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Preface

Elementary matrix algebra has now become an integral part of the mathematical background
necessary for such diverse fields as electrical engineering and education, chemistry and sociology,
as well as for statistics and pure mathematics. This book, in presenting the more essential mate-
rial, is designed primarily to serve as a useful supplement to current texts and as a handy refer-
ence book for those working in the several fields which require some knowledge of matrix theory.
Moreover, the statements of theory and principle are sufficiently complete that the book could
be used as a text by itself.

The material has been divided into twenty-six chapters, since the fogical arrangement is
therebv not disturbed while the usefulness as a reference book is increased. This also permits -
a separation of the treatment of real matrices, with which the majority of readers will be con-
cerned, from that of matrices-with complex elements. Each chapter contains a statement of perti-
nent definitions, principles, and theorems, fully illustrated by examples. These, in turn, are
followed by a carefully selected set of solved preblems and a considerable number of supple-
mentary exercises. :

The student new to matrix algebra soon finds that the solutlons of numerical exercises -
are disarmingly simple. Difficulties are likely to arise from the constant round of definition, the-
orem, proof. The trouble here is-essentially 2 matter of lack of mathematical maturity, and
normally to be expected, since usually the student’s previous work in- mathematics has been
concerned with the solution of numerical problems while precise statements of principles and
proofs of theorems have in large part been deferred for later courses. The aim of the present -
book is to enable the reader, if he persists through the introductory paragraphs and solved prob—
lems i in any chapter to develop a reasonable degree of self—assurance about the materral

The solved problems in addition to giving more variety to the examples rllustratmg the
theorems, contain most of the proofs of any considerable length together with representatlve
shorter proofs. The supplementary problems call both for the solution of numerical exercises
and for proofs. Some of the latter require only proper modifications of proofs glven earhier;
more important, however, are the many theorems whose proofs require but a few lines. Some are
of the type frequently misnamed “obvious” while others will be found to call for considerable
ingenuity. None should be treated lightly, however, for it is due precisely to the abundance of
such theorems that elementary matrix algebra becomes a natural first course for those seeking
to attain a degree of mathematical maturity. While the large number of these problems in any
chapter makes it impractical to solve all of them before moving to the next, special attention
is directed to the supplementary problems of the first two chapters. A mastery of these will do
much to grve the reader confidence to stand on his own feet thereafter.

The author wrshes to take this 0pportumty to express his gratltude to the staff of the Schaum
Publishing Company for the1r splendid cooperation.

Frang AYRES, JR.

Carlisle, Pa.
October, 1662
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Chapter 1

Matrices

A RECTANGULAR ARRBAY OF NUMBERS!| enclosed by a pair of brackets, such as

2 3 7 1 3 1
@y | 0 and by {2 1 4},
-3 4 1 86 _
and subject to certain rules of operations gi{ren below is called a The matrix (a) could he

2x+3y+T2 =0

x= y+5z =10

2x+3y =17
- y=5

considered as the coefficient matnx of the system of homogeneous linear equations {

Or as the augmented matrix of the system of non—homogeneous linear equations {

Later, we shall see how the matrix may be used to obtain solutmns of these systems. The ma-
trix ¢h) could be given a smular mterpretatmn or we might consider its rows as simply the coor-
dinates of the pomts (1,3,1), (2,1,4), and (4,7, 6).in ordinary space. The matrix will be used
‘later to settle such questions as. whether or not the three points lie in the same plane with the
origin or on the same line through the origin. . o -

In the matrix , , ‘
: 245 GYGJ.S ...... - aln‘ é’_
a21 a22 023 -------- agn E
(1.1) B P
am1 am2 ama . .7 ..... - . am

the numbers or functlonsmare called 1tsIn the double subseript notatmn the flrst :
subscript indicates the[Tow|and the second subscript indicates the[column in which the element
sfands. Thus, all elements in the second row have 2 as first subscript and all the elements in
the flfth column have 5 as second subscnpt A matnx of m rows and » columns is said to be of
order "m by n" or mxan. ' '

(In indicating a matrix pairs of parentheses, ( ), and double bars, ” || are sometimes
ussd We shall use the double bracket notatlon throughout,)

At times the matrix (1.1) w111 be cailed "the mxn matrix [2;] " "the mxn matrix 4 =
e %J] . When the order has been established, we shall write s1mp1y ”the matrix A",

SQUARE MATRICES. When' m ==&, {1.1) is square and will be called a square matrix of order n or an
n-square matrix.

In a square matrix, the elements a4, aqo, ... )-8y, are called its diagonal elements,

The sum of the dizgonal elements of a square matrix A is called the trace of 4.
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2 , _ MATRICES [CHAP. 1

s 4 =[a;]] and B = [b;;] are said to be equal (A=B)_if and only if

EQUAL'MATRICE_S. Two malrice
d each element of one is equal to the corresponding eiement of the

they have the same order an
other, that is, if and only if

M, (i=1,2,...,m;j:1,2,..,,n) A

Thus, two matrices are equal if and only if one is a duplicate of the' cther.

ZERO MATRIX. A matrix, every element of which is zerg, ig calied a zero matrix. When A is a zero .

matrix and there can be no confusion as to its order, we shall write A = 0 instead of the mxn

array of zero elements.

SUMS OF MATRICES. If 4 = [a;;] and B = [by;] aretwo mxa matrices, their sum (difference), A+8,
is defined as the mxn matrix € = [Cij] , where each element of (0 is the sum (diff_erence) of the
corresponding elements of Aand B, Thus, A+B = 045 % bi:l .

