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Function

0y =1(x)
0 f represents function (a rule that tell us how

to calculate the value of y from the variable
X

0 X : independent variable (input of f)

2y : dependent variable (the correspoinding
output value of f at X)
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DEFINITION Function

A function from a set D to a set Y is a rule that assigns a unigue (single) element
f(x) e Y to each element xe D.

Definition Domain of the function

The set of D of all possible input values

Definition Range of the function

The set of all values of f(X) as X varies throughout D
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X > f » f(x)
Input Output

(domain) (range)

FIGURE 1.22 A diagram showing a
function as a kind of machine.
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a f@ S fx)
D = domain set Y = set containing
the range

FIGURE 1.23 A function from a set D to
a set Y assigns a unique element of Y to
each element in D.
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Natural Domain

0 When a function y = f(X)is defined and the
domain 1is not stated explicitly, the domain
1s assumed to be the largest set of real X-
values for the formula gives real y-values.

0 e.g. compare “y = x?” ¢.f. “y = %%, x=0”

2 Domain may be open, closed, half open,
finite, infinite.
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Verity the domains and ranges of these

functions

Function Domain (x) Range (y)

y = x° (— 00, 00) [0, 00)

y =1k (—00,0) U (0, c0) (—00,0) U (0, 00)
y=Vx [0, 00) 0, 00)
y=V4—x (—00, 4] 0, 00)

y=VI1 — x* [—1, 1] 0, 1]
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Graphs of functions

Q Graphs provide another way to visualise a
function

2 In set notation, a graph 1s

{(X,f(X)) | x eD}

Q The graph of a function 1s a useful picture
of its behaviour.
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/2 0 > X

FIGURE 1.24 The graph of
f(x) = x + 2 is the set of points (x, y) for
which y has the value x + 2.
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FIGURE 1.25 If (x, y) lies on the graph of
f, then the value y = f(x) is the height of
the graph above the point x (or below x if
f(x) is negative).
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Example 2 Sketching a graph

0 Graph the function y = X? over the interval
[-2,2]
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The vertical line test

a Since a function must be single valued over
1ts domain, no vertical line can intersect the
graph of a function more than once.

0 If a 1s a point in the domain of a function f,
the vertical line Xx=a can intersect the graph
of f in a single point (a, f(a)).
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>

> X

@ x2+y*=1 (0 y=V1-x? © y=-V1-x?

FIGURE 1.28 (a) The circle is not the graph of a function; it fails the vertical line test. (b) The upper semicircle is the graph of a function
f(x) = V1 — x*. (c) The lower semicircle is the graph of a function g(x) = — V1 — x2.
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Piecewise-detined functions

2 The absolute value function

(

X X220

x| =
—X X<0
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-3 -2 -1 0f 1 2 3

FIGURE 1.29 The absolute value
function has domain (—0c0, 00)
and range [0, 00).
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Graphing piecewise-defined functions

2 Note: this is just one function with a domain
covering all real number

-

—X X<0
f(x)=9x 0<x<I
1 X>1

\
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FIGURE 1.30 To graph the
function y = f(x) shown here,
we apply different formulas to
different parts of its domain
(Example 5).
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The greatest integer function

2 Also called integer floor function

0 f=[x], defined as greatest integer less than
or equal to X.

ae.g.
Q[24]=2
Q[2]=2
a[-2]=-2, etc.
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FIGURE 1.31 The graph of the
greatest integer function y = | x |
lies on or below the line y = x, so
it provides an integer floor for x
(Example 6).

Note: the graph 1s the blue colour lines,
not the one 1n red
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Writing formulas for piecewise-defined
functions

0 Write a formula for the function y=f(X) in
Figure 1.33
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y =fx)
(1, 1) 2, 1)

' > X

FIGURE 1.33 The segment on the
left contains (0, 0) but not (1, 1).
The segment on the right contains
both of its endpoints (Example 8).
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[inear functions

0 Linear function takes the form of
Qy=mx +Db

a m, b constants

2 m slope of the graph

0 b intersection with the y-axis

2 The linear function reduces to a constant
function f = ¢ when m =0,
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FIGURE 1.34 The collection of lines
¥ = mx has slope m and all lines pass

through the origin.
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y
A
3
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1_
| | | | | L5 x
0 1 2

FIGURE 1.35 A constant function
has slope m = 0.
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Power functions

af(x)=xa
d a constant

2 Case (a): a = n, a positive integer
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y

FIGURE 1.36 Graphs of f(x) = x",n = 1, 2, 3, 4, 5 defined for —00 < x < 0.

go back

A y=x3 A Y =X
1 | | | | |
21700 1 o 1ol 1 170 1
1k 1k 1
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Power functions

2 Case (b):
aa=-1 (hyperbola)
Q or a=-2
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Domain: x # 0
Range: y # 0

Domain: x # 0
Range: y> 0

(a) (b)
FIGURE 1.37 Graphs of the power functions f(x) = x“ for part
(a) a = —1 and for part (b) a = —2.
go back
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Power functions

a Case (¢):

oa="%1/3,3/2,and 2/3

0 f(x) = x> = \x (square root) , domain = [0 < X < o)
0 g(x) = x13 =3x(cube root), domain = (-e> <X < o)

a p(X) = x¥3= (x13)2: domain = ?
0 g(X) = x32= (x3)12 domain = ?
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0 1

Domain: 0 = x <
Range: 0=y<w>

r

]
0 1
Domain: 0 = x < ®
Range: O0=y<e

> X

FIGURE 1.38 Graphs of the power functions f(x) = x? fora =

go back
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y =
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' > X
0] 1
Domain: —oo < x < ®©
Range: -co<y<w
y
A
y = x2/3
l_
' > X
0 1
Domain: -0 < x <
Range: O0=y<o
113 2
2:30 a3
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Polynomials

apX)=ax"+a x"'+a X"+, aX+a,
2 N nonnegative integer (1,2,3...)
a a’s coefficients (real constants)

aIfa,# 0, nis called the degree of the
polynomial
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y
v oy =8x* — 14x3 —9x? 4 1lx— 1

a I .

(a)

FIGURE 1.39 Graphs of three polynomial functions.

1 2

(b)

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

y
y=@x-2x+ D}x-1)
16 -
| J— |
1IN0 1 ) o
-1
(c)
Slide 1- 34



Rational functions

2 A rational function 1s a quotient of two
polynomials:

0 1(x) = p(x) / q(x)
a p,d are polynomials.

0 Domain of f(X) is the set of all real number X
for which q(x) # 0.
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y
h
y 8k
b
y 5x% + 8x — 3
u y =X T OX— D 6
Y 3x% + 2
5L /_\ Al
. 2x2 -3 . 5
i T x+ 4 i Liney =3
I ! // x | T BT I > I
—4 _ / 2 4 -5 0 5 10 4 2 0
/ | _2 I
5 -4
B NOT TO SCALE
B -6
-8
(a) (b) (c)
FIGURE 1.40 Graphs of three rational functions.
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Algebraic functions

2 Functions constructed from polynomials
using algebraic operations (addition,
subtraction, multiplication, division, and
taking roots)
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r
y=x"3@x — 4)
0 _ 3.2 \2/3
i y_4(x 1)
Yy
2_ A
1_
' > X > X
-10 0
1k
-2
3}
(a) (b)

FIGURE 1.41 Graphs of three algebraic functions.
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Trigonometric functions

2 More details in later chapter
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FIGURE 1.42

KA\

(a) f(x) = sinx

A

N\
\/

Graphs of the sine and cosine functions.
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Exponential functions

o f(x) = a*

2 Where a>0and a# 0. ais called the
‘base’.

Q Domain (-2, <°)

a Range (0, <o)

2 Hence, f(X) >0

a More 1n later chapter
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y
A
y = 10*
12
10
8_
6_
— 3%
AL y
2F s
_.——_—F-——FT—/ l ] .
1 05 0 05 1~

(@) y=2%y=23"%y=10"

FIGURE 1.43 Graphs of exponential functions.

A

y=10""
12F
10F
s |-
y=3" 6
K‘
y=27" 2 L
T 05 0 05 1
(by y=2",y=3"y=10"

Note: graphs 1n (a) are reflections of the
corresponding curves in (b) about the y-axis. This
amount to the symmetry operation of X < -X.
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Logarithmic functions

a f(X) = log, X

Q a 1s the base

aazl,a>0

2 Domain (0, <)

Q Range (-0, )

0 They are the inverse functions of the

exponential functions (more 1n later
chapter)
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FIGURE 1.44 Graphs of four
logarithmic functions.
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Transcendental functions

2 Functions that are not algebraic

Q Include: trigonometric, inverse
trigonometric, exponential, logarithmic,
hyperbolic and many other functions
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Example 1

a Recognizing Functions
D) f(X)=1+x—%x°
a (b) 9(x) = 7
a(c)h(z)=7’

2 (d) y(t) = sin(t—7/4)
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Increasing versus decreasing functions

2 A function 1s said to be increasing if 1t rises
as you move from left to right

2 A function 1s said to be decreasing if 1t falls
as you move from left to right
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Function Where increasing Where decreasing

y = x? 0<x< o0 —00 < x =0

y=x —00 < Xx < 0 Nowhere

y=1/x Nowhere —00 <x<0and0) < x < X®
y = 1/x* —00 <x <0 0<x<

y=Vx 0=x< o0 Nowhere

y = x%3 0=x< —o0o<x=0

V:XZ., V:x3; y:l/xq y:l/x2; yle/2q yzx2/3
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DEFINITIONS Even Function, 0dd Function
A function y = f(x) is an

even function of x if f(—x) = f(x),
odd function of x if f(—x) = —f(x),

for every x 1n the function’s domain.
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(—=x, y) v«
0 > X
(a)
0 > X
(_xa —)’)
(b)
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FIGURE 1.46 In part (a) the graph of

y = x? (an even function) is symmetric
about the y-axis. The graph of y = x? (an
odd function) in part (b) is symmetric
about the origin.
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Recognising even and odd functions

0 f(X) = x? Even function as (-X)? = x? for all X,
symmetric about the all X, symmetric about
the y-axis.

0 f(X) = x* + 1 Even function as (-X)? + 1 = x>+
1 for all X, symmetric about the all X,
symmetric about the y-axis.
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Recognising even and odd functions
0 f(x) = x. Odd function as (-X) = -X for all x,

symmetric about origin.
0 f(x) = x+1. Odd function ?
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(a) (b)

FIGURE 1.47 (a) When we add the constant term 1 to the function

y = x?, the resulting function y = x? + 1 is still even and its graph is
still symmetric about the y-axis. (b) When we add the constant term 1 to
the function y = x, the resulting function y = x + 1 is no longer odd.

The symmetry about the origin is lost (Example 2).
Slide 1- 53
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Sums, differences, products and quotients

a f, g are functions

a For x eD(f )M D(g), we can define the functions
of

Q (T+9) () =1(x) + g(x)
a(f-9) () =1(x) - g(x)
a (fg)(x) =1(x)g(x),

(Cff)(j() Cf(15( C)a Elefx umber
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Example 1

2 f(x) = VX, g(x) = V(1-X),
2 The domain common to both f,g is
o D(f)ND(g) =[0,1] (work it out)
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Function Formula Domain

f+g (f+ &) =Vx+ V1I-—x [0, 1] = D(f) N D(g)
f-g (f — @) = Vx—V1-x [0, 1]

g—f (g - Nx)=V1I—x—Vx [0, 1]

f-g (f-2)x) = fx)glx) = Vx(1 — x) [0, 1]

f/g é(x) é((i)) —— [0, 1) (x = 1 excluded)

g(x) _ 1 =x
f(x) .

g/f f(x) = (0, 1] (x = 0 excluded)
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i

8 |
y=(f+ )

_—_ P
— +f(a) + g(a)

2 S
m fa) g(a)

FIGURE 1.50 Graphical addition of two
functions.
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FIGURE 1.51 The domain of the function f + g is

the intersection of the domains of f and g, the
interval [0, 1] on the x-axis where these domains

overlap. This interval is also the domain of the
function f - g (Example 1).
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Composite functions

2 Another way of combining functions
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DEFINITION Composition of Functions
If f and g are functions, the composite function f o g (“f composed with g”) is
defined by

(f ° g)x) = flgx)).

The domain of f © g consists of the numbers x in the domain of g for which g(x)
lies in the domain of f.

Slide 1- 61
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X — g g(x) f  — f(g(x))

FIGURE 1.52 Two functions can be composed at
x whenever the value of one function at x lies in the
domain of the other. The composite is denoted by

feg.

Slide 1- 62
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f(g(x)

g(x)

FIGURE 1.53 Arrow diagram for f o g.

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 1- 63



Example 2

2 Viewing a function as a composite

a y(x) = V(1 — x2) is a composite of

0 g(x) = 1 —x2 and f(x) = Vx

aie y(x)=f[gx)] = V(1 - x?)

0 Domain of the composite function is [X| < 1,
or [-1,1]

0 Is T[g(x)] = g [T(x)]?
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Example 3

2 Read 1t yourself

Q Make sure that you know how to work out
the domains and ranges of each composite
functions listed
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Shifting a graph of a function

Shift Formulas

Vertical Shifts

y=flx)+k Shifts the graph of fup k units if k > 0
Shifts it down | k| units if £ < 0

Horizontal Shifts

y = f(x+ h) Shifts the graph of fleft 4 units if & > 0

Shifts it right | h| units if h < 0
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Example 4

D@ Yy=x,y=x>+1
a(b)y=x3,y=x*-2
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1 unit

Yy
A y=2x*+2
y=.x2+l
y =x’
y=x2—2
| —1 > X
-2, 0 |\2
_l_l( 2 units
2L

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 1.54 To shift the graph
of f(x) = x* up (or down), we add
positive (or negative) constants to
the formula for f (Example 4a
and b).
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Example 4

a(C)y=x,y=(X+3), y=(x-3)
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Add a positive Add a negative

constant to x. constant to x.
< Y

y = (x + 3)°

FIGURE 1.55 To shift the graph of y = x? to the
left, we add a positive constant to x. To shift the
graph to the right, we add a negative constant to x
(Example 4c).
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Example 4

ady=Ix,y=Ix-2|-1
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FIGURE 1.56 Shifting the graph of
y = |x| 2 units to the right and 1 unit
down (Example 4d).
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Scaling and reflecting a graph of a function

Q To scale a graph of a function 1s to stretch
or compress 1t, vertically or horizontally.

a This 1s done by multiplying a constant C to
the function or the independent variable
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Vertical and Horizontal Scaling and Reflecting Formulas

Forec > 1,

y = cf(x) Stretches the graph of f vertically by a factor of c.

y = % f(x) Compresses the graph of f vertically by a factor of c.

y = f(ex) Compresses the graph of f horizontally by a factor of c.
y = f(x/c) Stretches the graph of f horizontally by a factor of c.
Forc = —1,

y = —f(x) Reflects the graph of f across the x-axis.

y = f(—x) Reflects the graph of f across the y-axis.
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Example 5(a)

Q Vertical stretching and compression of the
graph y = VX by a factor or 3
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A

St y=3\/;

4_

t
3r stretch y=\/J_c
2_
y = +Vx

1 compress v 3
1 | | | |
1 o] 1 2 3 a4 7

FIGURE 1.57 Vertically stretching and
compressing the graph y = Vx by a
factor of 3 (Example 5a).
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Example 5(b)

01 Horizontal stretching and compression of
the graph y = Vx by a factor of 3
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FIGURE 1.58 Horizontally stretching and

compressing the graph y = Vx by a factor of
3 (Example 5b).
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Example 5(c)

0 Reflection across the X- and y- axes
ac=-1
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FIGURE 1.59 Reflections of the graph
y = Vx across the coordinate axes
(Example 5c¢).
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Example 6

2 Read 1t yourself
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Yy y = 16x* + 32x3 + 10 Y Y

fx) =x*—4x° + 10
20 201}

].0_ /\
I \| I | > ! ! ! > x | | | | I > x
-1 o 1 3 /4 2 - o0 1 -1 o] L2 3
-10 -10
-10

20 20

(a) (b) (©)

FIGURE 1.60 (a) The original graph of /. (b) The horizontal compression of y = f(x) in part (a) by a factor of 2, followed
by a reflection across the y-axis. (c¢) The vertical compression of y = f(x) in part (a) by a factor of 2, followed by a reflection
across the x-axis (Example 6).
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Radian measure

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 1.63 The radian measure of
angle ACB 1s the length 6 of arc AB on the
unit circle centered at C. The value of 6
can be found from any other circle,
however, as the ratio s/r. Thus s = r0 is
the length of arc on a circle of radius
when 6 1s measured in radians.
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Conversion Formulas

— i ~ 1
1 degree = ™ 0.02) radians

Degrees to radians: multiply by %
1 radian = @ (~57) degrees

Radians to degrees: multiply by 1—5.0
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Terminal ray

Initial ray

L

Positive Initial ray —/Nega five
measure \Z Terminal measure
> X ray

FIGURE 1.65 Angles in standard position in the xy-plane.
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_j_3_w > X
4

FIGURE 1.66 Nonzero radian measures can be positive or
negative and can go beyond 2.
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Angle convention
2 Be noted that angle will be expressed in

terms of radian unless otherwise specified.
a Get used to the change of the unit

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 1- 88



The six basic trigono Ic functions

opposite

—
adjacent
h

sin 6 = OPP csc 8 = P
hyp opp

_adj _hyp

cos 0 = Wp sec O = a—dj
tan 0 = @ cot O = a_d]
adj opp

FIGURE 1.67 Trigonometric
ratios of an acute angle.
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Generalised definition of the gjx trieo
functions |

P(x, y)
Q Define the trigo r h
functios in terms of 0 pa
the coordinats of the k /

point P(X,y) on a circle
of radius r

FIGURE 1.68 The trigonometric
functions of a general angle 6 are
defined in terms of x, y, and r.

a sine: sin@=y/r Q cosecant: cscd=rly
0 cosine: cos@=x/r 1 secant: secd=r/x
/x @ cotangent: cotd= X/y

Slide 1- 90

utangent tan@d = = Y/X
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> =

hypotenuse

Y\ opposite

> X

adjacent

FIGURE 1.69 The new and old
definitions agree for acute angles.
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Mnemonic to remember when the basic trigo
functions are positive or negative

y
A
S A
sin pos all pos
FIGURE 1.70 The CAST rule,
remembered by the statement “All
> X  Students Take Calculus,” tells
which trigonometric functions are
T C positive in each quadrant.
tan pos COS pos

Slide 1- 92

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



FIGURE 1.71 The triangle for
calculating the sine and cosine of 277/3
radians. The side lengths come from the
geometry of right triangles.
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TABLE 1.4 Values of sin 6, cos 8, and tan 6 for selected values of 6
Degrees —-180 —-135 =90 -—-45 0 30 45 60 920 120 135 150 180 270 360
. =37 - —T T v T ' 27 R 57 37

0 (radlans) —aT 4 2 4 0 g Z ? E T T T T T 27

sin 0 0 _—\/E -1 __\/E 0 1 ﬁ ﬁ 1 ﬁ ﬁ 1 0 -1 0
2 2 2 2 2 2 2 2

cos 0 1 __\/E 0 ﬁ 1 ﬁ ﬁ 1 0 I \/5 — \/5 -1 0 1
2 2 2 2 2 2 2 2

tan 6 0 1 -1 0 % 1 V3 V3 -1 _T\/E 0 0
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Periodicity and graphs of the trigo functions

Trigo functions are also periodic.

DEFINITION  Periodic Function
A function f(x) is periodic if there is a positive number p such that
f(x + p) = f(x) for every value of x. The smallest such value of p is the period

of f.

Slide 1- 95
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/TN

|
|
|
L> x

>

y =sinx

—%r_O '#"rr
:2 2:2

Domain: —0 < x < ©
Range: -l=y=1
Period: 2

2 - _i
t

! |
3m-m 0 T 3

A \ D
E E =

Domain: x # +7 + 3777, e
Range: y=-landy=1
Period: 2

RdE)

(d)

FIGURE 1.73

|

|

|

I Cal
w 3w
2 i

Domain: —o < x <
Range: -l1=y=1
Period: 27

(b)

rx

Domain: x # 0, 7, =27, ...

Range: y=-landy=1
Period: 2

(e)

> X

Y
/‘ I
LIy S 1
)

> X
3 0 # /m 3
2 ) k3
Domain: x #+2 + 3w
2’ 2’
Range: - <y <
Period: = ©)
y
1 =cotx
1_
> X
-7 | 7w\7T 372w
2 2 2

Domain: x # 0, £, =27, . ..
Range: -owo<y<w
Period:

()

Graphs of the (a) cosine, (b) sine, (¢) tangent, (d) secant, (e) cosecant, and (f) cotangent

functions using radian measure. The shading for each trigonometric function indicates its periodicity.
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Parity of the trigo functions

Even Odd

cos(—x) = cosx sin(—x) = —sinx

sec(—x) = secx tan(—x) = —tanx
csc(—x) = —cscx
cot(—x) = —cotx

The parity 1s easily deduced
from the graphs.
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Identities

y

P(cos 6, sin 6)

|cos 9| 1 o App1y1ng
Pythagorean theorem

to the right triangle
FIGURE 1.74 The reference leads to the ldentlty

triangle for a general angle 6.

cos’ @ + sin’ 6 = 1. (1)

Copyt




Dividing identity (1) by cos?’6@ and sin’&in
turn gives the next two 1dentities

1 + tan? 0 = sec? 0.
1 + cot?* 0 = csc? 6.

Addition Formulas

cos(4 + B) = cos4AcosB — sindsinB

2
sin(4 + B) = sin4 cosB + cosAsinB (2)

There are also similar formulas for cos (A-B) and sin
LA-B). Do you know how to deduce them?
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Double-Angle Formulas

cos 20 = cos? 0 — sin® 6

sin 20 = 2 sin 6 cos § ®)
Identity (3) 1s derived by setting A = B 1n (2)
Half-Angle Formulas
cost = L+ cos 28 ”
sin?§ = 1= 5 2 (5)

Identities (4,5) are derived by combining (1) and (3(1))
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Law of cosines

c?=a’+ b? — 2abcosh. (6)

y

A

B(a cos 0, a sin 0)

c’= (acos@- b)? + (asinf)?
a = a%+b? -2abcosd

0
A

C b A(b,0)

FIGURE 1.75 The square of the distance
between 4 and B gives the law of cosines.
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Limits and Continuity
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2.1

Rates of Change and Limits

(3" lecture of week 06/08/07 -
11/08/07)
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Average Rates of change and Secant Lines

2 Given an arbitrary function y=f(x), we
calculate the average rate of change of y
with respect to x over the interval [X,, X,] by
dividing the change In the value of y, Ay, by
the length Ax

DEFINITION  Average Rate of Change over an Interval
The average rate of change of y = f(x) with respect to x over the interval [x;, x;] is

Ay _ f) = flx) _ fln + h) = f(x)

Ay = 4o x 7 h#0.
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y
0 y =fx)
Q(x,, f(x3))
|
|
I
|
A
PG, f0x) i~
__________ 3
=} :
| L
0 X X3

FIGURE 2.1 A secant to the graph
y = f(x). Its slope is Ay/Ax, the
average rate of change of f over the
interval [x, x»].
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Example 4

0 Figure 2.2 shows how a population of fruit
flies grew In a 50-day experiment.

2 (a) Find the average growth rate from day
23 to day 45.

2 (b) How fast was the number of the flies
growing on day 23?
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P
A
350 ~
T Z (45 340)
300 -~
% /
= 250 / / Ap-= 190
— ap P
£ 150
Z. At =22
yd
100 e
/
50 =
—=—"""'"—"—/ > [
0 10 20 30 40 50
Time (days)

FIGURE 2.2 Growth of a fruit fly population in a controlled
experiment. The average rate of change over 22 days is the slope
Ap/ At of the secant line.
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Slop at P = (250 - 0)/(35-
r14) = 16.7 flies/day

=
Slope of PQ = Ap /At 350 B(35,350) ;/ ©
0 (flies /day) . —— M, "
5 2
45,340) 0= 10 g 2 250 /////
- o)
0,330) 320150 146 2 150 P23, 150)
40 — 23 2 P
100 /
- v
A
_ m=77
265 — 150 | — Gf/ .
s 205 30 — 23 164 0 1077\ 20 30 20 =

A(14,0) Time (days)

FIGURE 2.3 The positions and slopes of four secants through the point P on the fruit fly graph (Example 4).

The grow rate at day 23 is calculated by examining the
average rates of change over increasingly short time
Intervals starting at day 23. Geometrically, this is
equivalent to evaluating the slopes of secants from P to Q
with Q approaching P.
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Limits of function values

2 Informal definition of limit:

0 Let f be a function defined on an open
Interval about x,, except possibly at x, itself.

o If f gets arbitrarily close to L for all x
sufficiently close to x,, we say that f
approaches the limit L as x approaches x,

lim f(X)=L

X—Xg

o “Arbitrarily close” Is not yet defined here
(hence the definition is informal).
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Example 5

2 How does the function behave near x=17
2
X° -1
f(X)=
X—1

2 Solution:

- 000

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 2- 9
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TABLE 2.2 The closer x gets to 1, the closer f(x) = (x* — 1)/(x — 1)
seems to get to 2
_x—1_
Values of x below and above 1 fx) = ~—1-% + 1, x#F1
0.9 1.9
1.1 2.1
0.99 1.99
1.01 2.01
0.999 1.999
1.001 2.001
0.999999 1.999999
1.000001 2.000001

We say that f(x) approaches the limit Zzaslx

approaches 1, Ilmf(x) 2 or legg_ x—1:2
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! > X

/1 0 1
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FIGURE 2.4 The graph of f 1s
identical with the line y = x + 1
except at x = 1, where f is not
defined (Example 5).
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Example 6

2 The limit value does not depend on how the
fun%tion IS defined at Xo.

y

A A A

2 7

o /

L L .
210 e JZSI e
2 xz_ls x:/:l
@ o) = 5= (b) gy =1 * ! © he) =x+ 1

1, x=1

FIGURE 2.5 The limits of f(x), g(x), and 4 (x) all equal 2 as x approaches 1. However,
only /4 (x) has the same function value as its limit at x = 1 (Example 6).
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Example 7

a In some special cases lim, _,, f(x) can be evaluated by
calculating f (x,). For example, constant function, rational
function and identity function for which x=x, Is defined

a (a) lim,_, (4) = 4 (constant function)

a (b) lim, __;5 (4) = 4 (constant function)

a (c) lim,_,; x = 3 (identity function)

a (d) lim,_, (5x-3) = 10 — 3 =7 (polynomial function of
degree 1)

a (e) lim,_ , (3x+4)/(x+5) = (-6+4)/(-2+5) =-2/3 (rational
function)

Slide 2 - 13
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(b) Constant function

FIGURE 2.6 The functions in Example 8.
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Example 9

2 A function may fail to have a limit exist at a
point in its domain.

(a) Unit step function U(x) (b) g(x) (©) f(x)

FIGURE 2.7 None of these functions has a limit as x approaches 0 (Example 9).

Jump Grow to Oscillate
Infinities
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2.2

Calculating limits using
the limits laws
(31 lecture of week 06/08/07 - 11/08/07)
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The limit laws

2 Theorem 1 tells how to calculate limits of
functions that are arithmetic combinations
of functions whose limit are already known.
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THEOREM 1 Limit Laws
If L, M, ¢ and k are real numbers and

lim f(x) = L and lim g(x) = M, then

X—cC X—>cC
1. Sum Rule: 1i_>m(f(x) +glx))=L+ M
The limit of the sum of two functionsxis tche sum of their limits.
2. Difference Rule: li_I)n (fx) —glx))=L—-M
The limit of the difference of two ﬁmztiocns 1s the difference of their limits.
3. Product Rule: 1i_1)‘n (fx)-gix)) =L-M
The limit of a product of two ﬁmctionxs isc the product of their limits.
4. Constant Multiple Rule: li_1)n(k~ f(x)) =k-L
The limit of a constant times a func);io; is the constant times the limit of the
function.

x

5. Quotient Rule: ;}I—IE: g((—x)) = %, M#*0

The limit of a quotient of two functions is the quotient of their limits, provided
the limit of the denominator is not zero.

6. Power Rule: If r and s are integers with no common factor and s # 0, then
lim (f(x))”* = L'
x—c

provided that L/ is a real number. (If s is even, we assume that L > 0.)

The limit of a rational power of a function is that power of the limit of the func-
tion, provided the latter is a real number.
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Example 1 Using the limit laws

a (a) lim, _, . (x3+4x2-3)
. 31 -
=lim,_  x*+lim,_ . 4x*>-lim _ 3
(sum and difference rule)

= c*+ 4c%- 3
(product and multiple rules)

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 2-19



Example 1

a (b) lim, ., (x*4+x2-1)/(x2+5)
= lim, ., (x*+x2-1) /lim, __ _ (x2+5)

=(lim,_ x*+ lim, _ x2-lim
= (c*+c?- 1)/(c?+ 5)

1)/(lim,_. x2+ lim,_. 5)

X—>C X—>C
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Example 1

o (c) lim, ., V(4x2-3) = lim, . _, (4x2-3)
Power rule with r/s = 1

= [lim, ., 4x2 - lim

=V [4(-2)? - 3] = V13

3]

X— -2
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THEOREM 2 Limits of Polynomials Can Be Found by Substitution
IfP(x) = a,x" + a,—1x" ' + -+ + aq, then

lim P(x) = P(c) = a,c" + ay,—i1¢" '+ -+ + qp.

X—>c¢

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 2- 22



THEOREM 3

Limits of Rational Functions Can Be Found by Substitution

If the Limit of the Denominator Is Not Zero

If P(x) and O(x) are polynomials and O(¢) # 0, then

s P(x)  P(c)
roe 0(x)  0(c)°

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
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Example 2

2 Limit of a rational function

3 2 _1\3 _1\2
i X +4X 3:(1) +4(-1) 3_0_

2 2 O
x>-1 X 45 (-1 +5 6
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it T N N L
Eliminating zero denominators algebraically

Identifying Common Factors

It can be shown that i1f Q(x) 1s a
polynomial and O(c) = 0, then

(x — c¢) is a factor of Q(x). Thus, if

the numerator and denominator of a
rational function of x are both zero at

x = c, they have (x — ¢) as a common
factor.

