiable there.
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The equivalent form of Theorem 1

If f is not continuous 
at x = c, then f is not 
differentiable at x = c.
Example: the step 
function is 
discontinuous at x = 0, 
hence not 
differentiable at x = 0.
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The intermediate value property of derivatives

See section 4.4
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3.2
Differentiation Rules

(1st lecture of week 20/08/07-
25/08/07)
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Powers, multiples, sums and differences
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Example 1 
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1In particular, if , ( )n n ndu x cx cx
dx

−= =
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Example 3

2 2 1(3 ) 3 2 6d x x x
dx

−= ⋅ =

2 2 1( ) 2 2d x x x
dx

−= =
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Example 5

3 2

3 2

2

4 5 1
3

4( ) ( ) (5 ) (1)
3

8       =3 5
3

y x x x

dy d d d dx x x
dx dx dx dx dx

x x

= + − +

= + − +

+ −
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Example 6

Does the curve y = x4 - 2x2 + 2 have any 
horizontal tangents? If so, where?
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Products and quotients

Note that ( ) ( )

( ) ( ) ( )

2 2

1

d dx x x x
dx dx
d d dx x x x
dx dx dx

⋅ = =

⋅ ≠ ⋅ =
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Example 7

Find the derivative of 21 1y x
x x
⎛ ⎞= +⎜ ⎟
⎝ ⎠
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Example 8: Derivative from numerical values

Let y = uv. Find y '(2) if u(2) =3, u'(2)=-4,  
v(2) = 1, v '(2) = 2
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Example 9

Find the derivative of ( )( )2 31 3y x x= + +
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Negative integer powers of x

The power rule for negative integers is the 
same as the rule for positive integers
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Example 11

( ) ( )

( ) ( )

1 1 1 2

3 3 1 4
3

1 1

4 4 4 3 12

d d x x x
dx x dx
d d x x x
dx x dx

− − − −

− − − −

⎛ ⎞ = = − = −⎜ ⎟
⎝ ⎠
⎛ ⎞ = = − ⋅− =⎜ ⎟
⎝ ⎠
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Example 12: Tangent to a curve

Find the tangent to the curve
at the point (1,3) 2y x

x
= +
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Example 13

Find the derivative of ( )( )2

4

1 2x x x
y

x
− −

=
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Second- and higher-order derivative

Second derivative

nth derivative

( )
2

2

2 2

''( ) '

        '' ( )( ) ( )x

d y d dy df x y
dx dx dx dx
y D f x D f x

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

= = =

( ) ( 1)
n

n n n
n

d d yy y D y
dx dx

−= = =
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Example 14
3 2

2

(4)

3 2
3 6
6 6
6
0

y x x
y x x
y x
y
y

= − +

′ = −
′′ = −
′′′ =

=
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3.3
The Derivative as a Rate of Change

(1st lecture of week 20/08/07-
25/08/07)
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Instantaneous Rates of Change
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Example 1: How a circle’s area changes with 
its diameter

A = πD2/4
How fast does the area change with respect 
to the diameter when the diameter is 10 m?
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Motion along a line

Position s = f(t)
Displacement, ∆s = f(t+ ∆t) - f(t)
Average velocity 
vav = ∆s/∆t = [f(t+ ∆t) - f(t)] /∆t
The instantaneous velocity is the limit of vav

when ∆t → 0
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Example 3

Horizontal motion
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Example 4

Modeling free fall
Consider the free fall of a heavy ball 
released from rest at t = 0 sec.
(a) How many meters does the ball fall in 
the first 2 sec?
(b) What is the velocity, speed and 
acceleration then?

21
2

s gt=
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Modeling vertical motion

A dynamite blast blows a heavy rock straight up 
with a launch velocity of 160 m/sec. It reaches a 
height of s = 160t – 16t2 ft after t sec.
(a) How high does the rock go?
(b) What are the velocity and speed of the rock 
when it is 256 ft above the ground on the way up? 
On the way down?
(c) What is the acceleration of the rock at any time 
t during its flight?
(d) When does the rock hit the ground again?
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3.4
Derivatives of Trigonometric Functions
(2nd lecture of week 20/08/07-25/08/07)
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Derivative of the sine function

0

sin( ) sinsin lim
h

d x h xx
dx h→

+ −
= =L
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Derivative of the cosine function

0

cos( ) coscos lim
h

d x h xx
dx h→

+ −
= =L
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Example 2

( ) 5 cos
( ) sin cos

cos( )
1 sin

a y x x
b y x x

xc y
x

= +
=

=
−
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Derivative of the other basic trigonometric 
functions
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Example 5

Find d(tan x)/dx
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Example 6

Find y'' if y = sec x
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Example 7

Finding a trigonometric limit

0

2 sec 2 sec0lim
cos( tan ) cos( tan 0)

2 1 3     3
cos( 0) 1

x

x
xπ π

π

→

+ +
=

− −

+
= = = −

− −
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3.5
The Chain Rule and                       

Parametric Equations
(2nd lecture of week 20/08/07-25/08/07)
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Differentiating composite functions

Example: 
y = f(u) = sin u
u = g(x) = x2 – 4
How to differentiate F(x) = f ◦ g = f [g(x)]?
Use chain rule
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Derivative of a composite function

Example 1 Relating derivatives
y = (3/2)x = (1/2)(3x) 

= g[u(x)]
g(u) = u/2; u(x) = 3x
dy/dx = 3/2;
dg/du = ½; du/dx = 3;
dy/dx = (dy/du)⋅(du/dx) (Not an accident)
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Example 2
4 2 2 29 6 1 (3 1)y x x x= + + = +
2 2; 3 1y u u x= = +

( )

2 3

4 2 3

2 6

           2(3 1) 6 36 12
c.f.

9 6 1 36 12

dy du u
du dx

x x x x

dy d x x x x
dx dx

⋅ = ⋅

= + ⋅ = +

= + + = +
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Example 3

Applying the chain rule
x(t)= cos(t2 + 1). Find dx/dt.
Solution:
x(u)= cos(u); u(t)= t2 + 1; 
dx/dt = (dx/du)⋅(du/dt) = …
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Alternative form of chain rule

If y = f [g(x)], then 
dy/dx = f ' [g(x)]⋅ g' (x)

Think of f as ‘outside function’,  g as ‘inside-
function’, then 
dy/dx = differentiate the outside function and 
evaluate it at the inside function let alone; then 
multiply by the derivative of the inside function.
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Example 4

Differentiating from the outside In

2 2

inside inside derivative of 
left alone left alone the inside

sin ( ) cos( ) (2 1)d x x x x x
dx

+ = + ⋅ +
14243 14243 123
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Example 5

A three-link ‘chain’
Find the derivative of ( ) tan(5 sin 2 )g t t= −
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Example 6

Applying the power chain rule

( )

3 4 7

1

( ) (5 )

1( ) 3 2
3 2

da x x
dx
d db x
dx x dx

−

−

⎛ ⎞ = −⎜ ⎟−⎝ ⎠
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Example 7

(a) Find the slope of tangent to the curve 
y= sin5x at the point where x = π/3
(b) Show that the slope of every line tangent 
to the curve y = 1/(1-2x)3 is positive
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Parametric equations

A way of expressing both the coordinates of 
a point on a curve, (x,y) as a function of a 
third variable, t. 
The path or locus traced by a point particle 
on a curve is then well described by a set of 
two equations:
x = f(t), y = g(t)
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The variable t is a parameter for the curve
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Example 9

Moving 
counterclockwise on a 
circle
Graph the parametric 
curves
x=cos t, y = sin t, 
0 ≤ t ≤ 2π
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Example 10
Moving along a 
parabola
x= √ t, y = t,  0 ≤ t
Determine the relation 
between x and y by 
eliminating t.
y = t = (t)2 = x2

The path traced out by 
P (the locus) is only 
half the parabola, x ≥
0



Slide  3 - 88Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

Slopes of parametrized curves

A parametrized curved x = f(t), y = g(t) is 
differentiable at t if f and g are differentiable 
at t.
At a point on a differentiable parametrised
curve where y is also a differentiable 
function of x, i.e. y = y(x) = y[x(t)], 
chain rule relates dx/dt, dy/dt, dy/dx via 

dy dy dx
dt dx dt

= ⋅
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Example 12

Differentiating with a parameter
If x = 2t + 3 and  y = t2 – 1, find the value 
of dy/dx at t = 6.
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(3) is just the parametric formula (2) by 

y → dy/dx
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Example 14

Finding d2y/ dx2 for a parametrised curve
Find d2y/ dx2 as a function of t if x = t - t2, 
y = t - t3. 
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3.6
Implicit Differentiation

(3rd lecture of week 20/08/07-
25/08/07)
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Example 1:
Differentiating
implicitly

Find dy/dx if y2 = x
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Example 2

Slope of a circle at a point
Find the slope of circle x2 + y2 = 25 at 
(3, -4)
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Example 3

Differentiating 
implicitly
Find dy/dx if 
y2 = x2 + sin xy
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Lenses, tangents, and normal lines

If slop of 
tangent is mt, the 
slope of normal, 
mn, is given by 
the relation 

mnmt= - 1, or 

mn = - 1/ mt
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Tangent and normal to the folium of 
Descartes
Show that the point (2,4) lies on the curve 
x2 + y3 - 9xy = 0. The find the tangent and 
normal to the curve there.

Example 4
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Example 5
Finding a second derivative implicitly
Find d2y/dx2 if 2x3 - 3y2 = 8. 

Derivative of higher order
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Rational powers of differentiable functions

Theorem 4 is proved based on  d/dx(xn) = nxn-1

(where n is an integer) using implicit differentiation
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Theorem 4 provide a extension of the power 
chain rule to rational power:

u≠ 0 if (p/q) < 1, (p/q) rational number,  u a 
differential function of x

/ ( / ) 1p q p qd p duu u
dx q dx

−=
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Example 6

Using the rational power rule
(a) d/dx (x1/2) = 1/2x-1/2 for x > 0
(b) d/dx (x2/3) = 2/3 x-1/3 for x ≠ 0
(c) d/dx (x-4/3) = -4/3 x-7/3 for x ≠ 0
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Proof of Theorem 4

Let p and q be integers with q > 0 and 

Explicitly differentiating both sides with 
respect to x…

/p q q py x y x= ≡ =
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Example 7

Using the rational power and chain rules
(a) Differentiate (1-x2)1/4

(b) Differentiate (cos x)-1/5
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Chapter 4
Applications of Derivatives
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4.1
Extreme Values of Functions
(3rd lecture of week 20/08/07-

25/08/07)
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Example 1

Exploring absolute extrema
The absolute extrema of the following 
functions on their domains can be seen in 
Figure 4.2
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Local (relative) extreme values
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Finding Extrema
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How to find the absolute extrema of a continuous 
function f on a finite closed interval

1. Evaluate f at all critical point and endpoints
2. Take the largest and smallest of these values.
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Example 2: Finding absolute extrema

Find the absolute maximum and minimum 
of f(x) = x2 on [-2,1].