- 1 2 3} & 2 3 0 o
Example 1. I 4d = - and B = |- then
bt T lo o1 o4 R A _

1+2 2+3 340 3 5 3
. A+B = = .
g+(-1) 1+2 4+5 -1 3 8
- . - 1—2 -~ 2-3 3-0 -1 -1 3
; A=B = _ _ : _
0—(~1) 1-2 4-~5] 1 -1 -1

Two matrices of the same order are said o be conformable for addition or subtraction. Two
‘matrices of different orders cannot be added or subtracted. For example, the matrices ‘tay and
¢hy above are non-econformable for addition and subtraction. )

_ The sum of & matrices A is a matrix of the same order as A and each of its elements is k
" times the corresponding element of 4. We define: If % is any scalar (we call k a scalar to dis-
tinguish it from [E] which is a 1x1 matrix) then by kA = Ak is meant the matrix obtained from

A by multiplying each of its élements by k.

o Y e

{

and

T -2 '
Exampie 2. . If A = [2 . 3}, then -

. oo =21, [ -2 -2 3 —6 '
A+A+4 = [ ' ]+[ ]-&-[1 -2] = [ ’ ] = 94 = 4:3
. . o a3} 12 3 l2 3 6 9 - :
and - _ . 7

. e - [—5(1) as(—z)] ) [;5' 10].
, C-5(2) —5(3) {-10 =15

In particular, by —4, called the negative of A, is meant the matrix obtained from 4 by mul- _
tiplying each of its elements by —1 or by simply changing the sign of all of its elements. For
every 4, we have A +(—A) =0, where 0 indicates the zero matrix of the same order as A.

Asguming tieat-the matriees A,R,(‘ are conformable for addition, we state:
@) A+ B = B+ A h (commutative law)
By A+ (B+C) = (A+B)+ C _ (agsociative 1aw)
(c) k(A+B) = kA+ kB = (A+B)k, kascalar
(d) There exists a matrix D suchthat A+ D = B,

These laws are a resulf of the 1aws of eiementary slgebtapoverning the addition of numbers -
and polynomials. They show, moreover, ' '
1. Conformable matrices cbey the same laws of addition as the elements of these matrices.
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CHAP, 1] : ' MATRICES o 3

MULTIPLICATION. By the product AB in that order|of the| 1xm|matrix[4 = [as; 615 asg - .. asg]|and

byy
by
b o
the matrix= ** 1 is meant the I1x1 matrix|C = [A11 011+ agpbgy + -0 + Gimbmal.
].’!
o _ -
bia
b2t
. . m
That is, [a4, a:[_g IR B = (a1 byy v aagbgy + -0t “mb_m1] : k§1 a1kbk,1 .
bay

Note that the operation is| row by colnmn;leach element of the row is multiplied into the cor-
responding element of the column and then the products are summed,

. 1 . i .
@) {23 4] !}1-:' = (20431 + 4] = [7]

2

-, o
() [3 ~1 4] [6]_; [-6 =6+12] =0

3

By the product AB in that order of the m xp matrix 4 = [d.;j}_and the p xn matrix B = [.b{,j-]
is meant the i xn matrix C = [¢;;] where _ _ Tt 7 )
¢ = a£1%1j+ai2béj+--- tagpby; = nglaikbkj_- (i= 1,2,.‘._7.,m; j=_1,2,....,'n_).

3

~Think of 4 as consisting of m rows and B as consisting ‘of n_colufnns. In forming € = AR
eachrow of 4 is multiplied once and only once into each columnofB. The element cij of C is then
. the product of the ith row of 4 and the jth column of . :

Example 4. _
: @11 Q1977 5 Ab @11 b13 T a10b01  aqqbqe tajabsg
: _ 11 d1o R . .
A B = oy Gop [:b D :l = _021_511 * 22601 @aybin tag, bag
. : . 21 bos ,
931 ago oo 831011 + 650031 @yybyg tagn b,
[3x2 | . X I3X2 |

The product AB is defined or 4 is conformable to B for multiplication only when the number -

of coiu_mns of 4 is equal to the number of rows of B. If 4 is conformable to B for multiplication

(A8 is defined), B is not necessarily conformable to 4 for multiplication (B4 may or may not he

defined). : ‘ See Problems 3-4.
Assuming that 4, B, C are conformable for the indicated sums and preducts, we have
(ey A(B+C) = AB+ AC (first distributive law)
(fy (A+BYC = AC+BC ) (second distributive law)
() ABC) = (ABYC ' ‘ {associative law)

Huwcvu:', —

(k) AB # BA, generally, , ,

(i) 4B = 0 does not necessarily imply 4 = 0 or § = 0,
() AB = AC does not necessarily imply B = C.

[

See Problems 3-°

.

e o S Dy e e
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MATRICES [CHAP. 1

RODUCTS BY PARTITIONING. Let A =1[a;;] be of order mxp and B= [b;;] be of order pxn. In
NOT TO BE COVERED — £ axdar 2w gnd B

e parti-

P X817 T PI =27
i

PO S Ll .

(myxps) | (Mmaxpz) ; {mlx 3) — = -

A = [—‘"—'——*t“—“"‘—_ __'"P")“}, B = (pgxnl) i (pgxng)

(maxpa) | (maxpa) | (M2XPa) —— ==

(Paxnl) E (Pa X )
B,. | B ,
) Aiy 1 Aso | Ass f‘ii+——12— E
or , A = |—=+—=t=—==| B = | Byy | Bas 2
Aoy 1 Aga | Ass 1T i
Byy | Baq :

In any such partitioning, it is pecessary that the columns of A and the rows of B be partmoned

in exactly the same way, hOWeVer my, Mg, 1,713 may be any non-negative (including 0) integers

such that mpy+ me = m and n,+n, = n. Then

"VAB _ [A11311+A12821 +Ay9Baz A11Bis +A12_322+A1:.33327 _ [Cm 612:\ _C
ApyByy + AgsBay + AsgBax Ap1Big + AgoBoa t Ag3Bas ] Ca1 Caq

i

|
§ Jm,m e

210 1110
Example 5. Compute AB, given A4 =13 2 € ‘and B=]2 110
: 1 61 2 312

I
1
i ..