Slide 2 - 25
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Example 3 Canceling a common factor

XA+ X=2
0 Evaluate lIM—
Xx—1 X~ — X
2 Solution: We can’t substitute x=1 since

f (x =1) 1s not defined. Since x=1, we can
cancel the common factor of x-1:

i X2+ X —2 :"m(x—l)(x+2) :"m(x+2)

x—1 X2 — X x—1 X(X _]_) x—1 X

=3
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FIGURE 2.8 The graph of

fx) = (x> + x — 2)/(x* — x)in
part (a) is the same as the graph of
g(x) = (x + 2)/x in part (b) except
at x = 1, where f is undefined. The
functions have the same limit as x — 1
(Example 3).
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The Sandwich theorem

THEOREM 4 The Sandwich Theorem
Suppose that g(x) = f(x) = h(x) for all x in some open interval containing c,
except possibly at x = c itself. Suppose also that

lim g(x) = lim A(x) = L.

xX—>c Xx—>c

Then lim,—. f(x) = L.
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FIGURE 2.9 The graph of f is
sandwiched between the graphs of g and 4.
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Example 6

a (a)

a The function y =sin @1is sandwiched betweeny =
|6| and y= -| 8| for all values of &. Since lim,_, (-
16]) =lim,_, (|€]) =0, we have lim,_,sin 6= 0.

a (b)

a From the definition of cos &,

0 <1-cos @ =< |@|forall 6 and we have the
limit lim,_, cos =1
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(a)

FIGURE 2.11 The Sandwich Theorem confirms that (a) limg—gsin @ = 0 and
(b) limg—g (1 — cos @) = 0 (Example 6).
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Example 6(c)

a For any function f (x), If lim,_, (|f (X) |) =
0, then lim, _, f (x) = O due to the sandwich
theorem.

0 Proof: -If (%) < f (x) < If (x)|
a Since lim, _, (If () [) = lim, o (-|f () [) =0
o= lim,_f(x)=0

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 2- 32



2.3

The Precise Definition of a Limit

(15 lecture of week 13/08/07-
18/08/07)
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Example 1 A linear function

0 Consider the linear functiony = 2x — 1 near
X, = 4. Intuitively it is close to 7 when x IS
close to 4, so lim, 5, (2x-1)=7. How close
does x have to be so that y = 2x -1 differs
from 7 by less than 2 units?
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y

Solution (I P
o For what value of x ;Jlipgf bound:

IS |y-7|< 27 B —
0 First, find [y-7|<2 interms 0%V 4 %

of x: 5 /]
ly-7|<2 = |2x-8|<2 i i ;ozwgr bound:
= -2< 2X-8<2 o
=3<X<5 | 4| .
= 1<x-4<1 V 345
Keeping x within 1 unit Restrict

to this

of x, = 4 will keep y within

2 units of y,=7. FIGURE 2.12 Keeping x within 1 unit
of xo = 4 will keep y within 2 units of
yo = 7 (Example 1).
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Definition of limit

DEFINITION Limit of a Function

Let f(x) be defined on an open interval about x(, except possibly at x itself. We
say that the limit of f(x) as x approaches x; is the number L, and write

lim f(x) = L,

XX

if, for every number € > 0, there exists a corresponding number 6 > 0 such that
for all x,

0<|x—x| <& = | f(x) — L| <ee.

Slide 2 - 36
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Definition of limit

f(x) lies
L O_f(.x) [ in here

for all x # x
in here

x0—3 .IO x0+3

FIGURE 2.14 The relation of 6 and € in
the definition of limit.
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A « The problem of proving L as the
limit of f (x) as x approaches X, Is a
Ll ) problem of proving the existence of
+ )
10 0, such that whenever
¢ f(x) P
X) 11ES
Le¢ [ in here ° Xo_5<X< XO+59
RN o L+e<f(X)<L-¢ forany arbitrarily
10 ] small value of .
or-allx # X,
_ inbere « As an example in Figure 2.13, given
628 ¢=1/10, can we find a
(o &) >x corresponding value of 6?
0 Xo — 0 X0 X0 + 6

e How about if £=1/100? £=1/12347?

. o  |If for any arbitrarily small value of ¢

fsf OIS‘E tha_tk;epmf ;Tlt?lnkthe we can always find a corresponding

mterval (xo = 8,x0 *+ &) willkeep /(x) — yaye of &, then we has successfully

within the interval (L - %, L+ %)? proven that L is the limit of f as X
approaches X,

FIGURE 2.13 How should we define
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b o
y =10 ¥ =.f(7
|
L+
10 1 L
L+ 100 L+ 100
LEEE LIEgeee L
L Zib t 7 N
b3 L 100 I ~ 100
10 !
I
x / ¥ 4 : X /] X
0 v Xy b i 0 Xp 0 i)
Xy — 810 Xo + Siio Xo = 817100 X0+ By/100
The challenge: Response: New challenge: Response:
1 ; =1 :
Make | f(x) L] < € = - | x = x| < 81710 (a number) Make |f(x)-L| < e = i | x = x| < 81100
¥ v
1 4
y=Jw)
|
L+ 1000
1 i
L= 1000 / |
I
/ | ‘_
0 Xy J

1
L+ 160,000
i 1

“ = 100,000

LE

New challenge:

£ = —

= 1000

SN

New challenge:
= 1
~ 100,000

€

y

Response:

|x = xo| < 811000

Response:
|-" = -‘nl < 811100000
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Example 2 Testing the “ 4
definition

]
|
|
|
|
|
|
|
|
|
|
|
1
|
|

0 Show that 2-e ,
lim(5x—3)=2 /

Xx—1

ki —— — e ———

1+

Lh
nlm

-3
/ NOT TO SCALE

FIGURE 2.15 If f(x) = 5x — 3, then
0 < |x — 1| < €/5 guarantees that
| f(x) — 2| < e (Example 2).
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Solution

a Set x,=1, f(x)=5x-3, L=2.

0 For any given g, we have to
find a suitable 6> 0 so that
whenever

0<| x = 1< o, X1,

It Is true that f(x) Is within
distance ¢of L=2, I.e.

fX)=2|<e&

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
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-3
/ NOT TO SCALE

FIGURE 2.15 If f(x) = 5x — 3, then
0 < |x — 1| < €/5 guarantees that
| f(x) — 2| < e (Example 2).
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f(X) - 2|< & = |5x - 5l< & =

-£5<X-1< g/5 = -g/5< X = X,< £/5
X
(

| ANIV4

\ X ) "
eel5 %y xgtel5 b

d
a choose o< ¢/ 5. This choice will guarantee that

[f(X) — L| < ewhenever x,—0 <X <X, + .
We have shown that for any value of £ given, we can

always find an corresponding value of o that meets the
“challenge” posed by an ever diminishing &. This Is an
proof of existence.

Thus we have proven that the limit for f(x)=5x-3 Is L=2
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Example 3(a)

2 Limits of the identity
functions

2 Prove
lim X = X,

X—>Xg

0 XO—ﬁxO 0+6

FIGURE 2.16 For the function f(x) = x,
we find that 0 < |x — xo| < 6 will
guarantee | f(x) — xo| < € whenever
6 = € (Example 3a).

Slide 2 - 43

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Solution

0O Let £> 0. We must
find 6> 0 such that for
all x, 0 < [x-%y|< &
Implies [f(x)-Xy|< &,
here, f(x)=x, the
Identity function.

- 0 — 8 +8
0 Choose o< ¢ will do o9 %o %o
the JOb FIGURE 2.16 For the function f(x) = x,
Q The proof of the we find that 0 < |x — xo[ < 6 will

existence of sproves ~ guarantee |/(x) ~ xo| < € whenever
' — 6 = e (Example 3a).
lim X = X,
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Example 3(b)

Y
k+ € y=k

ke T

. . - k- !

o Limits constant functions’ o

b

a Prove .
limk =k (k constant) . .

X—Xo 0 Xg— 0 x5 Xp+ O

FIGURE 2.17 For the function f(x) = k,
we find that | f(x) — k| < € for any
positive 6 (Example 3b).
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Solution y
a Let £> 0. We must y=k
find 5> 0 such that for “* ¢ |

all x, 0 < |x-Xo|< & k— e |
implies [f(x)- k|< &, :
here, f(x)=k, the |
constant function. i .

2 Choose any owill do 0 xg—8 xg xp+9
the job.

a Th_e proof of the
ﬁr)ﬂﬁEeQﬁ(e of o proves

X—>Xg

FIGURE 2.17 For the function f(x) = k,
we find that | f(x) — k| < € for any
positive 6 (Example 3b).
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Finding delta algebraically for given epsilons

0 Example 4: Finding delta algebraically
a For the limit limvVx-1=2

X—5

find a o> 0 that works for = 1. That Is,
find a o> 0 such that for all x,

O<\x—5\<5:0<‘ﬂ—2‘<1
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NOT TO SCALE

FIGURE 2.19 The function and intervals
in Example 4.

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 2- 48



Solution
0 o Is found by working backward:

How to Find Algebraically a 6 for a Given f, L, xo, and e > 0
The process of finding a 6 > 0 such that for all x

0 <|x—x| <6 = | f(x) — L| <€
can be accomplished in two steps.

1. Solve the inequality | f(x) — L| < e to find an open interval (a, b) contain-
ing xo on which the inequality holds for all x # xy.

2. Find a value of 8 > 0 that places the open interval (xo — 8, xo + &) centered
at xo inside the interval (a, b). The inequality | f(x) — L| < € will hold for all
X # X 1n this d-interval.
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Solution
2 Step one: Solve the inequality [f(x)-L|<e&
O<‘\/x—1—2‘<1:>2<x<10

2 Step two: Find a value of 6> 0 that places the open
Interval (X,-96, Xo+0) centered at X, Inside the open
Interval found in step one. Hence, we choose 6= 3 or

a smaller number X=5
By doing so, the 5=3 =3
inequality 0<|x - 5| < § — ettty —L———> x

. . 2 D 8 10Interval found in
will automatically place ‘ " step 1
X between 2 and 10 to FIGURE 2.18 An open interval of
make 0< ‘ f(x)- 2‘ <1 radius 3 about xy, = 5 will lie inside the

open interval (2, 10).
Slide 2 - 50
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Example 5

2 Prove that
lim f (x) =4 if

X—>2

|

|

!

f (x) x> X#2 |
— I

1 x=2 el
L] .
X V4—62\\/4+E

FIGURE 2.20 An interval containing
x = 2 so that the function in Example 5
satisfies | f(x) — 4| < €.
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Solution
a Step one: Solve the inequality ,
If(X)-L|<é&: 1 /y o
O<‘x2—2‘<g:>\/4—g<x<\/4+g,x¢24+6
0 Step two: Choose E
] 4————=0 12,4
a 5< min [2-V(4-9)2, N(4+¢&) - 2] :
R
o For all X, i 4i' i(z, 1)
<|x-2| < A< L > x
Q00<|x-2] <o = |f(X)-4|<e )y  p—

a This completes the proof.
FIGURE 2.20 An interval containing

x = 2 so that the function in Example 5
Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley satisfies |f(x) — 4 | < €.



2.4

One-Sided Limits and
Limits at Infinity

(15t lecture of week 13/08/07-18/08/07)
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Two sided limit _x
does not exist for y;

10

B ut x—0"

y does has two one- °

sided limits

lim f (x)=—1

Xx—>0"

FIGURE 2.21 Different right-hand and
left-hand limits at the origin.
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Lt A i s s A
One-sided limits

~ i
— \_/,,/
L- () F()3 M
0 C €= X > 0 X e =
(@ lim_f(x)=L (b) Lm_ f(x)=M
X—C X—C

FIGURE 2.22 (a) Right-hand limit as x approaches c. (b) Left-hand limit as x
approaches c.

Right-hand limit | eft-hand limit
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Example 1

y

2 One sided limits of alsemicircle ~ No right hand
Y= VAT imit at x=2:
No left hand No two sided
limit at x= -2; limit at x= 2;
No two sided 2 0 2

MItatX= -2} c1ope 223 tim V4 — <2 = 0 and

x—2

lim V4 — x* = 0 (Example 1).

x——=2"
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THEOREM 6

A function f(x) has a limit as x approaches c if and only if it has left-hand and
right-hand limits there and these one-sided limits are equal:

lim f(x) = L = lim f(x) =L and lim f(x) = L.

x—c xX—c Xx—>c
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Example 2

2 Limits of the
function graphed In
Figure 2.24

0 Can you write 2+ .
down all the limits _/\
at x=0, x=1, x=2, 1\
X=3, Xx=47 Y o e
0 1

a What 1s the limit at
other values of x? FIGURE 2.24 Graph of the function
in Example 2.

> =
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Precise definition of one-sided limits

DEFINITIONS Right-Hand, Left-Hand Limits
We say that f(x) has right-hand limit L at x,, and write

lim f(x) =L (See Figure 2.25)

XX
if for every number € > 0 there exists a corresponding number 6 > 0 such that
for all x
X0 <x<xp+ 0 = |f(x) — L| <e.

We say that f has left-hand limit L at x,, and write
lim f(x) =1L (See Figure 2.26)

X—Xo
if for every number € > 0 there exists a corresponding number & > 0 such that
for all x
xg — 6 < x < Xxo = | f(x) — L| <e.

Slide 2 - 59
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y
A
L+em~
¢ f(x)
f(x) lies
L = r in here
L — € L~/ J
for all x # x;
in here
r 6 A ]
5 o ° - > X
XG JCO + 3

FIGURE 2.25 Intervals associated with
the definition of right-hand limit.
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y
A
L+e1
¢ f(x)
f(x) lies
L ™ [ inhere

for all x # x

in here
r A Al
o
X
{ P e > X
0 5
Xo — X0

FIGURE 2.26 Intervals associated with
the definition of left-hand limit.
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Limits involving (sin6)/ &

Y
A

1

lx\\i;;
D L] >0
au

su{; 0 (ra
—37r 27T Zar " T

dians)
T 3

NOT TO SCALE

FIGURE 2.29 The graph of f(9) = (sin6)/6.

THEOREM 7

. sin@
lim

lim =p= = 1 (6 in radians) (1)

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 2 - 62




>

Proof _
Area AOAP =1, sIng

Area sector OAP = 6/2
Area AOAT =2 tané
Y28IN0<0/2 <Y tand
1<@/sinf< 1llcosd

1>sIn@/0 > cosl

i +
Taking limit 6 207, FIGURE 2.30 The figure for the proof of

sing sin@  Theorem7.T4/04 = tan6,but O4 = 1,

[im =1=1lim so TA = tan@. |
Copyrigh@.@@?—'bearso@ducation, Inc. Publighrgyd Pears@Addison-Wesley Slide 2 - 63
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Example 5(a)

cosh-1

0 Using theorem 7, show that Ihlrrg 0
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Example 5(b)

. . SsIn2x 2
2 Using theorem 7, show that lIm oNeX _
x—=>0 By 5
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Finite limits as x—+o°

FIGURE 2.31 The graph of y = 1/x.
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Precise definition

DEFINITIONS Limit as x approaches o© or — oo
1. We say that f(x) has the limit L as x approaches infinity and write

lim f(x) =L

x—>00

if, for every number € > 0, there exists a corresponding number M such that
for all x

x>M = 1 f(x) — L| <e.

2. We say that f(x) has the limit L as x approaches minus infinity and write

lim f(x) =1L

x——00

if, for every number € > 0, there exists a corresponding number N such that
for all x

x <N = | f(x) — L| <e.
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Example 6

a Limit at infinity for f (X) = 1
X

.1
o (a) Show that  Im—=0

X—00 X

.1
o (b) Show that 1M ==0

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 2 - 68



No matter what
positive number € is,
the graph enters

>

1 this band atx:E

YT X and stays.
-

€
I
| v=-L 0
—_— l > X
]
ol m=1]

No matter what
positive number € is,
the graph enters
this band at x = —
and stays.

€

FIGURE 2.32 The geometry behind the
argument in Example 6.
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THEOREM 8 Limit Laws as x — + o©
If L, M, and £, are real numbers and

lim f(x) =1L and lim g(x) = M, then

xX—>+00 x—>=+00

1. Sum Rule: lim (f(x) + gx)) =L+ M
x—>40C0

2. Difference Rule: lirf (fx) —glx)) =L - M
x—>+400

3. Product Rule: lil’:|I:1 (fx)gx))=L-M
x— 300

4. Constant Multiple Rule: lilil (k- f(x)) = k- L
x—>10C0

X
S. Quotient Rule: lim fx) _ 1 M#0

x—to0 g(x) M’

6. Power Rule: If r and s are integers with no common factors, s # 0, then
lim (f(x))7s = L'
x—>+00

provided that L' is a real number. (If s is even, we assume that L > 0.)
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Example 7(a)
2 Using Theorem 8

Iim(5+1j: |im5+|im£:5+0:5

X—>00 X X—>00 X—>0 X
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it T N N L
Example 7(b)

jim 73 _ 23 lim—

X—00 X 2 X—>0 X

=nﬁ|im3-|im3

X—0 X X—00 X

=73:0-0=0

Slide 2- 72
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Limits at infinity of rational functions

0 Example 8

2 _ 5+(8/x)—(3/x°
im S +8x =3 _ 5+(8/%) (3) _
X—>»00 3X _|_2 X—>00 3_|_(2/X2)

5+1im(8/x)~1im(3/x°) 5,0-0 s
3+lim(2/x*) 340 3

X—>0
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y y=5x2+8x—3
1 3x% + 2
=
’ Liney=§
3
' e
5 10

—2  NOTTO SCALE

FIGURE 2.33 The graph of the function
in Example 8. The graph approaches the
line y = 5/3 as|x|increases.

go back
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Example 9

0 Degree of numerator less than degree of
denominator

11/ x)+(2/x?
o x+2 L (10+(2/%°) 040

e 2xP =1 o 2 (1/x°) "2 0 "
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A

8 yo lx+?2
2x3 — 1

6_

4_

FIGURE 2.34 The graph of the
function in Example 9. The graph
approaches the x-axis as | x| increases.
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Horizontal asymptote

O X-axiIs IS a horizontal
asymptote

FIGURE 2.31 The graph of y = 1/x.
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DEFINITION  Horizontal Asymptote

A line y = b is a horizontal asymptote of the graph of a function y = f(x) if
either

lim f(x) = b or lim f(x) = b.

x—0C0 x—>—00

Figure 2.33 has the line y=5/3 as a horizontal

asymptote on both the right and left because

. 5 : 5
_ - Iim f(x)=—
limfQg=2  im (X) »
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Obligue asymptote

0 Happen when the degree of the numerator
polynomial is one greater than the degree of
the denominator

2 By long division, recast f (x) into a linear
function plus a remainder. The remainder
shall — 0 as x — £<=. The linear function is
the asymptote of the graph.
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y
Example 12 !
4
2 Find the oblique asymptote
2X2 _3 = 2,x2 — 3
f(x)= oL 7T x4
IX+4

a Solution / /

linear function
N

ox2-3 (2 8)  -115
f(x)= =| =X— +
7X+4 \7° 49) 49(7x+4)

: . (2 8 : —-115
im f(X)=lim| =x—— [+ lim
X—>F00 x—>to\ [ 49 X—>+00 49(7)( + 4)

. (2 8 . (2 8
=lim|=x——|+0=Ilim| =x——
x—>to| [ 49 x—too| [ 49
FIGURE 2.36 The function in Example
12 has an oblique asymptote.
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2.5

Infinite Limits and Vertical Asymptotes
(2nd Jecture of week 13/08/07-18/08/07)
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You can get as high

Infinite limit as you want by

taking x close enough
to 0. No matter how
high B is, the graph
B 9 | goes higher.

_1
&x
|

P > X
X

0
\f No matter how
low —B is, the

graph goes lower.

b
i

You can get as low as| ¢ —B
you want by taking
x close enough to 0.

FIGURE 2.37 One-sided infinite limits:
1

1 i
lim — = o0 and Iim — = —©
x—0" ¥ x—0~ %

Slide 2 - 82
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Example 1
AFind lim—— and lim— |
x—>1" X =1 x—1" X —1 1+

-1 0 1

FIGURE 2.38 Near x = 1, the function
y = 1/(x — 1) behaves the way the
function y = 1/x behaves near x = 0. Its
graph is the graph of y = 1/x shifted 1

unit to the right (Example 1).
Slide 2 - 83
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Example 2 Two-sided infinite limit

a Discuss the behavior of

(a) f(x)=i2 near x =0
X

(b) g(x)= L near X = —3

(x+3)2
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y

L

No matter how
Be high B is, the graph
goes higher.

yx_gl \
o ! > x
x 0 x
(@)
_ 1
80 = T y
5 -
4 -
3r FIGURE 2.39 The graphs of the
2f functions in Example 2. (a) f(x)
1+ approaches infinity as x — 0. (b) g(x)
e B e approaches infinity as x — —3.

(b)
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Example 3

0 Rational functions can behave In various
ways near zeros of their denominators

2 2

(a)lim(xz_z) X2 (22

o2 X°—4  o2(x=2)(x+2) ©2(x+2)

. X=2 . X—2 . 1 1
b)| = | _ | _Z
e 2™ 2 (xr2) R(xr2) 4

. X=3 _ .. X—3 B _
(C)XIEE e legg(x—z)(x+2) =—o0 (note: x>2)
(@) lim 222 = lim— X3 o (note: 0<x<2)

X—2" )(2_4 X—>2(X_2)(X_|_2)
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Example 3

. Xx=3 .. X—3 . .
e)lim = |lim limit d t t
( )XLZ 22 XI—>2(X—2)(X—|—2) imit does not exis
(M= — fim—*=%  _jim—1 &

=2 (x-2) 22 (x=2)(x=2) =2 (x=2)
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Lt A i s s A
Precise definition of infinite limits

DEFINITIONS Infinity, Negative Infinity as Limits

1. We say that f(x) approaches infinity as x approaches x,, and write

lim f(x) = oo,
X—Xyp

if for every positive real number B there exists a corresponding 6 > 0 such
that for all x

0<|x—x| <6 = f(x) > B.

2. We say that f(x) approaches negative infinity as x approaches x;, and write

lim f(x) = —o0,
XXy

if for every negative real number — B there exists a corresponding 6 > 0 such
that for all x

0 < |x—x| <6 = f(x) < —B.
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y = fx)

/ 7 <
7 %<8 0 x, 46

FIGURE 2.40 Forxy — 6 < x < xp + 6,
the graph of f(x) lies above the line y = B.

> X
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\if

FIGURE 2.41 Forxyg — 6 < x < xp + 0,
the graph of f(x) lies below the line
y = —B.
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Example 4

0 Using definition ff Infinite limit

a Prove that |jm— = o
Xx—0 X2
Given B>0, we want to find >0 such that
. . 1
0<|x-0<o Implies —>B

X
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Example 4
Now

2 > Bifandonly ifx? <1/B=|x|<1/vB

X

By choosing 6=1/+/B

(or any smaller positive number), we see that
1 1

| X|<o 1mplies —>—2>B
X° 07
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Vertical asymptotes

Vertical asymptote

. 1 Horizontal 1
||m — = 00 asymptote
x
Xx—0" X Horizontal
asymptote,
.1 y=0
lim — = —c0
x—0" X Vertical asymptote,

x=0

FIGURE 2.42 The coordinate axes are
asymptotes of both branches of the
hyperbola y = 1/x.
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DEFINITION Vertical Asymptote
A line x = a is a vertical asymptote of the graph of a function y = f(x) if either

lim_f(x) = £00 or lim f(x) = +00.

X—>a Xx—a
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Example 5 Looking for asymptote

2 Find the horizontal and vertical asymptotes
of the curve

y_x+3
X+ 2
2 Solution:
1
y=1+——

X+ 2
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y
Vertical T
asymptote, Ja
x=-2 5 _x+3
4l Y x+ 2
14—
Horizontal 3 x +2
asymptote, 5L
V= 1 —
IR R
1 2 3
3k
4

FIGURE 2.43 Thelines y = 1 and
x = —2 are asymptotes of the curve
y = (x + 3)/(x + 2) (Example 5).
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Asymptote need not be two-sided

0 Example 6

f(X)= -

X% — 2

a Solution:
8 38
f(X)=—— = —
X" —2 (X—2)(x+2)
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8- _ 8
7 - x2— 4
6 -
51 Vertical
Vertical 4+ asymptote, x = 2
asymptote, 3 Horizontal

asymptote, y = 0

FIGURE 2.44 Graph of
y = —8/(x2 — 4). Notice that the curve
approaches the x-axis from only one side.

Asymptotes do not have to be two-sided
(Example 6).
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Example 8

2 A rational function with degree of freedom
of numerator greater than degree of

denominator
X —3
f(x)=
(X) = ~
a Solution:

23 linear r remainder

f(X)— =5X:1§:§ '
x—4 2 1i2x-4
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2
_x“=3_x 1
Y=ox—a- 2ttt
y
\ I The vertical distance
between curve and

line goes to zero as x — o

Oblique

x=2
- asymptote
|
X
A
|
R
-1 0] 1 2 3 4 «x "% FIGURE 2.47 The graph of
-1 — (2 _ _ -
. f(x) = (x* — 3)/(2x — 4) has a vertical
2+ Vertical asymptote and an oblique asymptote
asymptote,
3k r=2 (Example 8).
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Continuity

(2" lecture of week 13/08/07-
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A
80 0 % P
4

E 60 y.
~ 3
5 yd
E 40 %,/
: 0
g 20 /
A e

1 > ¢

0 5 10
Elapsed time (sec)

FIGURE 2.49 Connecting plotted points
by an unbroken curve from experimental
data Oy, O», O3, ... for a falling object.
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Continuity at a point

0 Example 1

2 Find the points at which the function f In
Figure 2.50 iIs continuous and the points at
which f Is discontinuous.
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>

\ .
9 ] | | > X
1

FIGURE 2.50 The function is continuous
on [0, 4] exceptatx = 1,x = 2, and
x = 4 (Example 1).
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a f continuous: a f discontinuous:
o Atx=0 0 Atx=1
0 Atx =3 0 Atx=2
O At0<c<4,c#1,2 aAtx=4
a0>c,c>4
a Why?
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0 To define the continuity at a point in a
function’s domain, we need to

0 define continuity at an interior point
2 define continuity at an endpoint
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Continuity Two-sided

from the right ~ continuity Continuity
= < from the left
m
! |
| |y =f |
! |
I | |
1 | L 5y
a c b

FIGURE 2.51 Continuity at points a, b,
and c.
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DEFINITION Continuous at a Point

Interior point. A function y = f(x) is continuous at an interior point c of its
domain 1f

lim f(x) = f(e).

Endpoint. A function y = f(x) is continuous at a left endpoint a or is
continuous at a right endpoint b of its domain if

l_i)m+ f(x) = f(a) or l_i)r%_ f(x) = f(b), respectively.
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Example 2

2 A function continuous throughout Its

q :
Oomalin f (X) _ \/4 B )(2
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>X

-2 0 2

FIGURE 2.52 A function
that 1s continuous at every
domain point (Example 2).
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Example 3
a The unit step function has a jump |
discontinuity |
2= U(x)
07 ~

FIGURE 2.53 A function
that is right-continuous,
but not left-continuous, at
the origin. It has a jump
discontinuity there

(Example 3).
Slide 2- 111
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Summarize continuity at a point in the form of

a test

Continuity Test

A function f(x) is continuous at x = c if and only if it meets the following three
conditions.

1. f(c)exists (c lies in the domain of f)

2. lim,—. f(x) exists (f has a limit as x — ¢)

3. limy—. f(x) = f(c) (the limit equals the function value)

For one-sided continuity and continuity at an
endpoint, the limits in parts 2 and parts 3 of
the test should be replaced by the appropriate
one-sided limits.
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y
Example 4 oo T
T T
0 The greatest integer function, *[ = °
2y=Ix i
0 The function is B
not continuous at the Al

Integer points since limit
i FIGURE 2.54 The greatest integer
does not exist there (Ieft function is continuous at every
- = . noninteger point. It is right-continuous,
and right limits NOt agree) o pron @18 e eomEIo

but not left-continuous, at every integer
point (Example 4).
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y=f) y = f(x) y = f(x)

(@) (b) (©) (d)
})i Jj\ y = Sin 2_7T

St
]
R-.,,}
=
—
Il
Ml'_
——
———

(e) (f)

FIGURE 2.55 The function in (a) is continuous at x = 0; the functions in (b) through (f)
are not.
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Discontinuity types

2 (b), (c) removable discontinuity
0 (d) jJump discontinuity

2 (e) infinite discontinuity

0 () oscillating discontinuity

Slide 2- 115
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Continuous functions

2 A function i1s continuous on an interval iIf
and only If 1t Is continuous at every point of
the Interval.

0 Example: Figure 2.56

2 1/x not continuous on [-1,1] but continuous
over (-o=,0)) (0, =°)
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FIGURE 2.56 The function y = 1/xis
continuous at every value of x except
x = 0. It has a point of discontinuity at

x = 0 (Example 5).
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Example 5

0 ldentifying continuous function

2 (a) f(x)=1/x

2 (b) f(x)= X

a Ask: Is 1/x continuous over Its domain?
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THEOREM 9 Properties of Continuous Functions

If the functions f and g are continuous at x = ¢, then the following combinations
are continuous at x = c.

1. Sums: ft+g

2. Differences: f—g

3. Products: f-g

4. Constant multiples: k- f, for any number k

5. Quotients: f/g provided g(c) # 0

6. Powers: 775, provided it is defined on an open interval

containing ¢, where r and s are integers
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Example 6

0 Polynomial and rational functions are
continuous

2 (a) Every polynomial Is continuous by

a (i) ImP(x)=P(c)

2 (11) Theorem 9

2 (b) If P(x) and Q(x) are polynomial, the
rational function P(x)/Q(x) Is continuous
whenever it Is defined.
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Example 7

0 Continuity of the absolute function
o f(x) = |x| Is everywhere continuous

0 Continuity of the sinus and cosinus function

0 f(x) = cos x and sin X IS everywhere
continuous
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Composites

0 All composites of continuous functions are
continuous

THEOREM 10 Composite of Continuous Functions

If f is continuous at ¢ and g is continuous at f(c), then the composite g © f is
continuous at c.
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Continuous at ¢

Continuous Continuous
atc at f(c)

o o
c f(e) g(f(c)

FIGURE 2.57 Composites of continuous functions are continuous.
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Example 8

a0 Applying Theorems 9 and 10

2 Show that the following functions are
continuous everywhere on their respective

domains.
2/3
(a)y:\/x2—2x—5 (b)y = X -
1+ X
X —2 XSIN X
C — d =
)y X2_| Dy=1"7_>
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> ‘=

04
3

0.2
O.V
> X
0
FIGURE 2.58 The graph suggests that

y = |[(xsinx)/(x* + 2)| is continuous
(Example 8d).