Slide  4 - 16Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

Example 3: 
Absolute extrema at endpoints

Find the absolute 
extrema values of 
g(t) = 8t - t4 on 
[-2,1].
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Example 4: Finding absolute extrema on a 
closed interval

Find the absolute maximum and minimum 
values of f (x) = x2/3 on the interval [-2,3].
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Not every critical 
point or endpoints 
signals the presence of 
an extreme value.
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4.2
The Mean Value Theorem

(1st lecture of week 27/08/07-
01/09/07)
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Example 1

3

( ) 3
3
xf x x= −

Horizontal tangents of 
a cubit polynomial
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Example 2 Solution of an equation f(x)=0

Show that the equation 

has exactly one real solution.

Solution
1. Apply Intermediate value theorem to show that 

there exist at least one root
2. Apply Rolle’s theotem to prove the uniqueness 

of the root.

3 3 1 0x x+ + =
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The mean value theorem
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Example 3

The function 
is continuous for 0 ≤ x≤2 and 
differentiable for 0 < x < 2.  

2( )f x x=
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Mathematical consequences
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Corollary 1 can be proven using the Mean 
Value Theorem

Say x1, x2∈(a,b) such that x1 <  x2
By the MVT on [x1,x2] there exist some point c
between x1 and x2 such that            f '(c)= (f (x2)
–f (x1))/(x2 - x1) 
Since  f '(c) = 0 throughout (a,b), 
f (x2) – f (x1) = 0, hence f (x2) = f (x1) for x1, 
x2∈(a,b). 
This is equivalent to f(x) = a constant for 
x∈(a,b). 
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Proof of Corollary 2

At each point x∈(a,b) the derivative of the 
difference between function h=f – g is 
h'(x) = f '(x) –g'(x) = 0
Thus h(x) = C on (a,b) by Corollary 1. 
That is f (x) –g(x) = C on (a,b), so              
f (x) = C + g(x). 
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Example 5

Find the function f(x) whose derivative is 
sin x and whose graph passes through the 
point (0,2).
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4.3
Monotonic Functions and                        
The First Derivative Test

(1st lecture of week 27/08/07-01/09/07)
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Increasing functions and decreasing functions
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Mean value theorem is used to prove Corollary 3
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Example 1
Using the first derivative test for monotonic 
functions 
Find the critical point of 
and identify the intervals on which f is 
increasing and decreasing.

Solution

3( ) 12 5f x x x= − −

( )( )( ) 3 2 2f x x x′ = + −
  for 2

12   for 2 2
   for 2

f x
f x
f x

′ + −∞ < < −
′ − − < <
′ + < < ∞

3( ) 12 5f x x x= − −
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First derivative test for local extrema
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Example 2: Using the first derivative test for 
local extrema 

Find the critical point of 

Identify the intervals on which f is 
increasing and decreasing. Find the 
function’s local and absolute extreme 
values.

( )1/ 3 4 / 3 1/ 3( ) 4 4f x x x x x= − = −

2/3

4( 1) ; ve   for 0;
3x

ve   for 0 1; ve   for 1

xf f x

f x f x

−′ ′= − <

′ ′− < < + >
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4.4
Concavity and Curve Sketching
(2nd lecture of week 27/08/07-

01/09/07)



Slide  4 - 48Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

Concavity

go back
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Example 1(a): Applying the concavity test

Check the concavity of the curve y = x3

Solution: y'' = 6x
y'' < 0 for x < 0; y'' > 0 for x > 0;

Link to Figure 4.25
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Example 1(b): Applying the concavity 
test

Check the concavity of 
the curve y = x2

Solution: y'' = 2 > 0
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Example 2

Determining concavity
Determine the 
concavity of 
y = 3 + sin x on
[0, 2π].
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Point of inflection
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Example 3

An inflection point 
may not exist where 
An inflection point
may not exist where y''
= 0
The curve y = x4 has 
no inflection point at 
x=0. Even though y'' = 
12x2 is zero there, it 
does not change sign. 
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Example 4

An inflection point 
may not occur where 
y'' = 0 does not exist
The curve y = x1/3 has 
a point of inflection at 
x=0 but y''  does not 
exist there. 
y'' = (2/9)x-5/3
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Second derivative test for local extrema
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Example 6: Using f ' and f '' to graph f
Sketch a graph of the function                               
f (x) = x4 - 4x3 + 10

using the following steps.
(a) Identify where the extrema of f occur
(b) Find the intervals on which f is increasing and the 

intervals on which f is decreasing
(c) Find where the graph of f is concave up and 

where it is concave down.
(d) Sketch the general shape of the graph for f.
(e) Plot the specific points. Then sketch the graph.
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Example 

Using the graphing strategy
Sketch the graph of
f (x) = (x + 1)2 / (x + 1).
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Learning about functions from derivatives
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4.5
Applied Optimization Problems
(2nd lecture of week 27/08/07-

01/09/07)
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Example 1

An open-top box is to be cutting small 
congruent squares from the corners of a 12-
in.-by-12-in. sheet of tin and bending up the 
sides. How large should the squares cut 
from the corners be to make the box hold as 
much as possible?
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Example 2

Designing an efficient 
cylindrical can
Design a 1-liter can 
shaped like a right 
circular cylinder. What 
dimensions will use 
the least material?
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Example 3

Inscribing rectangles
A rectangle is to be 
inscribed in a semicircle 
of radius 2. What is the 
largest area the rectangle 
can have, and what are its 
dimensions?
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4.6
Indeterminate Forms and                               

L’ Hopital’s Rule
(3rd lecture of week 27/08/07-01/09/07)

^
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Indeterminate forms 0/0
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Example 1

Using L’ Hopital’s Rule
(a)

(b) 

0
0

3 sin 3 coslim 2
1x

x

x x x
x→

=

− −
= =

0

0

1
1 1 12 1lim

1 2x

x

x x
x→

=

+ − += =
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Example 2(a)

Applying the stronger form of L’ Hopital’s
rule
(a) 1/ 2

20 0

3/ 2

0

1 1 / 2 (1/ 2)(1 ) 1/ 2lim lim
2

(1/ 4)(1 ) 1lim
2 8

x x

x

x x x
x x

x

−

→ →

−

→

+ − − + −
=

− + −
= =
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Example 2(b)

Applying the stronger form of L’ Hopital’s
rule
(b) 30

sinlim
x

x x
x→

−
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Example 3

Incorrectly applying the stronger form of   
L’ Hopital’s

20

1 coslim
x

x
x x→

−
+
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Example 4

Using l’ Hopital’s rule with one-sided limits

20 0

20 0

sin cos( ) lim lim ...
2

sin cos( ) lim lim ...
2

x x

x x

x xa
x x

x xb
x x

+ +

− −

→ →

→ →

= =

= =
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Indeterminate forms ∞/∞, ∞⋅0, ∞- ∞

Example 5(a)
Working with the indeterminate form ∞/∞

/ 2

2( / 2) ( / 2) ( / 2)

( / 2)

sec( ) lim
1 tan
sec sec tanlim lim lim sin 1

1 tan sec
seclim . ...

1 tan

x

x x x

x

xa
x

x x x x
x x

x
x

π

π π π

π

− − −

+

→

→ → →

→

+

= = =
+

=
+
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Example 5(b)
2

2

2( ) lim ...
3 5x

x xb
x x→∞

−
=

+
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Example 6

Working with the indeterminate form ∞⋅0
1lim sin

x
x

x→∞

⎛ ⎞
⎜ ⎟
⎝ ⎠
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Example 7

Working with the indeterminate form ∞ -
∞

0 0

1 1 sinlim lim ...
sin sinx x

x x
x x x x→ →

−⎛ ⎞ ⎛ ⎞− = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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4.8
Antiderivatives

(3rd lecture of week 27/08/07-
01/09/07)
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Finding antiderivatives
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Example 1

Finding antiderivatives
Find an antiderivative for each of the 
following functions
(a) f(x) = 2x
(b) f(x) = cos x
(c) h(x) = 2x + cos x
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Example 2 Finding a particular antiderivative

Find an antiderivative of f (x) = sin x that 
satisfies F(0) = 3



Slide  4 - 89Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley



Slide  4 - 90Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

Example 3 Finding antiderivatives using table 
4.2

Find the general antiderivative of each of 
the following functions.
(a) f (x) = x5

(b) g (x) = 1/x1/2

(c) h (x) =  sin 2x
(d) i (x) =  cos (x/2)
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Example 4 Using the linearity rules for 
antiderivatives

Find the general antiderivative of 
f (x) = 3/x1/2 + sin 2x
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Example of indefinite integral notation 

2

2

2  

cos  sin

(2 cos ) sin

x dx x C

x dx x C

x x dx x x C

= +

= +

+ = + +

∫
∫
∫
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Example 7 Indefinite integration done term-by 
term and rewriting the constant of integration

Evaluate

( )2 22 5 2 5 ...x x dx x dx xdx dx− + = − + =∫ ∫ ∫ ∫
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Chapter 5
Integration
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5.1
Estimating with Finite Sums
(1st lecture of week 03/09/07-

08/09/07)
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Riemann Sums
Approximating area bounded by the graph 
between [a,b]
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Partition of [a,b] is the set of 
P = {x0, x1, x2, … xn-1, xn}
a < x0< x1< x2 …< xn-1 < xn=b
cn∈[xn-1, xn]
||P|| = norm of P = the largest of all 
subinterval width

Area is approximately given by

f(c1)∆x1 + f(c2)∆x2+ f(c3)∆x3+ … + f(cn)∆xn



Slide  5 - 5Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

Riemann sum for f on [a,b]

Rn = f(c1)∆x1 + f(c2)∆x2+ 
f(c3)∆x3+ … +f(cn)∆xn
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Let the true value of the 
area is R
Two approximations to 
R:
cn= xn corresponds to case 
(a). This under estimates 
the true value of the area R 
if n is finite.
cn= xn corresponds to case 
(b). This over estimates the 
true value of the area S if n
is finite. go back
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Limits of finite sums

Example 5 The limit of finite approximation 
to an area
Find the limiting value of lower sum 
approximation to the area of the region R
below the graphs f(x) = 1 - x2 on the interval 
[0,1] based on Figure 5.4(a)
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Solution
∆xk = (1 - 0)/n= 1/n ≡∆x; k = 1,2,…n
Partition on the x-axis: [0,1/n], [1/n, 2/n],…, [(n-1)/n,1].
ck = xk = k∆x = k/n
The sum of the stripes is 

Rn = ∆x1 f(c1) + ∆x2 f(c2) + ∆x3 f(c3) + …+ ∆xn f(cn) 
= ∆x f(1/n) + ∆x f(2/n) + ∆x f(3/n) + …+ ∆xn f(1) 
= ∑k=1

n ∆x f(k∆x) = ∆x ∑k=1
n f (k/n)

= (1/ n) ∑k=1
n [1 - (k/n)2]

= ∑k=1
n  1/ n - k2/n3  = 1 – (∑k=1

n k2)/ n3

= 1 – [(n) (n+1) (2n+1)/6]/ n3 = 1 – [2 n3 + 3 n2+n]/(6n3)

∑k=1
n k2 = (n) (n+1) (2n+1)/6
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Taking the limit of n →∞

The same limit is also obtained if cn = xn-1 is 
chosen instead.
For all choice of cn ∈ [xn-1,xn] and partition of P, 
the same limit for S is obtained when n ∞