" Partitioning so that
- . . 2 1!0: o . . 1 11190
. A A - B
A = [“ A”] =|3 2 LO. and B:.[“.B”]= 2°1°1 ;_0 :
. . ) - . A : —_ _ 1 = - B B — —F?
o Az ez 10 21 722 23 112}

—A11311 +A10Bps  A11Bag +A12322]

Az By, +AgoBa: ‘421312 + A9 Bas

o B B BB

we have :AB_ -

1 0] [1 ! 1]+[1]{2 s 1] [t O]B]+[1][2]

211

O ETE B g
- ' 110 +23 4 [o]+[2] {34 2](2]] {3422 .
’ S ' - '~ Seealso Problem 9.
Let A, B,C,... be n-square matrices. Let A be partitioned i’ntormatrices_ of the indicated g
orders _ ' - 2
Fpyx pa) | (paxpa) -+ | (p2x psY] Arr Aio oo Aas :
RO TR LT
(p2x Pi) L (pax pa ]‘ } (pz % Ps) _ Azr Apo ... Aos | §
—— T T
....... Ji__l _%_ . . i
- | (psx p1) | (psxp2) 1 --- 1 {psx ps) | | 451 As2 Ass é

and let B, C, ... be partitioned in exactly the same manner. Then sums, differences, and products
‘may be formed uSIHg the matIlCES Alil AZQ’ P Bli’ 312, veer Cl‘ls q12, .

]
F
E
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CHAP. 1] MATRICES

SOLVED PROBLEMS

M 2-16] [2-41 2] [1+3  2+(-4) —1+1 0+2 4 —2 ¢ 2]
1. @) {4 o 1{+141 50 3| = [4+1 0+5 240 1+3 | = |5 5 2 4
2 -5 12| {2-23-1 [2+2 —5+(=2) 143 2+(-1) 4 -1 4 1
ﬁ 2 -1 0} [3 -4 1 2] [1-3 244 —1-1 0-73 ~2 6 -2 —27]
)y {4 0 21f-41 50 3] = |4-1 6-5 2-0 1-3] = | 3 -5 2 _o
2 -5 121 |2 -23 —1] 22 —5+2  1-3 2+1 0 -3 -2 2
1 2 -1 0] 3 6 -3 0
€¢y3J4 o 21} = (12 0 6 3
2 -5 1 6 —15 3 6
J1 2 -1 0 1 -2 1 o
@ -4 0 21| = |-4 0 -2 -1
2 -5 1 2] -2 5 -1 —2
w3 2. If A=13 4| and B = 1 -5}, find D=1r s{ suchthat A+B-D = 0.
| ] : 5 6 14 3 f -
.  i-3-p 2-2-q] [~2-p —¢7 -fo0
Do D If A+B-D = |3+1~F 4-5-s]| = 4~r —1-sf = [0 0|, —2—p=0 and p=-2, 4—r=0 "
b+4-r 6+3—u 9-t 9-u 00 ' : '
and r =4, ..., Then D= 4 -1]| = 4+8.
B | , 9 9
3@ le5 61| 3] = [a@m+s5@3)y+6-0] ={17]
ST A
3] T2 205 2687 [ 8 10 12
@y | 3jlessl = | 3@ 35 3e| =12 15 18
~1] - _ =104 —148) “1(6) ~4 ~5 —6
4 -6 9 6
@ [t 23]to-7 10 7
15 8 ~11 -8 _ .
= [1(4)+_2(o)+3(5) L(=8)+ 2¢=T) +3(8) 1(9)+2(I10)+3(=11) 1(6) +2(T) +3(~8)]
= (194 —4 —4] , _ S
w [234 E S pav+s@ rem] | 2o
15 8] |; Ly +502) 4 603 29

) [1 2 1]_ 2 e rameien wenrm ] [3 s
| 40 2f] 5 o E@ 0N +2(-2) 4-4+r0B)+2()) |8 -12

4. Let 4

-1 1 5 -3 1 \ 2' 5 -3 112 -1 17 {11 -8 0 :
L2 =42 141 and 4°=4%4 =(2 14/|0 12| =128 —138
g o1y {3 -1 2 : 3 ~12/01 o1 8§ —4 3

I
"
| onali e B o ]

|
[ TS
R N
S Y e

3

j=a

@

=

The reader \;vill_ show that A° = 4. 4% and 4%. 4% = 4°. 4%,




6 MATRICES [CHAP. 1
5. Sho_w that:
2 : 2 2
(ay kzzi%k(bkj* cpi) = E:z ajpbrj * 2 FiRCk) g
33 $ s
b a = ) a:i,
( )1,=1j=1 1 jeri=1 Y
: : 3 !
(¢) 2 ap(Z bppchj) 2 (X awbu)cy;
2 | - 3
() %laik(bk_y’ +ckj} = ail(b1j+clj) + aig(b2j+cgj) = {atlblj+a1,‘2b2]) + (z5,¢ 1J 'I'uQCQj}
2 2
= bjz,:la_bkbkj + 2 ﬂtbcb] %
3 2 X
by . . p ¢y = 2 (g tag,teg = G +ayp +61g) + (@21 T g2 * 23)
= =1 1=1 E E
J = (aqq t agy) t (Gip ¥ 822) t (@13 * Gog) %
2 2
= E ay; 2 + Y @, = 2 2 a;
i=1 2 i=1 jug o8 F=1i=1 i
This is simply the statement that in summing g1l of the elements of a matrix, one mey sum first the %
elgments of each row or the elements of each column.
2 . .
(e) T ol hélbkhchj} = E S Orityy ¥ Protai T Pra®ej) :
' = '31.1(51151] + bygeoj+ brgeaj) * a12(b21clj + bggeaj + bageaj)

= (‘11,1511 +ajghor)erj o (@abiz ¥ 01,2522)02; + (@iybag * awbzs)ﬂej

= (Elaﬂ.kbki)cij . (E a‘bkka)CQj + (2 atkbkg)csj

3
, = él(kz__—laik_bkh)chj.