27 -
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THEOREM 11 The Intermediate Value Theorem for Continuous Functions

A function y = f(x) that is continuous on a closed interval [a, b] takes on every
value between f(a) and f(b). In other words, if yy 1s any value between f(a) and

f(b), then yo = f(c) for some c in [a, b].

y =fx)

(D)

Yo

f(a)
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3 ® «
7L
1k
| | | > x
0 1 2 3 4

FIGURE 2.61 The function

2x — 2, 1=x<2
ﬂﬂ_{a P=x=4
does not take on all values between
f(1) = 0and f(4) = 3; it misses all the
values between 2 and 3.
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Consequence of root finding

2 A solution of the equation f(x)=0 is called a root.

0 For example, f(x)= x2 + x - 6, the roots are x=2,
x=-3 since f(-3)=f(2)=0.

2 Say f Is continuous over some interval.

2 Say a, b (with a < b) are in the domain of f, such
that f(a) and f(b) have opposite signs.
2 This means either f(a) < 0 < f(b) or f(b) <0 < f(a)

0 Then, as a consequence of theorem 11, there must
exist at least a point ¢ betweenaand b, l.e.a<c
< b such that f(c)= 0. x=c Is the root.
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fa)<0 & C
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Example

0 Consider the function f(x) = x - cos x

0 Prove that there is at least one root for f(x) in the interval
[0, 772].

Solution

f(x) 1s continuous on (-o°, <o),

Saya=0,b=m2.

f(x=0) =-1; f(x = 7/2) = 72

f(a) and f(b) have opposite signs

Then, as a consequence of theorem 11, there must exist at

least a point ¢ between a and b, 1.e. a=0 < ¢ < b= /2 such
that f(c)= 0. x=c Is the root.

OO0 000D
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Tangents and Derivatives

(3" lecture of week 13/08/07-
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PEARSON

;&{ idison
Wesley Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



What Is a tangent to a curve?

k Tangent

Secants //

‘4

FIGURE 2.65 The dynamic approach to tangency. The tangent to the curve at P is the line
through P whose slope is the limit of the secant slopes as Q — P from either side.
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DEFINITIONS Slope, Tangent Line
The slope of the curve y = f(x) at the point P(xg, f(x)) is the number

L fe ) — flxo)
m = lim
h—0 k

(provided the limit exists).

The tangent line to the curve at P is the line through P with this slope.
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> =

y=f®)
Q(x{) + h, f(x{;, + h))

:f(xo + h) — f(xq)

P(xo, f(x0))

> X

FIGURE 2.67 The slope of the tangent

+ h) —
line at P s lim flxo ; flxo)
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Example 1: Tangent to a parabola

0 Find the slope of the parabola y=x? at the
point P(2,4). Write an equation for the
tangent to the parabola at this point.
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Finding the Tangent to the Curve y = f(x) at (xo, Vo)
1. Calculate f(xo) and f(xg + h).
2. Calculate the slope

" fxo + h) — f(xo0)
im .

m o
h—0 h

3. If the limit exists, find the tangent line as

y =y + m(x — Xxp).
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S
>

2+ h)? -4

=h+ 4.
h

Secant slope is

|
)

NOT TO SCALE y :\4X - 4

FIGURE 2.66 Finding the slope of the parabola y = x? at the point P(2, 4) (Example 1).
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Example 3

2 Slope and tangent to y=1/x, x=0
2 (a) Find the slope of y=1/x at x = a #0
2 (b) Where does the slope equal -1/4?

2 (c) What happens to the tangent of the curve
at the point (a, 1/a) as a changes?
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slope 1s _1

/ 4

FIGURE 2.68 The two tangent lines to
y = 1/x having slope —1/4 (Example 3).
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-1

.1
slope 1s -

FIGURE 2.69 The tangent slopes, steep
near the origin, become more gradual as
the point of tangency moves away.
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3.1

The Derivative as a Function

(3" lecture of week 13/08/07-
18/08/07)
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|}

DEFINITION Derivative Function

The derivative of the function f(x) with respect to the variable x is the function
f' whose value at x is

) = i KR =S

provided the limit exists.

a The limit f Nt
Ih”.g (XO+ )_ (XO)

a when it existed, is called the Derivative if f at x,,.
2 View derivative as a function derived from f
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a If f'exists at x, f 1s said to be differentiable
(has a derivative) at x

o If f ' exists at every point in the domain of f,
f 1s said to be differentiable.
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If writez=x+h,thenh =2z -X

Alternative Formula for the Derivative

) = tim 22 S0

Z—>X
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Secant slope is

f@) — fx)
Z— X
P(x, f(x)) A
:<—k =27z — xe»i
| |
- ®
X Z

Derivative of fat x is

Jx + h) = f(x)

fx) = Ligo p

i 1O =S

=X <

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 3.1 The way we write the
difference quotient for the derivative of a
function f depends on how we label the
points involved.
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Calculating derivatives from the definition

0 Differentiation: an operation performed on a
function y = f (x)

0 d/dx operates on f (x)
2 Write as % f (x)

af'is taken as a shorthand notation for
d
— f (X
o (X)
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Example 1: Applying the definition
0 Differentiate
X

f(X)=——
. X—-1
2 Solution:

100 —tim M= (9

h—0 N

( X+ h j_/ X j
_lim x+h—1h \X-1

h—0

: -1 -1
= 1IMm — >
Copyright © 2005 Pearson Education, Inc. Publishing as L.!aa_rgoq A(ii%-wle_slh - 1) (X - 1) (X - 1) Slide 3- 8




Example 2: Derivative of the square root
function

2 (a) Find the derivative of
a (b) Find the tangent line to the curve y =+/x
atx =4

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 3-9



y
A
y=-x+1
4
\
\
4,2)  y=Vax
e
S | | | .;1 | > X

FIGURE 3.2 The curve y = VXx and its
tangent at (4, 2). The tangent’s slope 1s
found by evaluating the derivative at x = 4

(Example 2).

Slide 3- 10
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Notations
f'(x) = y’:ﬂzﬂzif(x): Df (x) =D, f ()
dx dx dx
dy df d
f'(fay)=—- =—| =—T"F(X
(@) dx|._, dx|._, dx ( )X:a
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Differentiable on an Interval: One sided
derivatives

2 A function y = f (x) Is differentiable on an
open interval (finite or infinite) If It has a
derivative at each point of the interval.

2 It 1s differentiable on a closed interval [a,b]
If 1t 1S differentiable on the interior (a,b) and
If the limits

lim

h—0*

f(a+h)— f(a)

i f (b+h)— f (b)

exist at the endpoints
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2 A function has a derivative at a point if an
only if it has left-hand and right-hand
derivatives there, and these one-sided
derivatives are equal.
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Slope =

im 10+ 1)~
Slope = h=0
L flat )~ f@
h—0" h

y =fx)

| |
a+h b+ h

h>0 h <0

FIGURE 3.5 Derivatives at endpoints are
one-sided limits.
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Example 5

a y = |x] is not differentiable at x = 0.

0 Solution:
d|x| d

a Forx >0, =—(x)=1
dx dx

QForx<0 HXI_9 o4
dx dx

a At x =0, the right hand derivative and left hand
derivative differ there. Hence f(x) not
differentiable at x = 0 but else where.

Slide 3- 15
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y'not defined at x = O:
right-hand derivative
# left-hand derivative

FIGURE 3.6 The function y = |x|is
not differentiable at the origin where
the graph has a “corner.”
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Example 6

0 y=+/x Isnotdifferentiable at x = 0

0 The graph has a vertical tangent at x = 0
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When Does a function not have a derivative at

a point?
1. acorner, where the one-sided 2. a cusp, where the slope of PQ
derivatives differ. approaches o0 from one side and — o0
from the other.
o /
~
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3. avertical tangent, where the slope of PQ approaches oo from both sides or
approaches — o0 from both sides (here, —00).

4. adiscontinuity.
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Differentiable functions are continuous

THEOREM 1 Differentiability Implies Continuity
If f has a derivative at x = ¢, then f is continuous at x = c.

The converse Is false: continuity does
not necessarily implies differentiability

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| | de 3-20



Example

a2y = [x] Is continuous everywhere, including x
= 0, but 1t Is not differentiable there.
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The equivalent form of Theorem 1

A

a Iffis not contipuous Y= U
at x = ¢, then f 1s not
differentiable at x = c.

a0 Example: the step |
function is of
discontinuous at X = 0,
hence not
differentiable at x = 0.

FIGURE 3.7 The unit step
function does not have the
Intermediate Value Property and
cannot be the derivative of a

function on the real line.
Slide 3- 22
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The intermediate value property of derivatives

THEOREM 2 Darboux’s Theorem

If @ and b are any two points in an interval on which f is differentiable, then f’
takes on every value between f'(a) and f'(b).

0 See section 4.4
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3.2

Differentiation Rules

(15 lecture of week 20/08/07-
25/08/07)
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Powers, multiples, sums and differences

RULE 1 Derivative of a Constant Function
If f has the constant value f(x) = c, then

%=%@=0
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Example 1

y

A

C (x,c) (.x+h,C)
i i y=¢
| |
| |
| |
| |
| |
. h .

0 X x+ h

FIGURE 3.8 The rule (d/dx)(c) = O1is
another way to say that the values of
constant functions never change and that
the slope of a horizontal line is zero at
every point.
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RULE 2 Power Rule for Positive Integers
If n 1s a positive integer, then

n n—1

— nx

ix
dx

RULE 3 Constant Multiple Rule
If u 1s a differentiable function of x, and c is a constant, then

i(cu) =c@
dx dx’
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1 y=3;c2
Example 3
Slope = 3(2x)
3 (1,3) 4 zgf1)=6
g -
d—(3x2):3-2x2‘1=6x e
X b |
d 2 2-1 i B
S y=axtt=ox | ) e
dx l .
0 I1 ;¥

FIGURE 3.9 The graphs of y = x? and
y = 3x2. Tripling the y-coordinates triples
the slope (Example 3).
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RULE 4 Derivative Sum Rule

If u and v are differentiable functions of x, then their sum u + v is differentiable
at every point where u and v are both differentiable. At such points,
du | dv

d _du , dv
dx(u-l—v)—dx-l—dx.
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Example 5

y:x3+%x2 ~5x+1

Y200+ S XY - (60 + ()
X

:3x2+§x—5
3
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Example 6

0 Does the curve y = x* - 2x2 + 2 have any
horizontal tangents? If so, where?
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> =

y=x%—2x*+2

(0, 2)

| l > X

FIGURE 3.10 The curve
y = x* — 2x? + 2 and its horizontal
tangents (Example 6).
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Products and quotients

0 Note that i(x,x): d (x*)=2x

ax ax

d d d

— ° — O —— :1
dx(x X)idx(x) dx(x)

RULE 5 Derivative Product Rule
If u and v are differentiable at x, then so is their product uv, and

A, dv, du
a(wv)—udx+vdx.
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Example 7

2 Find the derivative of vy =3(x2 +£j
X X
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Example 8: Derivative from numerical values

aLety=uv. Findy '(2) if u(2) =3, u'(2)=-4,
v(2)=1,v'(2) =2
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Example 9

o Find the derivative of vy = (x2 +1)(x3 +3)
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RULE 6 Derivative Quotient Rule

If u and v are differentiable at x and if v(x) # 0, then the quotient u/v is differ-
entiable at x, and

4 (n) e
dx v U2 '
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Negative integer powers of x

2 The power rule for negative integers Is the
same as the rule for positive integers

RULE 7 Power Rule for Negative Integers
If »n 1s a negative integer and x # 0, then

i ny — n—1
dx(x) nx" .
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Example 11
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Example 12: Tangent to a curve

0 Find the tangent to the curve
2

at the point (1,3) y=X+—
X
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FIGURE 3.11 The tangent to the curve
y =x + (2/x) at (1, 3) in Example 12.
The curve has a third-quadrant portion
not shown here. We see how to graph
functions like this one in Chapter 4.
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Example 13

— 2 —
a Find the derivative of y = (x 1)()( ZX)

X4
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Second- and higher-order derivative

0 Second derivative
) d° d(d d A |
00 = ) - ( yj——(y)

x> dxldx) dx
=y"=D?(f)(x)=D; f(x)

a nth derivative y™ = a4 y" Y = d—ﬁ' =D"y
dx dx
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Example 14

y=X —3X"+2
y'=3x* —6X
y'=6Xx-06

y(4) -0
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3.3

The Derivative as a Rate of Change

(15 lecture of week 20/08/07-
25/08/07)
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Instantaneous Rates of Change

DEFINITION Instantaneous Rate of Change
The instantaneous rate of change of f with respect to x at xy is the derivative

o) = i T = S0

provided the limit exists.
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Example 1. How a circle’s area changes with
Its diameter

0 A = zD?%/4
0 How fast does the area change with respect
to the diameter when the diameter is 10 m?
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it T N N L
Motion along a line

0 Position s = f(t)

2 Displacement, As = f(t+ At) - f(t)

2 Average velocity

a Vv, = As/At = [f(t+ At) - f(t)] /At

0 The instantaneous velocity Is the limit of v,
when At — 0
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Position at time ¢ ... and at time ¢ + At
I{ As ::I
® - s > §
s = f(1) s+ As = f(t + Ay)

FIGURE 3.12 The positions of a body
moving along a coordinate line at time ¢
and shortly later at time 7 + At.
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DEFINITION Velocity

Velocity (instantaneous velocity) is the derivative of position with respect to
time. If a body’s position at time ¢ is s = f(¢), then the body’s velocity at time ¢ is

A —
o0 = G = dim HG
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800

700

600

500
400

Distance (ft)

300
200

100

Yo ©4

Secant slope is
average velocity

for interval from

Q
Tangent slope

t=2tot=3. k
N st
y alliome
P |
12 3 4 5 6 7 8

Elapsed time (sec)

FIGURE 3.13 The time-to-distance graph for

Example 2. The slope of the tangent line at P is the

instantaneous velocity at 1 = 2 sec.
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0 0
s increasing: s decreasing:
positive slope so negative slope so
moving forward moving backward

FIGURE 3.14 For motion s = f(¢) along a straight line, v = ds/dt is
positive when s increases and negative when s decreases.
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DEFINITION Speed
Speed is the absolute value of velocity.

Speed = |v(#)| =

ds

dt
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Example 3

2 Horizontal motion
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| |
MOVES FORWARD | FORWARD |
(v>0) : AGAIN :
' >0
| . V=1 S
[ |
| |
L Speeds || Steady _>J|<_§lows_> :{_ Speeds_):
up ((u = const), OV : “p :
| | ' |
| | |
| Stands | |
still | |
(v=20) 1 :
' L L > 1 (sec
0 1 2 3 4 5 6 7 (sec)

Greatest
speed

\

Speeds | Slows

|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
f
|
|
|
|
|
|
|
|
|
|
|
|
<
|
|
|
|
|

—>!

up ; down |
| |

| |

MOVES BACKWARD |
(v <0) :

FIGURE 3.15 The velocity graph for Example 3.
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DEFINITIONS Acceleration, Jerk
Acceleration is the derivative of velocity with respect to time. If a body’s posi-
tion at time #is s = f(¢), then the body’s acceleration at time ¢ is

dv  d%s
a(t) = at - g
Jerk is the derivative of acceleration with respect to time:
s\ da _d’
J (t) - df dl’3 .
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Example 4

1
0 Modeling free fall S =§9t2

0 Consider the free fall of a heavy ball
released from rest at t = O sec.

2 (a) How many meters does the ball fall in
the first 2 sec?

2 (b) What is the velocity, speed and
acceleration then?
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t (seconds) s (meters)
t=0 @ O
t=1 1) 5
— 10
— 15

t=2 ) 120
— 25
— 30
- 35
- 40

t=3 ) |45
v

FIGURE 3.16 A ball bearing

falling from rest (Example 4).
Slide 3- 58

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Modeling vertical motion

a A dynamite blast blows a heavy rock straight up
with a launch velocity of 160 m/sec. It reaches a
height of s = 160t — 16t? ft after t sec.

2 (a) How high does the rock go?

2 (b) What are the velocity and speed of the rock
when it Is 256 ft above the ground on the way up?
On the way down?

2 (c) What is the acceleration of the rock at any time
t during its flight?
2 (d) When does the rock hit the ground again?
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Stmax |- v="0
)
o 256 BT =7
s |
3
1
s=0 ﬁ%f
(a)
a0} o 16 FIGURE 3.17 (a) The rock in Example 5.
(b) The graphs of s and v as functions of
ol time; s is largest when v = ds/dt = 0.The
graph of s is not the path of the rock: It is a
5 : . plot of height versus time. The slope of the
N plot is the rock’s velocity, graphed here as
~160- v=g T 100 -3% a straight line,
(®)
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Derivative of the sine function

The derivative of the sine function is the cosine function:

d (sinx) = cosx
dx '

d . . SIn(x+h)—-sinx
—sIin X =lim =
dx h—0 h
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Derivative of the cosine function

The derivative of the cosine function is the negative of the sine function:

c%(cosx) = —sinx
d . cos(X+h)—cosx
—cos X =I1im =...

dx h—0 h
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FIGURE 3.23 The curve y’ = —sinx as
the graph of the slopes of the tangents to
the curve y = cos x.
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Example 2

(a)y =5X+ Cos X
(b)y =sIn Xcos X
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Derivative of the other basic trigonometric
functions

Derivatives of the Other Trigonometric Functions

%(tanx) = sec’x

d _
I (secx) = secxtanx
2

d — _
dx(cotx) = —CSCT X

d (cscx) = —cscxcotx
dx
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Example 5

2 Find d(tan x)/dx

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 3- 67



Example 6

a Find y" If y = sec x
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Example 7

0 Finding a trigonometric limit

J2 +secx J2 +secO

lim =
x-0 cos(zz —tanx) cos(z —tan0)
_ v2+1 _ ﬁ _ _\/g
cos(z—0) -1
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Differentiating composite functions

0 Example:

ay=f(u)=sinu

au=g(x)=x*-4

0 How to differentiate F(x) =f - g = f[g(X)]?
0 Use chain rule
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Derivative of a composite function

0 Example 1 Relating derivatives

oy =(3/2)x =(1/2)(3x)

0 =g[u(x)]

2 g(u) =u/2; u(x) = 3x

o dy/dx = 3/2,;

2 dg/du = ¥; du/dx = 3;

0 dy/dx = (dy/du)-(du/dx) (Not an accident)
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C:yturns  B: u turns A: x turns

FIGURE 3.26 When gear A makes x

turns, gear B makes u turns and gear C
makes y turns. By comparing circumferences
or counting teeth, we see that y = u/2

(C turns one-half turn for each B turn)

and u = 3x (B turns three times for A’s

one), so y = 3x/2.Thus, dy/dx = 3/2 =
(1/2)(3) = (dy/du)(du/dx).
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Example 2
y=9x* +6X° +1=(3x*+1)°
y=U"u=3x"+1

dy du U6
du dx
=2(3x* +1)-6x =36X> +12x
c.f.
dy_d

] (9x4 +6X° +1) = 36> +12X
X dx
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THEOREM 3 The Chain Rule

If f(u) is differentiable at the point ¥ = g(x) and g(x) is differentiable at x, then
the composite function (f © g)(x) = f(g(x)) is differentiable at x, and

(f°g)x) = flgx) - g'x).

In Leibniz’s notation, if y = f(u) and u = g(x), then

dy _dy du

dx  du dx’
where dy/du is evaluated at u = g(x).
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Composite f- g

Rate of change at
xis f'(g(x)) - g).

8
Rate of change @
at x is g'(x). at g(x) is f'(g(x)). ®
X u = g(x) y = f(u) = f(gx))

FIGURE 3.27 Rates of change multiply: The derivative of f o g at x 1s the
derivative of f at g(x) times the derivative of g at x.
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Example 3

0 Applying the chain rule

o X(t)= cos(t* + 1). Find dx/dt.
0 Solution:

2 X(u)= cos(u); u(t)=t> + 1;

0 dx/dt = (dx/du)-(du/dt) = ...
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Alternative form of chain rule

a Ify =f[g(x)], then
a dy/dx =1"[9(x)]- 9" (X)

a Think of f as ‘outside function’, g as ‘inside-
function’, then

0 dy/dx = differentiate the outside function and
evaluate it at the inside function let alone; then
multiply by the derivative of the inside function.

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Sllde 3- 78



Example 4

2 Differentiating from the outside In

disin (X° +X) =cos (X + X)- (2x +1)
X I\ / . J - _J

YV .V A
Inside Inside derivative of
left alone left alone the Inside

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 3-79



Example 5

0 A three-link “chain’
2 Find the derivative of g(t) =tan(5-sin 2t)
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Example 6

0 Applying the power chain rule

d 3 4\7
(2) (57 =X)

d 1 d 1
Ol 502)~ 3192
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Example 7

2 (a) Find the slope of tangent to the curve
y= sin>x at the point where x = /3

2 (b) Show that the slope of every line tangent
to the curve y = 1/(1-2x)3 is positive
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Parametric equations

2 A way of expressing both the coordinates of
a point on a curve, (x,y) as a function of a
third variable, t.

2 The path or locus traced by a point particle
on a curve Is then well described by a set of
two equations:

ax =1(t), y =g(t)
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DEFINITION Parametric Curve
If x and y are given as functions
x=f(t), y=g)

over an interval of #-values, then the set of points (x, y) = (f(¢), g(¢)) defined by
these equations is a parametric curve. The equations are parametric equations

for the curve.

The variable t is a parameter for the curve
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Position of particle

at time ¢ I (f(0), g(1)

FIGURE 3.29 The path traced by a

particle moving in the xy-plane is not
always the graph of a function of x or a

function of y.
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Example 9

2 Moving
counterclockwise on a

2 +yr=1

N’f(cos t, sin t)

circle

a Graph the parametric
curves

a X=cost,y=sint,
0 <t<2x

FIGURE 3.30 The equations x = cos ¢
and y = sin ¢ describe motion on the circle
x? + y? = 1. The arrow shows the
direction of increasing ¢ (Example 9).
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Example 10

2 Moving along a
parabola

ax= Vty=t 0 <t
0 Determine the relation

between x and y by 0| Starts at
eliminating t. t=0
ay=t= (t)z = X? FIGURE 3.31 The equations x = V¢

0 The path traced out by and y = 7and the interval # = 0 describe
P (the |OCUS) iS only the motion of a particle that traces the

half the parabola, x = right-hand half of the parabola y = X2
0 | (Example 10).
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Slopes of parametrized curves

0 A parametrized curved x = f(t), y = g(t) Is
differentiable at t If f and g are differentiable
at 1.

0 At a point on a differentiable parametrised
curve where y Is also a differentiable
function of x, 1.e. y = y(x) = y[x(1)],

2 chain rule relates dx/dt, dy/dt, dy/dx via
dy _dy dx
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Parametric Formula for dy /dx
If all three derivatives exist and dx/dt # 0,

dy  dy/dt
dx = dxjd (2)
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Example 12
0 Differentiating with a parameter

alfx=2t+3and y=t°-1, find the value
of dy/dx att = 6.
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Parametric Formula for d*y /dx*
If the equations x = f(¢), y = g(¢) define y as a twice-differentiable function of
x, then at any point where dx/dt # 0,
d?y _ dy' /dt G)
dx?  dx/dt’

(3) Is just the parametric formula (2) by
y — dy/dx
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Example 14

2 Finding d?y/ dx? for a parametrised curve
0 Find d2y/ dx? as a function of tif x =t - t2,
y=t-t.
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Implicit Differentiation

1. Differentiate both sides of the equation with respect to x, treating y as a differ-
entiable function of x.

2. Collect the terms with dy/dx on one side of the equation.
3. Solve for dy/dx.
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Example 1:
Differentiating
Implicitly

0 Find dy/dx if y2 =

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slope = 11

2y, 2Vx

FIGURE 3.37 The equation y> — x = 0,
or y> = x as it is usually written, defines
two differentiable functions of x on the
interval x = 0. Example 1 shows how to
find the derivatives of these functions
without solving the equation y? = x for y.
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Example 2

2 Slope of a circle at a point
0 Find the slope of circle x2 + y2 = 25 at
(31 _4)
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Example 3 Jf V=X Fsinxy

2 Differentiating
implicitly

a Find dy/dx if
y2 = X2 + sin xy

FIGURE 3.39 The graph of

y% = x? + sinxy in Example 3. The
example shows how to find slopes on this
implicitly defined curve.
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IR S 0 7 <SRN RN
L_enses, tangents, and normal lines

Tangent

Light ray

Curve of lens
surface

If slop of Normal line
tangent is m,, the
slope of normal,
m., IS given by
the relation

m.m=-1, or
FIGURE 3.40 The profile of a lens,
mn =-1/ mt showing the bending (refraction) of a ray

of light as it passes through the lens
surface.

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Sllde 3- 98



Example 4

0 Tangent and normal to the folium of
Descartes

2 Show that the point (2,4) lies on the curve

X% + y3 - 9xy = 0. The find the tangent and
normal to the curve there.
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FIGURE 3.41 Example 4 shows how to
find equations for the tangent and normal
to the folium of Descartes at (2, 4).

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 3- 100



Derivative of higher order

0 Example 5
2 Finding a second derivative implicitly
0 Find d2y/dx? if 2x3 - 3y> = 8.
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Rational powers of differentiable functions

THEOREM 4 Power Rule for Rational Powers

If p/q is a rational number, then xP/1 is differentiable at every interior point of the
domain of x?/9~! and

A plg _ P -
dxx qx .

Theorem 4 is proved based on d/dx(x") = nx"!
(where n Is an integer) using implicit differentiation
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0 Theorem 4 provide a extension of the power
chain rule to rational power:

iu p/q :Eu(p/q)—lo_u

dx q dx

au=z01f (p/g) <1, (p/g) rational number, u a
differential function of x
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Example 6

0 Using the rational power rule

o (a) d/dx (x¥?) = 1/2x 1% for x > 0
0 (b) d/dx (x3) = 2/3 x12 for x # 0
o (c) d/dx (x#3) =-4/3 x B forx =0
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Proof of Theorem 4

0 Let p and g be integers with g > 0 and
y:Xp/q = y9 = xP

0 Explicitly differentiating both sides with
respect to x...
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Example 7

0 Using the rational power and chain rules
a (a) Differentiate (1-x2)1/4
0 (b) Differentiate (cos x)/°
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4.1

Extreme Values of Functions

(3" lecture of week 20/08/07-
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DEFINITIONS  Absolute Maximum, Absolute Minimum
Let f be a function with domain D. Then f has an absolute maximum value on

D at a point ¢ if
f(x) = f(e) for all x in D

and an absolute minimum value on D at ¢ if
f(x) = f(c) forallxinD.
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y = sinx
y = COS X

3

FIGURE 4.1 Absolute extrema for
the sine and cosine functions on
[—/2, /2] . These values can depend
on the domain of a function.
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Example 1

0 Exploring absolute extrema

0 The absolute extrema of the following
functions on their domains can be seen In
Figure 4.2
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po — > <

y=x
D =10, 2]
> X L > X
2
(a) abs min only (b) abs max and min
T T
D = (0, 2] D =(0,2)
L > x —
[ 2 | 2
(c) abs max only (d) no max or min

FIGURE 4.2 Graphs for Example 1.
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THEOREM 1 The Extreme Value Theorem

If f is continuous on a closed interval [a, b], then f attains both an absolute max-
imum value M and an absolute minimum value m in [a, b]. That is, there are
numbers x; and x; in [a, b] with f(x;) = m, f(x;) = M,and m = f(x) = M for
every other x in [a, b] (Figure 4.3).
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X1
, > X

||
|
(x7, m)

Maximum and minimum
at interior points

y =fx)

a Xy b

Maximum at interior point,
minimum at endpoint

y=fx
M

L

|
|

|

|

|

|

a b
Maximum and minimum
at endpoints

> X

|
|
|
|
|
|
|
|
|
|
|
l
b

Minimum at interior point,
maximum at endpoint

FIGURE 4.3 Some possibilities for a continuous function’s maximum and

minimum on a closed interval [a, b].
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r

No largest value
RN

— FIGURE 4.4 Even a single point of
> discontinuity can keep a function from

O0=x<1 _ _ ‘ -
having either a maximum or minimum
& > X value on a closed interval. The function
01> / 1
Smallest value {x, 0=x<1
y = .
0, x=1

1s continuous at every point of [0, 1]
except x = 1, yet its graph over [0, 1]
does not have a highest point.
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Local (relative) extreme values

Absolute maximum
No greater value of f anywhere.
Local maximum Also a local maximum.

No greater value of

/ Illearby. - f) Local minimum
| Y= No smaller value
| . of f nearby.
Absolute minimum : :
No smaller value of :  Local minimum :
f anywhere. Also a | | | No smaller value of |
local minimum. : : : f nearby. : :
| | | | | > X
a c e d b

FIGURE 4.5 How to classify maxima and minima.
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DEFINITIONS  Local Maximum, Local Minimum
A function f has a local maximum value at an interior point ¢ of its domain if

fx) = f(e) for all x in some open interval containing c.
A function f has a local minimum value at an interior point ¢ of its domain if

f(x) = f(e) for all x in some open interval containing c.
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Finding Extrema

THEOREM 2 The First Derivative Theorem for Local Extreme Values

If f has a local maximum or minimum value at an interior point ¢ of its domain,
and if f’ is defined at c, then

f'(c) = 0.

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 4- 12



Local maximum value

Secant slopes = 0
(never negative)

Secant slopes < 0
(never positive)

I
I
I
I
|
I
I
|
I
I
|
I
I
|
I
I
|
I
I
l
C

I |
I |
I |
I |
| |
X X

FIGURE 4.6 A curve with a local
maximum value. The slope at c,
simultaneously the limit of nonpositive
numbers and nonnegative numbers, is zero.

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley SI | de 4- 13



DEFINITION  Critical Point

An interior point of the domain of a function f where f’ is zero or undefined is a
critical point of f.

How to find the absolute extrema of a continuous
function f on a finite closed interval

1. Evaluate f at all critical point and endpoints
2. Take the largest and smallest of these values.
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Example 2: Finding absolute extrema

2 Find the absolute maximum and minimum
of f(x) = x? on [-2,1].
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Example 3:
Absolute extrema at endpoints

—2 -1

> [

2 Find the absolute

extrema values of
g(t) =8t-t*on
[-2,1].

32

FIGURE 4.7 The extreme values of
g(t) = 8¢ — t*on [—2, 1] (Example 3).
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Example 4: Finding absolute extrema on a
closed interval

2 Find the absolute maximum and minimum
values of f (x) = x#2 on the interval [-2,3].
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Absolute maximum;
Local also a local maximum

| | | | | > x
-2 -1 0 1 2 3

Absolute minimum;
also a local minimum

FIGURE 4.8 The extreme values of
f(x) = x*? on[—2, 3] occur at x = 0 and
x = 3 (Example 4).
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0 Not every critical
point or endpoints

@ signals the presence of

an extreme value.