3 2

3

2 3lim 1 1 2 / 6 2 /3
6nn

n n nR R
n→∞

⎛ ⎞+ +
= = − = − =⎜ ⎟

⎝ ⎠
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5.3
The Definite Integral

(2nd lecture of week 03/09/07-
08/09/07)
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“The integral from a to b of f of x with 
respect to x”
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The limit of the Riemann sums of f on [a,b] 
converge to the finite integral I

We say f is integrable over [a,b]
Can also write the definite integral as 

The variable of integration is what we call a 
dummy variable

|| || 0 1
lim ( ) ( )

n b

k k aP k
f c x I f x dx

→
=

∆ = =∑ ∫

( ) ( ) ( )

(what ever)   (what ever)

b b b

a a a

b

a

I f x dx f t dt f u du

f d

= = =

=

∫ ∫ ∫
∫
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Question: is a non continuous 
function integrable?
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Integral and nonintegrable functions

Example 1
A nonintegrable function on [0,1]

Not integrable

1, if  is rational
( )

0, if  is irrational
x

f x
x

⎧
= ⎨

⎩
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Properties of definite integrals
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Example 3 Finding bounds for an integral

Show that the value of 
is less than 3/2

Solution
Use rule 6 Max-Min Inequality

1

0
1 cos xdx+∫
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Area under the graphs of a nonnegative 
function
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Example 4 Area under the line y = x

Compute             (the 
Riemann sum)
and find the area A
under y = x over the 
interval [0,b], b>0

0

b
xdx∫



Slide  5 - 24Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

Solution

( ) ( )

1 1

1 1

2
2

1 1

2 2

2 2

Riemann sum

lim ( ) lim ( )

lim lim

lim lim

1 1
lim lim

2 2
1lim 1

2 2

n n

k kn nk k

n n

kn nk k

n n

n nk k

n n

n

x f c x f x

x x x k x

bx k k
n

n n n nb b
n n

b b
n

→∞ →∞
= =

→∞ →∞
= =

→∞ →∞
= =

→∞ →∞

→∞

∆ = ∆

= ∆ = ∆ ∆

⎛ ⎞= ∆ = ⎜ ⎟
⎝ ⎠

+ +⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= + =⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

∑ ∑

By geometrical consideration:

A=(1/2)×high×width= (1/2)×b×b= b2/2
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Using geometry, the area 
is the area of a trapezium 
A= (1/2)(b-a)(b+a)

= b2/2 - a2/2
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Average value of a continuous function 
revisited

Average value of nonnegative continuous 
function f over an interval [a,b] is

In the limit of n ∞, the average =
1 ( )

b

a

f x dx
b a− ∫

1 2

1

1 1

( ) ( ) ( ) 1 ( )

1( ) ( )

n
n

k
k

n n

k k
k k

f c f c f c f c
n n

x f c xf c
b a b a

=

= =

+ +
=

∆
= = ∆

− −

∑

∑ ∑

L
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Example 5 Finding average value

Find the average value 
of
over [-2,2]

2( ) 4f x x= −
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5.4
The Fundamental Theorem of Calculus
(2nd lecture of week 03/09/07-08/09/07)
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Mean value theorem for definite integrals
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Example 1 Applying the mean value theorem 
for integrals

Find the average value of 
f(x)=4-x on [0,3] and 
where f actually takes on 
this value as some point in 
the given domain.

Solution
Average = 5/2
Happens at x=3/2
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Fundamental theorem Part 1

( ) ( )
x

a

F x f t dt= ∫Define a function F(x): 
x,a ∈ I, an interval over which f(t) > 0 is 
integrable.
The function F(x) is the area under the 
graph of f(t) over [a,x], x > a ≥ 0
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( ) ( )
( ) ( )

( ) ( )
h 0

( )

( )

lim ( ) ( )

F x h F x hf x

F x h F x
f x

h
F x h F x

F x f x
h→

+ − ≈

+ −
≈

+ −
′= =

Fundamental theorem Part 1 (cont.)

The above result 
holds true even if f
is not positive 
definite over [a,b]
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Example 3 Applying the fundamental theorem

Use the fundamental theorem to find

2

2

5

1

1( ) cos                     ( )
1

( )  if 3 sin         ( )  if cos

x x

a a

x

x

d da tdt b dt
dx dx t

dy dyc y t tdt d y tdt
dx dx

+

= =

∫ ∫

∫ ∫
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Example 4 Constructing a function with a 
given derivative and value

Find a function y = f(x) on the domain (-π /2, 
π/2) with derivative dy/dx = tan x
that satisfy f(3)=5.

Solution
Set the constant a = 3, and then add to k(3) = 0 
a value of 5, that would make k(3) + 5 = 5
Hence the function that will do the job is

( ) tan
x

a

k x tdt= ∫

3

( ) ( ) 5 tan 5
x

f x k x tdt= + = +∫
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Fundamental theorem, part 2 (The evaluation 
theorem)



Slide  5 - 44Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

To calculate the definite integral of f over 
[a,b], do the following

1. Find an antiderivative F of f, and 
2. Calculate the number 

( ) ( ) ( )
b

a

f x dx F b F a= −∫
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To summarise

( )( ) ( )

( ) ( ) ( ) ( )

x

a
x x

a a

d dF xf t dt f x
dx dx

dF t dt f t dt F x F a
dt

= =

⎛ ⎞ = = −⎜ ⎟
⎝ ⎠

∫

∫ ∫
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Example 5 Evaluating integrals

2

0
0

/ 4

2
1

( ) cos

( ) sec tan

3 4( )
2

x

a xdx

b x xdx

c x dx
x

π

π−

⎛ ⎞−⎜ ⎟
⎝ ⎠

∫

∫

∫
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Example 7 Canceling areas

Compute
(a) the definite integral 
of f(x) over [0,2π]
(b) the area between 
the graph of f(x) and 
the x-axis over [0,2π]
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Example 8 Finding area using antiderivative

Find the area of the region between the x-
axis and the graph of f(x) = x3 - x2 – 2x, 
-1 ≤ x ≤ 2.

Solution
First find the zeros of f. 
f(x) = x(x+1) (x-2)
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5.5
Indefinite Integrals and the Substitution 

Rule
(3rd lecture of week 03/09/07-08/09/07)
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Note

The indefinite integral of f with respect to x

is a function plus an arbitrary constant

A definite integral
is a number.

( )f x dx∫

( )
b

a

f x dx∫
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The power rule in integral form
From 

We obtain the following rule

1 1

1 1

n n
n n

n n

d u du du uu u dx
dx n dx dx n

duu dx u du
dx

+ +⎛ ⎞ ⎛ ⎞⎛ ⎞= → =⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞ =⎜ ⎟
⎝ ⎠

∫

∫ ∫ differential of ( ),  is duu x du du dx
dx

=
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Example 1 Using the power rule

21 2   

 ...

duy y dy u dy
dy

u du

+ ⋅ = ⋅ ⋅

= =

∫ ∫

∫
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Example 2 Adjusting the integrand by a 
constant

14 1 4 1  4
4

1 1  ...
4 4

t dt t dt

duu dt u du
dt

− = − ⋅

⎛ ⎞= ⋅ = =⎜ ⎟
⎝ ⎠

∫ ∫

∫ ∫
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Substitution: Running the chain rule 
backwards

Used to find the integration with the integrand in the 
form of the product of 

let  ( ); [ ( )] ( ) ( ) ( )duu g x f g x g x dx f u dx f u du
dx

′= ⋅ = ⋅ =∫ ∫ ∫

( )

[ ( )] '( ) ( )
f u du

f g x g x dx f u du⋅ =∫ ∫14243 14243

[ ( )] '( )f g x g x dx⋅
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Example 3 Using substitution

{ ( )
1
7

1 1cos(7 5)   cos sin sin 7 5
7 7 7

u du

dux dx u u C x C+ = ⋅ = + = + +∫ ∫14243
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Example 4 Using substitution

{ {
2 3 3 2

1
3

sin  sin  
u du

x x dx x x dx= =∫ ∫
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Example 5 Using Identities and substitution

{ {
2 2

2
1
2

2

tan

1  sec 2  sec 2  
cos 2

1 1 1 1sec  (tan ) tan tan 2
2 2 2 2

u du

d u
du

dx x dx x dx
x

u du d u u C x C

= = =

= = + = +

∫ ∫ ∫

∫ ∫123
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Example 6 Using different substitutions

( ) {
1/ 3

1/ 32 1/ 3
3

2

2 1  2 ...
1 du

u

z dz z zdz u du
z −

− −= + = =
+

∫ ∫ ∫14243
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The integrals of sin2x and cos2x

Example 7

{{

2

1
2

1     sin  1 cos2  
2

1                      = cos2
2 2

1                      = cos ...
2 4

u du

x dx x dx

x x dx

x udu

= −

−

− =

∫ ∫

∫

∫
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The integrals of sin2x and cos2x

Example 7(b)

2 1     cos  cos2 1 ...
2

x dx x dx= + =∫ ∫
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Example 8 Area beneath the curve y=x2

For Figure 5.24, find 
(a) the definite integral 
of g(x) over [0,2π].
(b) the area between 
the graph and the x-
axis over [0,2π].
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5.6
Substitution and                                     

Area Between Curves
(3rd lecture of week 03/09/07-08/09/07)
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Substitution formula

( )

( )

let  ( ); [ ( )] ( ) [ ] ( )
u g bx b x b

x a x a u g a

duu g x f g x g x dx f u dx f u du
dx

== =

= = =

′= ⋅ = ⋅ =∫ ∫ ∫
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Example 1 Substitution

Evaluate
1

2 3

1

3 1 x x dx
−

+∫

{
1/ 2

( 1)1
3 2 1/ 2

1 ( 1)

1 3 ...
u xx

dux u xu

x x dx u du
==

=− =

+ ⋅ = ⋅ =∫ ∫123
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Example 2 Using the substitution formula

{

( ) ( )

/ 2
2

/ 4

2
2 2

2

/ 2 / 4/ 2 2 2
2 2 2

/ 4 / 4 / 2 1 0

cot csc ?

cot csc cot csc
2

cot
2

cot cot 1 1cot csc cot / 4 cot / 2
2 2 2 2

x

x

u du

x xdx

ux xdx x xdx udu c

x c

x xx xdx

π

π

π ππ

π π π

π π

=

=

−

=

= ⋅ = − = − +

= − +

⎡ ⎤
⎢ ⎥= − = = − =
⎢ ⎥⎣ ⎦

∫

∫ ∫ ∫

∫

14243

14243 14243
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Definite integrals of symmetric functions
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Example 3 Integral of an even function

( )

( ) ( )

2
4 2

2

4 2

4 2 4 2

Evaluate 4 6

Solution:
( ) 4 6;

( ) 4 6 4 6 ( )
even function

x x dx

f x x x

f x x x x x f x

−

− +

= − +

− = − − − + = − + =

∫

How about integration of the same 
function from x=-1 to x=2
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Area between curves
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( )

( ) [ ]
1 1

|| || 0 1

( ) (

lim ( ) ( ( ) ( )

n n

k k k k
k k

n b

k k k aP k

A A x f c g c

A x f c g c f x g x dx

= =

→
=

⎡ ⎤≈ ∆ = ∆ −⎣ ⎦

⎡ ⎤= ∆ − = −⎣ ⎦

∑ ∑

∑ ∫
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Find the area of the 
region enclosed by the 
parabola y = 2 – x2

and the line y = -x.