6. Prove: If 4= la; ] is of order mxn and if B = [b, ] and C=le; ] are of order axp, then A{B +C)
= AB+ AC.

The elements of the ith row of A are a;,, @i . and the elements of the jth column of B +C are

byjteg, b2j+ Cofy vers bn;,: *ens- Then the element standmg in the ith :ow and jih column of AB+CYis

%1(b1j +81J) + ai2(62j+02j} + ...+ atn(bﬂj-!'%j) = E_: ak(bkj +ckj) = E.la kbkj+ E a1akckj' the Sll’m of .

the elements standing in the {th row and jth column of AB and 4C,

7. Prove: If A'= [d,l] is of order mxn, if B = [bv:j] is of order nxp, and if € = [cij],is'of order px ¢,
then A(BCY = (AB)C b

The elements of the ith row ofA are ais, Bi2r e m and the elements of the jth column of BC are hE bipchj
=1

P
PE:L bzhchj  eees E bnh “h_y hence {he elemeni: standing in the ith row and-;th coiumn of A(BC) is
b b

n -
ﬂii'hzzl bipcpi T @iz };2=1 bah + ety hz-‘—i buheys . = kz-‘s (E bkhch])
14

n , n n '
= 2 (E apbweny = (2 eipbrer (X oinbaezj * oot (232:1 aipbrp)eps

This is the element standing in the it_h row and jth column of (AB)C; hence, ABCy=ABYC. .

8. Assuming 4, B, C,D conformable, show in two ways that (4 +BY(C +ID_)' = AC + AD + BC + BD.

Using (o) and then (f), (A +B)(C+D) = (A+B)C + (A+B)D _ AC +BC +4D +BD.

Usmg (f)a.nd then (e), (4 +B)(C +D) A€ +Dy + B(C+D) AC +AD +BC +BD
' . AC +BC +AD +BD.

i

n u
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! - 100 . - _
10011{y1 g 1oo0lft oo [1 1oo0] [312 413
: 9.(2) |01 012155 1] ={010f01ofl+2[312] =]o1o0l+|624] = {634
00 113l {———- 00 1|00 1} |3 001} |93 6 93 7
= 31 2 . -
1 010010 0}f1 010010 0] 1 olfi o 0] (o]
o2'o0looffotioo0io o 0 2|0 1
g Iy E it § P S B
0 013 010 0f[00{1 010 0} _ 3 0][1 0
® 1o 010 4t0allooiosioo (o] [04}[03} Lo}
: — R ——e b e e
? GOTOOTSO 00}004{20 0] (0] 5 0|2 o
0010010 6[{0 010010 3 i 0 gllo 3
1oo 0o o ¢
020 0 0 0
_ 003 0 0 0
00012 0 0
000 010 O
000 0 0 18]
11ioo0ololft2izaste] [ o2 [t 1fpaes] [1ilfe
21'o000'lol|2z3las5 6!l7 2 1123 {2114 58 |2 1fl7
—— e i _ -
()0 0131210113 4156781 IB12[B4][B12[6s67 31 4]s
“looji 2 10/f451678]9 12 1|las5|jL21lle7 8|t 2 1fs
o 00|011i098L?65I4 01 1floejfo1af|Tes5li01 1ila
' —— b |- — o] , : . gl
A 001000718 716541 | [1]1f87] {1106 5 4] [1011 |
- | - [ 5] 9 [ (3 5 7 9 11 13]
. ' : 7 13 14 71013 16 19
' : . [[3t 33][35 37 _ |31 33 35 37 39 41
: , {[20 22]j24 26 28 30 120 22 24 2628 30
‘ ' 13 13j]13 13 1 {13 13 13 13 13 13
4. ' ' {8 71l6 5 (1].'-_8 76 5 & 1]
X = a + a ) i . .
17 b L2 - . B ¥1 = b1123 +bygzg
10. Let {x, = ag,yy +ay,y, be three linear forms in ¥, and ¥, and let . bea
- - Yo = bo1zy + boozo
X3 = @31¥1 ¥t Gg0Y2

linear transformation of the coordinates {(y1, =) into new coordinates (zl, z,). Thertesulf of applying
the transformation to the given forms is the set of forms -

% = (ay1b1q + @12bz1)z; ¥ (a11byp + @yobya) 2,
%p = (ag1b1a *aoobaidzr + (Apybin ¥ ag0bo0)zg
%y = (Gg1bi1 + G30ba1)zy + (G105 + ag2bog) 2y
) : S ) xq 11 Q12T :
Using matrix notation, we have the three forms |, | = Gy oy [Yl] and the transformation
“ | Yo , :

) 5 Xg Q31 dgg
[71] = [ 11 12} l:zi} The resull of applying the iransformation is the set of three forms

Yo bo1 boo
- X a a
1 _ 11 12 blj_ b‘lg 4
Xop T JOg1 Ugg b L z
xS Ual 855 21 22 2
Thus, when a set of m linear forms in n variables with matrix A4 is subjected to a linear trans- '
formation of the variables with matrix B, there results a set of m linear forms with matrix C = AP
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MATRICES
SUPPLEMENTARY PROBLEMS 1
. 1 2 -3]- 3 -1 2 4 12 ”g
11. Given 4 =15 0 2{, B =|¢ 2 8|, and € =10 3 2},
1 -1 1 2 03 1 -2 3
4 1 -1 —3 1-5 _i
(@) Compute:r A+B =15 2 Tj, A-C =t 5-3 0 t
o3~ 4 0 1-2 4
; [ -2 -4 6 §
(b) Compute: —24 =|-10 0 -4}, 0-B =20 i
7 ‘_‘"2 2 “'2 .;";L
tcy Verify: A+(B-0C) = (A+By-C g
(¢) Find the matrix D such that A+D = B. Verify that D =B-4 = —~(4-8). ;
1-1 1 123 ~-11 6 —1 - %
12. Given 4 = |-3 2 -1} and B = |2 4 5], compute AB =0 and B4 =}-22 12 -2|. Hence, AB#BA k
-2 1 0 Coji28) ~-11 6 —1 : %
generally. ’ k-
1-3 2] 1 410 5 1 —1-2 , ,
13.Given 4 =]2 1-3|, B=]2 11 1] and € =|3 -2 -1 ~1|, show that ARB = AC, Thus, AB =AC g
' 4 —3 —1] 1 -2 12 - 2-5 -1 0 1
" does. not necessanly xmply B =C. - - ,,g
| 1 1 -] [ 13 L3 34 - o '
14. Given 4 ={2 0 3], B =] 0 2},-and C = = - show that (AB)C = ABC). 4
) 12 0-2 1 : ' CaE
: 3g1 2 -1 4 o - |
15; Usmg the matrices of Problem 11 show that A(B+C) - AB +AC and"(A+'B)C =_AC_ + BC, : i
16, Explain why, in general, (AiB) * Aﬁi ZAB + 32 and AQ-—-BQ# A - B)(A+B) -
, 23 -5 . |-1 3 B 2 ~2 4] %
17. Given 4 =}-1 4 5, B =| 1-3~5} and C =|-1 3 4}, .
1 -3 -4 -1 3 5 ' 1 -2 -3
(a) show that AB = B4 =0, AC A, C4A=C.
(&) use the results of {a) to show that ACB CBA A2 B2 = (A B)(A + B), (A . B) 2+ B%.
18. Given 4 =[:) ?] where 12 = —1, derive a formula for the positive integral powers of 4.
.Ans. An =7, A, =I, -4 according as n = 4p, 4p+1, 4p+2_.-4p+3,‘_where f= [é (1)]
' 10l Foe1] fo-1] {-1 o] [¢ of [-i 0
18. Show that th t ;
w epmduct of any two or more matrices of the set [0 1] [_ 1 0], [1 0], [ 0 _1], [0 _,], [0 i]'
- 0. 1 0 isa matnx of the set.
-i 0 i 0
20. Given the matrices 4 of order mxn, B of order nxp, and C of order r X ¢, under what conditibns on p, g,