X
1
3= 13 FIGURE 4.9 Ciritical points without
| | x extreme values. (a) y' = 3x?is 0 at
-1 0 ! x = 0, but y = x° has no extremum there.
(b) y' = (1/3)x %3 is undefined at x = 0,
- but y = x'/3 has no extremum there.
(b)
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4.2

The Mean Value Theorem

(15 lecture of week 27/08/07-
01/09/07)
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THEOREM 3 Rolle’s Theorem

Suppose that y = f(x) is continuous at every point of the closed interval [a, b]
and differentiable at every point of its interior (a, b). If

fla) = f(b),

then there is at least one number ¢ in (a, b) at which

f'(c) = 0.
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f©)=0
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FIGURE 4.10 Rolle’s Theorem says that
a differentiable curve has at least one
horizontal tangent between any two points
where it crosses a horizontal line. It may
have just one (a), or it may have more (b).
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A A A
y = fx) y = fx) y = fx)

®
1 | > x | L1 > X | [ | > x
a b a xg b a xy b

(a) Discontinuous at an (b) Discontinuous at an (c) Continuous on [a, b] but not

endpoint of [a, b] interior point of [a, b] differentiable at an interior
point

FIGURE 4.11 There may be no horizontal tangent if the hypotheses of Rolle’s Theorem do not hold.
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Example 1

20 Horizontal tangents of

a cubit polynomial
3

X
f(x)=——-3x
(X) -

(-\/3.2V3) X

-
I
w|:’*
|
ol
=

-3 0 3

(V3,-2V3)

FIGURE 4.12 As predicted by Rolle’s
Theorem, this curve has horizontal
tangents between the points where it
crosses the x-axis (Example 1).
Slide 4 - 24
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Example 2 Solution of an equation f(x)=0

0 Show that the equation

X°+3x+1=0
has exactly one real solution.

Solution

1. Apply Intermediate value theorem to show that
there exist at least one root

2. Apply Rolle’s theotem to prove the uniqueness
of the root.
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(-1,-3)

FIGURE 4.13 The only real zero of the
polynomial y = x° + 3x + 1 is the one
shown here where the curve crosses the
x-axis between —1 and 0 (Example 2).
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The mean value theorem

THEOREM 4 The Mean Value Theorem

Suppose y = f(x) is continuous on a closed interval [a, b] and differentiable on
the interval’s interior (a, b). Then there is at least one point ¢ in (a, b) at which

b —
IO ~JD _ o) )
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Tangent parallel to chord

A —— /
Slope f'(c) B
I
fb) — f(a)
| b—a
|
|
! > X
0 \ @ b
y = fx)

FIGURE 4.14 Geometrically, the Mean
Value Theorem says that somewhere
between A and B the curve has at least
one tangent parallel to chord AB.
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y

T
y=VI1-x*-1=x=1

1

> X

-1 0 1

FIGURE 4.17 The function f(x) =
\/1 — x? satisfies the hypotheses (and
conclusion) of the Mean Value Theorem
on [—1, 1] even though f 1s not
differentiable at —1 and 1.
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Example 3
o The function (X)) =X’

IS continuous for 0 < x<<2 and
differentiable for 0 < x < 2.
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y
A

B(2, 4
na (2,4)
3+

y=x°
2_
I (1, 1)

l | > X
A(0, 0) 1 2

FIGURE 4.18 As we find in Example 3,
= 1 is where the tangent is parallel to
the chord.
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Mathematical con n

COROLLARY 1 Functions with Zero Derivatives Are Constant

If f'(x) = 0 at each point x of an open interval (a, b), then f(x) = C for all
x € (a, b), where C is a constant.

COROLLARY 2 Functions with the Same Derivative Differ by a Constant

If f'(x) = g'(x) at each point x in an open interval (a, b), then there exists a con-
stant C such that f(x) = g(x) + C forall xe (a, b). That is, f — g is a constant
on (a, b).
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Corollary 1 can be proven using the Mean
Value Theorem

QO  Say Xy, X,€(a,b) such that x, < X,

a By the MVT on [X,X,] there exist some point C
between x, and X, such that f'(c)= (f (x,)

—T (X)) (X3 - Xy)

2 Since f'(c) =0 throughout (a,b),
f(x,) —f(X;) =0, hence f (x,) = f (x,) for x,,
X,€(a,b).

a  This is equivalent to f(x) = a constant for
xe(a,b).
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Proof of Corollary 2

o At each point xe(a,b) the derivative of the
difference between function h=f-g is
h'(x) =1'(x) -g'(x) =0

2 Thus h(x) = C on (a,b) by Corollary 1.

That is f (x) —g(x) = C on (a,b), so

f(x) = C + g(x).
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y=x*+C K C=2
c=1
C=0
C=-1
C=-2

FIGURE 4.20 From a geometric point of
view, Corollary 2 of the Mean Value
Theorem says that the graphs of functions

> x with identical derivatives on an interval
can differ only by a vertical shift there.
The graphs of the functions with derivative
2x are the parabolas y = x> + C, shown
here for selected values of C.
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Example 5

2 Find the function f(x) whose derivative IS
sin X and whose graph passes through the
point (0,2).
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Increasing functions and decreasing functions

DEFINITIONS  Increasing, Decreasing Function
Let f be a function defined on an interval 7 and let x; and x; be any two points in /.

1. If f(x;) < f(x,) whenever x; < x,, then f is said to be increasing on /.

2. If f(x;) < f(x;) whenever x; < x;, then f is said to be decreasing on /.

A function that is increasing or decreasing on / is called monotonic on /.
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Function
increasing

Function
decreasing

y' <0 y >0

' > X

FIGURE 4.21 The function f(x) = x?is
monotonic on the intervals (—o0, 0] and

[0, ©0), but it is not monotonic on
(—00, 00).
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COROLLARY 3 First Derivative Test for Monotonic Functions
Suppose that f i1s continuous on [a, b] and differentiable on (a, b).

If f'(x) > 0 at each point x € (a, b), then f is increasing on [a, b].
If f'(x) < 0 at each point x € (a, b), then f is decreasing on [a, b].

Mean value theorem is used to prove Corollary 3
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Example 1

0 Using the first derivative test for monotonic
functions f(x)=x’-12x-5

0 Find the critical point of  f(X)=x"-12x-5
and 1dentify the intervals on which f is
Increasing and decreasing.

Solution f'(x)=3(x+2)(x-2)
f'+ for —co<x<-2
f'—12 for —2<x<?2
f'+ for2<x<ow
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(-2, 11)

| l | |
—4 3—2—1%\

—-10

=20

2,-21)

FIGURE 4.22 The function f(x) =
x> — 12x — 5 is monotonic on three

separate intervals (Example 1).
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First derivative test for local extrema

Absolute max
f' undefined

No extreme
f'=0
No extreme

f'=0

Local min

Absolute min

|
|
|
|
|
L > X
b

FIGURE 4.23 A function’s first derivative tells how the graph rises and falls.
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First Derivative Test for Local Extrema

Suppose that c is a critical point of a continuous function f, and that f is differen-
tiable at every point in some interval containing ¢ except possibly at c itself.
Moving across ¢ from left to right,

1. if f’ changes from negative to positive at ¢, then f has a local minimum at c;
2. if f' changes from positive to negative at ¢, then f has a local maximum at c;

3. if f’ does not change sign at ¢ (that is, f' is positive on both sides of ¢ or
negative on both sides), then f has no local extremum at c.
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Example 2: Using the first derivative test for
local extrema

2 Find the critical point of
f (X) _ X1/3(X_4) _ X4/3 _4X1/3

2 ldentify the intervals on which f is
Increasing and decreasing. Find the
function’s local and absolute extreme

values.

f,:4(x—1)

3X2/3
f'"—ve forO<x<l f'+ve forx>1

f'—ve forx<O:
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FIGURE 4.24 The function f(x) =
x!3(x — 4) decreases when x < 1 and
increases when x > 1 (Example 2).
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Concavity

> X

FIGURE 4.25 The graph of f(x) = x% is
concave down on (—00, 0) and concave up

00 back on (0, c0) (Example 1a).
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DEFINITION Concave Up, Concave Down
The graph of a differentiable function y = f(x) is

(a) concave up on an open interval 7 if f' is increasing on /
(b) concave down on an open interval / if f' is decreasing on [.
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The Second Derivative Test for Concavity
Let y = f(x) be twice-differentiable on an interval /.

1. If f” > 0on [/, the graph of f over / is concave up.
2. If f” < 0on [ the graph of f over I is concave down.
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Example 1(a): Applying the concavity test

0 Check the concavity of the curve y = x3
0 Solution: y"' = 6x
ay"'<0forx<0;y">0forx>0;

Link to Figure 4.25
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Example 1(b): Applying the,concavity
test |

0 Check the concavity of
the curve y = x2

0 Solution: y"'=2>0

FIGURE 4.26 The graph of f(x) = x*is
concave up on every interval (Example
1b).
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Example 2 p=3 4 sinx

4 -

3/\/
0 Determining concavity 5|

1

0 Determine the

concawty_ of T/ NG
y =3+ sinxon -1 = —sinx
[0, 21]. —2r

FIGURE 4.27 Using the graph of y” to
determine the concavity of y (Example 2).

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 4 - 53



Point of inflection

DEFINITION Point of Inflection

A point where the graph of a function has a tangent line and where the concavity
changes is a point of inflection.
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Example 3

a An inflection point
may not exist where
An inflection point
may not exist where y" y"=0
=( |

2 The curve y = x4 has
no Inflection point at FIGURE 4.28 The graph of y = x* has
x=0. Even though y" =
12x2 is zero there, it
does not change sign.

no inflection point at the origin, even
though y” = 0 there (Example 3).
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Example 4

a An inflection point y" does not
may not occur where " ~__
y" = 0 does not exist 0

0 The curve y = x13 has
a point of inflection at

Xx=0 but y" does not | |
FIGURE 4.29 A point where y” fails

exist there. | omt w ‘
N . to exist can be a point of inflection
Qy" = (20)x (Example 4).
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Second derivative test for local extrema

THEOREM 5  Second Derivative Test for Local Extrema
Suppose f” is continuous on an open interval that contains x = c.

1. If f'(¢) = 0and f"(c) < 0, then f has a local maximum at x = c.
2. Iff'(¢) = 0and f"(c) > 0, then f has a local minimum at x = c.

3. If f'(¢) = 0 and f"(c) = 0, then the test fails. The function f may have a
local maximum, a local minimum, or neither.

ff=0’f”'<0 ff=0!f”'>0
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Example 6: Using f'and f " to graph f

a  Sketch a graph of the function
f(X) =x4-4x3+10
using the following steps.
@ ldentify where the extrema of f occur

() FiInd the intervals on which f is increasing and the
Intervals on which f is decreasing

¢) FInd where the graph of f is concave up and
where it Is concave down.

d) Sketch the general shape of the graph for f.
e) Plot the specific points. Then sketch the graph.
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2 3 4

=3[ Inflection & (2, —6)
_10 - point
—15F

(3,-17)
20+

Local

minimum

FIGURE 4.30 The graph of f(x) =
x* — 4x* + 10 (Example 6).
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Example

0 Using the graphing strategy
0 Sketch the graph of
o f(X)=x+1)?%/(x+1).
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{ Point of inflection
where x = V3

Horizontal
asymptote

) |
/ B 1 > X

Point of inflection
where x = —V3

(x + 1)?
1 + x?

FIGURE 4.31 The graphof y =

(Example 7).
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_earning about functions from derivatives

y =fx) y =f®) y =fx)
Differentiable = y' > 0 = rises from y' < 0 = falls from
smooth, connected; graph left to right; left to right;
may rise and fall may be wavy may be wavy
/ \ / \ yn Changes Sign

"> (0 = concave up " < 0 = concave down Inflection point
throughout no waves; graph throughout no waves;
may rise or fall graph may rise or fall
/\ or \=
+ —
y' changes sign = graph y'=0and y"<0 y'=0and y">0
has local maximum or local at a point; graph has at a point; graph has
minimum local maximum local minimum
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Example 1

2 An open-top box Is to be cutting small
congruent squares from the corners of a 12-
In.-by-12-In. sheet of tin and bending up the
sides. How large should the squares cut
from the corners be to make the box hold as

much as possible?

Slide 4 - 64

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



__r__
|
|
I

|
[—
b2

=

(b)
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FIGURE 4.32 An open box made by
cutting the corners from a square sheet of
tin. What size corners maximize the box’s
volume (Example 1)?
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Maximum
y
A
y = x(12 - 2x)?,

= 0=x=<6
=
©
>

min
AN
0

2 6
NOT TO SCALE

FIGURE 4.33 The volume of the box in
Figure 4.32 graphed as a function of x.
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2r

A
W

Example 2 |

2 Designing an efficient
cylindrical can

0 Design a 1-liter can
shaped like a right )
circular cylinder. What~~ >~
dimensions will use
the least material?

—

FIGURE 4.34 This 1-L can uses the least
material when 2 = 2r (Example 2).
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>

Tall and
thin can
Short and
w? can
A=2m2+ @, r>0

Tall and thin

> F

Short and wide

FIGURE 4.35 The graph of 4 = 2arr? + 2000/~ is concave up.
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Example 3

\
a Inscribing rectangles X ry=4
— x2
0 A rectangle is to be /NC’/“ )
Inscribed in a semicircle
of radius 2. What is the / y \
largest area the rectangln > X
—X 0 x 2
can have, and what are its

dimensions?
FIGURE 4.36 The rectangle inscribed in

the semicircle in Example 3.
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Indeterminate forms 0/0

THEOREM 6  L'Hdpital’s Rule (First Form)
Suppose that f(a) = g(a) = 0, that f'(a) and g'(a) exist, and that g’'(a) # 0.
Then

i fx) _ f'(a)
—a g(x)  g'(a)
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Example 1

0 Using L’ Hopital’s Rule
0 (a) Iim3x—sinx _ 3—C0S X

Xx—0 X 1 0

1
a (b) e S N/ TS B
1

x—0 X

x=0

Slide 4- 72

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



THEOREM 7  L'Hopital’s Rule (Stronger Form)

Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open inter-
val / containing a, and that g’(x) # O on/ifx # a. Then
f&x) (%)

lim = lim
x—a g(x) x—a g'(x)’

assuming that the limit on the right side exists.
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Example 2(a)
0 Applying the stronger form of L’ Hopital’s
rule
Q (a]im VI+x-1-x/2 o 20+ x) Y2 -1/2
x—0 X2 B Xx—0 2 X
_ i A/ 4)(A+ ' I |
B X—0 9 B 8
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Example 2(b)

0 Applying the stronger form of L’ Hopital’s

rule .
. X=sinXx
2 (b) lim=—

Xx—0 X
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THEOREM 8 Cauchy’s Mean Value Theorem

Suppose functions f and g are continuous on [a, b] and differentiable throughout
(a, b) and also suppose g’(x) # 0 throughout (a, b). Then there exists a number ¢
in (a, b) at which

f'(e) _ f(b) = fla)

g'(c) g(b) —gla)
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Using I’Héopital’s Rule
To find
)

lim ——

x—a & (JC)
by I’Hopital’s Rule, continue to differentiate f and g, so long as we still get the
form 0/0 at x = a. But as soon as one or the other of these derivatives is differ-
ent from zero at x = a we stop differentiating. ’Hopital’s Rule does not apply
when either the numerator or denominator has a finite nonzero limit.
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Example 3

2 Incorrectly applying the stronger form of
L’ Hopital’s
. 1-—cosx
lim >
x>0 X + X
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Example 4

0 Using I' Hopital’s rule with one-sided limits

. SInX .. COSX
(@) Im——=Ilim——=...
x—0" X x—>0"  2X

. SInX .. COSX
(b) Im —— = Iim—=...
x—>0" X Xx—0" 2X
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Indeterminate forms oo/eo, 0.0, oo~ oo

0 Example 5(a)
0 Working with the indeterminate form oo/

. Sec X
(a) lim

x—=>7/2] 4+ tan X

. SecC X . sec X tan x . .

M = |im > = |lim sinx=1
x=>(z/12)"14+tan X x—=>(x/2)" Sec” X X—>(12)

. Sec X

lIm =...

x>(z/2)" 1+ tan X
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Example 5(b)

. X=2X°
b)lim —=...
S 3X° +5X
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Example 6

o Working with the indeterminate form <=-0

. ( . 1)
lim| xsin—
X—>00 X
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Example 7

0 Working with the indeterminate form <o -

oo -

. 1 1 . X —SIN X

Iim| ———|=Ilim _ = ...
x>0\ SINX X x=>0\  XSIN X

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 4 - 83



4.3

Antiderivatives

(3" lecture of week 27/08/07-
01/09/07)

PEARSON

;&{ idison
Wesley Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Finding antiderivatives

DEFINITION Antiderivative

A function F is an antiderivative of f on an interval / if F'(x) = f(x)
forall x in 7.

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 4 - 85



Example 1

0 Finding antiderivatives

2 Find an antiderivative for each of the
following functions

0 (a) f(x) = 2x
2 (b) f(x) = cos x
2 (c) h(x) = 2x + cos X
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If F is an antiderivative of f on an interval 7, then the most general antiderivative
of fonl/is

F(x) + C

where C is an arbitrary constant.
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Example 2 Finding a particular antiderivative

2 Find an antiderivative of f (x) = sin x that
satisfies F(0) = 3
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TABLE 4.2 Antiderivative formulas
Function General antiderivative

xn+1

1 x" + C, n # —1, nrational
n—+1

2. sin kx — Coikx + C, kaconstant, k # 0

3. cos kx sn}{kx + C, kaconstant, Xk # 0

4, sec? x tanx + C

5. csc? x —cotx + C

6. sec x tan x secx + C

7. csc x cot x —cscx + C
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Example 3 Finding antiderivatives using table
4,2

0 Find the general antiderivative of each of
the following functions.

o@fX)=x

2 (b) g (x) = 1/xY?
a(c) h (x) = sin 2x
2 (d) 1 (x) = cos (x/2)
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Example 4 Using the linearity rules for
antiderivatives

2 Find the general antiderivative of
o f (x) = 3/xY2 + sin 2x
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DEFINITION  Indefinite Integral, Integrand
The set of all antiderivatives of f is the indefinite integral of f with respect to x,

denoted by
/ f(x) dx.

The symbol f is an integral sign. The function f is the integrand of the inte-
gral, and x is the variable of integration.
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Example of indefinite integral notation

(2% dX =x2+C

cosX dx =sinx+C

[ (2 +cosx) dx = X2 +sinx+C
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Example 7 Indefinite integration done term-by
term and rewriting the constant of integration

0 Evaluate

j(x2 —2x+5)dx :szdx—jZde+I5dx:...
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0.1

Estimating with Finite Sums
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Riemann Sums

Approximating area bounded by the graph
between [a,b]

y =f)

FIGURE 5.8 A typical continuous function y = f(x) over a closed interval [a, b].

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
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Area IS approximately given by

f(cy)AX, + f(Cy)AX,+ f(Cy)AXq+ ... + f(C, )AX,

Y71 (e flen)
4 ’Qi
|
I
(e () / AN
|
kth rectangle /i :
l I
] |
I |
/ : |
Ck Cn
/xk_] ¢ Xy X,_1 ‘x =5 *

/

0 Partition of [a,b] Is the set of
O P ={Xg Xgs Xop «vn X gy X}
0 a< X< X <X,...<X 1 <X=b

FIGURE 5.9 The rectangles approximate the region between the graph of the function
y = f(x) and the x-axis. [ ]
A ¢ e[Xq X,

2 ||P|] = norm of P = the largest of all
subinterval width
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y = f(x)

Riemann sum for f on [a,b]

I J}X R, = f(e)Ax, + ) A+
(a)

f(Cg)AX+ ... +1(Cp)AX,

y = f) : :
FIGURE 5.10 The curve of Figure 5.9 with
rectangles from finer partitions of [a, b].
>X Finer partitions create collections of
rectangles with thinner bases that approx-
imate the region between the graph of f and
the x-axis with increasing accuracy.

(b)

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
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2 Let the true value of the
DT area is R

N 0 Two approximations to

R:
Sm a ¢c,= X corresponds to case
© (a). This under estimates
y the true value of the area R
TN o If n 1s finite.

N a c,= X, corresponds to case
b (b). This over estimates the
ﬁﬂ true value of the area S if n

; > IS finite.
®) go back

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Sllde 5-6




0, 1) O.D (L) V= I —x?

0 025 05 075 1
(a) (b)

FIGURE 5.2 (a) We get an upper estimate of the area of R by using two
rectangles containing R. (b) Four rectangles give a better upper estimate. Both
estimates overshoot the true value for the area.
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0 0.25 0.5 0.75 1

FIGURE 5.3 (a) Rectangles contained in R give an estimate for the area that undershoots
the true value.
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Limits of finite sums

0 Example 5 The limit of finite approximation
to an area

2 Find the limiting value of lower sum
approximation to the area of the region R
below the graphs f(X) = 1 - x? on the interval
[0,1] based on Figure 5.4(a)

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Sllde 5-9



Solution

a Ax, = (1-0)/n=1/n =Ax;k=1,2,...n

a Partition on the x-axis: [0,1/n], [1/n, 2/n],..., [(n-1)/n,1].
Q C, =X, =kAXx=Kk/n

0 The sum of the stripes is

R, = Ax, f(cy)) + AXx, f(c,) + Ax; f(cg) + ...+ Ax, f(C,)

= AX f(1/n) + Ax f(2/n) + Ax f(3/n) + ...+ Ax, f(1)

2o "AX f(kAX) = Ax X -," T (k/n)

(1/1) 4" [1 - (K/nY?]

=2 " Un- Kk =1-(X,,"k?/n?

=1-[(n) (n+1) (2n+1)/6]/ N3 =1—[2 n* + 3 n?>+n]/(6n?)

> =1"k?=(n) (n+1) 2n+1)/6

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Sllde 5-10



a Taking the limitof n — <o

ImR =R =

N—0o0

- 2n° +3n° +n
6n°

]:1—2/6:2/3

Q The same limit is also obtained if ¢, = X, IS
chosen instead.

a For all choice of c, € [x..4,X,] and partition of P,
the same limit for S Is obtained when n = <
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DEFINITION The Definite Integral as a Limit of Riemann Sums
Let f(x) be a function defined on a closed interval [a, b]. We say that a number /
is the definite integral of f over [a, b] and that / is the limit of the Riemann
sums X 7=1f(cx) Axy if the following condition is satisfied:

Given any number € > 0 there is a corresponding number 6 > 0 such that
for every partition P = {xy, x1, ..., x,} of [a, b] with |P| < & and any choice of
cr In [x;—1, X¢], we have

if(ck) Ax, — 1| < €.
k=1

Slide 5- 13
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The function is the integrand.

Upper limit of integration
\(, b / X ? the variable of integration.

Integral sign — f (x) dx

Ja
/ When you find the value

Lower limit of integration < Y v, of the integral, you have

_—" evaluated the integral.

Integral of f fromato b

“The Integral from a to b of f of x with
respect to x”
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2 The limit of the Riemann sums of f on [a,b]
converge to the finite mtegral I

I|me(c )AX, = | _j f (x)dx

|P||—>O

1 We say f Is integrable over [a,b]
2 Can also write the definite integral as

= [ fdx = f(dt=] f(u)du
= j: f (what ever) d(what ever)

2 The variable of integration is what we call a
dummy variable
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THEOREM 1 The Existence of Definite Integrals

A continuous function is integrable. That is, if a function f is continuous on an
interval [a, b], then its definite integral over [a, b] exists.

Question: IS a non continuous
function integrable?
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Integral and nonintegrable functions

0 Example 1
2 A nonintegrable function on [0,1]

1, if x s rational
f(x)= e L
0, ifxisirrational

2 Not integrable

Slide 5- 17
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Properties of definite integrals

THEOREM 2
When f and g are integrable, the definite integral satisfies Rules 1 to 7 in Table 5.3.
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TABLE 5.3 Rules satisfied by definite integrals

a b
1. Order of Integration: / f(x)dx = — / f(x) dx A Definition
b a
2. Zero Width Interval: f f(x)dx =0 Also a Definition
b b
3. Constant Multiple: f kf(x) dx = / f(x) dx Any Number &
b b
/ —f(x)dx=—/ f(x) dx k= -1

4. Sum and Difference: / b( f(x) £ g(x)) dx = / bf(x) dx £ / bg(x) dx

b c c
5. Additivity: f f(x)dx + f f(x)dx = / f(x) dx
a b a

6. Max-Min Inequality: If f has maximum value max f and minimum value
min f on [a, b], then

min f+ (b — a) S/bf(x)dxs max f+(b — a).

7. Domination: f(x) = g(x)on[a, b] = / bf(x) dx = f E)g(x) dx

b
f(x) = 0onla,b] = / f(x)dx = 0 (Special Case)
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3
>

y=fx)

0 a

(a) Zero Width Interval:

ff(x)dx = 0.

(The area over a point is 0.)

> <

0

(d) Additivity for definite integrals:

b ¢ c
/f(x)dx+£f(x)dx=/f(x)dx

FIGURE 5.11

" y = 2f(x)

}/\/Jmf(x)
> X

0 a b

>

(b) Constant Multiple:

' kf(x) dx = ' F(x) dx.
| e

(Shown fork = 2.)

>

max f

T
B
I
B

min f

Ol a b
(e) Max-Min Inequality:

b
minf‘(b—a)S/ f(x) dx

=max f-(b — a)

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

3
>

pavas

y=fx) + gx)
y=gx)

y=fx)

X

0l a b

(c) Sum:

/ () + ) e = / fe i + / ")

(Areas add)
1
y = f(x)
y = gx)
0la b

(f) Domination:

f(x) = g(x) on[a, b]

b b
=>f f(x)dxzfg(x)dx
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Example 3 Finding bounds for an integral

a Show that the value of jolJ1+ cos Xdx
IS less than 3/2

0 Solution
0 Use rule 6 Max-Min Inequality
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Area under the graphs of a nonnegative
function

DEFINITION Area Under a Curve as a Definite Integral

If y = f(x) is nonnegative and integrable over a closed interval [a, b], then the
area under the curve y = f(x) over [a, b] is the integral of f from a to b,

b
4= f f(x) dx.
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Example 4 Area under the line y = x

0 Compute job xdx (the
Riemann sum)

and find the area A
under y = x over the
Interval [0,b], b>0

FIGURE 5.12 The region in
Example 4 1s a triangle.

Slide 5- 23
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By geometrical consideration:

Solution
Riemann sum A=(1/2)xhighxwi9th: (1/2)xbxb= b?/2
lim Zn:Axf (c.)= IimAxZn: f(x) .
n—>o0 4= N—»0 1

=limAXY_x, =limAx> kAx
1 =i

n 2 n
:IimAXZZk:Iim(Ej ZK
N—o0 = nN—oo n kel
2 2
n(n+1 n(n+1) o0
:Iim(gj ( ):Iim(gj (n+1)
n—o\ N ? n—w| N ?
p? 1\ p? FIGURE 5.12 The region in
= !]m?(l"‘ Hj = ) Example 4 1s a triangle.

Slide 5- 24
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b 2 2
b
lxﬂ=—2——%, a<b (1)

> =

Using geometry, the area ?
IS the area of a trapezium
A= (1/2)(b-a)(b+a)

= b?/2 - a?/2 ¢

> X

0 a b
l«<—b — a—

FIGURE 5.13 The area of
this trapezoidal region is
A = (b* — a?)/2.
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b
/ cdx = c(b — a), ¢ any constant (2)
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Average value of a continuous function
revisited

0 Average value of nonnegative continuous

function f over an interval [a,b] Is
f(C1)+ f(C2)+°“ f(Cn) :izn: f (Ck)

n

:ﬂzf( k)_b—ZAxf (c.)

b-aid
2 In the limit of n eoo the average =
j f (x)dx
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FIGURE 5.14 A sample of values of a
function on an interval [a, b].
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DEFINITION The Average or Mean Value of a Function

If f 1s integrable on [a, b], then its average value on [a, 5], also called its mean
value, 1s

. b
av(f) = mf f(x) dx.
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Example 5 Finding average value
y

| — 42
0 Find the average value f0) = V4 -x
over [-2,2]
> X

FIGURE 5.15 The average value of
f(x) = V4 — x*on[-2,2]is 7/2

(Example 5).

Slide 5- 31
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Mean value theorem for definite integrals

THEOREM 3 The Mean Value Theorem for Definite Integrals
If f 1s continuous on [a, b], then at some point ¢ in [a, b],

1 b
f0) =52 [ s
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T

f(c), average

: l height
|
L >

X

FIGURE 5.16 The value f(c¢) in the
Mean Value Theorem 1is, in a sense, the
average (or mean) height of f on [a, b].
When f = 0, the area of the rectangle
is the area under the graph of f from a
to b,
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2
y =fx)
1+ O o
1l  Average value 1/2
2 not assumed
——s ' > X
0 1 2

FIGURE 5.17 A discontinuous function
need not assume its average value.
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Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



y

Example 1 Applying the méan value theorem

for integrals

0 Find the average value of
f(x)=4-x on [0,3] and
where f actually takes on
this value as some point in
the given domain.

o Solution

0 Average = 5/2
0 Happens at x=3/2

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

\

4

[\ RRO)]

FIGURE 5.18 The area of the rectangle
with base [0, 3] and height 5/2 (the average
value of the function f(x) = 4 — x)is
equal to the area between the graph of f

and the x-axis from 0 to 3 (Example 1).
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Fundamental theorem Part 1

0 Define a function F(x):F(x)=[ f (t)dt
ax,a e |, an interval over which f(t) > 0 is
Integrable.

2 The function F(x) Is the area under the
graph of f(t) over [a,X], x>a =0
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{ area = F(x)

y = f(®)

> [

FIGURE 5.19 The function F(x) defined
by Equation (1) gives the area under the
graph of f from a to x when f is
nonnegative and x > a.

Slide 5- 38
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Fundamental theoreyﬂ Part 1 (cont.)
[ y =1
F(x+h)—F(x)=hf(x) N
F(X+h)_F(X) ~ f(X) J(x)
| g
LiﬂgF(XJrh)_F(X):F’(x):?(xf xx+h b

FIGURE 5.20 In Equation (1), F(x) is
the area to the left of x. Also, F(x + h) is

The above result the area to the left of x + 4. The
holds true even If f difference quotient [F(x + &) — F(x)]/h
IS not positive 1s then approximately equal to f(x), the

definite over [ a, b] height of the rectangle shown here.