Example 4 Area between intersecting curves

{ {

( )
2

0
1

2

1
2

2 2

1

lim ;

[ ( ) ( )]

   2 ...

n A

kn k

b

a
xx

A A dA

A f x g x dx

x x dx

→∞
=

≡

≡−
−

−

= ∆ =

= −

= − − =

∑ ∫

∫

∫

( )( ) ( )A f x g x x∆ = − ⋅ ∆
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Find the area of the 
shaded region

Example 5 Changing the integral to match a 
boundary change

2

0

4

2

;

( 2)

Area A B

A xdx

B x x dx

= +

=

= − −

∫
∫
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( )

( ) [ ]
1 1

|| || 0 1

( ) (

lim ( ) ( ( ) ( )

n n

k k k k
k k

n d

k k k cP k

A A y f c g c

A y f c g c f y g y dy

= =

→
=

⎡ ⎤≈ ∆ = ∆ −⎣ ⎦

⎡ ⎤= ∆ − = −⎣ ⎦

∑ ∑

∑ ∫

kA∆
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Example 6 Find the area of the region in 
Example 5 by integrating with respect to y

( ( ) ( ))A f y g y y∆ = − ⋅ ∆

( ) ( )

4

0
1

2 2

1

lim [ ( ) ( )]

   2 ...

n y

k yn k
A A f y g y dy

y y dy

=

=→∞
=

−

= ∆ = −

= + − =

∑ ∫

∫
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6.3
Lengths of Plane Curves

(1st lecture of week 10/09/07-
15/09/07)
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Length of a parametrically defined curve

|| || 0
lim

n

kP k
L L

→
= ∑

Lk the line segment 
between Pk and Pk-1
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1( ) ( )k kf t f t −= −

1( ) ( )k kg t g t −= −
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( ) ( )

( ) ( )

|| || 0

2 2* **

|| || 0

2 2
2 2

lim lim

lim '( ) '( )

'( ) '( )

n n

k kn Pk k
n

k kP k

b b

a a

L L L

t g t f t

dy dxg t f t d t d t
d t d t

→ ∞ →

→

= =

= ∆ +

⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑

∑

∫ ∫

( )
( )

* *
1 1

** **
1 1

( ) ( ) '( ) '( ) ;

( ) ( ) '( ) '( )
due to mean value theorem

k k k k k k k

k k k k k k k

y g t g t g t t t g t t

x f t f t f t t t f t t
− −

− −

∆ = − = ⋅ − = ⋅∆

∆ = − = ⋅ − = ⋅∆

( ) ( ) ( ) ( )2 22 2 * **'( ) '( )k k k k kL y x t g t f t= ∆ + ∆ = ∆ +
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Example 1 The circumference of a circle

Find the length of the circle of radius r
defined parametrically by
x=r cos t    and y=r sin t, 0 ≤ t ≤ 2π

( ) ( )
2 2 2

2 2

0

2

0

cos sin

2

b

a

dy dxL d t r t r t d t
d t d t

r d t r

π

π

π

⎛ ⎞ ⎛ ⎞= + ≡ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= =

∫ ∫

∫
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Length of a curve y = f(x)

[ ]

2 2

2 2 2

2

A ssign  the param eter , the leng th  o f the cu rve 
( )  is  then  g iven  by 

[ ( )]

1

'( ) 1

b

a

b b

a a

b

a

x t
y f x

dy dxL d t
d t d t

dy dy dx dyy y x t
d t dx d t dx

dy dx dx dyL d t dx
dx d t d t dx

dx f x

=
=

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= ⇒ = ⋅ =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= +

∫

∫ ∫

∫
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Example 3 Applying the arc length formula 
for a graph

Find the length of the curve
3 / 24 2 1,    0 1

3
y x x= − ≤ ≤
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Dealing with discontinuity in dy/dx

At a point on a curve where dy/dx fails to 
exist and we may be able to find the curve’s 
length by expressing x as a function of y and 
applying the following
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Example 4 Length of a graph which has a 
discontinuity in dy/dx

Find the length of the curve y = (x/2)2/3

from x = 0 to x = 2.
Solution
dy/dx = (1/3) (2/x)1/3 is not defined at x=0.
dx/dy = 3y1/2 is continuous on [0,1].
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Chapter 7
Transcendental Functions
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7.1
Inverse Functions and                          

Their Derivatives
(1st lecture of week 10/09/07-15/09/07)
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Example 1 Domains of one-to-one functions

(a) f(x) = x1/2 is one-to-one on any domain 
of nonnegative numbers
(b) g(x) = sin x is NOT one-to-one on [0,π] 
but one-to-one on [0,π/2].
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1. Solve the equation y =f(x) for x. This 
gives a formula x = f -1(y) where x is 
expressed as a function of y.

2. Interchange x and y, obtaining a formula y
= f -1(x) where f -1(x) is expressed in the 
conventional format with x as the 
independent variable and y as the dependent 
variables.

Finding inverses
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Example 2 Finding an inverse function

Find the inverse of y = x/2 + 1, expressed as a 
function of x.

Solution
1. solve for x in terms of y: x = 2(y – 1)
2. interchange x and y: y = 2(x – 1)
The inverse function f-1(x) = 2(x – 1)
Check: f -1[f(x)] = 2[f(x) – 1] = 2[(x/2 + 1) – 1] = x 
= f [f-1 (x)]
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Example 3 Finding an inverse function

Find the inverse of y = x2, x ≥ 0, expressed 
as a function of x. 
Solution
1. solve for x in terms of y: x = √y
2. interchange x and y: y = √x
The inverse function f-1(x) = √x
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Derivatives of inverses of differentiable 
functions

From example 2 (a linear function)
f(x) = x/2 + 1; f-1(x) = 2(x + 1);
df(x)/dx = 1/2; df -1(x)/dx = 2,
i.e. df(x)/dx = 1/df -1(x)/dx
Such a result is obvious because their graphs are 
obtained by reflecting on the      y = x line.
In general, the reciprocal relationship between the 
slopes of f and f-1 holds for other functions.
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slope at 
x a

dfx a
dx =

= =

1
1slope at ( )

x b

dfx b f a
dx

−
−

=

= = =
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Example 4 Applying theorem 1

The function f(x) = x2, x ≥ 0 and its inverse
f -1(x) = √x have derivatives f '(x) = 2x, and 
(f -1)'(x) = 1/(2√x). 
Theorem 1 predicts that the derivative of 

f -1(x) is 
(f -1)'(x) =  1/ f '[f -1(x)] = 1/ f '[√x] 

= 1/(2√x)
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Example 5 Finding a value of the inverse 
derivative

Let f(x) = x3 – 2. Find the value of df -1/dx at 
x = 6 = f(2) without a formula for f -1.
The point for f is (2,6); The corresponding 
point for f -1 is (6,2).
Solution
df /dx =3x2

df -1/dx|x=6 = 1/(df /dx|x=2)= 1/(df/dx|x= 2)
= 1/3x2|x=2 = 1/12
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7.2
Natural Logarithms

(2nd lecture of week 10/09/07-
15/09/07)
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Definition of natural logarithmic fuction
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e lies between 2 
and 3

ln x = 1
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By definition, the antiderivative of ln x is just 1/x

Let u = u (x). By chain rule, 

d/dx [ln u(x)] = d/du(ln u)⋅du(x)/dx

=(1/u)⋅du(x)/dx 
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Example 1 Derivatives of natural logarithms

2

( ) ln 2

1( )   3; ln

da x
dx

d dub u x u
dx dx u

=

= + = =
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Properties of logarithms
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Example 2 Interpreting the properties of 
logarithms

( )
( )

3

( ) ln 6 ln 2 3 ln 2 ln3;

( ) ln 4 ln5 ln 4 /5 ln 0.8

( ) ln(1/8) ln1 ln 2 3ln 2

a

b

c

= ⋅ = +

− = =

= − = −
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Example 3 Applying the properties to function 
formulas

( )

( )

3 1/ 3

( ) ln 4 lnsin ln 4sin ;
1( ) ln ln 1 ln(2 3)

2 3
1( ) ln(sec ) ln ln cos

cos

( ) ln 1 ln( 1) (1/3)ln( 1)

a x x
xb x x
x

c x x
x

d x x x

+ =

+
= + − −

−

= = −

+ = + = +
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Proof of ln ax = ln a + ln x 

ln ax and  ln x have the same derivative:

Hence, by the corollary 2 of the mean value 
theorem, they differs by a constant C

We will prove that C = ln a by applying the 
definition ln x at x = 1.

( ) 1 1 1ln lnd d ax dax a x
dx dx ax ax x dx

= = = =

ln lnax x C= +
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Estimate the value of ln 2
2

1

1ln 2 dx
x

= ∫
2

1

1 1(2 1) 2 2 1 (2 1)
2
1 ln 2 2
2

dx
x

⋅ − < < ⋅ = ⋅ −

< <

∫
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The integral Û(1/u) du
1From ln

Let 0
Taking the integration on both sides gives

1ln

ln ln ' ;

For 0 :
0,

1 ( )ln( )
( )

ln( ) ln( ) ''

Combining both cases 

d duu
dx u dx

u

d duudx dx
dx u dx

du dud u u C
u u

u
u
d d uu dx dx
dx u dx

du dud u u C
u u

=

>

=

= → + =

<
− >

−
− =

−

− = → − + =

∫ ∫

∫ ∫ ∫

∫ ∫

∫ ∫ ∫
of 0, 0,

ln | |

u u
du u C
u

> <

= +∫
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1

recall: ,  rational, 1
1

n
n uu du C n

n

+

= + ≠
+∫

1

1

From ln | | .

let ( ).
( )

( )
( ) ( )

'( ) ln | ( ) |
( )

u du u C

u f x
df x dxdu df x dxu du

u f x f x
f x dx f x C
f x

−

−

= +

=

= = =

⇒ = +

∫

∫ ∫ ∫ ∫

∫
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Example 4 Applying equation (5)
2

2
2 2

2 ( 5)(a) ln | 5 |
5 5

xdx d x x C
x x

−
= = − +

− −∫ ∫
/ 2

/ 2

4cos(b) ...
3 2sin

x dx
x

π

π−

=
+∫
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The integrals of tan x and cot x
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Example 5
1 cos2sin 2 2tan 2

cos2 cos2
1 cos2 1 1 ln | |
2 cos2 2 2
1 ln | cos2 |
2

1 ln | sec2 |
2

d xx dxxdx dx dx
x x

d x du u C
x u

x C

x C

−
= =

= − = − = − +

= − +

= +

∫ ∫ ∫

∫ ∫
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Example 6 Using logarithmic differentiation

Find dy/dx if ( )( )1/ 22 1 3
, 1

1
x x

y x
x

+ +
= >

−

( ) ( )

( ) ( ) ( )

2

2

ln ln 1 (1/ 2)ln 3 ln( 1)

1ln ln 1 ln 3 ln 1
2

...