and r would the matrices be conformable for finding the products a.nd what is the order of each: (a) ABC,
{5y ACB, (c)A(B-’rC)‘J :
Ans. @) p=rimxg (b)r~n=q.m><p {(eyr=n,p= ¢ mxg
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21. Compute 4B, given:

7—710511' I b 010 31 0
(@) A =|0 111 gand B=01_L0 Ans. |1 2 0
oo 1] (1110 Corro
_ - [ 10 - _
o, {103 . 1o -2 6
(b),A “1o 1|2 gnd B g _Ans. -2 5
_ 10 | 13 . -
|'12!oo 00101 0 0 4 1
601,00 006 20 0020
(¢y A =|——4+ -2 and B =|——4+T1 Ans,
00l01 10000 0100
0 0 01100 (2 2 0 0

22. Prove: (a) trace (A+B) = {race A + trace B, (b) trace (kA) = k trace 4.

- Y1 = 23+ 2z . ' | Y1
= - + 1 -2 1 . —
23. If {xl N f” 33:3 and ¢yp = 223 — 325 , verify [,ﬂ - [z 1_3:, T2y T [; f ;]
xg 2yq tyg — ¥s S 27 431, 2 75 -
B —z3 + 725 .
- —221 hat 629 -.

4.5 4= [a;;] and B = [5;;] are of order mxn and it C = [¢1:] is of order n X p, show that (A+B)C = AC +BC.
7 _‘Io‘] . 1 ! )

&
I

25. Lot 4=[a;;] and B=(b,], where (i = 1,2, .., mi TL2,pik=1.2,..0k). Denote by B; the sum of
Bz

the elements of the ]th row of B, that is, let )8] E by k- Show that the element in the ith row of A-

B

is the sum of the elements Iymg in the ith row of AB, Use this précedur,e to ¢heck the products formed in
Problems 12 and 13. o ' ' '

26. A relation (such as parallelism, congmency) between ma.thematlcal entmes possessmg the followmg propertles

(1) Determmanon Elther a is in the relatmn toborag 15 not in the relatmn to b

(ii) Reflexivity a is in the relation to a, for all a.
(iii) Symmetry I a is in the relation to b-then b is in the relation to a.
{iv) Transivity " Ifaisin t‘w relation to & and b is in the relation to ¢ then a is in the re}.atlon to c.

is caIled an equivalence relation.

Show that the parallehsm of lines, mmilanty of tna.ngles and equality of matnces are equwa.lence‘
relatlons Show that perpendlcuiauty of lines 13 not an equivalence relation.

27. Show that conformability for addmon of matrices is an equivalence relation while coriformability for multi- -
plication is not.

28. Prove: If A, B, € are matrices such that A4C=CA and BC = CH. then (AB = BA) € = C(4B t RB4).

TR



Chapter 2

Some Types of Matrices

=0 for i>j is called upper triangu-

A square matrix A whose elements 4;;
is-ealled lower triangular, Thus |

£ 4 . P,
= iUl 197 %

THE IDENTITY MATRIX.
lar; & square matrix A whose elemenis &g

ETC TR ]
0 %o Opg -+ % ]
0 0 g ... Ggq| |1s uDDer triangular and :

0o 0 0 Brn
(2, 0 0 o 0‘1 2
Ay Goo 0 0 :
gy Gss Tos 0 | is lower triangular. :

| @n1 %n2 Gng Gpn - B
6, 0 O i

: 0 ap 0 .. O - o
The matrix _@: 0 0 @ ... 0] which is both upper and lower triangular, is call-

LO 0 0 i aﬂﬁ;
1t will frequently be written as

ol s

ed al diagonal matrix.

R D = diag(ala_,%, 033, .._.,:a,m) o .
' - S See Problem 1.

1f in the diagonal matrix D above,l Grq = Oog = veo = By, = D is called & scalar mat_rix|: if,
"identity matriX and is denoted by@ For example

) 1n a.dditionthe matrix is called the
_ Ty 0 0}
L, = \}) ‘{\ ~and I, = |o1o _
S | 00 1]

11 be denoted by [. Clearly,

4 P = LI ... top tactors = I. ldentity ma-
123 -
T then |l;- 4 =

is evident or immaterial, an iden

: When the order
I +I,+... topterms = p.l, = disg(p.p,p,.--»P) 80

properties of the integer 1. For example, if

A=4 5 ¢

trices have some of the
as the reader may :_ea.dily shdw.

= Al = LAl = A,
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. SPECIAL SQUARE MAT square matrices such that . then| A and B arp
called commutative or are said to commute| It is a simple matter to show thatif 4 is ANy n-square

CHAP. 2] , SOME TYPES OF MATRICES 11

matrix, it commutes with iiself and also with [,. ! :

See Problem 9.
If A and B are such that AB = - BA, the matrices A and B are said to anti-commute.

A matrix 4 for which Ak*l = A, kWhere k is a positive integer, is called periodic, If t is
U % : - .
the least positive integer for which A = A, then 4 is said to be of period k.