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
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THEOREM 4 The Fundamental Theorem of Calculus Part 1
If f is continuous on [a, b] then F(x) = fax f(¢) dt is continuous on [a, b] and
differentiable on (a, b) and its derivative is f(x);

P = [ 0 de = 10, @
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Example 3 Applying the fundamental theorem

0 Use the fundamental theorem to find

X

d { d 1
a)— | costdt b dt
( )dx£ ( )dle+t2

a

dy .. .. dy .. %
c)— Ify=|3tsintdt d)— iIfy = | costdt
@) ify j (@) ify j
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Example 4 Constructing a function with a
given derivative and value

2 Find a function y = f(x) on the domain (-7 /2,
712) with derivative dy/dx = tan x

that satisfy f(3)=5.
Solution k(x) = Itan tdt

0 Set the constant a = 3, and then add to k(3) = 0
a value of 5, that would make k(3) +5=5

2 Hence the function that will do the job is
f(X) =k(x)+5=[tantdt +5
3
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Fundamental theorem, part 2 (The evaluation
theorem)

THEOREM 4 (Continued)  The Fundamental Theorem of Calculus Part 2

If f 1s continuous at every point of [a, b] and F'is any antiderivative of f on [a, b],
then

b
f f(x) dx = F(b) — F(a).
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To calculate the definite integral of f over
[a,b], do the following

a 1. Find an antiderivative F of f, and
0 2. Calculate the number

i f (x)dx = F (b) - F(a)
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it s s A e
To summarise

dF (x)

— £ (x)

E(%jdt =E f (t)dt = F(x) - F(a)

dX
— | f(t)dt =
dx! (t)
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Example 5 Evaluating integrals

(a) j COS xdXx
0

0
(b) j sec X tan xdx

—rl4

(c)j(g\/_—%jdx
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Example 7 Canceling areas

y
0 Compute a J— sinx
a (a) the definite integral
of f(x) over [0,27] Area = 2 /

a (b) the area between 0 w@% ,
the graph of f(x) and B

the x-axis over [0,27]

FIGURE 5.22 The total area between

y = sinx and the x-axis for0 = x = 2=«
is the sum of the absolute values of two
integrals (Example 7).

Slide 5- 47
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Example 8 Finding area using antiderivative

2 Find the area of the region between the x-
axis and the graph of f(x) = x3 - x* — 2x,

1< x< 2

a Solution
a First find the zeros of f.
2 f(x) = x(x+1) (x-2)
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FIGURE 5.23 The region between the

curve y = x> — x? — 2x and the x-axis

(Example 8).

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 5- 49



0.9

Indefinite Integrals and the Substitution
Rule
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Note

0 The indefinite integral of f with respect to x
jf(x)dx
IS a function plus an arbitrary constant

0 A definite integral | £ (x)dx
IS a number. a
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The power rule In integral form
o From 2 (“m =u“d—”—>j(u“d_”jdx=(”m]
dx

n+1 dx

0 We obtain the following rule

If u is any differentiable function, then

; B un+1 .
/u du = i C (n # —1, nrational). (1)
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Example 1 Using the power rule

j\/1+y -2y dy j\/_— dy
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Example 2 Adjusting the integrand by a
constant

|Vat-1 dtzj%M- Adt
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Substitution: Running the chain rule
backwards

THEOREM 5 The Substitution Rule

If u = g(x) is a differentiable function whose range is an interval / and f is con-
tinuous on /, then

/f(g(x))g’(x) dx = /f(u) du.

let u= g(x);j f[g(x)]- g'(x)dx =j f (U) -j—idx =j f (u)du

Used to find the integration with the integrand in the
form of the product of f[g(x)]-g'(x)dx

J fla()]-g'(x)dx = | f (u)du

f(u) du
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Example 3 Using substitution

J'cos(7x+5) dx:jcosu-d—uzlsinu+c :lsin(7x+5)+C
— Z;" {7 7 14
7
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Example 4 Using substitution

szsin x> dx =|sin x> x%dx =
— ——
u 1

gdu
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Example 5 Using ldentities and substitution

Icoslzx dx:jsec2 2X dx:jseczgﬁ dx =

1j'seczu du =ljd(tanu):1tanu+c:ltan2x+C
29— 2 2 2

—tanu
du
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Example 6 Using different substitutions

217 ~1/3 )
E — dz =I(22+Y1) 1J %9_;:][1 Y34y =...

u—1/3
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The integrals of sin’x and cos?x

0 Example 7 .
jsin2 X dx :Ejl—cos,Zx dx

=———|cos2xdx

2 2 T

Edu

:i—ljcosudu=
4
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The integrals of sin’x and cos?x

o Example 7(b)

Jcos2 X dx =%ICOSZX +1dx=...
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Example 8 Area beneath the curve y=X?

£

y = sin“x

[—
I

a For Figure 5.24, find
a (a) the definite integral
of g(x) over [0,27].

2 (b) the area between
the graph and the x-
axis over [0,27]. |

b | =

|
T
2

FIGURE 5.24 The area beneath the
curve y = sin’ x over [0, 27r] equals 7
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Substitution formula

THEOREM 6 Substitution in Definite Integrals
If ¢’ is continuous on the interval [a, b] and f is continuous on the range of g, then

b g(b)
/ flg)-g'Wds = [ flu)du
x=h x=b du u=g(b)
let u=g(x); | fl9(0]-g'()dx= [ f[u]-—-dx= | f(udy
x=a x=a u=g(a)
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Example 1 Substitution

1
0 Evaluate j3x2\/ x> +1 dx
-1

x=1 u(x=1)

_[\/x3+1-3x2dx= j ut?.du =...
\ PR
x=—1 L2 du u(x=1)
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Example 2 Using the substitution formula

X=xl2
j cot Xcsc? xdx = ?

X=rxl4

u
j(:otxc:sc:2 xdx =jcotx-csc2 xdx :—_[udu ———+¢C

—du
cot® X
=— +C
{5 cot?x|"" cot?x|”" 1 i | 1
jcotxcsc2 Xdx = — = ==|cot®(z/4)—cot*(z/2) |==
zl4 /4 2 /9 2 - ~ 2N ~ ’ 2
T Va i 1 0 il
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Definite integrals of symmetric functions

y y

A A

/\ 0 .
—a \/a > X
—da 0 a

(a) (b)

FIGURE 5.26 (a) feven, [* f(x)dx = 2 [, f(x)dx (b) fodd, [* f(x)dx =0
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Theorem 7

Let f be continuous on the symmetric interval [—a, a].

(a) If f is even, then /af(x) dx = Z/Qf(x) dx.
—a 0

(b) If f i1s odd, then /a f(x)dx = 0.
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Example 3 Integral of an even function

2

Evaluate j(x“ _4x% + G)dx
-2

Solution:

f (Xx)=x"—4x*+6;
f(—x) = (—x)4 —4(—x)2 +6=X"—4x°+6= f(X)
even function

How about integration of the same
function from x=-1 to x=2
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Area between curves
y
Upper curve

y=fx)

Lower curve
y = gx)

FIGURE 5.27 The region between
the curves y = f(x) and y = g(x)
and the lines x = aand x = b.
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FIGURE 5.28  We approximate the  FIGURE 5.29 The area A4y of the kth
region with rectangles perpendicular rectangle is the product of its height,

to the x-axis. flex) — g(ex), and its width, Axy.

A~ Zn:AAk = Zn:AXk [( f(c)—a(c )}

= lim ZAx[ (fe)-9@)]=].Tf(0-g00]dx

IP|—0 |
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DEFINITION Area Between Curves
If f and g are continuous with f(x) = g(x) throughout [a, b], then the area of
the region between the curves y = f(x) and y = g(x) from «a to b is the inte-

gral of (f — g) from a to b:
b
4= f [f(x) — g(x)] dx.

Slide 5- 73
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Example 4 Area between intersectin9 curves

a Find the area of the (x, F(x))

region enclosed by the / \"K

y=2-x
parabolay = 2 — x? (-1, 1)/ - Ax\ .
|

and the line y = -x.

—
k///////j//g/ 1 2
AA=( fn(X) -0 (Z()) - AX (x, g(0)
A=lim> A8 = [, dA B
k=1

b=2
A= Lf () - g(x)]dx

e FIGURE 5.30 The region in

E le 4 with ical
=I2(2—X2—x)dX:... amp s W a typica
-1 approximating rectangle.
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Example 5 Changing the integral-to match a
Area = [ (Vi — x +2) dx

boundary change ) 2
2 Find the area of the i ?
. 2 Area = [ Vixdx
shaded region 0
(x, f(x))
1\
Area=A+B A
A::OZ\/;dx; ol /S y=072 rane
. (x, g(x))
B =[x~ (x-2)dx

FIGURE 5.31 When the formula for a
bounding curve changes, the area integral
changes to become the sum of integrals to
match, one integral for each of the shaded
regions shown here for Example 5.

Slide 5- 75

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Integration with Respect to y

If a region’s bounding curves are described by functions of y, the approximating rectangles
are horizontal instead of vertical and the basic formula has y in place of x.

Ax i_AAk = iAyk [( f(c)—a(c, ):|

For regions like these

) v A= lim ZAyk[ (ffe)-9)]=] [f(-9(]dy

»
>

IPl|—0
d
= - _ - ;’
x =f(y) =IO X =800/ =)
A x = g(y) | N
) A< 0 "
x =gy
el chH ch
O > X 0 > X

use the formula

d
4= / L) — 2] dbv.

In this equation f always denotes the right-hand curve and g the left-hand curve, so
f(y) — g(») is nonnegative.
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Example 6 Find the area of the region In
Example 5 by integrati_ry]g with respect to y

\2‘

AA=(T(y)—g(y)) Ay 2 (4,2)

&), y)
x=y+2

1 Ay + (f(»), )
() — g(»)—| |
> X

FIGURE 5.32 It takes two
integrations to find the area of this
region if we integrate with respect to

x. It takes only one if we integrate
with respect to y (Example 6).
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Length of a parametrically defined curve

. the line segment
» between P, and P, ,

0

FIGURE 6.24 The curve C defined o I 1M : l, L
. . _ ||IP|[—0

parametrically by the equations x = f(z)

and y = g(t),a = t = b. The length of

the curve from A4 to B is approximated by

the sum of the lengths of the polygonal

path (straight line segments) starting at

A = Py, then to P;, and so on, ending at

B=P,.
o Addi Slide 6 - 2
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>

Ly

Py = (f(tx_1)s 8(t_1)

P = (f(1), g(tp)

i Aye=9g(t) - 9(t,)

FIGURE 6.25 The arc Py— Py 1s
approximated by the straight line segment
shown here, which has length

Ly = V(Ax)? + (Awp).

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
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=g(t)-9(t.) =9'¢) (t —t_)=9't)-At;

AXk = f(tk)_ f(tk—l) = f '(t;*)'(tk _tk—1)= f I(t;*)'At
due to mean value theorem

L, =\/(Ayk) At\/ (9 (t) ('t ))
L—I|mZL = |im ZLk
n— oo " [|P||— 0

- ||P|”moz At\/ (9t ) (f (t**))

!\/(9 ) +(f(t) dt = z\/((;—{jz 4 (z_)t(jzdt
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DEFINITION  Length of a Parametric Curve

If a curve C is defined parametrically by x = f(¢) and y = g(t),a =t = b,
where f' and g’ are continuous and not simultaneously zero on [a, ], and C is
traversed exactly once as ¢ increases from ¢ = a tot = b, then the length of C is

the definite integral

b
L = f VIFOF + @ OFar.

Slide 6- 5
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Example 1 The circumference of a circle

2 Find the length of the circle of radius r
defined parametrically by

ax=rcost andy=rsint, 0 t< 2«
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Length of a curve y = f(x)

Assign the parameter x = t,the length of the curve
y = f(x) iIs then given by

L—jJ m

dy dx dy
— X (1 7
y = y[x(t)] = dt Tt dy

dx

o2 4T (8] -Jo2]
a dx dt dt a dX
dx[[F ()] +1

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 6-7
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Formula for the Length of y = f(x), a=x=b»
If f is continuously differentiable on the closed interval [a, b], the length of the
curve (graph) y = f(x) fromx = atox = b is

b dy 2 b
L:/ \/1 + (a> dx=f V1 + [f(x)] dx. (2)
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Example 3 Applying the arc length formula
for a graph

2 Find the length of the curve

1, 0<x<1
3

y
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Dealing with discontinuity in dy/dx

0 At a point on a curve where dy/dx fails to
exist and we may be able to find the curve’s
length by expressing x as a function of y and
applying the following

Formula for the Length of x = g(y), c=y=d
If g is continuously differentiable on [c, d], the length of the curve x = g(y)
fromy =ctoy =dis

/\/ dx dy /\/l+ [g' ()] (3)
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Example 4 Length of a graph which has a
discontinuity In dy/dx

o Find the length of the curve y = (x/2)%3
fromx=0tox =2.

2 Solution
a dy/dx = (1/3) (2/x)¥2 is not defined at x=0.

o dx/dy = 3y*? is continuous on [0,1].
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2, 1)

FIGURE 6.27 The graph of y = (x/2)*?
from x = 0 to x = 2 is also the graph of
X = 2y3/2fr0my =0toy =1
(Example 4).
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DEFINITION One-to-One Function

A function f(x) is one-to-one on a domain D if f(x;) # f(x,) whenever x; # x;
in D.
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Example 1 Domains of one-to-one functions

2 (a) f(x) = x2 is one-to-one on any domain
of nonnegative numbers

2 (b) g(x) =sin xi1s NOT one-to-one on [0, 7]
but one-to-one on [0, 72].
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The Horizontal Line Test for One-to-One Functions
A function y = f(x) is one-to-one if and only if its graph intersects each hori-
zontal line at most once.
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One-to-one: Graph meets each
horizontal line at most once.

e
Same y-value
y /

I |

| |

' ' > X
-1 0 1

Same y-value

Not one-to-one: Graph meets one or
more horizontal lines more than once.

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

FIGURE 7.1 Using the horizontal line test, we
see that y = x> and y = Vx are one-to-one on
their domains (—00, 00) and [0, ©0), but y = x
and y = sinx are not one-to-one on their
domains (—00, 00).

2

Slide 7- 6



DEFINITION  Inverse Function
Suppose that f is a one-to-one function on a domain D with range R. The inverse

function f~! is defined by
fYa) = b if f(b) = a.

The domain of ! is R and the range of f ' is D.

Slide 7- 7
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y

A
o~ y =f(x)
[5 i
[(JDJ y /\
z
€
-4

0] X
DOMAIN OF f

(a) To find the value of fat x, we start at x,
g0 up to the curve, and then over to the y-axis.

X
A
& “y-
[ // y=x
o] b 7
=2}
1] (a, s _ -1
Z L x=0)
& ’
/
/7 (b, @)
/
ol”
3 >y
7 -1
e DOMAIN OF f
d
s
7
s
/s

(c) To draw the graph of f~! in the
more usual way, we reflect the
system in the line y = x.

=

5

x=f7'o)

DOMAIN OF f !
<

h
/
y

4

X
RANGE OF f !

(b) The graph of fis already the graph of !,
but with x and y interchanged. To find the x

that gave y, we start at y and go over to the curve
and down to the x-axis. The domain of ! is the
range of f. The range of f~! is the domain of f.

> <

y=f"x)

RANGE OF f !

DOMAIN OF f ~!

(d) Then we interchange the letters x and y.
We now have a normal-looking graph of f !
as a function of x.

FIGURE 7.2 Determining the graph of y = f~!(x) from the graph of y = f(x).
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Finding inverses

2 1. Solve the equation y =f(x) for x. This
gives a formula x = f -1(y) where x is
expressed as a function of y.

2. Interchange x and y, obtaining a formula y
= f-1(x) where f -1(x) is expressed in the
conventional format with x as the
Independent variable and y as the dependent
variables.
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Example 2 Finding an inverse function

2 Find the inverse of y = x/2 + 1, expressed as a
function of x.

a Solution

a0 1. solve for x interms of y: x =2(y-1)

a 2. Interchange x and y: y = 2(x — 1)

2 The inverse function f1(x) = 2(x - 1)

a Check: f-Hf(X)] =2[f(x) - 1] = 2[(x/2 + 1) - 1] =X
= [+ ()]
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FIGURE 7.3 Graphing

fx) = (1/2)x + land f1(x) = 2x — 2
together shows the graphs’ symmetry with
respect to the line y = x. The slopes are
reciprocals of each other (Example 2).

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
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Example 3 Finding an inverse function

0 Find the inverse of y = x2, x = 0, expressed
as a function of x.

0 Solution

a 1. solve for x in terms of y: x =y
a 2. interchange x and y: y = Vx

0 The inverse function f1(x) = Vx
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>

/0]

FIGURE 7.4 The functions y = Vx and
y = xz, x = 0, are inverses of one

another (Example 3).
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Derivatives of inverses of differentiable
functions

2 From example 2 (a linear function)
Qf(x)=x/2+1;F1(x) =2(x + 1);

0 df(x)/dx = 1/2; df -1(x)/dx = 2,

a i.e. df(x)/dx = 1/df -1(x)/dx

2 Such a result Is obvious because their graphs are
obtained by reflectingonthe y = xline.

2 In general, the reciprocal relationship between the
slopes of f and f-1 holds for other functions.
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1 b
{ Y=m* " m
1 %
Slope = - y=x
//
e
iy
e
7
Vg
rd
s
Ve
Ve
7
Mb
- 7 Slope = m
/
L > X
0

FIGURE 7.5 The slopes of nonvertical
lines reflected through the line y = x are
reciprocals of each other.
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df
slopeatx=a=—

\?’d

> =

df *
dx

slopeatx=b=f *(a) =

x=b

a=f'bO)p-——————- >
/ |y =)
' > X
0 0 b
The slopes are reciprocal: ( f BIOE ,1 or (F ) =— 1
f@ JACA)

FIGURE 7.6 The graphs of inverse functions have reciprocal
slopes at corresponding points.
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THEOREM 1 The Derivative Rule for Inverses

If f has an interval / as domain and f'(x) exists and is never zero on /, then f ! is
differentiable at every point in its domain. The value of (')’ at a point b in the
domain of £~ is the reciprocal of the value of f' at the pointa = f~'(b):

=1y b) = 1
e (7))
or
df ! 1
dx b - ﬂ (1)
ax | x=410)
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Example 4 Applying theorem 1

a The function f(x) = x?, x = 0 and its inverse
f-1(x) = Vx have derivatives f'(x) = 2x, and

(f-2)'(x) = 1/(2Vx).
a0 Theorem 1 predicts that the derivative of
f-1(x) is
(F-)'(x) = UFTEL0)] =1/ f'Vx]
= 1/(2Vx)
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4 Slope4¢$(2,4)

|
3T : Slopﬁ:l
|
2k | \V}m\/ﬁ_c
&2
1_.

; |
| |
I I
| |
| |
0 1 2 3 4

FIGURE 7.7 The derivative of

f71(x) = Vx at the point (4, 2) is the
reciprocal of the derivative of f(x) = x? at
(2, 4) (Example 4).
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Example 5 Finding a value of the inverse
derivative

o Let f(x) = x3 - 2. Find the value of df -t/dx at
X = 6 = f(2) without a formula for f -,

2 The point for f is (2,6); The corresponding
point for f -tis (6,2).

a Solution

0 df /dx =3x2

o df -Ydx|,-¢ = 1/(df /dx|,-,)= 1/(df/dx],- ,)
= 1/3x?|,-, = 1/12
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Slope 3x? = 3(2)* = 12

Reciprocal slf)fe: %2_
- (6,2)
/ :
20 é .
-2

FIGURE 7.8 The derivative of
f(x) = x> — 2 atx = 2 tells us the
derivative of f ! at x = 6 (Example 5).
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Definition of natural logarithmic fuction

DEFINITION  The Natural Logarithm Function

lnx=/1dt, x>0
1
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M X l
If0<x< 1,thenlnx=/ %d:= —/ %dt
1 X

gives the negative of this area.

Ifx>1,thenlnx =

gives this area. y = Inx

FIGURE 7.9 The graph of y = Inx and its
relation to the function y = 1/x,x > 0. The
graph of the logarithm rises above the x-axis as x
moves from 1 to the right, and it falls below the

axis as x moves from 1 to the left.
Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
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lnx=/ %dx
1

TABLE 7.1 Typical 2-place
values of ln x
X In x
0 undefined
0.05 —3.00
0.5 —0.69
1 0
e lies between2| 2 0.69 | Inx=1
and 3 3 1.10
4 1.39
10 2.30
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DEFINITION The Number e
The number e is that number in the domain of the natural logarithm satisfying

In(e) =1
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By definition, the antiderivative of In x is just 1/x

il _1
dx YT X
d _ 1du
—dxlnu = Uk’ u>0 (1)

Let u =u (x). By chain rule,
d/dx [In u(x)] = d/du(ln u)-du(x)/dx
=(1/u)-du(x)/dx
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Example 1 Derivatives of natural logarithms

d
a)—In2x=
()dx

(b) u :x2+3;ilnu _dul_
dx dx u
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Properties of logarithms

THEOREM 2  Properties of Logarithms

For any numbers a > 0 and x > 0, the natural logarithm satisfies the following
rules:

1. Product Rule: Inax = Ina + Inx

2. Quotient Rule: ]n% = Ina — Inx

3. Reciprocal Rule: ln% = —Ilnx Rule 2 witha = 1

4. Power Rule: Inx" = rinx 7 rational
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Example 2 Interpreting the properties of
logarithms

(a)in6=In(2-3)=In2+In3;

(b)In4—-In5=1In(4/5)=In0.8
(c)In(1/8)=In1-In2° =-3In2
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Example 3 Applying the properties to function
formulas

(a)In4+Insinx =In(4sinx);

X+1
(b)In 3 In(x+1)— In(2x — 3)
(c)In(secx) = InL =—Incos x

COS X
(d)In VX +1 = In(x+1) **= (1/3) In(x +1)
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Proofof Inax=Ina+ In x

2 In ax and In x have the same derivative:

d d(ax) 1 1 1 d
—Inax = —a—=—=
dx dx ax ax X dx

In X

2 Hence, by the corollary 2 of the mean value
theorem, they differs by a constant C

Inax=Inx+C

2 We will prove that C = In a by applying the
definition In x at x = 1.
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Estimate the value of In 2

<1
J n2= j—dx
_1 X
Y=x 1
\ L 1)<j dx<2-2=1-(2-1)
1+ 2
l<In2<2
1 2
2
0 1 2 7

FIGURE 7.10 The rectangle of height
y = 1/2 fits beneath the graph of y = 1/x
for the interval 1 = x = 2.
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it it S A G
The integral J (1/u) du

From iIn u= id_u

dx u dx

Letu>0
Taking the integration on both sides gives
d 1du

.&m udx = j——d

| dlnu:jj—>lnu+C':I(L—u

Foru<O:
—u >0,
1 d(-u)
j—ln( u)dx = j( o dx
. du
J'dln( u) = j— —In(-u)+C"= :

Combining both cases of u > 0,u <0,

jd—”=|n|u|+c
u
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u .
recall: ju“du =——+C,nrational, #1
n+1

If u 1s a differentiable function that is never zero,

/tltdu =In|u| + C. (5)

From ju‘ldu =In|u|+C.

let u = f (x).
df (x) dx
Iu‘ldu _ d_U:J‘df (X) :J' dx
u f(x) f ()

F'(x)
:jf(x)dx_ln|f(x)|+c

Slide 7- 35
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Example 4 Applying equation (5)

()J-Zxdx J-d(x —5) _In| ¥t —5[+C

"2 ACOSX

dx =...
( _J,23+23inx
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The integrals of tan x and cot X

ftanudu = —In|cosu| + C = In[secu| + C

cotudu = In |sinu| + C= —In|cscx| + C
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Example 5
—lic052x
jtanzxd _js'”zxd - [—2dx dx
COS 2X COS 2X
-2 dcost___ d—u:—lln|u|+C
COS 2X u 2

:—Eln|c032x|+C

:%In|se02x|+C
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Example 6 Using logarithmic differentiation

1/2

(x2+1)(x+3)

xX>1
X—1

Q Find dy/dx if y =

Iny =In(x*+1)+(1/2)In(x+3)-In(x-1)

94 yziln(x2 +1)+£iln(x+3)—iln(x—1)

dy dy 2 dy dy
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The inverse of In x and the number e

a In x Is one-to-one, hence It has an inverse. We
name the inverse of In X, In"1 x as exp (x)

2 In x Is an increasing function since
dy/dx = 1/x>0

2 Domain of In x = (0,<°)

a Range of In x = (-0, 0)

imIin"x=o0, limIn*x=0

X—>0 X—>—00

0 The graph of the inverse of In x
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Y
s |- b= In-lx aDefinitionofeasIne = 1.
2L x=lny 0So, e = In1(1) = exp (1)
L ne = 2.718281828459045...
sl (an irrational number)
AL aThe approximate value for e is
obtained numerically (later).

2 -
2 .
A |

| | | V| | 5

—2—/10 1 2 e 4 >

FIGURE 7.11 The graphs of y = Inx and
y = In"'x = exp x. The number e is
In'1 =exp (1).
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The function y = e*

0 Raising the number e to a rational power r:

0 e?=e-g, e2=1/e2? el2 =\e etc.

0 Taking the logarithm of e", we get

aIner=In(e-e-e-e...)
=Ilne+Ine+Ine+...+lIne=rine=r

0 From Ine" = r, we take the inverse to obtain

Q Int(Ine)=Int(r)

a e"=In?t(r) =expr, for rrational.

0 How do we define e* where X is Irrational?

0 This can be defined by assigning ex as exp x since In't (X) is

defined (as the inverse function of In x is defined for all real

X).
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DEFINITION  The Natural Exponential Function
For every real number x, e* = In"!x = expx.

For the first time we have a precise meaning for
an Irrational exponent. (previously a*is defined
for only rational x)

Note: please do make a distinction between e* and exp x. They have
different definitions.
e* IS the number e raised to the power of real number x.

exp x is defined as the inverse of the logarithmic function, exp x = In-t x

Slide 7 - 44
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Typical values of "

X e” (rounded)
—1 0.37
0 1
1 2.72
2 7.39
10 22026
100 2.6881 X 10%
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Inverse Equations for ¢* and In x
eln* = x (allx > 0) (2)

In(e*) = x (all x) (3)

0 (2) follows from the definition of

o Frome*=exp X, letx = Inx

ae"x=In [exp x] = x (by definition). (2)

0 From e* = exp x, take logarithm both sides,
— In eX=In [exp x] = x (by definition)
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Example 1 Using inverse equations
(a)Ilne* =2
(b)Ine™* =-1
(©)Inve =Ine?=1/2
(d)Ine™™ =sin x
(f)e"* =2
(@€
(h)e3ln2 _ e|n23 _23_g

(i)e3ln2 _ 32 _ (eln2)3 _923_g
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Example 2 Solving for an exponent

0 Find k if e%=10.
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The general exponential function a*

o Since a = e for any positive number a
0aX= (elna)x — exlna

DEFINITION General Exponential Functions
For any numbers a > 0 and x, the exponential function with base a 1s

a* = exlna.
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Example 3 Evaluating exponential functions

5
(a)Zﬁ :(elnz) S _ o3z _ o120 3 39

(b)zﬂ _ (elnz)” _ e;zln2 ~e2® .88
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Laws of exponents

THEOREM 3 Laws of Exponents for e”
For all numbers x, x;, and x,, the natural exponential e* obeys the following laws:

1. exl .exz — ex]+x2
- 1
X —
2. e’ = P
X1
e —
3 o e’

4. (exl).’CZ — exlxg — (exz)xl
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Laws of exponents

THEOREM 3 Laws of Exponents for e”
For all numbers x, x;, and x,, the natural exponential e* obeys the following laws:

1. efl-ef2 = gi1tn
_ 1
X
2. e - ex
X1
e _
3 —ex2 = "1™ R2

4. (exl).’CZ — exlxg — (exz)xl

Theorem 3 also valid for aX
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Proof of law 1

Y1 :eX11Y2 ="

:>X1:|n3’1’x2 :Inyz

=X +X=Iny,+Iny, =Iny,y,

= exp(xl+ X )=exp(ln Y1Y.)
=Yy, =6t
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Example 4 Applying the exponent laws

(a)ex+ln 2 _
(b)e—ln X _
€

()% -
e

@(e)

X
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The derivative and integral of e*

f(x)=Inx, y—eX:In‘1x= f(x)

dy d o P 1
X) =
dx dx dx (%)= df (x)
dx )
B 1 B 1 o
1/ x)\xz 100 1/ x)\xzy
%ex=ex (5)
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Example 5 Differentiating an exponential

d
&(Se )=
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By the virtue of the chain rule, we obtain

If u 1s any differentiable function of x, then

d , ,du

e T € g (6)

f(u)=e";u —u(x)'

i u(x) df(U) dU(X) d_U
dx( ) f( )= dx =€ dx

/e“du=e“+C.

This is the integral equivalent of (6)
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Example 7 Integrating exponentials

In2

(a) j e¥*dx =

wl?2 _ wl?2 _
(b) j e’ cosX dx = j e”"” cos xdx
R N —
0 0 el  df(x)

f(z/2) f(z/2)
= [ e"df ()= [ de'®

£(0) £(0)
_af(0 :E:)IZ) _pf(712) _ o f(0) _ gsin(z/2) _ gsin(0) _ o _1q
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The number e expressed as a limit

THEOREM 4 The Number e as a Limit
The number e can be calculated as the limit

e = lim (1 + x)'~.

x—0
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Proof

aIff(x) =Inx, thenf'(x) =1/x,s0f'(1) = 1.
But by definition of derivative,

O sy Y+ = 1(y)
F'(y)=Im -

f+h) =@ . Fa+0-f()

0 =lin

x—0 X
i IN@40)—In@® _ - In+X)
x—0 X x—0 X

Xx—0

—lim[In(1+ x)]i - In{lxigg(ﬂ x)ﬂ ~1 (since f'(1) =1)

1
lim@+x) = lim(L+ =)’ =e
X—> y—
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nin x

Define x" for any real x >0 as x" =e""".
Here n need not be rational but can be any real number

as long as x Is positive.
Then we can take the logarithm of x" :

In X" = In(e“'”x) =nlinx

Once x" is defined, we can take its differentiation :

u(x)
d n d em _d_Udeu :Eenlnxzﬂxn:nxn—l

— X =— =
dx dx dx du X X

n n-1

d
= — X" =nx
dx
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0 By virtue of chain rule,
U =u(x);
d n::du(x)du”::du(x)nun_1

dx dx du dx

Power Rule (General Form)
If u is a positive differentiable function of x and 7 is any real number, then u" is a
differentiable function of x and

n n—l@

iu = nu
dx dax’
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Example 9 using the power rule with
Irrational powers

(a)d \/_ dU d_unun—l
dx T dx  dx

d_Unun—1 E%\/Exﬁ—l :\/EX\/E—1
dx dx

(b)i(2+sin3x)” _du”_du s
Snyr = QI 2yt 37024 5in3x)"* cos3x
dx dx
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The derivative of @
a.x :exlna

d d{ 7=) d d
—a'=—| e |=—(xIna)—|¢"
dx dx[ ] dx( )du( )
—e'lna=¢e"lna=a"Ina

By virtue of the chain rule,

a'lna—
dx dx du dx

If a > 0 and u is a differentiable function of x, then a” is a differentiable function
of x and

%a“ = a*lna “2. (1)




Example 1 Differentiating general exponential

functions

d d({ == d d
a)—3 =—| e |=—(xIn3)—(e"
()dx dx[ ] dx( )du( )
=In3-¢X™ =3"In3

d d —= d d
p)—3 ¥ =——— N 3p__ 3
( )dx d(—x) du du

=-3'In3=-3"YIn3==In3/3"

(C)igm:d_”igu :d(smx)
dx dx du dx

3“In3=3""*In3-cos X
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Other power functions

0 Example 2 Differentiating a general power
function

a Find dy/dx iIf y = xX, x> 0.
2 Solution: Write x* as a power of e
0 XX = exlnx

d({ ] dud, ,\ d u
&(e i j:d_iﬁ(e )= (xInx)-(e') =..
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Integral of a

From ia“(x) =a"lIn ad—u, devide by Ina:

dx dx
1 d_uy _,du
- ——a‘v=a—
Ina dx dx
d u(x) u dU . . .
— —a "’ =a Ina—, integrate both sides wrp to dx:
dx dx

= J'(%a“jdx = j(a“ In ag—ijdx:

:jda“ :Inaja“du+C

/a” du 1. (2)
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Example 3 Integrating general exponential
functions

2X
+

(8)f2"dx = —

C

d

(b)jzﬁaéljcj?:jzwu:...
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Logarithm with base a

DEFINITION  log, x
For any positive number a # 1,

log, x is the inverse function of a*.