y x x x

d d d dy x x x
dy dy dy dy

= + + + − −

= + + + − −

=
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7.3
The Exponential Function

(2nd lecture of week 10/09/07-
15/09/07)
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The inverse of ln x and the number e

ln x is one-to-one, hence it has an inverse. We 
name the inverse of ln x, ln-1 x as exp (x)
ln x is an increasing function since 
dy/dx = 1/x > 0
Domain of ln x = (0,∞)
Range of ln x = (-∞,∞)

The graph of the inverse of ln x

1 1lim ln , lim ln 0
x x

x x− −

→∞ →−∞
= ∞ =
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Definition of e as ln e = 1. 
So, e = ln-1(1) = exp (1)
e = 2.718281828459045…

(an irrational number)
The approximate value for e is 

obtained numerically (later).
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The function y = ex

Raising the number e to a rational power r:
e2 =e⋅ e, e-2 =1/ e-2, e1/2 =√e etc.
Taking the logarithm of er, we get 
ln er = ln (e⋅ e ⋅ e ⋅ e…)

= ln e + ln e + ln e+…+ln e = r ln e = r 
From ln er = r, we take the inverse to obtain 
ln-1 (ln er) = ln-1 (r) 
er = ln-1 (r) = exp r, for r rational.
How do we define ex where x is irrational? 
This can be defined by assigning ex as exp x since ln-1 (x) is 
defined (as the inverse function of ln x is defined for all real 
x).
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Note: please do make a distinction between ex and exp x. They have 
different definitions.

ex is the number e raised to the power of real number x.

exp x is defined as the inverse of the logarithmic function, exp x = ln-1 x

For the first time we have a precise meaning for 
an irrational exponent. (previously ax is defined 
for only rational x)



Slide  7 - 45Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley



Slide  7 - 46Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

(2) follows from the definition of 
From ex = exp x, let x → ln x
eln x = ln [exp x] = x (by definition). (2)
From ex = exp x, take logarithm both sides, 
→ ln ex = ln [exp x] = x (by definition)
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Example 1 Using inverse equations

( )

( )

2

3

2

1

1/ 2

sin

ln 2

ln 1 2

3ln 2 ln 2 3

33ln 2 3 ln 2 ln 2 3

( ) ln 2
( ) ln 1

( ) ln ln 1/ 2
( ) ln sin
( ) 2

( ) 1

( ) 2 8

( ) 2 8

x

x

a e
b e

c e e
d e x
f e

g e x

h e e

i e e e

−

+

⋅

=

= −

= =

=

=

= +

= = =

= = = =
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Example 2 Solving for an exponent

Find k if e2k=10.
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The general exponential function ax

Since a = elna for any positive number a
ax = (elna)x = exlna
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Example 3 Evaluating exponential functions

( )
( )

33 ln 2 3 ln 2 1.20

ln 2 ln 2 2.18

( )2 3.32

( )2 8.8

a e e e

b e e e
ππ π

= = ≈ ≈

= = ≈ ≈
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Laws of exponents



Slide  7 - 52Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

Laws of exponents

Theorem 3 also valid for ax
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Proof of law 1

1 2

1 2 1

1 2

1 1 2 2

1 2 1 2 1 2

1 2 1 2
2

1 2

,
ln , ln

ln ln ln
exp( ) exp(ln )

x x

x x x x

y e y e
x y x y
x x y y y y

x x y y

e y y e e+

= =
⇒ = =
⇒ + = + =
⇒ + =

= =
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Example 4 Applying the exponent laws

( )

ln 2

ln

2

3

( )
( )

( )

( )

x

x

x

x

a e
b e

ec
e

d e

+

−

=

=

=

=
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The derivative and integral of ex

1

1

1 1

1

( )

( )

( ) ln , ln ( )
1( )

( )

1 1
(1/ ) (1/ )

x

x

x f x

x

x f x x y

f x x y e x f x
dy d de f x

df xdx dx dx
dx

y e
x x

−

−

− −

−

=

= =

= = = =

= = =

= = = =



Slide  7 - 56Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

Example 5 Differentiating an exponential

( )5 xd e
dx

=
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By the virtue of the chain rule, we obtain

( )( )

( ) ; ( );
( ) ( )( )

u

u x u

f u e u u x
d d df u du x due f u e
dx dx du dx dx

= =

= = =

This is the integral equivalent of (6)
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Example 7 Integrating exponentials

{
( )

ln 2
3

0
/ 2 / 2

sin sin

( )0 0

( / 2) ( / 2)
( ) ( )

(0) (0)

( / 2)( ) ( / 2) (0) sin( / 2) sin(0)

(0)

( )

( ) cos  cos

( )

1

f x

x

x x

df xe

f f
f x f x

f f

ff x f f

f

a e dx

b e x dx e xdx

e df x de

e e e e e e

π π

π π

π π π

=

=

= =

= = − = − = −

∫

∫ ∫

∫ ∫

123
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The number e expressed as a limit
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Proof

If f(x) = ln x, then f '(x) = 1/x, so f '(1) = 1. 
But by definition of derivative, 

[ ]

0

0 0

0 0

11

0 0

1

0

( ) ( )( ) lim

(1 ) (1) (1 ) ( )(1) lim lim

ln(1 ) ln(1) ln(1 )lim lim

lim ln(1 ) ln lim(1 ) 1   (since (1) 1)

1lim(1 ) lim(1 )

h

h x

x x

xx
x x

yx
x y

f y h f yf y
h

f h f f x f xf
h x

x x
x x

x x f

x e
y

→

→ →

→ →

→ →

→ →∞

+ −′ =

+ − + −′ = =

+ − +
= =

⎡ ⎤
′= + = + = =⎢ ⎥

⎣ ⎦

+ = + =
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( )

ln

ln

Define  for any real 0 as  = .
Here  need not be rational but can be any real number 
as long as  is positive.
Then we can take the logarithm of :

ln ln ln .

n n n x

n

n n x

x x x e
n

x
x

x e n x

>

= =

}( )

ln ln 1

1

Once  is defined, we can take its differentiation :
u x

n

u
n n x n x n n

n n

x

d d du de n nx e e x nx
dx dx dx du x x

d x nx
dx

−

−

⎛ ⎞
= = = = =⎜ ⎟⎜ ⎟

⎝ ⎠

⇒ =
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By virtue of chain rule, 

1

( );
( ) ( )n

n n

u u x
d du x du du xu nu
dx dx du dx

−

=

= =
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Example 9 using the power rule with 
irrational powers

2 1

1 2 1 2 1

1

1 1 1

( )

2 2

( ) (2 sin3 )

(2 sin3 ) 3 (2 sin3 ) cos3

n
n

n

n
n

n

d du dua x nu
dx dx dx

du dxnu x x
dx dx

d du dub x nu
dx dx dx

du d xnu u x x
dx dx

π

π ππ π

−

− − −

−

− − −

≡ =

≡ =

+ ≡ =

+
≡ = +
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7.4
ax and loga x

(3rd lecture of week 10/09/07-
15/09/07)
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The derivative of ax

}

( ) ( )

ln

ln

ln

 =

ln

ln ln ln

u

x x a

x x a u

u x a x

a e

d d d da e x a e
dx dx dx du

e a e a a a

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
= = =

By virtue of the chain rule, 
( )( ) lnu x u ud du d dua a a a

dx dx du dx
= =
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Example 1 Differentiating general exponential 
functions

}

( ) ( )

( )
( )
}

}

ln 3

ln 3

( )

sin sin

( ) 3 ln3

ln3 3 ln3

( ) 3 3 3 3

3 ln3 3 ln3 ln3/3

(sin )( ) 3 3 3 ln3 3 ln3 cos

u

u

u

x x u

x x

xx u u

u x x

x u u x

d d d da e x e
dx dx dx du

e

d d d db
dx d x du du

d du d d xc x
dx dx du dx

−−

−

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
= ⋅ =

= − = − = −
−

= − = − = −

= = = ⋅
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Other power functions

Example 2 Differentiating a general power 
function
Find dy/dx if y = xx, x > 0.
Solution: Write  xx as a power of e
xx =  exlnx

}

( ) ( )ln ( ln ) ...
u

x x u ud du d de e x x e
dx dx du dx

⎛ ⎞
= = ⋅ =⎜ ⎟

⎝ ⎠
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Integral of au

( )

( )

( )

From ln ,  devide by ln :

1 
ln

 ln ,  integrate both sides wrp to :

 ln :

 ln

1 
ln ln

u x u

u x u

u x u

u u

u u

u
u u

d dua a a a
dx dx

d dua a
a dx dx

d dua a a dx
dx dx

d dua dx a a dx
dx dx

da a a du C

aa du da
a a

=

⇒ =

⇒ =

⎛ ⎞ ⎛ ⎞⇒ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⇒ = +

⇒ = =

∫ ∫

∫ ∫

∫ ∫
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Example 3 Integrating general exponential 
functions

}}
sin

2(a) 2  
ln 2

( ) 2 cos  2 ...
u

x
x

du
x u

dx C

b dx du

= +

= =

∫

∫ ∫
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Logarithm with base a
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Example 4 Applying the inverse equations

2

10

5
2

log 3

( 7)
10

log 4

( ) log 2 5

( )2 3
( ) log 10 7

( )10 4

a

b
c

d

−

=

=

= −

=
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Evaluation of loga x
log

log

log

 Taking ln on both sides,

ln( ) ln
LHS,ln( ) log ln
equating LHS to RHS yields
log ln ln

a

a

a

x

x

x
a

a

a x

a x
a x a

x a x

=

=

=

=

Example: log102= ln 2/ ln10 
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Proof of rule 1:

( )

( )

ln ln ln  
divide both sides by ln
ln ln ln

ln ln ln
log log loga a a

xy x y
a

xy x y
a a a

xy x y

= +

= +

= +
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Derivatives and integrals involving loga x

( ) ( ) ( )

( ) ( )

( )

log log
log

ln 1 1 1log ln
ln ln ln

1 1 1 1log
ln ln

a a
a

a

a

d u d ud du duu
dx dx du dx du
d d u du u
du du a a du a u
d du duu
dx dx a u a u dx

= =

⎛ ⎞= = =⎜ ⎟
⎝ ⎠
⎛ ⎞ ⎛ ⎞= ⋅ = ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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Example 5

( ) ( )

( ) ( )

{
{

10
10

2

(ln )

log
( ) log 3 1

ln1 3 13 1
ln10 ln10 (3 1)

log 1 1( ) ln ...
ln 2 ln 2

u

u
d x du

d ud dua x
dx dx du

d ud x
dx du x

x dxb dx x udu
x x

≡

⎛ ⎞
⎜ ⎟+ =
⎜ ⎟
⎝ ⎠

= + =
+

= = =∫ ∫ ∫

678
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7.5
Exponential Growth and Decay
(3rd lecture of week 10/09/07-

15/09/07)
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The law of exponential change

For a quantity y increases or decreases at a 
rate proportional to it size at a give time t
follows the law of exponential change, as 
per ( ) ( ).dy dyy t ky t

dt dt
∝ ⇒ =

0

is the proportional constant. 
Very often we have to specify the value of  at 
some specified time, for example the initial condition

( 0)

k
y

y t y= =
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Rearrange the equation :