If k=1, sothat 4° = A then A is called idempotent.

See Problems 3-4.
A matrix 4 for which 47 = 0, where p is a positive integer, is called nilpotent. It p is the
least positive integer for which A7 < 0, then A is said to be nilpotent of index p.
: See Problems 5-6.

THE INVERSE OF A MATRIX.| I 4 and B are square matrices such that AB — BA =] then B is eall-

€d the inverse of 4 and we write B = 4" (B equals 4 inverse). The matrix B also has 4 asg its
inverse and we may write 4 = B*. '

1 23|] 623 100 . _
Example §. Since {1 3 3|1-1 1 0of =]o 1 0] = 1. “each matrix in the product is the inverse of
1 2 4i]-1 0 1 001 | :
_“the other. '

A We shall find later (Chapter7) that not every square matrix has an inverse. We can show
here, however, that if A has an inverse then that inverse is unique.

- _ : See Problem 7.
If A and B are square matrices of the same order with inverses A and B respectively,
then (4B)™" = B 4™ thatis, : B - :

L The inverse of the product of two matrices, having inverses, is the product in re-
verse order of these inverses. e :

- , R See Problem 8.

A matrix 4 such that 42 =1 is called involutory. An identity matrix, for example, isinvol-
utory. An involutory matrix is its own inverse.

See Problem 9.

THE TRANSPOSE OoF A M_A'I‘RIX. The matri; of order nxm obt_ained by interchanging the rows and
columns of an mxn matrix 4 is called the transpose of-4 and is denoted by 4"(4 transpose). For

. ) 14 : . .
example, the {ranspose of 4 = [i ? 2} is A'={2 5]. Note that the element a;; in the ith row
) - 36
and jth column of A stands in the jth row and ith column of 4
If A"and B are transposes respectively of 4 and B, and if 4 is a scalar, we have immediately

- (@) (4Y = 4 and (b) (kA)’ = kA

In Problems 10 and 11, we prove:
I1. The {ranspose of the sum.of two matrices is the sum of their trans‘p'oées, le.,
(A+BY = A+ B
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12 ' SOME TYPES OF MATRICES {CHAP. 2

“and

IIl. The iranspose of the product of two matrices is the product in reverse order of their
t:ansposes i.e., : '
(ABy = B4

' See Problems 10-12,

_ SYMMETRIC MATRICES. A square metrix A such that A'= A4 is called symmetric, THus, a square
matrix A :.{aw} is symmefric provzded a,; = aﬂ, for all values of i and j. For example,

1 2 3 : .
A-=l2 4 _5| is symmetric and so also is k4 for any scalar .
3 -5 6

In Probiem 13, we prove

C1V. If 4 is an r-square matrix, then A+A’ is symmetric

A square matrix A such that 4= —A is called skew-symmedtric. Thus a square matrix 4 is
skew-symmetric provided a;; = a4 for all values of { and J. Clearly the diagonal elements are

_ : - 0 -2 3 _
zeros. . For example, A=1 2 0 4] is skew-symmetric and so also is kLA tor any scalar k.
- -3 -4 90 '

Wlth onlyr minor changes in Problem 13, we can prove

- V. If A is any n-squate ma.tnx then A4 is skew symmetrlc

From Theorems IV and v follows

VI. Every square matnx 4 can be wntten as the sum of a symmetric matrix B = 1(A+4)
and a skew-symmetric matrix C = S(A-AY. ' ' See Problems 14- 15.

THE CONJUGATE OF A MATRIX Let & and b be real nuribers a.nd let I= \/ 1; then z=a+bi is
. called a complex numbet. The complex pumbers a+ bi and o= bi are called conjugates, each
bemg the con]ugate of the other. If z=a¥ bt its conjugate is denoted by Z=a+bi.

If z, =a+bi and z2 = %, = a~ bi, tben z2 =% =a- Bt = a+bt that is, the conjugate of
the conjugate of : a complex number z is -z itself.

If z,=a+bi and z,=c+di, then _
(i) Zy 4 2y = (a+c)+(b+d)t and Z ¥ 5 = (a+e) — (b+d)i = (a-bi) + (c-di) = Z.+ 7y,

that is, the conJugate of the sum of two complex numbers 1s the sum of their conjugates
(Y  zq-zp = (ac—bd) +-(ad+bc-)i and Z;zp = (ac~bdy- (ad+bc)t = (a—bt)(c dt) = 7z,
that is, the conjucrate of the product of two complex numbers is the product of their conJugates.

When A is a matrix havmg complex numbers as elements, the matrlx obt‘.amed from A by re-
placing each element by its con_} ugateis calied the coniugate of 4 and is denoted by A (A conjugate).

' b1+ P _ |1-2 i
Example 2. When A4 = then A = .
_ 3 2-3 3 2+3

1t A and B are the conjugates of the matrices 4 and B and if k is any scalar, we have readily
(o) (Ay = A and (dy (EAy = kA

Using (i) and (iiy above, we may prove

s e i et G R e i

i En,»twtwqqu_.,mww 1
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VY. The conjugate of the sum of two matrices is the sum of their comugates i.e.
(A+By = 4+ 5.

VHI. The conjugate of the product of two matrices is the product, in the same order, of
their conjugates, i.e. (AB} A.B.

The transpose of A is denoted by A'(4 conjugate transpose). It is sometimes written as A*
We have

IX. The transpose of the conjugate of 4 is equal to the conjugate of the transpase of
4, 1e., (A) (A’)

Example 3. From Example 2

— — % .o frew o e -
(A)l = L ’ 3 - While A= he 3 and (A) = * ) 3 1 = (“i}
—I 243 _ ' i 2307 - L 2+3 .

HERMITIAN MATRICES. A squa,re matrix 4 = [a1 1 such that A=A is called Hemmitian. Thus, A

~ is Hermitian provided 0;j = @ for all values of i and j. Clearly, the diagonal elements of an
Hermitian matrix are real numbers. ' '

ol o1-iog
Example4. The matrix 4 = }1+i 3 | is Hermitian.

2 ~i g

Is kA Hermitian if k is any real number? any complex number?