Inverse Equations for a* and log, x
't = x (x > 0) (3)

log,(a*) = x (all x) (4)
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FIGURE 7.13 The graph of 2* and its
inverse, log, x.
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Example 4 Applying the inverse equations
(a)log,2° =5

(b)2|0g23 _ 3

(c)log,, 10" = -7

(d)10"%* =4
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Evaluation of log, x

a*%* = x Taking In on both sides,
In(a"*%*) = In x

LHS,In(a*) =log, xIna
equating LHS to RHS yields

loa. xIlna =1Inx

log x=L-1nx=ln—x
4 Ina Ina

(5)

a Example: log,;2=In 2/ In10
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TABLE 7.2 Rules for base a

logarithms 0 Proof of rule 1:

For any numbers x > 0 and In Xy = In X+ In y

y >0, . .

o o divide both sides by Ina
log, xy = log,x + log,y In(xy) In x N In y

2. Quotient Rule: In a Ina Ina
logag = log,x — log,y |Oga (Xy) — |09a X+ Ioga y

3. Reciprocal Rule:

logaJ—I} = —log,y

4. Power Rule:
log,x” = ylog, x
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Derivatives and integrals involving log, x

9 (10, u) = du d(log,u) _du d(log,u)
dx* °° dx  du dx  du

i(Iog u)= d (Inu): 1 d (Inu)=il
du : dullna) Inadu Ina u

d du 11 1 (1) du
_(|Ogau): . = = .
dx dx \Inau Ina\u /) dx
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Example 5

(a)jx{loglo (3x +15] _ du d(log,)

dx du

=i(3x+) 1 d(lnu) 3 1
dx In10 du In10 (3x+1)

(b)j%dx_— nx X =ijudu=...
In2/=— X In2

——
d(Inx)=du
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The law of exponential change

0 For a quantity y increases or decreases at a
rate proportional to it size at a give time t
follows the law of exponential change, as

er & v Y i
dtocy() ~ y(t).

K 1S the proportional constant.
Very often we have to specify the value of y at
some specified time, for example the initial condition

y(t :0) =Y
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Rearrange the equation 2—1’ =ky':

lay
y dt

—>j1dy=kjdt:kt—>|n|y|:kt+c
y

—>In|y|=kt+C — y=+Ce" = Ae"', A==C.
Put in the initial value of y att=01sy,:
—>y(0)=y,=Ae"=A—>y=ye"

The Law of Exponential Change

y = yoe" (2)
Growth: £ >0 Decay: k£ <0

The number £ is the rate constant of the equation.
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Example 1 Reducing the cases of infectious
disease

0 Suppose that In the course of any given year
the number of cases of a disease Is reduced
by 20%. If there are 10,000 cases today,

how many years will it take to reduce the
number to 1000? Assume the law of
exponential change applies.
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Example 3 Half-life of a radioactive element

0 The effective radioactive lifetime of
polonium-210 is very short (in days). The
number of radioactive atoms remaining
after t days in a sample that starts with y,
radioactive atoms is y=y, exp(-5x10-t).
Find the element’s half life.
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Solution

1 Radioactive elements decay according to the
exponential law of change. The half life of a given
radioactive element can be expressed in term of
the rate constant k that Is specific to a given
radioactive species. Here k=-5x10-3,

a At the half-life, t=t,,
Y(ti12)= Yol2 = Yo eXp(-5x10- 1)
exp(-5x10-3t,,,) = 1/2

- In(1/2) = -5x10-3t,,

2> t,= -In(1/2)/5x10-3 = In(2)/5x10-3 = ...
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Defining the inverses

0 Trigo functions are periodic, hence not one-
to-one In the their domains.

0 If we restrict the trigonometric functions to
Intervals on which they are one-to-one, then
we can define their inverses.
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_ FHDCtiDn: Einx Domain: [_’le2r JTJIII2]

Domain
restriction that
makes the
trigonometric
functions one-to-
one

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Sinx

! X
-1.5 -1 -0.5/} 0.5 1 1.5

Function: cosx Domain: [0, «]

Cosx

1
X
0.5 1 1.5 2 2.5 3
-0.5
-1

Function: tanx Domain: [-m/2, /2]

Tan x

: . K
0.5 1 1.5

Range : [-1, 1]

Range : [-1, 1]

Range : (-, =)



_ Function : cotx Domain: [0, =] Range : (-o, =) I

Domain
restriction that
makes the TR

trigonometric ¢
fUﬂCtiOnS One_to Function: secx Domain: [0, n/2)|J(n/2, n] Range: (-w=, -1], [1, =)

Secx

one J

0.5 1 1.p 2 2.5 3

-2
: K_'

Function: cosecx Domain: [-n/2, 0)J (0, n/2] Range: (-, -1]1J[1, =)

4

Cosecx

T

X
-1.5 -1 -0.5 0.5 1 1.5

-2
. . . 4
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Inverses for the restricted trigo functions

y =sin~" X = arcsin x

y =COS * X = arccos X
y =tan™ X = arctan X
y =cot ™ X =arccot X
Y =Sec " X = arcsec X
Y =CSC ™ X = arccscx
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Domain: -1 =x=1
LT = y=T
Range 3 =V=3
y
T
2
y =sin"lx
1 |
7 1 > X
_1 7
2

Domain: —co << x < oo

Range: -7 < y< T

2 2
y
_______ i
2 y:tan’lx
] ] ] L 5y
-2 -1 1 2
_m
_______ 20 _______
(©)
Domain -1 or

(e)
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Domain: -1 =x=1
Range: O=y=nw

-t
y = cos~lx
w
K
L - x
-1 1
(b)

Domain: x<-lorx=1

Range: O0=y= ﬂ',y#g

(@

Domain; —co < x < oo
Range: O<y<m

(f)

a The graphs of the
Inverse trigonometric
functions can be
obtained by reflecting
the graphs of the
restricted trigo
functions through the
liney = x.

FIGURE 7.17 Graphs of the six basic inverse trigonometric
functions.
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DEFINITION Arcsine and Arccosine Functions

1

y = sin™ " x is the number in [—7/2, /2] for which siny = x.

cos ! x is the number in [0, 7] for which cosy = x.

<
I
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Y
A
X =siny
y = sin"'x
| Domain: [-1, 1]
y ¥= sin x, _g =x< % 2 Range: [-7/2, 7/2]
' Domain: [-7/2, 7/2] , .
Range: [-1, 1] I g
_T
2
(a) (b)

FIGURE 7.18 The graphs of (a) y = sinx, —7/2 = x = /2, and (b) its inverse,
y = sin"! x. The graph of sin”! x, obtained by reflection across the line y = x,isa
portion of the curve x = sin y.

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| | de 7- 90



A
X = CoSy
ﬂ' —
= cos x
-K y=cosx,0=x=m Y ,
Domain: [0, 7] Domam: [-1, 1]
’ a .
1| Range: [-1,1] 5 Range: [0, 7]
// ' ' > X
= L 5 -~ T'T ~ > X -1 0 1
4L 2 -
(@) (b)

FIGURE 7.19 The graphsof(a) y = cosx,0 = x = 7, and (b) its

inverse, y = cos | x. The graph of cos™! x, obtained by reflection across
the line y = x, is a portion of the curve x = cos y.
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Some specific values of sin™ x and cos x

X sin” ' x X cos ' x
\/5;"2 /3 \/5/’2 /6
V2/2 /4 V2/2 /4

1/2 /6 1/2 /3
~1/2 —7/6 ~1/2 27/3
—V/2/2 —— —V/2/2 3r/4
-V/3/2 —m/3 ~V/3/2 57/6

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| I de 7- 92



$=m— 0= cos™!(-x)
cos'x =6
0= cosx; —] =% 0 X 1 =
CoS¢ = cos (7 — ) = — cosd
¢ = cos1(— cos@) = cost(—x)
Add up fdand ¢ FIGURE 7.20 cos ! xand cos™!(—x) are

supplementary angles (so their sum 1s 7).

0 +¢ = cosix + costi(-x)

7r = C0SIX + cosi(-x)
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sin"lx= 712 -6

FIGURE 7.21 sin ' xand cos ! x are
complementary angles (so their sum is 77/2).

costx=@:sin"tx = (%— 9);

COS X +Sin "t X+ = 6’+(£—6’j:£
2 2
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DEFINITION  Arctangent and Arccotangent Functions

tan~! x is the number in (—/2, 7/2) for which tany = x.

<
Il

y = cot™ ' x is the number in (0, 7r) for which coty = x.
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y = tan~Lx
{ Domain: (—Dc-, n-::-)

_______ Tl _Ea_l‘lgei (=/2, 7l2)

2

> X
0

_______ I

2

FIGURE 7.22 The graph of y = tan"!x.
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Y
A y = cot 'x
Domain: (—eo, =)
Range: (0, m)
_______ ﬂ' e e e ——— — —
o
2
>
5 X

FIGURE 7.23 The graph of y = cot ! x.
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y = sec”x

Domain: |x| =1
Range: [0, w/2) U (7/2, ]

FIGURE 7.24 The graph of y = sec ! x.
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Range: 05y51r,y¢%
y
A
_______________________ 3m
2
B
ﬂ' L
_é/
N w
[ 2
y = sec” ' x /
' L > X
-1 0 1\3
R I
2
N
_W e
//
Y 3m
2
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FIGURE 7.26 There are several logical
choices for the left-hand branch of

y = sec ' x. With choice A,

sec ' x = cos ! (1/x), a useful identity
employed by many calculators.
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y = csclx

Domain: |x| =1

Range: [-#/2,0) U (0, 7/2]
y

7|
2 K
I
-1 0 1
\ B

FIGURE 7.25 The graph of

y = csc ' x.

2
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Some specific values of tan- x

X tan 1 x
V3 /3
1 /4

\V/3/3 7/6
—\/5/3 —/6
—1 —/4
-V3 —1r/3
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Example 4

0 Find cos ¢, tan «, sec «, asin a=2/3

csc a if o =sint (2/3). .

@ =
V5

FIGURE 7.27 Ifa = sin"!(2/3), then
the values of the other basic trigonometric
functions of & can be read from this
triangle (Example 4).
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EXAMPLE 5 Find sec (tan™' 7).

Solution Welet® = tan ! (x/3) (to give the angle a name) and picture 6 in a right trian-
gle with

tan @ = opposite/adjacent = x/3.

The length of the triangle’s hypotenuse is

Vx> + 3= Vx*+9.

Thus,

sec (tan_1 %) = sec 0

Vx?+ 9 hypotenuse

= . secf = :
3 adjacent
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The derivative of y = sin't x

f(x)=sin"x= f*(x)=sinXx;

ofi) 1 11

dx  df *(x) cosX|,_, ., €0sf(X)
dX x=Tf (x)

Lety = f(x)=sin"'x —> Xx=siny=cosy =+1-x’
1 1 1

cos(f(x)) cosy J1—x?

i(sin‘1 X) = L

dx 1- X2
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/
d , . 4 1
y = sin"lx —(Sln X) =
Domain: —-1=x=1  OX 1— x2
Range: —m/2 =y < m/2
7 Note that the graph is not

differentiable at the end
points of x=%1 because
the tangents at these
points are vertical.

FIGURE 7.29 The graph of y = sin™ ' x.
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The derivative of y = sin* u
If u=u(x) Is an diffrentiable function of x,

isin‘lu =7

dx

Use chain rule: Lety =sin"u

9 ginry 2 v d (sin‘lu): du 1
dx dx du dX \1—u?

Note that |u |<1 for the formula to apply

i(sin_l u) = lu| < 1.

1 du
dx ‘\/1_u24)€’
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Example 7 Applying the derivative formula

d . _
— sintx°=...
dx
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The derivative of y = tan™ u

y=tan"x=>x=tany cos’ y =1/(1-x?)
d dy _ 1
1=— _
w (tan y) dXsec y
dy oy X
dx—cos y=1/(1-Xx") Y(
V(1-x2)

By virtue of chain rule, we obtain

i -1 _ 1 du
dx(tan u)_1+u2dx'
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Example 8

X(t) = tan V.
dx

Bl IR
dt

t=16
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The derivative of y = sec? x
y=Sec ' X=> X=Secy y
dy !

d
1=—/((secy)=—secytan .
dx( 2 dx yuny _’/
tany:i\/seczy—l:im “““““‘“?%

d 1 1 | >
—sec'x=cosycoty=+= 10 1

dx X /(x> =1)

ﬂ >0 (from Figure 7.30), FIGURE 7.30 The slope of the curve
y = sec | x is positive for both x < —1
dy 1 1 and x > 1.

dx [ x| J(x2 1)
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The derivative of y = sect u

By virtue of chain rule, we obtain

lu| > 1.

i(sec_lu) = 1 du
dx |},/£|\/M2_1d)(7'J
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Example 5 Using the formula

%sec‘l(Sx“) =..
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Derivatives of the other three

2 The derivative of cosx, cotlx, cscix can be
easily obtained thanks to the following
Identities:

Inverse Function—Inverse Cofunction Identities

1 1

x=m/2 —sin " x

cot 'x = 7/2 — tan" ' x

csc 'x = mw/2 — sec 'x

COS
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TABLE 7.3 Derivatives of the inverse trigonometric functions
d(sin"! u) du/dx
=, u| <1
X 1 — u2
d(cos™! u) du/dx
2. p = — , Jul <1
X A /1 _ M2
3 d(tan™! u) _ du/dx
' dx 1 + u?
4 d(cot ' u) ~ du/dx
‘ dx 1 + u?
d(sec! u) du/dx
. P , |ul >1
lu| Vu? — 1
d(csc! u) —du/dx
6. o = , |ul > 1
lu| Vu? — 1
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Example 10 A tangent line to the arccotangent
curve

2 Find an equation for the tangent to the
graph of y = cot! x at x = -1.
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Integration formula

0 By integrating both sides of the derivative
formulas in Table 7.3, we obtain three
useful integration formulas in Table 7.4.

TABLE 7.4 Integrals evaluated with inverse trigonometric functions

The following formulas hold for any constant a # 0.

du .1 [u : 2 2
1. / =sin ||+ C (Valid for u* < a®)
Va* — u? (a)

2. /achfuz = étan_l (g) + C (Valid for all u)

lsec_l|%| + C  (Validfor |u| > a > 0)

3 / du _
uNVu? — a? a
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Example 11 Using the integral formulas

J312 dx

() J212 \/1_ ¥ 2
1 dx

(b)[ —— =

01+ X°
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Example 13 Completing the square

ax dx _ dx
j Jax—x |l J-0¢ = 4x) I J(x-2)2-4]

B dx _ du
- J4-(x-2)? szz—uz
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Example 15 Using substitution
dx

K= o) ~(<6)
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7.8

Hyperbolic Functions

(15 lecture of week 17/09/07-
22/09/07)
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Even and odd parts of the exponential
function

Atx)=%2[F(x)+1(x)]+ 72 [f (x) - T (-X)]
a % [f (x) + f (-x)] is the even part
a Y [f(x) - f(-x)] Is the odd part

af(x)=e =% (ex+e”)+ % (eX—e¥)
0 The odd part ¥ (e* - eX) = cosh x (hyperbolic
cosine of x)

2 The odd part ¥2 (e + e*) = sinh x (hyperbolic sine
of Xx)
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TABLE 7.6 Identities for
hyperbolic functions

cosh’x — sinh?x = 1
sinh 2x = 2 sinh x cosh x
cosh 2x = cosh?x + sinh®x

cosh? y = cosh2x + 1
2
i = C0sh 26 = 1

tanh?’x = 1 — sech?x
1 + csch?x

coth? x
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Proof of SInh2X = 2cosh xsinh x

1(e™-1)
2 er

1= E*+) 21
2 ¢ e* 2 2

Sinh2x = %(ezx —e ) =

(e*—e ) (e"+e™)

=2 %(ex —e™) %(ex +e7") = 2sinh xcosh x
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TABLE 7.5 The six basic hyperbolic functions FIGURE 7.31

Hyperbolic sine of x: sinhx = %

: 2 i ol
Hyperbolic cosine of x:  coshx = e e

¥ y=coshx
2 94
-x 2
- \LH-%
=T X
Zg=g 123
(b)
; sinhx _ e —e™*
Hyperbolic tangent: tanhx = ———— = 77— =
P ! & YT coshx e Fe
. coshxy _e*+e*
Hyperbolic cotangent: cothx = ——— = 4——
P - 8 YT Sinhxy e —e

Hyperbolic secant: sechy = —-— = 2

coshx e +e™*

. ; e — 3
Hyperbolic cosecant: cschx = prrs el g
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Derivatives and integrals

TABLE 7.7 Derivatives of TABLE 7.8 Integral formulas for
hyperbolic functions hyperbolic functions

i(sinh u) = coshu@ sinhu du = coshu + C

dx dx

i(cosh u) = sinhu@ coshudu = smhu + C

dx dx

sech’udu = tanhu + C

d _ conh2,, du
I (tanh u) = sech” u o

%(coth u) = —csch? u% csch® u du = —cothu + C

—sechu + C

di; (sechu) = —sech u tanh u % sech u tanh u du

cschucothudu = —cschu + C

— T T T T

d _ du
o (cschu) = —cschu coth u I
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d . du d .
—sSInhu =——sInh X
dx dx dx

isinh X = il(eX —e77) = 1(eX +e7") =cosh x
dx dx 2 2

isinh u= OI—ucosh X
dx dx
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Example 1 Finding derivatives and integrals

(a)—tanh \/1 t? ——tanh u

dx du
(b)jcothSde_—jcoth udu J’COShU du
sinhu
dv
d (sinh
_1d(sinhu) Z_Jﬂ:h n[V]+C = I [sinh5x| +C
3) smhu c

oo -
(c)[sinh® x dx_EJ(coshZX—l) dx =...

u
—~—

(d)[4e*sinh x dx :4jex _2e

- de* =2ju —u du

2
:Z[U?—In|u|j+C:(ex)z—lne2X+C:e2X—2x+C
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Inverse hyperbolic functions

y = cosh x,
Y y=sinhx y=x \ x>0 y=x 'K y=x
A_ /7 8- / y =sech™ x s
- e g Tr .’ (x = sech y, il
B s y=sinh™ x 6 d 3 y=0) e
n e (x = sinh y) 51 7 L
2+ // 4t 7 2 7
1_/ 3'— // //
él;lél |£I£I‘Ié>x 2F /7 y = cosh™ x 1 y = sech x
-7 L 1,7 (x =coshy,y=0) x=0
P B L1y | | > X
i B 0l 123456738 0 1 2 3
y n
7 B (b) (©)
/ -
s
s
(a)

FIGURE 7.32 The graphs of the inverse hyperbolic sine, cosine, and secant of x. Notice the symmetries about
the line y = x.

The inverse Is useful In integration.
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x=cothy x =cschy

y = coth™'x y = cschlx

(a) (b) (©)

FIGURE 7.33 The graphs of the inverse hyperbolic tangent, cotangent, and cosecant of x.
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Useful Identities

TABLE 7.9 Identities for inverse
hyperbolic functions

_ 1
sech™'x = cosh™! +

X
cschlx = sinh_I%
coth™ ' x = tanh_l%
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Proof

_ 1
sech™*x =cosh™=.
X

Take sech of cosh‘ll.
X

sech (cosh‘1 1 1

Xj cosh (cosh‘llj

sech (cosh‘1 lj = X
X

Take sech™ on both sides:

sech™ (sech (cosh‘1 ED =sech™'x = (cosh‘1 l) —=sech'x
X X
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TABLE 7.10 Derivatives of inverse hyperbolic functions
disinh™u) 1 du Integrating these formulas
dx /1 + u2dx will allows us to obtain a list
d(cosh™ u) U du of useful integration formula
& 2o gjac “7 1 involving hyperbolic
dtanh™w) 1 d _ functions
dx 1 — y2dx’ ] e.q.
_ 1 d .
d(coth™ u) 1 du =—sinh™x
dx T - urdxe ul > 1 14 dx
1 d .
-l —du/dx — | —=dx = | —sinh™"x dx
uV1 —u 1 s
d(csch™ u) —du/dx ﬁdX:Sln x+C
= : u#0 1+Xx
dx lu|V1 + u?
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Proof
d . 1
—sinh™*x = .
dx V1+X°
let y=sinh™x
: d d . dy
X =SsInhy - —X=—sInh y =—=cosh
y dx  dx y dx y
—>ﬂ—sechy— L = __
dx coshy [l+sinh?y 1+X?
= By virtue of chain rule,
. du 1
—sinh™'u =
X dX 1+u?
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Example 2 Derivative of the inverse
hyperbolic cosine

2 Show that

icosh‘lu __ 1

dx Ji+u?

Let y=cosh™x...

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 7- 135



Example 3 Using table 7.11

j‘ 2dx
2 V3+4X°
Let y=2x
j- 2dx :'2[ dy
\3+4x2 34f3+y°

Scale it again to normalise the constant 3to 1
2//3 \/_dz 2143 dz

Let 1= = [ ——

‘[\/3+y ‘[ J3+322 ‘[\/1+z2
—sinh~ z\”_sinh—l(z/ﬁ)-sinh—l(O):sinh—l(z/ﬁ)—o
=sinh}(2/+/3)
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sinh(2/+/3) =7
Let gq=sinh™*(2//3)

. 1 9
sinhq=2/VJ3 > =(e"—-e " )=—

q=2/+/3 2( ) 7

4
e* ——ef-1=0

J3

4 \/( 4j2 4 [296

=t =] D =+
eqz\/§ \/2§ :\/§ > 9 = 2.682

sinh*(2/+/3) =q =In2.682 = 0.9866
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TABLE 7.11 Integrals leading to inverse hyperbolic functions
1. / M — inp™! (3) + G, a>0
\a? + u?

du 1 (u
2. / =cosh’!= )+ C u>a>0
Vu? — a? (a) ’

4

1 tanh ! (%) +C if u? < a?

3. f% =
L (%) +C, ifu? > g2

\

=—%sech‘1 (g)+€, O<u<a

du
. /u\/a2 — u?

—lcsch_1|%|-|-C, u#0anda > 0

du _
. /u\/az+u2 a
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8.1

Basic Integration Formulas

(2" lecture of week 17/09/07-
22/09/07)
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TABLE 8.1 Basic integration formulas
1. /du=u+C 13. fcotudu=ln|sinu| + C
= — +
2. fkdu=ku+ C (any number k) In fescul + €
14. /e du=¢e"+C
3/(du+dv) /du+/dv
15. f Uy = lﬁa (@a>0,a #1)
4. / = + I + C (n#—-1)
du 16. /sinhudu= coshu + C
5. /7=ln|u| + C
17. /coshudu =sinhu + C
6. /sinudu = —cosu + C
du - (u)
18. /=sm —1+C
7. /cosudu=sinu+ C Va? — u? a
du 1. 4 (u
19. / = —tan ! (—) + C
8. /seczudu=tanu+C a*+u? a
du 1 4 |u
20. ————=—-sec |5 |+t C
9. fcsczudu: —cotu + C / uNVu? — a2 a a
B 21. =sinh ' () +C  (a>0)
10. secutanudu = secu + C ‘/a + 42 a
du _ i fu
11. ]cscucotudu= —cscu + C 22. uz_az_COSh (a)+c (u>a>0)
12. /tanudu = —In |cosu| + C
= In|secu| + C
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Example 1 Making a simplifying substitution

u

2
J‘ 2X—9 dXZI d(x“—9x)
I —9x+1 X —9x+1

T

=2(u+1)"2+C=2(x*-9x+1) "+C
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Example 2 Completing the square

J‘ dx :j dx _
V8X — X° \/16—(x—4)2
d(x—4)

‘[\/16—(x—4) j\/42—u

=sin‘1%+C=sin (X44)+C
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Example 3 Expanding a power and using a
trigonometric identity

_[ (sec X + tan x)*dx

= j(secz X +tan® X + 2sec x tan x)dx.

d d
Racall:tan®x = sec® x —1;d—tan X = Sec? x;d—sec X = tan XSec x:
X X

= J'(Zsec2 X —1+ 2sec x tan x)dx

=2tan X+ —-X+2secx+C
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Example 4 Eliminating a square root

zl4

j J1+cos4xdx =
0

CoS4X = c0s2(2x) = 2cos”(2x) —1
zl4 wl4 zl4

_[\/1+cos4xdx: j\/ZCOSZZde:\/EI | cos2x | X
0 0 0

rl4

=\/§ j cos2xdx =...
0
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Example 5 Reducing an improper fraction

dx

13x2—7x
3X+2
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Example 6 Separating a fraction

J-3x+2
ﬂ
:BI dx+j 2 dx
ﬂ i-x
—d(X)
i A
=—jr+23|n X+ C j(l_d3)1/2=—2(1—u)1’2+C'

= E[—Z(l— u)"?1+2sin'x+C"

=-3/(1-x?) +2sinx+C"
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Example 7 Integral of y = sec X

— 7
j secxdx =" d sec x = sec x tan xdx

d tan X = sec® xdx = sec xsec xdx
d(sec x + tan x) = sec x(sec X + tan x)dx

d(sec x + tan x)
Sec X + tan x

sec Xdx =

d(sec x + tan x)
Sec X + tan x

jsecxdx=j =In|secx+tanx|+C
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TABLE 8.2 The secant and cosecant integrals

1. /secudu= In |secu + tanu| + C

2, /cscudu = —In|cscu + cotu| + C
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Procedures for Matching Integrals to Basic Formulas

PROCEDURE EXAMPLE

Making a simplifying 22x — 0 dx = f/u_
substitution Vix? = 9x + 1 “
Completing the square V8 — x2 = V16 — (x — 4)>

Using a trigonometric (secx + tanx)? = sec’x + 2secxtanx + tan’x
identity = sec’x + 2secxtanx

+ (sec’x — 1)
= 2sec’x + 2secxtanx — 1

Eliminating a square root V1 + cosdx = V2cos22x = V2 |cos 2x|

, : 3x—Tx _ 6
Reducing an improper Sx+2 ¥ 3+ 3x + 2

fraction

Separating a fraction x+2 _ 3x + 2
V1 — x? V1 — x? V1 — x?

secx + tanx
secx + tanx

Multiplying by a form of 1 secx = secx*

o sec’x + sec xtanx
secx + tanx
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8.2

Integration by Parts

(2" lecture of week 17/09/07-
22/09/07)
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et st S S AN SR
Product rule in integral form

di[f (xX)g(x)] = g(x)i[f (x)]+ f (x)i[g(x)]
X dx dx
[0 (99 010x =[ 9L (x+ [ 00 Tg (i

f(x)9(x) =900 (x)dx+ [ £ (x)g'(x)dx

/ Fg () dx = f()glx) — f F(x)g() dx )

Integration by parts formula
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Alternative form of the integration by parts
formula

di[f (xX)g(x)] = g(x)i[f (x)]+ f (x)i[g(x)]

X dx dx

[0 (09 010k =[ 90T (x+ [ 00 Tg(k
f(x)9(x) = [g(x)df (x) + | f(x)dg(x)

Let u= f(x);v=g(x).The above formular is recast into the form
uv = _[vdu + judv

Integration by Parts Formula

/udv=uv—/vdu (2)
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Example 4 Repeated use of integration by
parts

I x°eXdx =7
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Example 5 Solving for the unknown integral

jex cos Xdx =?
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Evaluating by parts for definite integrals

Integration by Parts Formula for Definite Integrals

b b
/ f)g'(x) dx = f(x)g(x)]) — f £/ (x)g(x) dx (3)
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Example 6 Finding area

2 Find the area of the region in Figure 8.1

y
A
1 L

0.5+ y=xe*
| | | | o

1 1 2 3 4
—05-
_1 -

FIGURE 8.1 The region in Example 6.

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8- 19



Solution

4
jxe‘xdx =...
0
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Example 9 Using a reduction formula

3
0 Evaluate ICOS Xdx
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8.3

Integration of Rational Functions by Partial
Fractions

(3rd lecture of week 17/09/07-22/09/07)
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General description of the method

2 A rational function f(x)/g(x) can be written as a
sum of partial fractions. To do so:

2 (a) The degree of f(x) must be less than the degree
of g(x). That is, the fraction must be proper. If it
Isn’t, divide f(x) by g(x) and work with the
remainder term.

2 We must know the factors of g(x). In theory, any
polynomial with real coefficients can be written as

a product of real linear factors and real quadratic
factors.
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Reducibility of a polynomial

0 A polynomial is said to be reducible if it is the product
of two polynomials of lower degree.

a A polynomial is irreducible if it is not the product of two
polynomials of lower degree.

U

THEOREM (Ayers, Schaum’s series, pg. 305)

Consider a polynomial g(x) of order n = 2 (with leading

coefficient 1). Two possibilities.

1. g(x) = (x-r)h(x), where h,(x) is a polynomial of degree
n-1, or

2. g(x) = (x>+px+q) h,(x), where h,(x) is a polynomial of

degree n-2, with the irreducible quadratic factor

(Xe+px+0).