1 1

1 ln | |

ln | | , .kt kt

dy ky
dt

dy dyk dt kdt
y dt y dt

dy k dt kt y kt C
y

y kt C y Ce Ae A C

=

= → =

→ = = → = +

→ = + → = ± = = ±

∫ ∫

∫ ∫

0
0

0 0

Put in the initial value of  at 0 is :

(0) k kt

y t y

y y Ae A y y e⋅

=

→ = = = → =
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Example 1 Reducing the cases of infectious 
disease

Suppose that in the course of any given year 
the number of cases of a disease is reduced 
by 20%. If there are 10,000 cases today, 
how many years will it take to reduce the 
number to 1000? Assume the law of 
exponential change applies.
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Example 3 Half-life of a radioactive element

The effective radioactive lifetime of 
polonium-210 is very short (in days). The 
number of radioactive atoms remaining 
after t days in a sample that starts with y0
radioactive atoms is y= y0 exp(-5×10-3t). 
Find the element’s half life. 
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Solution

Radioactive elements decay according to the 
exponential law of change. The half life of a given 
radioactive element can be expressed in term of 
the rate constant k that is specific to a given 
radioactive species. Here k=-5×10-3.
At the half-life, t= t1/2, 
y(t1/2)= y0/2 = y0 exp(-5×10-3 t1/2)

exp(-5×10-3 t1/2)  = 1/2
ln(1/2) = -5×10-3 t1/2 
t1/2 =  - ln(1/2)/5×10-3 = ln(2)/5×10-3 = …
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7.7
Inverse Trigonometric Functions

(1st lecture of week 17/09/07-
22/09/07)
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Defining the inverses

Trigo functions are periodic, hence not one-
to-one in the their domains.
If we restrict the trigonometric functions to 
intervals on which they are one-to-one, then 
we can define their inverses.
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Domain 
restriction that 
makes the 
trigonometric 
functions one-to-
one
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Domain 
restriction that 
makes the 
trigonometric 
functions one-to-
one



Slide  7 - 87Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

Inverses for the restricted trigo functions

1

1

1

1

1

1

sin arcsin
cos arccos
tan arctan
cot arccot
sec arcsec
csc arccsc

y x x
y x x
y x x
y x x
y x x
y x x

−

−

−

−

−

−

= =

= =

= =

= =

= =

= =
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The graphs of the 
inverse trigonometric 
functions can be 
obtained by reflecting 
the graphs of the 
restricted trigo
functions through the 
line y = x.



Slide  7 - 89Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley



Slide  7 - 90Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley



Slide  7 - 91Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley



Slide  7 - 92Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

Some specific values of sin-1 x and cos-1 x
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=θ

φ =π − θ =

θ
θ = cos-1x; 

cosφ = cos (π − θ) = − cosθ

φ = cos-1(− cosθ ) = cos-1(−x)

Add up θ and φ:

θ +φ = cos-1x + cos-1(-x)

π = π = coscos--11x + x + coscos--11((--xx))
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= θ 

= π/2 −θ

1 1

1 1

cos ;sin ;
2

cos sin =     
2 2

x x

x x

πθ θ

π πθ θ

− −

− −

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

⎛ ⎞+ + = + −⎜ ⎟
⎝ ⎠
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Some specific values of tan-1 x
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Example 4
Find cos α, tan α, sec α, 
csc α if α = sin-1 (2/3).

sin α = 2/3
...
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The derivative of y = sin-1 x

( )

1 1

1
( )

( )

1 2

2

1

2

( ) sin ( ) sin ;
( ) 1 1 1

cos cos ( )( )

Let ( ) sin sin cos 1
1 1 1

cos( ( )) cos 1
1sin

1

x f x

x f x

f x x f x x
df x

dx x f xdf x
dx

y f x x x y y x

f x y x
d x
dx x

− −

−
=

=

−

−

= ⇒ =

= = =

= = → = ⇒ = −

= =
−

∴ =
−
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( )1

2

1sin
1

d x
dx x

− =
−

Note that the graph is not 
differentiable at the end 
points of x=±1 because 
the tangents at these 
points are vertical.
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The derivative of y = sin-1 u

( )

1

1

1 1

2

If ( ) is an diffrentiable function of ,

sin ?  

Use chain rule: Let sin
1sin sin

1

u u x x
d u
dx

y u
d du d duu u
dx dx du dx u

−

−

− −

=

=

=

= =
−

Note that |u |<1 for the formula to apply
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Example 7 Applying the derivative formula

1 2sin =...d x
dx

−
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The derivative of y = tan-1 u

1

2

2 2

tan tan

1 (tan ) sec

cos 1/(1 )

y x x y
d dyy y
dx dx

dy y x
dx

−= ⇒ =

= =

= = − x

1

√(1-x2)
y

2 2cos 1/(1 )y x= −

By virtue of chain rule, we obtain
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Example 8
1

16

( ) tan .

?
t

x t t
dx
dt

−

=

=

=
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The derivative of y = sec-1 x
1

2 2

1

2

2

sec sec

1 (sec ) sec tan

tan sec 1 1
1 1sec cos cot

( 1)

0 (from Figure 7.30),

1 1
| | ( 1)

y x x y
d dyy y y
dx dx
y y x

d x y y
dx x x

dy
dx

dy
dx x x

−

−

= ⇒ =

= =

= ± − = ± −

= = ±
−

>

=
−

Q
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The derivative of y = sec-1 u

By virtue of chain rule, we obtain



Slide  7 - 112Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

Example 5 Using the formula

( )1 4sec 5 ...d x
dx

− =
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Derivatives of the other three

The derivative of cos-1x, cot-1x, csc-1x can be 
easily obtained thanks to the following 
identities:
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Example 10 A tangent line to the arccotangent
curve

Find an equation for the tangent to the 
graph of y = cot-1 x at x = -1.
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Integration formula

By integrating both sides of the derivative 
formulas in Table 7.3, we obtain three 
useful integration formulas in Table 7.4.
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Example 11 Using the integral formulas

3 / 2

22 / 2

1

20

2

22 / 3

( )
1

( )
1

( )
1

dxa
x

dxb
x

dxc
x x

=
−

=
+

=
−

∫

∫

∫
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Example 13 Completing the square

2 2 2

2 2 2

4 ( 4 ) [( 2) 4]

...
4 ( 2) 2

dx dx dx
x x x x x

dx du
x u

= =
− − − − − −

= = =
− − −

∫ ∫ ∫

∫ ∫
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Example 15 Using substitution

( ) ( )

( ) ( ) ( )

2 22

2 22 2

6 6

1 1 ...
6 6

x
x

x

x
x

dx dx
e e

de du
e ue u

= =
− −

= =
− −

∫ ∫

∫ ∫
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7.8
Hyperbolic Functions

(1st lecture of week 17/09/07-
22/09/07)
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Even and odd parts of the exponential 
function

f (x) = ½ [f (x) + f (-x)] + ½ [f (x) - f (-x)]
½ [f (x) + f (-x)] is the even part
½ [f (x) - f (-x)] is the odd part

f (x) = ex = ½ (ex + e-x) + ½ (ex – e-x)
The odd part ½ (ex - e-x) ≡ cosh x (hyperbolic 
cosine of x)
The odd part ½ (ex + e-x) ≡ sinh x (hyperbolic sine 
of x)
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Proof of sinh 2 2cosh sinhx x x=
4

2 2
2

2 2

1 1 ( 1)sinh 2 ( )
2 2

1 ( 1) ( 1) 2 1 ( )( )
2 2 2

1 12 ( ) ( ) 2sinh cosh
2 2

x
x x

x

x x
x x x x

x x

x x x x

ex e e
e

e e e e e e
e e

e e e e x x

−

− −

− −

−
= − =

− +
= = ⋅ − +

= ⋅ − ⋅ + =
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Derivatives and integrals
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sinh sinh

1 1sinh ( ) ( ) cosh
2 2

sinh cosh

x x x x

d du du x
dx dx dx
d dx e e e e x
dx dx

d duu x
dx dx

− −

=

= − = + =

∴ =
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Example 1 Finding derivatives and integrals

}

( )
{

}

2

2

1

( ) tanh 1 tanh

1 1 cosh  ( ) coth5 coth
5 5 sinh

sinh1 1 1 1ln | | ln | sinh5 |
5 sinh 5 5 5

1( ) sinh  (cosh 2 1) ...
2

( ) 4 sinh  4  2  
2

u

u

dv

v

u

x x
x x

d du da t u
dx dx du

u dub x dx udu
u

d u dv v C x C
u v

c x dx x dx

e ed e x dx de u u d
−

−

+ =

= =

= = = + = +

= − =

−
= = −

∫ ∫ ∫

∫ ∫

∫ ∫

∫ ∫

678

64748

2
2 2 22 ln | | ( ) ln 2

2
x x x

u

u u C e e C e x C
⎛ ⎞

= − + = − + = − +⎜ ⎟
⎝ ⎠

∫
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Inverse hyperbolic functions

The inverse is useful in integration.
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Useful Identities
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Proof
1 1

1

1

1

1

1

1 1 1 1 1

1sech cosh . 

1Take sech of cosh .

1 1 1sech cosh 11cosh cosh

1sech cosh

Take sech  on both sides:

1 1sech sech cosh sech cosh sech

x
x

x

x
x

xx

x
x

x x
x x

− −

−

−

−

−

−

− − − − −

=

⎛ ⎞ = = =⎜ ⎟ ⎛ ⎞⎝ ⎠
⎜ ⎟
⎝ ⎠

⎛ ⎞ =⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⇒ =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
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Integrating these formulas 
will allows us to obtain a list 
of useful integration formula 
involving hyperbolic 
functions

1

2

1

2

1

2

. .
1 sinh

1
1 sinh  

1
1 sinh

1

e g
d x
dxx

ddx x dx
dxx

dx x C
x

−

−

−

=
+

→ =
+

= +
+

∫ ∫

∫
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Proof
1

2

1

2 2

1

2

1sinh . 
1

let  sinh

sinh sinh cosh

1 1 1sech 
cosh 1 sinh 1

By virtue of chain rule,
1sinh

1

d x
dx x

y x
d d dyx y x y y
dx dx dx

dy y
dx y y x

d duu
dx dx u

−

−

−

=
+

=

= → = =

→ = = = =
+ +

⇒

=
+
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Example 2 Derivative of the inverse 
hyperbolic cosine

Show that 
1

2

1

1cosh . 
1

Let  cosh ...

d u
dx u

y x

−

−

=
+

=
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Example 3 Using table 7.11
1

2
0

1 2

2 2
0 0

2 2 / 3 2 / 3

2 2 2
0 0 0

2 / 31 1 1 1

0

1

2  
3 4

Let  2

2
3 4 3

Scale it again to normalise the constant 3 to 1

3Let  
3 3 3 3 1

sinh sinh (2 / 3) sinh (0) sinh (2 / 3) 0

sinh (2 / 3)

dx
x

y x

dx dy
x y

y dy dz dzz
y z z

z− − − −

−

+
=

=
+ +

= → = =
+ + +

= = − = −

=

∫

∫ ∫

∫ ∫ ∫
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( )

1

1

2

2

1

sinh (2 / 3) ?