.. A square matrix 4 = [‘%j} such that F= -4 is called skew-Hermitian. Thus, 4 is skew-

Hermitian provided a. ij = —a - for all values of i and j. Clearly, the diagonal elements of a
skew-Hermltlan matrix are elther Zeros or pure 1magmanes

40 L=i 2 - ,
" “Example 5. The matrix A =]—1_; 8 i} is skew-Hermitian. Is kA skew-Hemitian if k is aay real
. ' -2 i 0 '

num'ber_? any complex number? any pure imaginary?-
By making minor changes in Problem 13, 'we majr prove _
X. If A is'an n-square - matrlx then. A+A’ is Hermitian and A-A is skew Hermltlan

F‘romf’g\eorem X foliows

{Xl Every square matrlx A with complex elements can be written as ‘the sum of an
Hermitisn matrix B = 3(A+4) and a skew- Hernutlan matrix € = —{ A A ).

DIRECT SUM. Let 4., 4,, ..., 45 be square matrices of respective.orders My, My, ..., ms. The general-

Izdtion
4, 0 0

| fo= LI e ety
0 0 .. 4,

of the diagonal matrix is called the direct sum of the 4;.




14 SOME TYPES OF MATRICES [CHAP. 2

' ' 12 1 2 ~1
Example 6. Let A1=[2]. A2=[3 4] and Ag=12 0 3%
4 1 -2

20000 O

. 01200 O

034006 C

The direct um of A3, An Ag s dla A, 4o Ag) =

e direct su 1 g g S(iga} 000121

009020 3§

00041 -2

Problem 9(4), Chapier1, illustrates

XL i A =diag(4s, AQ"' A;) and B = diag(Bi, B,, ..., Bs), where Ay and B; have
the same order for (i = 1,2, ..., §), then AB = diag(4,B,, AQBQ, cons AgBs).

SOLVED PROBLEMS -

anbn anbm' e By3bag |

522521 “221’22 ambzn

. the product 4B of

an m-square dia.gonal matrix A = diag(an._azz, am) and any mxu matrix Bis obtained by multi-

plying the first row of B by a,,, the second row of B by a”, and 80 on.

2. Show that the matrices [Z Z;] and [‘; ﬂ commute fbr_ all values of &, b, ¢, d.
' L a bile 4 ac+bd ad+bel e dila b] - '
This follows from [b a] [d c] - [bé+ad bd+ac] = [d c][b _a]-
9 -2 -4
3. $how that |-1 3 4 is idempotent.
1 -2 -3
2 -2 —41] 2 ~2 -4 2.2 ~4 ,
2 - l-1 3 a|}-t s ¢f = (-1 8 4 =4 ;

i-2-3 1-2-3 1-2 -3

4 Show that if AB =4 and BA = B then A a.nd B are idempotent.

ABA = (ABYL = A4 = 4% and ABA = A(BA)—AB A: then A2 = A and 4 is idempotent. Use BAB to
show that B is idempotent.

. o e o i ‘..,. O

o SR

. ERi
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1
.5 Show that 4 = 2 is mlpotent of order 3.
-2 ~1
1 1 3t 1 1 3 0 6 0 0 0 olf 1 1 3
A2=526526:339andA3=A2-A=3,395zs=0
~2 =1 ~3}{-2 -1 =3} |—1 -1 -3 -1 ~1 ~3}{-2 -1 3

6. If 4 is nilpotent of index 2, show that A(/+4)'=4 forn any positive integer.
Since A =0, A°=4"= ... =A"=0. Then AZ+A] = A(tndy=Atnd? - 4.

7. Let A,B,C be square mattices such that 4B =] and CA I. Then (CA)B = C(AB) sothat B =
C. Thus, B=C=A4" is the unigne inverse of 4. (What is B~'?) :

8. Prove: (ABy' = B %47, _
By definition (AB}'(4B) = (ABY(4B}* = I. Now

B AHYAB = B (4B = FLIB - B%B - 1
and , ABE Ay = AB-BYHAT - 44t - T

By Problem 7, (AB)'1 is unique; hence, (A-B)"1 = Bt

8. Prove: A matrix 4 is involutory if and only it - A)(I + Ay =

Suppose (I—A)(I+A4) = - A2 = 0; then o and 418 involutory
Suppose 4 is involutory; then & =1 and (/-A)(T+4) = [-A2 =[] = ¢

10. Prove: (4+ B)" = -)i’+ B.

Let 4= [a,,J] and B= [51.;3 We need only check that the’ eIement in the ith row and jth column of -

A" B and (A+E) are respectively aﬂ J,‘. and aﬁ+ bii.

11. Prove: -(AB)’: BA.

Let 4 = [a;;] be of order mxs, B = {5351 be of order nxp ; then C =48 = [c;;] is of order mxp. The
element standlng in the ith row and jth column of 4B is cij = kgia,;k- bkj and this is also the element stand-
ing in the jth row and ith column of (ABY.

The elements of the jth row of B are baj bog. ..., bnj and the elements of the ith column of A"are ajy,
- o, ..., a;n. Then the element in the jth row and ith column of BA4'is
2 bkj'“ = 2 Gipt bk] R )
Thus. (AB)’ =

12. Prove: (_ABC)’ = CBY.

Write ABC = (4B)C. Then, by Problem11, (4BCY = {4B)CY = C(ABY = CBYA.
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13. Show that if A = [aijl is n-squate, then B = [bij] = A+ A is gymmetric.
First Proof. i ‘

The element in the ith row and jth column of A s ajj and the corresponding element of 4'is aj;; hence,
b{,j = @i+ G4 The element in the ;th row and ith column of 4 is aj; and the corresponding element of A'is
aj;; hence, by = aj+agy Thus, by = bj; and B is symmetric.

Second Proof.

By Problem 10, (A+AY = A"+(4Y = A'+4 = A+Aand (4 +47 is symmetrie.

14. Prove: If 4 and B are n-square symmetric matrices then AB is symmetrlc if and only if 4 and B
commute

Suppose A and B commute S0 that AB = BA Then (ARY = BA BA = AB and AB is symmetric.