U
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Example
g(x)=x>—4x=(x-2) - X(x+2)

A
linear factor poly. of degree 2

(-,
] poly. of degree 1

g(xX)=x>+4x=  (X*+4) - X

~
irreducible quadratic facto

g(x)=x'-9= (X+3) -(Xx+/3)(x—~3)

irreducible qafadratic factor poly. or\aegree 2

g(x)=x"=3x" —x+3= (x+1) (x-2)°

linear factor poly. or degree 2
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Quadratic polynomial

2 A guadratic polynomial (polynomial or
order n = 2) is either reducible or not
reducible.

0 Consider: g(x)= x>+px+q.

o If (p-49) = 0, g(x) is reducible, i.e.
g(X) = (X+ry)(X+r).

o If (p%-4q) <0, g(x) is irreducible.
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2 In general, a polynomial of degree n can
always be expressed as the product of
linear factors and irreducible quadratic
factors:

P, (X) = (x5 (x5 (X~ 1)"
(XZ T p1X+q1)ml(X2 T |O2X+q2)m2...(x2 + pkx_|_qk)mk

n=(n+n,+..+n)+2(m+m, +...+ m,)
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Integration of rational functions by partial
fractrons

Method of Partial Fractions (f(x)/g(x) Proper)

1. Letx — rbe a linear factor of g(x). Suppose that (x — »)” is the highest
power of x — r that divides g(x). Then, to this factor, assign the sum of the
m partial fractions:

41 + 4 _|_..._|_A—m
YTTF 0 (x — p)? (x —r™

Do this for each distinct linear factor of g(x).

2. Letx? 4+ px + g be a quadratic factor of g(x). Suppose that (x* + px + g)"
1s the highest power of this factor that divides g(x). Then, to this factor,
assign the sum of the » partial fractions:

le + C] Bzx + C2 an + Cn
2 T y Tt '
x“+px+q (x°+ px + q) (x* + px + q)"

Do this for each distinct quadratic factor of g(x) that cannot be factored into
linear factors with real coefficients.

3. Set the original fraction f(x)/g(x) equal to the sum of all these partial
fractions. Clear the resulting equation of fractions and arrange the terms in
decreasing powers of x.

4. Equate the coefficients of corresponding powers of x and solve the resulting
equations for the undetermined coefficients.

1
N
o

Copyright © -




Example 1 Distinct linear factors

I X°+4x+1 -
(X=1)(x+1)(x+3)
X° +4x+1 A B C

= + + =...
(Xx=1)(x+1)(x+3) (x=1) (x+1) (x+3
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Example 2 A repeated linear factor

X+ 7

I 2dx:...
(X+2)

6x+7 A B

(x+2)7  (x+2)  (x+2)
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Example 3 Integrating an improper fraction

2> —4x* —x—3
I > dx =...
X*—2X—3
2X° —4x* —x—3 5X —3
> = 2X+—;
X°—2Xx—-3 X°—2Xx—-3
5x -3 5x -3 A B

¥ _2x-3  (x=3)(x+1) (x=3)  (x+1)
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Example 4 Integrating with an irreducible
quadratic factor in the denominator

j —2X+4

(x* +1)(x-1)°
—2X+4 Ax+B C D

(X* +1)(x—1)° (x +1) (X — 1) (X — 1)
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Example 5 A repeated irreducible quadratic

factor
j 21 2dx:?
X(X°+1)
1 A BX+C Dx+E

x(x2+1)2 X (x +1) (x2+1)?
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Other ways to determine the coefficients

d Example 8 Using A(X+1)2 +B(x+1)+C  x-1

differentiation ) (1X2+1)B 1 C(x+1)1
a Find A, B and C in the = A(X+1)"+B(x+1)+C=x~
tIOn X=—1—->C=-2
e = A(X+1)° +B(x+1)=x+1
x-1 A B C

(x+1)° (x+1)Jr (X +1)? + (x+1)° = A(x+1)+B=1

i[A(x+1)+ B] :i(l) -0
dx dx

A=0

B=1
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Example 9 Assigning numerical values to x

0 Find A, Band C In
X°+1
(X=D(x=2)(x—-3)
A B C
= + +
(x=1) (x-2) (x-3)

A(Xx-2)(x-3)+B(x-1(x-3)+C(x-1)(x-2)= f(x)
=x*+1

f()=2A+=1"+1=2= A=1
f(2)=-B=2°+1=5:=>B=-5
f(3)=2C=3"+1=10,=C =5
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Products of Powers of Sines and Cosines

We begin with integrals of the form:
f sin” x cos” x dx,

where m and n are nonnegative integers (positive or zero). We can divide the work into
three cases.

Case 1 If m is odd, we write m as 2k + 1 and use the identity sin’x = 1 — cos®x to
obtain

sin” x = sin?**' x = (sin®x)¥sinx = (1 — cos®x)*sin x. (1)

Then we combine the single sin x with dx in the integral and set sin x dx equal to —d (cos x).

Case 2 Ifmisevenand nis odd in f sin” x cos” x dx, we write n as 2k + 1 and use the
identity cos’x = 1 — sin® x to obtain

2k+1

cos”x = cos?*tx = (cos’x)*cosx = (1 — sin®x)*cos x.

We then combine the single cos x with dx and set cos x dx equal to d(sin x).

Case 3 Ifboth m and » are even in f sin” x cos” x dx, we substitute

sin?x = 1 — gos 2x, coslx = 1 + gos 2x )

to reduce the integrand to one in lower powers of cos 2x.
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et it S S\ NN,
Example 1 m is odd
jsin3 XCOS“X dx ="7?
jsin3 XCOS“X dX = —_[sin2 xcos“x d(cosx)
:j(cos2 x —1)cos*x d(cosx)

=j(u2 ~1)u’du=...
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e et < NSRS, S
Example 2 m Is even and n Is odd
jcosSX dx =7
jcos3xcoszx dx = _fcoszxcoszx d sin x
= j (1-sinx)(L-sin?x) d sin X
= [(1-u*)(a-u?) du=..
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Example 3 m and n are both even
jcoszxsin4 X dx="?

jcoszxsin“x dx =

(1-0052xj(1+0032xj2
j dx
2 2

= % j (1-cos2x)(1+cos2x)” dx

=%j(1+ C0S 2X — COS? 2X — COS 2x) dx =...
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Example 4 Eliminating square roots

_[Oﬂ/4\/1+ cos4xdx =?

j:/4\/1+ cos 4xdx

= 10”/4\/2 cos” 2xdx = \/Ejomcos 2xdx =...
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Example 6 Integrals of powers of tan x and
Sec X sec’ xdx =?

Use integration by parts.

j sec® xdx = j sec X -sec’ xdx:
—_— —
u

tan X +sec X
dv Isecxdx=jsecx( )dx

, , tan X + sec x
dv =sec xdx—>v:jsec Xdx = tan X )
_ r(secxtan x+sec” x) dx
U =sec — du =sec x tan xdx ) tan X 4+ Sec X
—_ —
u

dv  tanX+secX

=sec x tan x — | tan x - sec x tan xdx =Infsecx +tanx|+C

du

—sec xtan X — | tan x* sec xdx

=sec xtan x — [ (sec” x —1) sec xdx

sec’ xdx = sec xtan x — | sec® xdx + l sec xdx...
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Example 7 Products of sines and cosines

jcosstin 3xdx =7

Sin MXsinnx = %[cos(m —n)Xx—cos(m+ n)x];
sinmX cosnx = %[sin(m —n)x+sin(m+n)x];

1
COSMXCOSNX = E[cos,(m —n)x+cos(m+n)x|

Icosstin 3xdx

_ % [Isin(-2x) + sin8x]dx
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Trigonometric Substitutions
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Three basic substitutions

a X
X x* — a®
0 7,
a a? — x? a
x=atan@ x=asin@ x=asecb

Va? + x*=alsec8] Va*— x*= alcos 6 V x? — a* = altan 6|

FIGURE 8.2 Reference triangles for the three basic substitutions
identifying the sides labeled x and a for each substitution.

Useful for integrals involving va?-x*,va? + x*,Vx* -a?
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Example 1 Using the substitution x=atané

J‘dX _
Va4 + X°

X =2tany — dx = 2sec” ydy = 2(tan” y + 1)dy

J- IZ(tan y+1)
\/4+4tan2y \/4+4tan y

:j (tan”y +1) dy =j\/sec2 ydy = j|secy | dy

Jl+tan?y
=In|secy+tany|+C
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Example 2 Using the substitution x = asing

J- x“dx
Joox

X=3siny —> dx=3cosy dy

J- x> dx :j9sin2 y-3cosy dy _
Jo-x J9-9sin?y
zgjsinzy-cosy dy
J1-sin?y
:9“‘sin2 ydy =...
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Example 3 Using the substitution x = asecé

j dx _
J25x% — 4
2 2
X :gsecy — dX :gsecytan y dy

_[ 2 rsecytany dy 1 secytany dy

J255—4 5 Jasec?y—4 57 Jsec?y-1

J-secytanydy 1
\/sec y-1

=%In|secy+tany|+C:...

jsecy dy
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Example 4 Finding the volume of a solid of
revolution :

V = 167zj(x +4)2=? [ L

.
Eal

(a) (b)

FIGURE 8.7 The region (a) and solid (b) in Example 4.
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Solution

V = 167zj(x +4) =7

Let x =2tan y — dx = 2sec’ ydy

zl4

vyzj

rl4

2sec” ydy _ I 2sec” ydy
(tan y+1) > (sec2 y)2

zl4

=27 j cos’ ydy =...
0
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Integral Tables

(15 lecture of week 24/09/07-
29/09/07)
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Integral tables is provided at the back of
Thomas’

0 T-4 A brief tables of integrals

0 Integration can be evaluated using the tables
of Integral.
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EXAMPLE 1  Find

/x(Zx + 5) ldx.
Solution We use Formula 8 (not 7, which requires n # —1):
—1 X b
/x(ax-l—b) dx =7 — —lIn|ax + b| + C.
a
Witha = 2and b = 5, we have

/x(2x+5)_1dx=%—%ln|2x+5| + C.
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EXAMPLE 2  Find

dx
/x\/Z.x + 4.

Solution We use Formula 13(b):

ifb > 0.

/\ﬁ\/_‘m_‘

Witha = 2 and b = 4, we have

1n‘\/2x+ —\/Z‘ \

2x + 4 +

/x\/;%ﬁz

2x +4 — 2

V2x +4 + 2

+ C.
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EXAMPLE 3  Find

dx
/ V2 — 4
Solution We use Formula 13(a):
dx 2 -1 ax — b
= —=tan + C.
fx Vax —b Vb b

Witha = 2 and b = 4, we have

dx 2 1 [2x — 4 1 [x— 2
= —=tan + C = tan + C.
/x\/rc_z; Vi o N4 Vo2
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EXAMPLE 4  Find

dx
/ 2Vox — 4
Solution We begin with Formula 15:

/ dx :_Vm+b_a/ | -
>Vax + b bx 2b) xNax + b

Witha = 2and b = —4, we have

f dc  _ Na—4 z/ . -~
x>V2x — 4 —4x 2:4) xV2x — 4 .

We then use Formula 13(a) to evaluate the integral on the right (Example 3) to obtain

f dx = 2x_4-I—ltan_lﬂfx_z—I—C
x2\/2x_4 4.7( 4 2 )
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EXAMPLE 5 Find
/ xsin ' xdx.
Solution We use Formula 99;

n+l n+1
x"sin Yaxdx = >—sin lax — —& X ax , n# —1.
n+1 n—+1 1 — a2

Withn = 1anda = 1, we have

. —1 _ x2 -1 1 xzdx
xsin  xdx = 5 sin

2T i
The integral on the right is found in the table as Formula 33:
2 2
X _a” . af(x\_1 /2 2
/—mdx 5 sin (a) 7 X¥Va x“+ C.
Witha = 1,
2
_xfdx 1.1 /3
m ySinTx — 5x 1 —x-+ C.
The combined result is

/xsin_lxdx = x—zsin_lx — l(lsin_lx — %x\/l —x* + C)

2 2\2

= (ﬁ - l)sin‘lx + %x\/l -x*+C.

2 4
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(a) (b)

FIGURE 8.17 Are the areas under these infinite curves finite?
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y

Infinite limits of integration N, __,
A(a) =lim A(b) :kI)im2—2e‘b’2 | g
(a)

A

b
Alb) = [e?dx=...=2-2e""
0

(b)

FIGURE 8.18 (a) The area in the first
quadrant under the curve y = e /2 is
(b) an improper integral of the first type.
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DEFINITION Type I Improper Integrals
Integrals with infinite limits of integration are improper integrals of Type I.

1. If f(x) is continuous on [a, ©©), then

[ = jim [ ey

2. If f(x) is continuous on (— 09, b], then

b b
[wa= gim_ [ sea

3. If f(x) is continuous on (—00, 00), then

[Dof(x)dx=[;f(x)dx+/ £(x) d.

where c is any real number.

In each case, if the limit is finite we say that the improper integral converges and
that the limit is the value of the improper integral. If the limit fails to exist, the
improper integral diverges.
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Example 1 Evaluating an improper integral on
[1,2°]

0 Is the area under the curve y=(In x)/x? from
1 to <= finite? If so, what Is it?

y h I
- . n x
0.2 y:x_z;r ||m —ZdX:?
b—>oo1 X
0.1}
> X
0 1 T

FIGURE 8.19 The area under this curve
1s an improper integral (Example 1).
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Solution
b b Inb
In x dx In X u
———I—d(l x)—J'—udu u=Inx,x=¢"
1 1 X Inle
Inb
Inb Inb
j ueldu=u(-e")| - j (~e™)du
0 dw . 0 )
W 0 W
Inb
0 0 Inb
=ue | + j e'du=ue™| -—e
Inb Inb 0

=—Inb-e™™ - (e -1) —Lib-tia
b b

b—w0 X2 b—w0

1

im 10X g Ilm{——lnb—£+1} 1
b b
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Example 2 Evaluating an integral on [-oo,o°]
T dx

2
1+ X
—00
o0 0 b
dx . dx . dx X
j 2:Ilm 2+I|m >
S I+XT bows T4 XS boer 14X
b
. dx __1
=21im > YTl 2 Area = 7
b 014+ X
> X
0
NOT TO SCALE

FIGURE 8.20 The area under this curve
is finite (Example 2).
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Solution

Using the integral table (Eq. 16)
jazdx 1. X

~=—tan " —+C
+X° a a

_T dx =[tan‘1x]b=tan‘1(b)—tan‘10=tan‘l(b)
> 1+ X° 0 |

j ax =2Iimtan‘1b:2-£=7z
1+ X5 bow 2 y

1
y=tan " ‘b=b=tany

limtanbh =2

b—o0 .
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DEFINITION  Type II Improper Integrals
Integrals of functions that become infinite at a point within the interval of inte-
gration are improper integrals of Type I1.

1. If f(x) is continuous on (a, b] and is discontinuous at a then

b b
f f)dx = tim, f f(x) dx.

2. If f(x) is continuous on [a, b) and is discontinuous at b, then

/bf(X)dx = cl_i)ng_/cf(x) dx.

3. If f(x) is discontinuous at ¢, where a < ¢ < b, and continuous on
[a, ¢) U (c, b], then

b c b
/f(X)dx=/f(X)dx+/ f(x) dx.

In each case, if the limit 1s finite we say the improper integral converges and that
the limit is the value of the improper integral. If the limit does not exist, the inte-

gral diverges.

Slide 8- 66
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Example 3 Integrands with vertical
| asymptotes

> =t

FIGURE 8.21 The area under this curve

is
1
Area =2 — 2Va lim/ (L)dx=2,
a=0"Jo \\/x

an improper integral of the second kind.

1 -
> X
O a 1
s
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Example 4 A divergent improper integral

| . 1
'“"”'y_l—x

A

a Investigate the dx

convergence of _[
1—X

FIGURE 8.22 The limit does not exist:

1 b
1 ‘/(1)@:m3/ L =
o \l —x b—>1"Jo 1 —x

The area beneath the curve and above the
x-axis for [0, 1) is not a real number

> X (Example 4).

0 b 1
—

Slide 8- 68
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Solution
1 b
X pim 2~ lim [ x -1
2 1-x borgl-X b—>1" 0
=—lim[In|b-1|-In|0—-1]]
b—1 ~ B
=—lim[In|b—1]-In|0-1[]=lim|In|b-1]" |
b—1 ~ § b—1"
. [ 1]
=lim| In—|=w
e—0 g_
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Example 5 Vertical asymptote at an interior
y point

3
_[ > 373 = !
| > (x=1)
Y= (I . 1)2#’3
FIGURE 8.23 Example 5 shows the
convergence of
P
| / —dx =3 + 3V2,
0o (x — 1)¥
so the area under the curve exists (so itis a
s real number).
0 b c 3 g
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Example 5 Vertical asymptote at an interior

y point ¢ dx ¢ dx ¢ X
A j _12/3:j _12/3+J‘ _1\2/3
2 (X=1) » (X=1)7" 1 (x=1)
© o dx % dx . b
1 = lim =lim|3(x-D"* | =
e £(><—1)2’3 tH1£(><—1)2’3 lim3(x-1*
: C N3 o 1\U37T _a
t!LT[3(b )" -3(-1)"* | lim[0+3]=3,
¢ dx .t odx . e
_!-(X_l)2/3 :t!l_q_]'__l!‘(x_l)ﬂi% :l!I_)r?r |:3(X_1) :|b
_ t!l_)ql [3(3_1)1/3 _B(b_1)1/3:| _ 3 22/3
1
3
- X _ 31422
> (X=1)
0 b c 3 >
-] -
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Example 7 Finding the volume of an infinite
solid y

a The cross section of 2~
the solid in Figure
8.24 perpendicular to
the x-axis are circular
disks with diameters
reaching from the x-
axis to the curve y =
ex -co < x<In 2. Find

the volume of the FIGURE 8.24 The calculation in

horn. Example 7 shows that this infinite horn
has a finite volume.
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Example 7 Finding the volume of an infinite

solid
volume of a slice of disk of thickness dx,diameter y
Y In2 . 2 -}:
V :jdv 1 I|m jyzy(x) dx AV =7(y/2) X .
) _

1 In2
=Z lim | 7ze®*dx

4 b—-

_ 1 o) =~ FIGURE 8.24 The calculation in
b—>—o0 2 Example 7 shows that this infinite horn
Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley haS a finite VOlume.



Chapter 11

Infinite Sequences and Series




11.1

Seqguences

(2" lecture of week 24/09/07-
29/09/07)
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DEFINITION  Infinite Sequence

An infinite sequence of numbers is a function whose domain is the set of positive
integers.
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an
A Diverges
3 -
a, as {13 a4c15 ®
' ® ¢ — > 2 °
0' 1 2 1 — @
a, = Vn L 1111y,
o 1 2 3 4 5
% Converges to 0
(13 asy al
—L  ee— . > 1 °
0 1
1 IS S SR
a, =y ol 1 2 3 4 5
an
A Converges to 0
ay dy as as a 1~ e
—L >
1 R S >
1 °
a, = (_1)n+lﬁ 0

FIGURE 11.1 Sequences can be represented as points on the real line or as

points in the plane where the horizontal axis # is the index number of the
term and the vertical axis g, 1s its value.
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DEFINITIONS  Converges, Diverges, Limit
The sequence {a,} converges to the number L if to every positive number € there
corresponds an integer N such that for all »,

n>N = la, — L| < €.
If no such number L exists, we say that {a,} diverges.

If {a,} converges to L, we write lim,—c0 a, = L, or simply a, — L, and call
L the limit of the sequence (Figure 11.2).

Slide 11- 5
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a,a, a ay " a,
an
L+e
) (n,a,)-2—5——-
®
® L —€
o e °W,ay
®
[ ]
[ 1| > 1
0 1 2 3 N n

FIGURE 11.2 ag,—Lify=Lisa
horizontal asymptote of the sequence of
points {(n, a,)}. In this figure, all the a,’s
after ay lie within € of L.
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DEFINITION  Diverges to Infinity
The sequence {a,} diverges to infinity if for every number M there is an integer
N such that for all n larger than N, a, > M. If this condition holds we write

lim q, = o or a, — 00,
n—0Q0

Similarly if for every number m there is an integer N such that for alln > N we
have a, < m, then we say {a,} diverges to negative infinity and write

lim aq, = —0 or a, —> — 00,
n—00

Slide 11- 7
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THEOREM 1

Let {a,} and {b,} be sequences of real numbers and let 4 and B be real numbers.
The following rules hold if lim, .« a, = 4 and lim,x b, = B.

1. Sum Rule: lim,—oo(a, + b,) = A4 + B

2. Difference Rule: lim,—oo(a, — b,) = A — B

3. Product Rule: lim,—oo(a,*b,) = A*B

4. Constant Multiple Rule: lim,—oo(k*b,) = k+B (Any number k)
5. Quotient Rule: lim, o0 % = % ifB#0
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EXAMPLE 3  Applying Theorem 1

By combining Theorem 1 with the limits of Example 1, we have:

(a) lim (— %) = —1- lim % =—1-0=0 Constant Multiple Rule and Example 1a
n—0o n—>C0
: n—1Y)_ . I B o L Difference Rule
(b) nllzgo ( " ) nlllvngo (1 n) nll)ﬁ;ol nh—t-néo n : 0 : and Example la
5 1 1 B
(c) 11m—2—5° lim e hmﬁ—5°0°0—0 Product Rule
n—o n n—rCQ n—rCQ

@ tim A= WO T 07
n—o n® + 3 n—oo | + (3/716) 1 +0

= —-7. Sum and Quotient Rules
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THEOREM 2  The Sandwich Theorem for Sequences

Let {a,}, {b,}, and {c,} be sequences of real numbers. If @, = b, = ¢, holds
for all » beyond some index N, and if lim,—«x @, = lim,—x ¢, = L, then
lim,,— b, = L also.
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EXAMPLE 4  Applying the Sandwich Theorem

Since 1/n — 0, we know that

(a) CO,? -0 because —% = cos n < %;
(b) 1 0 because 0= 1 < 1
27 bk 7K

() (—1)”%%0 because —% = (—1)”% = %.
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THEOREM 3 The Continuous Function Theorem for Sequences

Let {a,} be a sequence of real numbers. If @, — L and if f is a function that is
continuous at L and defined at all a,, then f(a,) — f(L).
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{
Wi
B I — @

FIGURE 11.3 Asn—00,1/n—0and
21/m — 20 (Example 6).
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THEOREM 4
Suppose that f(x) is a function defined for all x = n( and that {a,} is a sequence
of real numbers such that a, = f(n) for n = ng. Then

lim f(x) =L = lim a, = L.
xX—>00 n—>00
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THEOREM 5
The following six sequences converge to the limits listed below:
. Inn _
1. nll{%o w =0
2. lim V=1
n—>00
3. lim x'/" =1 (x > 0)
n—>Cco
4. lim x" =0 (|x] < 1)
n—00

5. lim (1 + %) = ¢* (any x)

n—00

n

6. lim = =0 (any x)

n—00 H!

In Formulas (3) through (6), x remains fixed as n — 0.

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 11 - 15



DEFINITION  Nondecreasing Sequence

A sequence {a,} with the property that a, < a,+; for all n is called a
nondecreasing sequence.
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DEFINITIONS  Bounded, Upper Bound, Least Upper Bound

A sequence {a,} is bounded from above if there exists a number M such that
a, = M for all n. The number M is an upper bound for {a,}. If M is an upper
bound for {a,} but no number less than M is an upper bound for {a,}, then M is

the least upper bound for {a,}.

Slide 11 -
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y
A
=M
M y
y=1L
" * (8. ag)
® . a
o ° (5 as) 8
(1,ap)®
®
| | | | | | | | > X
0 1 2 3 4 5 6 7 8

FIGURE 11.4 If the terms of a
nondecreasing sequence have an upper
bound M, they have a limit L = M.
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THEOREM 6  The Nondecreasing Sequence Theorem

A nondecreasing sequence of real numbers converges if and only if it is bounded
from above. If a nondecreasing sequence converges, it converges to its least
upper bound.
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11.2

Infinite Series

(3" lecture of week 24/09/07-
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Suggestive
expression for
Partial sum partial sum Value
First: s =1 2 —1 1
. _ 141 _1 3
Second: s, =1+ > 2 7 >
"y _ 1.1 _1 7
Third: 53—1+2+4 2 4 4
- IS S S _ 1 2" — 1
nth: Sp = 1+ sttt 1 2 i1 i
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0 1 12 /8 2

FIGURE 11.5 As the lengths 1, '/2, 1/4, 1/8, ... are added one by one, the sum
approaches 2.
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DEFINITIONS  Infinite Series, nth Term, Partial Sum, Converges, Sum
Given a sequence of numbers {a,}, an expression of the form

a+ay+az++a, + o

1s an infinite series. The number a, is the nth term of the series. The sequence
{sn} defined by
S1 — aq

s> =a; + a

is the sequence of partial sums of the series, the number s, being the nth partial
sum. If the sequence of partial sums converges to a limit L, we say that the series
converges and that its sum is L. In this case, we also write

o0
a1+a2+---+an+---=2an=L.
n=1

If the sequence of partial sums of the series does not converge, we say that the
series diverges.

Slide 11 - 23
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If |#| < 1, the geometric series @ + ar + ar’* + --- + ar" ! + .-+ converges
toa/(1 — r):

doar! = — 7| < 1.

n=1

If|r| = 1, the series diverges.

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 11- 24



EXAMPLE 1  Index Starts withn = 1

The geometric series witha = 1/9andr = 1/3 is

1,1 1 Lyt Y9 g
o277 TRl " _29(3) “1-(1/3) 6

n=1
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(a)

FIGURE 11.6 (a) Example 3 shows how
to use a geometric series to calculate the
total vertical distance traveled by a
bouncing ball if the height of each rebound
is reduced by the factor r. (b) A
stroboscopic photo of a bouncing ball.
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THEOREM 7

00

If 2 a, converges, then g, — 0.
n=1
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The nth-Term Test for Divergence
o0

z a, diverges if lim a, fails to exist or is different from zero.
n=1 n—0
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THEOREM 8

If Ya, = Aand X2 b, = B are convergent series, then

1. Sum Rule: >(a, + b,) = Xa, + 2b,=A + B

2. Difference Rule: >(a, — b,) = Xa, — 2b,=A — B

3. Constant Multiple Rule: Xka, = kXa, = kA (Any number k).
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EXAMPLE 9  Find the sums of the following series.

3 -1 <1 1
@ > =E(2,,_1— )

n=1 n=1 6"

= i 1 — i I Difference Rule
— 2n—1 ~ 6n—l

_ 1 1 L

=1 (1/2) — 1 — (1/6) Geometric series witha = landr = 1/2,1/6

_,_06

=2 5

_4
5

(b) E = = 42 — Constant Multiple Rule
n=0 2 n=0 2

= 4( 1 ) Geometric series witha = 1,r = 1/2
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11.3

The Integral Test

(3" lecture of week 24/09/07-
29/09/07)
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Corollary of Theorem 6

A series Zzozl a, of nonnegative terms converges if and only if its partial sums
are bounded from above.
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(L A(1))

-
Eal

Graph of f(x) = —

X

1 2,£(2)

1
32 (3,13
1 /( f3) .

1
2
22 7 /

oL 1 2 3 4 .. 1

(n, f(n))

FIGURE 11.7 The sum of the areas of the
rectangles under the graph of f(x) = 1/x?
is less than the area under the graph
(Example 2).
Slide 11- 33
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THEOREM 9  The Integral Test
Let {a,} be a sequence of positive terms. Suppose that a, =

diverge.

= f(n), where fis a
continuous, positive, decreasmg function of x for all x = N (N a positive inte-
ger). Then the series E — N @, and the integral f v Jf(x) dx both converge or both

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
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y
A
- y=fx
a
\< i 9
0 1 2 3 n n+1
(a)
y
A
a, y=fx
az a3
a |
n > X
0 1 2 3 n—1n
(b)

FIGURE 11.8 Subject to the conditions of
the Integral Test, the series E:’;lan and
the integral floo f(x) dx both converge or

both diverge.
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EXAMPLE 3  The p-Series
Show that the p-series

o8]
1 _1+r .+ 1., 1.
,;np_lp+2p+3p+ +o

(p areal constant) converges if p > 1, and divergesif p = 1.

Solution If p > 1, then f(x) = 1/x” is a positive decreasing function of x. Since

00 1 o0 x_P+] b
—_— = w4 = 1
[ xP dx [ x ¥ dx bll{%o [—p + 1}

1
L ( L —1)
l_pb—n»oo b?

1 1 P! —o00ash— 00
=1_p(0_1)=p_1= because p — 1 > 0.

the series converges by the Integral Test. We emphasize that the sum of the p-series is not

1/(p — 1). The series converges, but we don’t know the value it converges to.
Ifp <I1,thenl —p > 0and

| 1

The series diverges by the Integral Test.

If p = 1, we have the (divergent) harmonic series

1 1 1
Lty g+ oty to

We have convergence for p > 1 but divergence for every other value of p.
Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
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THEOREM 10 The Comparison Test
Let X a, be a series with no negative terms.

(a) Xa, converges if there is a convergent series > ¢, with a, = ¢, for all
n > N, for some integer N.

(b) Xa, diverges if there is a divergent series of nonnegative terms > d, with
a, = d, forall n > N, for some integer N.
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EXAMPLE 1 Applying the Comparison Test

(a) The series

< 5
,;1511—

diverges because its nth term

5 _ 1
5n — 1

1
1~ n
TS
is greater than the nth term of the divergent harmonic series.

(b) The series
oo
1 1 1 1
2‘65—1+ﬁ+ﬁ+§+~-

converges because its terms are all positive and less than or equal to the correspon-
ding terms of

- 1 1, 1
+n§=‘6§=1+1+§+?+---

The geometric series on the left converges and we have

°°1_ 1 B
22_ 1—(1/2)_3'

The fact that 3 is an upper bound for the partial sums of 3~ (1 /n!) does not
mean that the series converges to 3. As we will see in Section 11.9, the series con-
verges to e.

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 11 - 39



THEOREM 11  Limit Comparison Test
Suppose that @, > 0 and b, > 0 forall » = N (N an integer).

1. If lim In _ ¢ > 0, then X a, and X b, both converge or both diverge.

n—00 n
. Qy
2. If hncl)O 5 = 0 and X b, converges, then > a, converges.
n—» n
3. If lirréo % = o0 and X b, diverges, then X a, diverges.
- n
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EXAMPLE 2  Using the Limit Comparison Test

Which of the following series converge, and which diverge?