Let  sinh (2 / 3)
1 2sinh 2 / 3
2 3

4 1 0
3

4 4 4 2964( 1)
3 3 93 2.682

2 2
sinh (2 / 3) ln 2.682 0.9866

q q

q q

q

q

q e e

e e

e

q

−

−

−

−

=

=

= → − =

− − =

⎛ ⎞+ − − − +⎜ ⎟
⎝ ⎠= = =

= = =
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Chapter 8
Techniques of Integration
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8.1
Basic Integration Formulas

(2nd lecture of week 17/09/07-
22/09/07)
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Example 1 Making a simplifying substitution

( )

2

2 2

1/ 2

1/ 21/ 2 2

2 9 ( 9 )
9 1 9 1

( 1) 2
1 1

2( 1) 2 9 1

u

x d x xdx
x x x x

du d u dv v C
u u v

u C x x C

− −
=

− + − +
+

= = = = +
+ +

= + + = − + +

∫ ∫

∫ ∫ ∫

678
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Example 2 Completing the square

2 2

2 2 2

1 1

8 16 ( 4)
( 4)

16 ( 4) 4

4sin sin
4 4

dx dx
x x x
d x du

x u

u xC C− −

= =
− − −

−
=

− − −

−⎛ ⎞= + = +⎜ ⎟
⎝ ⎠

∫ ∫

∫ ∫
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Example 3 Expanding a power and using a 
trigonometric identity

2

2 2

2 2 2

2

(sec tan )

(sec tan 2sec tan ) .

Racall:tan sec 1; tan sec ; sec tan sec ;

(2sec 1 2sec tan )

2 tan 2sec

x x dx

x x x x dx

d dx x x x x x x
dx dx

x x x dx

x x x C

+

= + +

= − = =

= − +

= + − + +

∫
∫

∫
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Example 4 Eliminating a square root
/ 4

0

1 cos4xdx
π

+ =∫

2

/ 4 / 4 / 4
2

0 0 0

/ 4

0

cos4 cos2(2 ) 2cos (2 ) 1

1 cos4 2cos 2 2 | cos2 |

2 cos2 ...

x x x

xdx xdx x x

xdx

π π π

π

= = −

+ = =

= =

∫ ∫ ∫

∫
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Example 5 Reducing an improper fraction
23 7

3 2
x x dx
x
−
+∫

2

23
2 /3

1 23 2ln | |
2 3

x dx
x

x x x C

= − +
+

= − + + +

∫

63
3 2

x dx
x

= − +
+∫
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Example 6 Separating a fraction
2

3 2
1
x dx

x
+

−
∫

2 2

23
1 1

x dx dx
x x

= +
− −

∫ ∫
2

2 2

1 ( ) 123 2
1 1

d x
dx

x x
= +

− −
∫ ∫

13 2sin
2 1

du x C
u

−= + +
−∫

1/ 2 1

2 1

3[ 2(1 ) ] 2sin ''
2
3 (1 ) 2sin ''

u x C

x x C

−

−

= − − + +

= − − + +

1/ 2
1/ 2 2(1 ) '

(1 )
du u C
u

= − − +
−∫
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Example 7 Integral of y = sec x

sec ?xdx =∫
2

sec sec tan
tan sec sec sec
(sec tan ) sec (sec tan )

(sec tan )sec
sec tan

d x x xdx
d x xdx x xdx
d x x x x x dx

d x xxdx
x x

=

= =
+ = +

+
=

+

(sec tan )sec ln | sec tan |
sec tan

d x xxdx x x C
x x
+

= = + +
+∫ ∫
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8.2
Integration by Parts

(2nd lecture of week 17/09/07-
22/09/07)
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Product rule in integral form

[ ( ) ( )] ( ) [ ( )] ( ) [ ( )]

[ ( ) ( )] ( ) [ ( )] ( ) [ ( )]

( ) ( ) ( ) '( ) ( ) '( )

d d df x g x g x f x f x g x
dx dx dx

d d df x g x dx g x f x dx f x g x dx
dx dx dx

f x g x g x f x dx f x g x dx

= +

= +

= +

∫ ∫ ∫

∫ ∫

Integration by parts formula
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Alternative form of the integration by parts 
formula
[ ( ) ( )] ( ) [ ( )] ( ) [ ( )]

[ ( ) ( )] ( ) [ ( )] ( ) [ ( )]

( ) ( ) ( ) ( ) ( ) ( )

Let ( ); ( ).The above formular is recast into the form

d d df x g x g x f x f x g x
dx dx dx

d d df x g x dx g x f x dx f x g x dx
dx dx dx

f x g x g x df x f x dg x

u f x v g x

uv vdu udv

= +

= +

= +

= =

= +

∫ ∫ ∫

∫ ∫

∫ ∫
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Example 4 Repeated use of integration by 
parts

2 ?xx e dx =∫
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Example 5 Solving for the unknown integral

cos ?xe xdx =∫
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Evaluating by parts for definite integrals
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Example 6 Finding area
Find the area of the region in Figure 8.1
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Solution
4

0

...xxe dx− =∫
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Example 9 Using a reduction formula

Evaluate 3cos xdx∫
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8.3
Integration of Rational Functions by Partial 

Fractions
(3rd lecture of week 17/09/07-22/09/07)
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General description of the method

A rational function f(x)/g(x) can be written as a 
sum of partial fractions. To do so:
(a) The degree of f(x) must be less than the degree 
of g(x). That is, the fraction must be proper. If it 
isn’t, divide f(x) by g(x) and work with the 
remainder term. 
We must know the factors of g(x). In theory, any 
polynomial with real coefficients can be written as 
a product of real linear factors and real quadratic 
factors.
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Reducibility of a polynomial
A polynomial is said to be reducible if it is the product 
of two polynomials of lower degree.
A polynomial is irreducible if it is not the product of two 
polynomials of lower degree.

THEOREM (Ayers, Schaum’s series, pg. 305)
Consider a polynomial g(x) of order n ≥ 2 (with leading 
coefficient 1). Two possibilities.

1. g(x) = (x-r)h(x), where h1(x) is a polynomial of degree   
n-1, or

2. g(x) = (x2+px+q) h2(x), where h2(x) is a polynomial of 
degree n-2, with the irreducible quadratic factor 
(x2+px+q).
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Example

{

3

linear factor poly. of degree 2

3 2

poly. of degree 1irreducible quadratic factor

4 2

irreducible quadratic factor poly. or d

( ) 4 ( 2) ( 2)

( ) 4 ( 4)

( ) 9 ( 3) ( 3)( 3)

g x x x x x x

g x x x x x

g x x x x x

= − = − ⋅ +

= + = + ⋅

= − = + ⋅ + −

123 14243

14243

14243

{

egree 2

3 2 2

linear factor poly. or degree 2

( ) 3 3 ( 1) ( 2)g x x x x x x= − − + = + −

1442443

14243
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Quadratic polynomial

A quadratic polynomial (polynomial or 
order n = 2) is either reducible or not 
reducible.
Consider: g(x)= x2+px+q. 
If (p2-4q) ≥ 0, g(x) is reducible, i.e.         
g(x) = (x+r1)(x+r2).
If (p2-4q) < 0, g(x) is irreducible.
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In general, a polynomial of degree n can 
always be expressed as the product of  
linear factors and irreducible quadratic 
factors:

1 2

1 2

1 2

2 2 2
1 1 2 2

( ) ( ) ( ) ...( )

            ( ) ( ) ...( )

l

k

nn n
n l

mm m
k k

P x x r x r x r

x p x q x p x q x p x q

= − − − ×

+ + + + + +

1 2 1 2( ... ) 2( ... )l ln n n n m m m= + + + + + + +
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Integration of rational functions by partial 
fractions
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Example 1 Distinct linear factors
2 4 1 ...

( 1)( 1)( 3)
x x dx

x x x
+ +

=
− + +∫

2 4 1 ...
( 1)( 1)( 3) ( 1) ( 1) ( 3)

x x A B C
x x x x x x

+ +
= + + =

− + + − + +
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Example 2 A repeated linear factor

2

6 7 ...
( 2)

x dx
x
+

=
+∫

2 2

6 7
( 2) ( 2) ( 2)

x A B
x x x
+

= +
+ + +
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Example 3 Integrating an improper fraction

3 2

2

2 4 3 ...
2 3

x x x dx
x x
− − −

=
− −∫

3 2

2 2

2 4 3 5 32
2 3 2 3

x x x xx
x x x x
− − − −

= +
− − − −

2

5 3 5 3 ...
2 3 ( 3)( 1) ( 3) ( 1)

x x A B
x x x x x x

− −
= = + =

− − − + − +
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Example 4 Integrating with an irreducible 
quadratic factor in the denominator

2 2

2 4 ...
( 1)( 1)

x dx
x x
− +

=
+ −∫

2 2 2 2

2 4 ...
( 1)( 1) ( 1) ( 1) ( 1)

x Ax B C D
x x x x x
− + +

= + + =
+ − + − −
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Example 5 A repeated irreducible quadratic 
factor

2 2 2 2 2

1 ...
( 1) ( 1) ( 1)

A Bx C Dx E
x x x x x

+ +
= + + =

+ + +

2 2

1 ?
( 1)

dx
x x

=
+∫
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Other ways to determine the coefficients

Example 8 Using 
differentiation
Find A, B and C in the 
equation

2

3 3

2

2

( 1) ( 1) 1
( 1) ( 1)

( 1) ( 1) 1
1 2
( 1) ( 1) 1
( 1) 1

[ ( 1) ] (1) 0

0
1

A x B x C x
x x

A x B x C x
x C

A x B x x
A x B

d dA x B
dx dx
A
B

+ + + + −
=

+ +

⇒ + + + + = −
= − → = −

⇒ + + + = +
⇒ + + =

+ + = =

=
=

3 2 3

1
( 1) ( 1) ( 1) ( 1)

x A B C
x x x x
−

= + +
+ + + +
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Example 9 Assigning numerical values to x

Find A, B and C in

2

2

2

2

( 2)( 3) ( 1)( 3) ( 1)( 2) ( )
1

(1) 2 1 1 2 1
(2) 2 1 5; 5
(3) 2 3 1 10; 5

A x x B x x C x x f x
x

f A A
f B B
f C C

− − + − − + − − ≡

= +

= + = + = ⇒ =

= − = + = ⇒ = −

= = + = ⇒ =

2 1
( 1)( 2)( 3)

( 1) ( 2) ( 3)

x
x x x

A B C
x x x

+
− − −

= + +
− − −
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8.4
Trigonometric Integrals

(3rd lecture of week 17/09/07-
22/09/07)
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Example 1 m is odd

3 2sin cos   ?x x dx =∫
( )

( )

3 2 2 2

2 2

2 2

sin cos   sin cos   cos

(cos 1)cos   cos

( 1) ...

x x dx x x d x

x x d x

u u du

= −

= −

= − =

∫ ∫
∫
∫
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Example 2 m is even and n is odd
5cos   ?x dx =∫

3 2 2 2

2 2

2 2

cos cos  cos cos  sin

(1-sin )(1-sin ) sin

(1- )(1- ) ...

x x dx x x d x

x x d x

u u du

=

=

= =

∫ ∫
∫
∫



Slide  8 - 40Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

Example 3 m and n are both even
2 4cos sin   ?x x dx =∫

( )( )

( )

2 4

2

2

2

cos sin  

1-cos2 1+cos2  
2 2

1 1-cos2 1+cos2  
4
1 1 cos2 cos 2 cos 2  ...
4

x x dx

x x dx

x x dx

x x x dx

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

=

= + − − =

∫

∫

∫

∫
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Example 4 Eliminating square roots
/ 4

0
1 cos4 ?xdx

π
+ =∫

/ 4

0
/ 4 / 42

0 0

1 cos4

2cos 2 2 cos2 ...

xdx

xdx xdx

π

π π

+

= = =

∫
∫ ∫
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Example 6 Integrals of powers of tan x and 
sec x 3sec ?xdx =∫

{

{

3 2

2 2

2

2

2

Use integration by parts.

sec sec sec ;

sec sec tan

sec sec tan

sec sec

sec tan tan sec tan

sec tan tan sec

sec tan (sec 1)sec

u dv

u dv

du

xdx x xdx

dv xdx v xdx x

u du x xdx

x xdx

x x x x xdx

x x x xdx

x x x x

= ⋅

= → = =

= → =

⋅

= − ⋅

= −

= − −

∫ ∫

∫

∫

∫

∫

14243

14243

14243

3 3sec sec tan sec sec ...

dx

xdx x x xdx xdx= − +

∫
∫ ∫ ∫

2

(tan sec )sec sec
tan sec

(sec tan sec )
tan sec

(sec tan )
tan sec

ln | sec tan |

x xxdx x dx
x x

x x x dx
x x

d x x
x x
x x C

+
=

+
+

=
+

+
=

+
= + +

∫ ∫

∫

∫
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Example 7 Products of sines and cosines

cos5 sin3 ?x xdx =∫
[ ]

[ ]

[ ]

1sin sin cos( ) cos( ) ;
2
1sin cos sin( ) sin( ) ;
2
1cos cos cos( ) cos( )
2

mx nx m n x m n x

mx nx m n x m n x

mx nx m n x m n x

= − − +

= − + +

= − + +

cos5 sin3

1 [sin( 2 ) sin8 ]
2
...

x xdx

x x dx= − +

=

∫

∫
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8.5
Trigonometric Substitutions

(1st lecture of week 24/09/07-
29/09/07)
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Three basic substitutions

2 2 2 2 2 2, ,a x a x x a− + −Useful for integrals involving
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Example 1 Using the substitution x=atanθ

2

2 2

2
2

2

2(tan 1)
4 4 tan 4 4 tan

(tan 1) sec | sec |
1 tan

ln | sec tan |

dx y dy
y y

y dy ydy y dy
y

y y C

+
=

+ +

+
= = =

+

= + +

∫ ∫

∫ ∫ ∫

2
?

4
dx

x
=

+
∫

2 22 tan 2sec 2(tan 1)x y dx ydy y dy= → = = +
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Example 2 Using the substitution x = asinθ

2 2

2 2

2

2

2

9sin 3cos  
9 9 9sin

sin cos  9
1 sin

9 sin ...

x dx y y dy
x y

y y dy
y

ydy

⋅
= =

− −

⋅
=

−

= =

∫ ∫

∫

∫

2

2
?

9
x dx

x
=

−
∫

3sin 3cos  x y dx y dy= → =
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Example 3 Using the substitution x = asecθ

2 2 2

2

2 sec tan  1 sec tan  
5 525 4 4sec 4 sec 1

1 sec tan  1 sec  
5 5sec 1
1 ln | sec tan | ...
5

dx y y dy y y dy
x y y

y y dy y dy
y

y y C

= =
− − −

= =
−

= + + =

∫ ∫ ∫

∫ ∫

2
?

25 4
dx
x

=
−

∫

2 2sec sec tan  
5 5

x y dx y y dy= → =
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Example 4 Finding the volume of a solid of 
revolution

( )
2

22
0

16 ?
4

dxV
x

π= =
+

∫
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Solution

( )
2

22
0

16 ?
4

dxV
x

π= =
+

∫

( ) ( )
/ 4 / 42 2

2 22 2
0 0

/ 4
2

0

2sec 2sec

tan 1 sec

2 cos ...

ydy ydyV
y y

ydy

π π

π

π π

π

= =
+

= =

∫ ∫

∫

2Let 2 tan 2secx y dx ydy= → =



Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

8.6
Integral Tables

(1st lecture of week 24/09/07-
29/09/07)
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Integral tables is provided at the back of 
Thomas’

T-4 A brief tables of integrals
Integration can be evaluated using the tables 
of integral.
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8.8
Improper Integrals

(2nd lecture of week 24/09/07-
29/09/07)
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Infinite limits of integration

/ 2 / 2

0

( ) ... 2 2
b

x bA b e dx e− −= = = −∫

/ 2( ) lim ( ) lim 2 2 2b

b b
A a A b e−

→∞ →∞
= = − =



Slide  8 - 61Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley



Slide  8 - 62Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

Example 1 Evaluating an improper integral on 
[1,∞]

Is the area under the curve y=(ln x)/x2 from 
1 to ∞ finite? If so, what is it?

2
1

lnlim ?
b

b

x dx
x→∞

=∫
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{

ln

1 1 ln1
ln

ln ln

0 00
ln

0 0 ln

ln ln 0
0

ln ln

ln ln (ln )         ; ln ,

( ) ( )

1 1ln ( 1) ln 1

b b b
u

u

b
b b

u u u

dw w w

b
bu u u u

b b

b b

x dx x ud x du u x x e
x x x e

u e du u e e du

ue e du ue e

b e e b
b b

− − −

− − − −

− −

= = = =

= − − −

= + = −

= − ⋅ − − = − − +

∫ ∫ ∫

∫ ∫

∫

123 123

Solution

2
1

ln 1 1lim lim ln 1 1
b

b b

x dx b
x b b→∞ →∞

⎡ ⎤= − − + =⎢ ⎥⎣ ⎦∫
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Example 2 Evaluating an integral on [-∞,∞]

2 ?
1

dx
x

∞

−∞

=
+∫

0

2 2 2
0

2
0

lim lim
1 1 1

2lim
1

b

b b
b

b

b

dx dx dx
x x x

dx
x

∞

→∞ →∞
−∞ −

→∞

= +
+ + +

=
+

∫ ∫ ∫

∫



Slide  8 - 65Copyright © 2005 Pearson Education, Inc.  Publishing as Pearson Addison-Wesley

( ) ( )1 1 1 1
2 0

0

1
2

tan tan tan 0 tan .
1

2lim tan 2
1 2

b
b

b

dx x b b
x

dx b
x

π π

− − − −

∞
−

→∞
−∞

⎡ ⎤= = − =⎣ ⎦+

= = ⋅ =
+

∫

∫

Using the integral table (Eq. 16)
1

2 2

1 tandx x C
a x a a

−= +
+∫

Solution

1

1

tan tan

lim tan
2b

y b b y

b π

−

−

→∞

= ⇒ =

=

y
b

1
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Example 3 Integrands with vertical 
asymptotes
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Example 4 A divergent improper integral

Investigate the 
convergence of 

1

0 1
dx

x−∫
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Solution

[ ]

[ ]

[ ]

1

01 1
0 0

1

1

1 1

0

lim lim ln | 1|
1 1

lim ln | 1| ln | 0 1|

lim ln | 1| ln | 0 1| lim ln | 1|

1lim ln

b
b

b b

b

b b

dx dx x
x x

b

b b

ε ε

− −

−

− −

→ →

→

−

→ →

→

= = − −
− −

= − − − −

⎡ ⎤= − − − − = −⎣ ⎦

⎡ ⎤= = ∞⎢ ⎥⎣ ⎦

∫ ∫
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Example 5 Vertical asymptote at an interior 
point

3

2 / 3
0

?
( 1)

dx
x

=
−∫
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Example 5 Vertical asymptote at an interior 
point

[ ]

3 1 3

2 / 3 2 / 3 2 / 3
0 0 1

1
1/ 3

2 / 3 2 / 3 01 1
0 0

1/ 3 1/ 3

1 1

3 3
31/ 3

2 / 3 2 / 31 1
1

( 1) ( 1) ( 1)

lim lim 3( 1)
( 1) ( 1)

lim 3( 1) 3( 1) lim 0 3 3;

lim lim 3( 1)
( 1) ( 1)

b
b

b b

b b

bb b
b

dx dx dx
x x x

dx dx x
x x

b

dx dx x
x x

− −

− −

+

→ →

→ →

→ + →

= +
− − −

⎡ ⎤= = − =⎣ ⎦− −

⎡ ⎤− − − = + =⎣ ⎦

⎡ ⎤= = −⎣ ⎦− −

=

∫ ∫ ∫

∫ ∫

∫ ∫
1/ 3 1/ 3 2 / 3

1

3
2 / 3

2 / 3
0

lim 3(3 1) 3( 1) 3 2

3(1 2 )
( 1)

b
b

dx
x

+→
⎡ ⎤− − − = ⋅⎣ ⎦

∴ = +
−∫
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Example 7 Finding the volume of an infinite 
solid

The cross section of 
the solid in Figure 
8.24 perpendicular to 
the x-axis are circular 
disks with diameters 
reaching from the x-
axis to the curve y = 
ex, -∞ < x < ln 2. Find 
the volume of the 
horn.
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Example 7 Finding the volume of an infinite 
solid

ln 2
2

0

ln 2
2

ln 22

2

2

1 lim ( )
4

1 lim
4
1 lim
8
1 lim 4
8
1 lim (4 )
8 2

V

b
b

x

b
b

x

bb

b

b

b

b

V dV y x dx

e dx

e

e

e

π

π

π

π π

ππ

→−∞

→−∞

→−∞

→−∞

→−∞

= =

=

⎡ ⎤= ⎣ ⎦

⎡ ⎤= −⎣ ⎦

= − =

∫ ∫

∫

2( / 2)dV y dxπ=
volume of a slice of disk of thickness ,diameter dx y

dx

y
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Chapter 11
Infinite Sequences and Series
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11.1
Sequences

(2nd lecture of week 24/09/07-
29/09/07)
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11.2
Infinite Series

(3rd lecture of week 24/09/07-
29/09/07)
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11.3
The Integral Test

(3rd lecture of week 24/09/07-
29/09/07)
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11.4
Comparison Tests

(1st lecture of week 01/10/07-
06/10/07)
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Example 2 continued
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11.5
The Ratio and Root Tests

(1st lecture of week 01/10/07-
06/10/07)
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11.6
Alternating Series, Absolute and 

Conditional Convergence
(2nd lecture of week 01/10/07-06/10/07)
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11.7
Power Series

(2nd lecture of week 01/10/07-
06/10/07)
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Continued on next slide
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11.8
Taylor and Maclaurin Series

(3rd lecture of week 01/10/07-
06/10/07)
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11.9
Convergence of Taylor Series;

Error Estimates
(3rd lecture of week 01/10/07-06/10/07)
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11.10
Applications of Power Series
(1st lecture of week 08/10/07-

10/10/07)
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11.11
Fourier Series

(1st lecture of week 08/10/07-
10/10/07)
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