0 [e.9]

(®) %+%+%+%+...=§12ﬂ1_1
Solution

(@) Let a, = (2n + 1)/(n®> + 2n + 1). For large n, we expect a, to behave like
2n/n® = 2/n since the leading terms dominate for large n, so we let b, = 1/n. Since

e ] oo 1
Db, = D, 5 diverges
n=1 n=1

and

.y m*+n
lim — = lim 5 =
n—00 by, n—oop 4+ 2n + 1

>

>a, diverges by Part 1 of the Limit Comparison Test. We could just as well have
taken b, = 2/n, but 1/n is simpler.
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it et S AN
Example 2 continued

(b) Let a, = 1/(2" — 1). For large n, we expect a, to behave like 1/2", so we let
b, = 1/2". Since

;bn = Z:l % converges

and
poan on
b, a2 — 1
— lim 1
oo 1 — (1/27)

> a, converges by Part 1 of the Limit Comparison Test.
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THEOREM 12 The Ratio Test

Let X a, be a series with positive terms and suppose that

n+1
a, P

lim
n—>00

Then

(a) the series converges if p < 1,

(b) the series diverges if p > 1 or p is infinite,
(¢) the test is inconclusive if p = 1.
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EXAMPLE 1 Applying the Ratio Test

Investigate the convergence of the following series.

o VR - (2n)! < 4"nn!
(a) ,g) 3" ®) 2, nln! © 2, (2n)!

n=1 : n=1

Solution
(a) For the series 30 (2" + 5)/3",

G _ @A)/ s 1 (24527 1.2
a 2" +5)3 3 22+5 3 \1+5-27)73"1

2
-

The series converges because p = 2/3 is less than 1. This does nof mean that 2/3 is
the sum of the series. In fact,
o0

2"+5 (2 . ~5 _ 1 5. 21
f;) 3" _2(3)+,§53"_1—(2/3)+1—(1/3)_2'

n=0

(2n)! (2n + 2)!

(b) Ifa, = ! ,then a,+, = o+ iz + 1)1 and

ap+1  n'nl(2n + 2)(2n + 1)(2n)!
A (n+ Dn + 1)1(2n)!

_@2n+2)2n+ 1)  4n+2
 m+Dm+1) n+1

— 4.

The series diverges because p = 4 is greater than 1.
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THEOREM 13  The Root Test
Let X a, be a series with a, = 0 for n = N, and suppose that

lim Va, = p.

n—o0

Then

(a) the series converges if p < 1,

(b) the series diverges if p > 1 or p is infinite,
(c) the test is inconclusive if p = 1.
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EXAMPLE 3  Applying the Root Test

Which of the following series converges, and which diverges?

@S2 oS © i( 1 )
n=1 2" n=1 n2 n=1 I +n

Solution
- 7? n(n? V' n? (%)2 1
(a) ; o converges because T . o =" — 5 < 1.

- 2" . nf27 2 2
b — diverges because = — = > 1.
®) ,;1 n’ s n’ (\n/n)z 1
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THEOREM 14  The Alternating Series Test (Leibniz's Theorem)
The series

6.0
D"y =uy —uy + uz —ug + -+
n=1

converges if all three of the following conditions are satisfied:

1. The u,’s are all positive.
2. u, = u,4 foralln = N, for some integer N.

3. u,—0.
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+u >
< — Uy
TUj >
4?————-—-u4
® > X
0 9 sa L 53 51

FIGURE 11.9 The partial sums of an
alternating series that satisfies the
hypotheses of Theorem 14 for N = 1
straddle the limit from the beginning.
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THEOREM 15  The Alternating Series Estimation Theorem
If the alternating series >,—;(—1)""'u, satisfies the three conditions of
Theorem 14, then forn = N,

Sp=u; —uy + -+ (—1)""y,

approximates the sum L of the series with an error whose absolute value is less
than u,+1, the numerical value of the first unused term. Furthermore, the remain-
der, L — s,, has the same sign as the first unused term.
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EXAMPLE 2  We try Theorem 15 on a series whose sum we know:
Soqplog_ 1, 1 1. 1 1L 1 1y, 1
2 i = =t 8T 16 "3 Ted 128 | T 256

The theorem says that if we truncate the series after the eighth term, we throw away a total

that is positive and less than 1/256. The sum of the first eight terms is 0.6640625. The sum
of the series is

1 1 2
1—(—-1/2) 3/2 3

The difference, (2/3) — 0.6640625 = 0.0026041666..., is positive and less than
(1/256) = 0.00390625.
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DEFINITION Absolutely Convergent

A series X a, converges absolutely (is absolutely convergent) if the correspon-
ding series of absolute values, >|a,|, converges.
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DEFINITION  Conditionally Convergent
A series that converges but does not converge absolutely converges conditionally.

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S| |de 11- 54



THEOREM 16 The Absolute Convergence Test

o0 00
If E |a, | converges, then Zan converges.
=1 n=1
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EXAMPLE 3  Applying the Absolute Convergence Test

oo
_1\nt+1 L — — l l — L PN 1 1
(a) For ;( 1) 2 1 4 + 0~ 16 + - - -, the corresponding series of absolute

values is the convergent series
L _ 1,1 1
2 PR S I T

The original series converges because it converges absolutely.

1 in 2 ' : :
For Z smn = sm + 32y sin 3 + ---, the corresponding series of absolute

4 9

(b)

values 1S
|Sln 1| |sin2]

sin »
—

n2

>

n=1

which converges by comparison with 3,—; (1/n?) because |sinn| = 1 for every .
The original series converges absolutely; therefore it converges.

Slide 11 - 56

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



EXAMPLE 4  Alternating p-Series

If p is a positive constant, the sequence {1/n”} is a decreasing sequence with limit zero.
Therefore the alternating p-series

S (=) 11 1
2 Tyt Tt p>0

converges.
If p > 1, the series converges absolutely. [f 0 < p = 1, the series converges condi-

tionally.

.. 1 1 1
Conditional convergence: 1 — + - + .-
V2 V3o Va
Absolute convergence: 1 — ﬁ + 3§ i 43%/2 4+ .
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THEOREM 17 The Rearrangement Theorem for Absolutely
Convergent Series

If Ei’;l a, converges absolutely, and by, b,, ..., b,, ... 1s any arrangement of the
sequence {a,}, then 2 b, converges absolutely and

00 00
Eb,, = Ean.
n=1 n=1
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1. The nth-Term Test: Unless a, — 0, the series diverges.

2. Geometric series: > ar" converges if |r| < 1; otherwise it diverges.
3. p-series: > 1/n” converges if p > 1; otherwise it diverges.
4

Series with nonnegative terms: Try the Integral Test, Ratio Test, or Root
Test. Try comparing to a known series with the Comparison Test.

5. Series with some negative terms: Does 2. |a,| converge? If yes, so does
>.ay, since absolute convergence implies convergence.

6. Alternating series: X a, converges if the series satisfies the conditions of
the Alternating Series Test.
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11.7

Power Series

(2" lecture of week 01/10/07-
06/10/07)
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DEFINITIONS  Power Series, Center, Coefficients
A power series about x = 0 is a series of the form

o0
Dlenx™ =co + c1x + cx?t o oopx" + (1)

n=0

A power series about x = a is a series of the form

o0
clx —a)y'=co+clx—a)+cox—af+ - +elx—a)l+- (2

n=0

in which the center a and the coefficients ¢y, ¢y, ¢, ..., c,, ... are constants.
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EXAMPLE 1 A Geometric Series

Taking all the coefficients to be 1 in Equation (1) gives the geometric power series
0.0
2x”= l+x+x2+--+x"+---
n=0

This is the geometric series with first term 1 and ratio x. It converges to 1/(1 — x) for
|x| < 1. We express this fact by writing

1

=1l+x+x>+--+x"+-
I —x

L o —l<x<l. (3)
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L

yg=1—l—.7c+.x2+x3-I—x"’—i—gcs+.7«:6+.xF'r+x8

5
4
3
2
1

-1 0 1

FIGURE 11.10 The graphs of f(x) = 1/(1 — x) and four of
its polynomial approximations (Example 1).
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FIGURE 11.11 The graphs of f(x) = 2/x
and 1ts first three polynomial approxima-
tions (Example 2).
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EXAMPLE 3  Testing for Convergence Using the Ratio Test

For what values of x do the following power series converge?
> b X" X2 X3
(a) ;(—1) A i

o0 2n—1 3 5
1yl X =y =X 4 X ..
b) 2 (-1 = o FE

x? X3

xn
=l x Sy
n:

() TR

0]
o
(d) En!x” =1+x+ 2%+ 33+ -
n=0

Solution  Apply the Ratio Test to the series X|u,|, where u, is the nth term of the series
in question.

Upn+1
Un

(a)

_n
= x| —>al.

The series converges absolutely for |x| < 1. It diverges if |x| > 1 because the nth
term does not converge to zero. At x = 1, we get the alternating harmonic series
1 —-1/2+1/3 —1/4 + ---, which converges. At x = —1 we get —1 — 1/2 —

1/3 — 1/4 — ---, the negative of the harmonic series; it diverges. Series (a) con-
verges for —1 < x = 1 and diverges elsewhere.
S | s > . .
-l 0 T Continued on next slide
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Upn+1
Uy

. 2n — 1 2 2
D e

The series converges absolutely for x> < 1. It diverges for x* > 1 because the nth
term does not converge to zero. At x = 1 the series becomes 1 — 1/3 +
1/5 — 1/7 + ---, which converges by the Alternating Series Theorem. It also con-

(b)

verges at x = —1 because it is again an alternating series that satisfies the conditions
for convergence. The value at x = —1 is the negative of the value at x = 1. Series (b)
converges for —1 = x = 1 and diverges elsewhere.
é ' &——> x
-1 0 1
Un+1 x"tU | x|
= _——— — —>
(c) i, n+ ) X P 0 for every x.
The series converges absolutely for all x.
- . > X
0
Up+1 (n + 1)Ix"*!

(d) — = (n + 1)|x| > o0 unlessx = 0.

n

Un nlx

The series diverges for all values of x except x = 0.

¢ > X
0

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 11 - 66




THEOREM 18  The Convergence Theorem for Power Series

o0
If the power series Za,,x” =aqy + ajx + a2x2 + --- converges for
n=0

x = ¢ # 0, then it converges absolutely for all x with |x| < |c|. If the series
diverges for x = d, then it diverges for all x with |x| > |d|.
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COROLLARY TO THEOREM 18

The convergence of the series X c,(x — a)" is described by one of the following
three possibilities:

1. There i1s a positive number R such that the series diverges for x with
|x — a| > R but converges absolutely for x with |x — a| < R. The series
may or may not converge at either of the endpoints x = a — R and
x=a+ R.

2. The series converges absolutely for every x (R = 00).

The series converges at x = a and diverges elsewhere (R = 0).
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How to Test a Power Series for Convergence

1. Use the Ratio Test (or nth-Root Test) to find the interval where the series
converges absolutely. Ordinarily, this is an open interval

x —a| <R or a—-R<x<a+R.

2. If'theinterval of absolute convergence is finite, test for convergence or diver-
gence at each endpoint, as in Examples 3a and b. Use a Comparison Test, the
Integral Test, or the Alternating Series Test.

3. If the interval of absolute convergence is a — R < x < a + R, the series
diverges for |x — a| > R (it does not even converge conditionally), because
the nth term does not approach zero for those values of x.
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THEOREM 19 The Term-by-Term Differentiation Theorem

If Xc,(x — a)" converges fora — R < x < a + R for some R > 0, it defines
a function f:

f(x)=Ecn(x—a)", a— R<x<a+R.
n=0

Such a function f has derivatives of all orders inside the interval of convergence.
We can obtain the derivatives by differentiating the original series term by term:

flx) = ;ncn(x —a)y"!

fr(x) = ;H(n — Delx — a)' ™,

and so on. Each of these derived series converges at every interior point of the in-
terval of convergence of the original series.
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EXAMPLE 4  Applying Term-by-Term Differentiation

Find series for f'(x) and f"(x) if

f(x)z lix=1+x+x2—|-x3+x4+..._|.xn_|_.
:Exn, -1 <x<1
n=0
Solution
flx) = (1 —lx)2 =14+ 2x+3x2+4x> +-- -+ mx" T+ ...
= >m" !, —1<x<I
n=1
f"(x) = a _2x)3 =24+ 6x+ 12> + -+ nln — Dx" + -
= Dnn—1x"2 —-1<x<I
n=2
Slide 11- 71
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THEOREM 20  The Term-by-Term Integration Theorem
Suppose that

flx) = Z{,)cn(x —a)’

converges fora — R <x < a + R (R > 0).Then
o0 (x _ a)n-l-]

EC” n+1

converges fora — R < x < a + Rand

a)n-f—l

/f(x)dx— Ecn +C

fora — R<x<aq+ R.
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EXAMPLE5 ASeriesfortan'x, —1 =x=<1
Identify the function

x3 5

f(x)=x—?+%—~--, -1=x=1.

Solution We differentiate the original series term by term and get
fx)=1—-x*+x*—x8+-- -1 <x<1.

This is a geometric series with first term 1 and ratio —x2, 50

1 _ 1
1= (=x%) 1+x*

f(x) =

We can now integrate f'(x) = 1/(1 + x?) to get

/f’(x)dx=/lf_x > =tan 'x + C.
X

The series for f(x) is zero when x = 0, so C = 0. Hence

3 5 7

fo)=x -5 +% ==

4= tan~ ! —
3 7 + tan " x, I <x <I. (7)

In Section 11.10, we will see that the series also converges totan ' x at x = +1.
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EXAMPLE6 ASeriesforln (1 +x), -1 <x=1

The series

1

= —_ +2—3_|-...
1+ ¢ 1 4 4 4

converges on the open interval —1 < ¢ < 1. Therefore,

( ) /" 1 28 *
In(1 + x) = dt=t— —+ ———+--- Theorem 20
T+ 2737 1 ;
2 3 4
_ _x x_x L .

It can also be shown that the series converges at x = 1 to the number In 2, but that was not
guaranteed by the theorem.
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THEOREM 21 The Series Multiplication Theorem for Power Series
If A(x) = 2, —oanx" and B(x) = 2w bux” converge absolutely for |x| < R,
and

n
¢, = apb, + a1b,-1 + aob,—» + -+ a,_1b1 + a,by = Eakbn_k,
k=0

then 3,— c,x" converges absolutely to 4(x)B(x) for |x| < R:

(Eanx")- (Ebnx") = chx”.
n=0 n=0 n=0
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EXAMPLE 7  Multiply the geometric series

[6.9]
Ex”=1+x+x2+---+x”+---=#, for|x| < 1,
~ I —x

by itself to get a power series for 1/(1 — x)?, for|x| < I.

Solution Let

o

Ax) = Dapx"=1+x+x*+ - +x"+--=1/(1 — x)
n=0
o0

Bx)= Dbux"=1+x+x*+ - +x"+---=1/(1 - x)
n=0

and

¢y = agb, + a1by—y + -+ apby—p + -+ + a,by

n + 1 terms

—1+1+--+1=n+L

n + 1 ones

Then, by the Series Multiplication Theorem,

A(x)*B(x) = ic,,x” = i(n + 1)x”
n=0 n=0

=1+ 22 +3x2+43++m+ Ix"+ -

is the series for 1/(1 — x)?. The series all converge absolutely for |x| < 1.
Notice that Example 4 gives the same answer because

d( 1 1
dx(l—x)_(l—x)z'
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DEFINITIONS Taylor Series, Maclaurin Series

Let f be a function with derivatives of all orders throughout some interval con-
taining a as an interior point. Then the Taylor series generated by f at x = a is

f”( )

(x — a)?

(x — a)* = f(a) + f'(a)(x — a) +

E f “‘)(a)

+

(n)
/ nfa) (x —a)y* +

The Maclaurin series generated by f is

E f”‘)( 0) & _ f”(O) f("’(O)

= f0) + fO + I e+
the Taylor series generated by fatx = 0.

- 78
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DEFINITION  Taylor Polynomial of Order n

Let f be a function with derivatives of order k for k = 1, 2,...,
val containing a as an interior point. Then for any integer n from 0 through N, the

Taylor polynomial of order n generated by f at x = a is the polynomial

N in some inter-

P,(x) = f(a) + f'(a)(x — a) + / ( )( —a)* +
(k (n)
f;)&_mk ST
Slide 11- 79
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FIGURE 11.12 The graph of f(x) = e*
and its Taylor polynomials
Pi(x)=1+x

Py(x) =1+ x + (x%/2!)

Py(x) =1 + x + (x?/2!) + (x*/3)).
Notice the very close agreement near the
center x = 0 (Example 2).
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EXAMPLE 3  Finding Taylor Polynomials for cos x
Find the Taylor series and Taylor polynomials generated by f(x) = cosxatx = 0.

Solution The cosine and its derivatives are
flx) = COS X, f'(x) = —sin x,

' (x) = —cos X, ) = sin x,

0 = (-1 cosx,  f2) = (<1 gins,
At x = 0, the cosines are 1 and the sines are 0, so
£20) = (=1, f#(0) = 0.
The Taylor series generated by f at 0 is
PO IO, 0,
n!

f0) + f(0)x +

2 4 2n

=1+0x—§+0 3+3+ + (= 1)”(2)|
OO(_])kak
=]

This is also the Maclaurin series for cos x. In Section 11.9, we will see that the series con-
verges to cos x at every Xx.
Because f?"*1(0) = 0, the Taylor polynomials of orders 2n and 2n + 1 are identical:

4 2n
Pylx) = Popa(x) = 1 = 50 + 77 — -+ (=) (2n)!"

Figure 11.13 shows how well these polynomials approximate f(x) = cosx near x = 0.
Only the right-hand portions of the graphs are given because the graphs are symmetric
about the y-axis.
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FIGURE 11.13 The polynomials

B n (_l)kxﬂc
PZn(x) - k;} (Zk)'

converge to cos x as n — 00, We can deduce the behavior of cos x
arbitrarily far away solely from knowing the values of the cosine
and its derivatives at x = 0 (Example 3).
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{ 0, x=0
1~ a e‘”xz, x#0
| | | | 4 | | | L 5y
-4 -3 -2 —1 0 1 2 3 4

FIGURE 11.14 The graph of the continuous extension of
y=el ¥ is so flat at the origin that all of its derivatives there
are zero (Example 4).
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THEOREM 22  Taylor's Theorem

If f and its first n derivatives ', f”, ..., f™ are continuous on the closed interval
between a and b, and f is differentiable on the open interval between a and b,
then there exists a number ¢ between a and b such that

f6) = f@ + @b - ) + 52 b - +
Dy f‘”“)(c) .
(b — ) + m(b — a) 1.
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Taylor's Formula
If f has derivatives of all orders in an open interval / containing a, then for each
positive integer n and for each x in /,
, f"(a)
f&x) = fla) + f@)x —a) + 5~ (x —a)* + -+
(4
LDy R, )
where
_ f(”+l)(c) n+1
R,(x) = m (x — a) for some ¢ between a and x. (2)
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THEOREM 23 The Remainder Estimation Theorem

If there is a positive constant M such that | f*TD(¢)| = M for all ¢ between x and
a, inclusive, then the remainder term R,(x) in Taylor’s Theorem satisfies the in-

equality

|x_a|n+1

(n + 1)!

|Rn(x)| =M

If this condition holds for every n and the other conditions of Taylor’s Theorem
are satisfied by f, then the series converges to f(x).
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EXAMPLE 3  The Taylor Series for cos x at x = 0 Revisited

Show that the Taylor series for cos x at x = 0 converges to cos x for every value of x.

Solution We add the remainder term to the Taylor polynomial for cos x (Section 11.8,
Example 3) to obtain Taylor’s formula for cos x with n = 2k:

2 4 2k

— 1= 42 (=t
cosx = 1 o +4! + (—1) 20! + Rou(x).

Because the derivatives of the cosine have absolute value less than or equal to 1, the Re-
mainder Estimation Theorem with M = 1 gives

|x|2k+l

'(2k+ D1

|Rau(x)| =1

For every value of x, Ry, — 0 as k — 00 . Therefore, the series converges to cos x for every
value of x. Thus,

— (—l)kx2k . x2  x* xS
2 ool Tmtw et ®)

COS X =

Slide 11 - 88
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EXAMPLE 6 Calculate e with an error of less than 1079,

Solution We can use the result of Example 1 with x = 1 to write

1 1
e=1+1+5 ++ 1+ R(1),
with
R,(1) = ecm for some ¢ between 0 and 1.

For the purposes of this example, we assume that we know that e < 3. Hence, we are
certain that

3
(n + 1)!

1
—_ << <
(n + 1)! Ri(1)
because | < e < 3for0 <c¢ < 1.

By experiment we find that 1/9! > 107°, while 3/10! < 107°. Thus we should take
(n + 1) to be at least 10, or n to be at least 9. With an error of less than 107°,

1 1 1

e=1+1+§+§+~-+§%2.718282. ]
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EXAMPLE 7  For what values of x can we replace sin x by x — (x>/3!) with an error of
magnitude no greater than 3 X 107#?

Solution Here we can take advantage of the fact that the Taylor series for sin x is an al-
ternating series for every nonzero value of x. According to the Alternating Series Estima-
tion Theorem (Section 11.6), the error in truncating

31 5
sinx=x—%i+%—
after (x>/3!) is no greater than
S| _ P
5! 120°

Therefore the error will be less than or equal to 3 X 107%if

5
X
% <3Xx107*  or x| < V360 x 1074 ~ 0.514.

Rounded down,
to be safe

The Alternating Series Estimation Theorem tells us something that the Remainder
Estimation Theorem does not: namely, that the estimate x — (x>/3!) for sin x is an under-
estimate when x is positive because then x°/120 is positive.

Figure 11.15 shows the graph of sin x, along with the graphs of a number of its ap-
proximating Taylor polynomials. The graph of P3(x) = x — (x3/3!) is almost indistin-
guishable from the sine curve when —1 = x = 1.
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FIGURE 11.15 The polynomials
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DEFINITION

For any real number 8, ¢ = cos@ + isin@.
»

(6)
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The Binomial Series
For -1 <x <1,

(1+x)"=1+ i (m)xk,
=1 \k

(- ()22

(m) _ mm—1)m—2)---(m—k+ 1)

where we define

and

r ! fork = 3.
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EXAMPLE 2  Using the Binomial Series

We know from Section 3.8, Example 1, that V1 + x ~ 1 + (x/2) for |x| small. With
m = 1/2, the binomial series gives quadratic and higher-order approximations as well,
along with error estimates that come from the Alternating Series Estimation Theorem:

B0, B

QT+ =1+5+——F5—x"+ 3
V(1Y _3)(_5
2 2 2 2 A
X
x? x> 5x4

X _
=l+s -t 128t

Substitution for x gives still other approximations. For example,
2 4

\/l—xzﬁl—%—% for |x?| small

} 1 . 1 1
1 ¥ ~ 1 x5 for

Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

% small, that is, |x| large.
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EXAMPLE 5  Express [ sinx? dx as a power series.

Solution From the series for sin x we obtain

6 10 14 18
. o o X X X X
SInx- = X _3' + 5 — 71 +T—
Therefore,
3 7 11 15 10
. 2 _ X X X X X .
/Smx e T P TR TR TR T TR TR ]
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EXAMPLE 6  Estimating a Definite Integral

Estimate jz)l sin x2 dx with an error of less than 0.001.

Solution From the indefinite integral in Example 5,

1
o, 11 11 L.
Asmx dx—3 7,3!"'11.5! 15-7!+19-9!

The series alternates, and we find by experiment that

1

o5~ 0.00076

is the first term to be numerically less than 0.001. The sum of the preceding two terms gives

With two more terms we could estimate

1
f sinx? dx ~ 0.310268
0

with an error of less than 107, With only one term beyond that we have

1
.1 111 L
ﬁ sinx“dx ~ 3= 15+ 1320 T 75600 | 6894720 - 0310268303,

with an error of about 1.08 X 1077, To guarantee this accuracy with the error formula for
the Trapezoidal Rule would require using about 8000 subintervals.
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EXAMPLE 7  Limits Using Power Series

Evaluate

: Inx
lim )
x—1 X — 1

Solution We represent In x as a Taylor series in powers of x — 1. This can be accom-

plished by calculating the Taylor series generated by In x at x = 1 directly or by replacing
x by x — 1 in the series for In (1 + x) in Section 11.7, Example 6. Either way, we obtain

Inx =(x—1) —%(x— 1) + -,
from which we find that

lim 2% = jim (1 —%(x— 1)+-~) = 1.

x—1x — 1 x—1

Slide 11 - 98
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EXAMPLE 8  Limits Using Power Series

Evaluate

. sinx — tanx
lim i

x—0 x3
Solution The Taylor series for sin x and tan x, to terms in x°, are
3 5 3 5
: X X X 2x
nx=x — =4+ = — ... tanxy = x + ~— + =X 4 ...
e T TN
Hence,
sinx—tanx=—x—3—x—5—---=x3 —l—x—z_...
2 8 2 8
and

. sinx — tanx __ .. 1 x?
lim = lim|—% — — ..

x—0 x3 x—0
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TABLE 11.1 Frequently used Taylor series

1

Mz

——=l+x+xt+--F+x"+-= Dx" x| <1
1 —x n=0
o0
: =l-x+x2— -+ (=xf+= X (-1)x" [x] <1
1 +x = ?
_ IZ x" _ ooxn
e"—l+x+ﬁ+---+;‘—!+~-—’;]~ﬁ, |x| < o0
3 5 In+1 00 (_l)nx2ﬂ+1
: X x
= — 4+ = — .- 4+ (= ”7_}_: —_— <
S TR 0 ,E,(z,”n:’ 8] e
2 4 2 m(—l)"xz"
xt % x
=1-Z 4+t I = Y <
coBsi L=y %%t U am 2o ki<
%2 % = S =1y st
ln(l+x)=x—?+T—---+(—l)” ?+”'=;T’ -l<x=s1
1+x L S K2t LSyt
lnl—x'zta“hx'z(x+3+5+ i O e LS
3 5 n+1 o0 (_1)Nx2n+l
Pl s Bl o e, SR L S
tan” x =x — T+ % +([)2n+l+ ’%2”4_1, x| =1

Binomial Series

(1+x)"=1+mx+

m(m — Dx*  m(m — 1)(m — 2)x° m(m — 1)(m —2)-(m — k + x*
STHN 3 L 2 ¢

=1+ > (m)xk, x| < 1,
=1 \k

m m m(m — 1) mm=1)(m—=k+1)
(1) = m, (2) = B TR (’;:) = 0 fork = 3.

Note: To write the binomial series compactly, it is customary to define ( 0) to be 1 and to take x” = 1 (even in the usually

where

excluded case where x = 0), yielding (1 + x)" = Er;o ( x )x". If m is a positive integer, the series terminates at x™ and the

result converges for all x.
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11.11

Fourler Series

(15 lecture of week 08/10/07-
10/10/07)
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Suppose we wish to approximate a function f on the interval [0, 277] by a sum of sine
and cosine functions,

fa(x) = ag + (a1 cosx + bysinx) + (apcos2x + bysin2x) + - --
+ (a, cos nx + b, sin nx)

or, in sigma notation,
n
fa(x) = ag + E(akcos kx + bysinkx). (1)
=1

We would like to choose values for the constants ay, ay, az, . ..a, and by, bs, ..., b, that
make f,(x) a “best possible” approximation to f(x). The notion of “best possible” is
defined as follows:

1. f,(x)and f(x) give the same value when integrated from 0 to 27r.

2. fu(x) cos kx and f(x) cos kx give the same value when integrated from 0 to
2w (k= 1,...,n).

3. fu(x) sin kx and f(x) sin kx give the same value when integrated from 0 to
2o (k=1,...,n).
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We chose f, so that the integrals on the left remain the same when f, is replaced by f, so
we can use these equations to find ay, ai, az, ...a, and by, by, ..., b, from f:

27
1

ay = ~— (x) dx 2
0 27.‘.0 f ()

1 2
ak=ﬂ.£ f(x) cos kx dx, k=1,...,n (3)

1 2
bk=,ﬂ.£ f(x) sin kx dbx, k=1,...,n (4)
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FIGURE 11.16 (a) The step function

I, 0=x=m
2, w<x=2mw

= {

(b) The graph of the Fourier series for f is periodic and has the value 3/2 at each point of
discontinuity (Example 1).
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EXAMPLE 1  Finding a Fourier Series Expansion

Fourier series can be used to represent some functions that cannot be represented by Taylor
series; for example, the step function f shown in Figure 11.16a.

1, if0 =x=n«w
f(x)_{Z, ifr <x =2m.

The coefficients of the Fourier series of f are computed using Equations (2), (3), and (4).
2

L ) e

" 27,

T 2
_ 1 _3
—ZW(Aldx—i-[T 2dx)—2

29
ar = %ﬁ f(x) cos kx dx

T 2
(/ cos kx dx + / ZCoskxdx)
0 T

1 (|sinkx |" 2 sin kx [*” _
- (L PRR]) -0 ke

T

ao

3=

27
by = = [ 1 sin ke

T 29
=%(/ sinkxdx+/ ZSinkxdx)
0 T
:Lq_ coskx 7 | l_Zcoserﬂ)
7T k 0 k T
coskm — 1 _ (-1)F -1

kr kr
Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 11 - 105




So

and

2 2 2
bI:_Ea bZZOs b3:_§9 b4209 b5:_§a b(,:O,...

The Fourier series is

% -2 (Sinx + 3“133" + S“fjsx + )

Notice that at x = 7, where the function f(x) jumps from 1 to 2, all the sine terms vanish,
leaving 3/2 as the value of the series. This is not the value of f at 7, since f(7) = 1. The
Fourier series also sums to 3/2 at x = 0 and x = 2. In fact, all terms in the Fourier se-
ries are periodic, of period 27, and the value of the series at x + 27 is the same as its
value at x. The series we obtained represents the periodic function graphed in Figure
11.16b, with domain the entire real line and a pattern that repeats over every interval of
width 27r. The function jumps discontinuously at x = nm,n = 0, £1, £2,... and at
these points has value 3/2, the average value of the one-sided limits from each side. The
convergence of the Fourier series of f is indicated in Figure 11.17.
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FIGURE 11.17 The Fourier approximation functions f1, f3, fs, f9, and f;s of the function f(x) = {

I, 0=x
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in Example 1.
a<x =2 P
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THEOREM 24 Let f(x) be a function such that f and f’ are piecewise contin-
uous on the interval [0, 277]. Then f is equal to its Fourier series at all points
where f 1s continuous. At a point ¢ where f has a discontinuity, the Fourier series
converges to

fle™) + fle)
2

where f(c™) and f(c™) are the right- and left-hand limits of f at c.
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