Suppose AB is symmetnc so-that {ABY = AB. Now (AB.) BA = BA; hence, 4B =BA4 and the ma-
trices A and B commute.

15. Prove: If the m-square matrix A4 is symmetric (skew-symmetric) and if P is of order mxn then B =
FPAP is symmetric (skew symmetrlc) :

If4dis symmetnc then (see Problem 12) B = (PAP) = P4 (P) " PAP = PAP ‘and B is symmeiric.
It A ;s skew- symmetnc then B = (PAP) = wPAP and B is skew symmetrlc

16. Prove: If A and B are n- square matrlces then A and B commute if. a,nd only 1f A= kl and B -kl
: commute for every scaiar k. '

Suppose A a.nd B commute then AB BA and

(A ~kIN(B —kI) = AB - k(A +B) + kQI
' BA — KA +BY+ KT

1
1

(B kDA =KD
Thus, A }c[ and B k! commute
o SupDOSeA kI and B - k[ commute; then R

AB —k(A+B)+k21 N
BA —k(A+B)+ KF*F- = (B —kD(A—KI)

(A=Y (B —E])

AB = BA. and 4 and B commute..
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SUPPLEMENTARY PROBLEMS

17. Show that the product of two upper (lower) triangular matrices is upper (lower) tnangular

18. Derive a rule for forming the product BA of an mxn matrix 8 and 4 = dizg(as1, 800, ..., 0
Hint. See Problem 1.

?‘L?I)'

19. Show that the scalar matrix with diagonal element & can be writien as &/ andthat kd =kid = dlag(k E,....ky A4,
3 where the order of [ is the row order of 4. :

20. ¥ A is n-square, show that AP- 492 49, Aﬁ where p and g are Dositive integers,.

2 -3 —5] -1 3-5

21. (a) Showthat 4 = |~1 4 5] and B =1 1 -3 -5 are idempotent,
' ' ' 1 1-3 -4 -1 3 5

(b) Using 4 and B, show that the converse of Problém 4 does not hold.

22. If 4 is idempotent, show that & = I—A is idempectent and that 48 = B4 = 0.

[1 2 2
23.(a) If 4 = {2 1 2|, show that A% - 44 - 5] =
2. 215 -
_ .z 13 : _ : _ ‘
4= () It 4 = |1 -1 2|, show that ‘4° — 24% — 04 = 0. put 4% — 24— gl # 0.
- ' [1 .21 - :
- f-t-1-11 -To 1 0] 0 -1 ol*
24. Show that | 0 -1 -0 = -1 -1 -1 = 0o 0ty =
' 0 0 1y 10 0 1 -1 ~1 —1] '
1-2 -6 _ ‘
23. Show that 4 = -3 2 9| is periodic, of period 2. .
2 0 -3 '
: - F1-3 -4} :
26. Show that [-1 3 4| is nilpotent.
{ U-3 -4} '
) . r1 o2 3] 2 -1 =6
27. Show that (e 4 = 3 2 0} and B = 3 2 9} commuis,
—1 —1 —1 : -1 -1 -4
11 2 2/3 0 ~1/3 ,
6y A = 23 1} and B ={=3/5 2/5 1/5] commute.
-1 2 4 7/15 —1/5 1/15
1 B [ ) commite o 4 R o 42 e pn
28. Show that 4 = 2 —t and B = £ 1 anti-commute and (4+ B8y = 42 + p2,
o fod] fo-d] [¢ o]
3 29. Show that each of X , .t anti-commutes with the cthers.
1 041i 0 0 —i

30. Prove: 'The only matrices which q:ommute with every n-square matrix:are the n-square scalar matrices,

-31. {a) Find all matrices which commute with diag(1, 2, 3).
() Find all matrices which commute with diag(as,, a0,

U Ans. (o) diag(a,b,c) where a;b, ¢ are arbitrary.

1 8pn )
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1

2 3 3 -2 -1
32. Show that (a) 2 5 7] is the inverse of -4 1 -1
-3 —4 — 2 0 1
100080 1 0 00
210 0, . -2 1 00
by 4210 is the mverserof 0-2 10}
-2 311 g§—-1-11

1 2ija b 10 1 2 -2 i
) = i i . Ans.
33. Set [3 4] [c d] [0 1] tc find the inverse of [3 ] ns [3 /2 -1 /2]

34. Show that the inverse of a diagonal matrix A, all of whose diagonal elements are different from zéro, isa
diagonal matrix whose diagonal elements are the inverses of those of A and in the same order. Thus, the
. inverse of [, is L.

- 0 1-1 4 3 3
9% Show that 4 = |4 —3 4] and B =]-1 0 :-1} are involutory.
3 -3 4 -4 —4 --3_
10 0 0 ' - _ _
: ' Ip 0 _ - I, 0
36. Let 4 = 01 0 0y _ 2 _0 { by partitioning. Show that A‘2 =|"2 = J4.
i a b .—17 1] A21 ——12 . 0 [2 i
¢ d 0 -1 : : S o
37. Prove: (s) AY = 4, (b) kAY =%A", (c) (A’.bv)'z (AY forp a positivé_ integer.

38, Prove: (BCY® = C B AL Hine. Write 4BC=(4B)C.
-39, Prove: (a) (A"‘)'i =4, (kA:)"" =_%A'1; (c)‘(A_p)‘1_='-(A'})¢ for p-i positive integer-._. :

40. Show that every }eal symmetric matrix’ is Hermitian.

41. Prove: (@) (y=4, () ATBy=A+8, (o) Ghy=k4, @) @B)= 48

1 1+i 2+3i _ :
42.Show: (a) 4 = {1—i 2  —i | ls Hermitian, -
o Co2-3 ¢ 0 : '
. i 1+i 2-3i IR
@) B = |-1+i 2i 1 | is skew-Hermitian,
' L—-z-ss -1 0

(c) iB 1s Hermitian, -
d) A is Hermitian and B is skew-Hermitian.

43. 1L 4 is n-square, show that (a) 44" and A4 are symmetric, ) A+4°, AA’, and A’A are Hermitian.
44, Prove: If H is Hermitian and 4 is any conformable matrix then (AY HA is Hermitian.

45, Prove: Every Hermitian matrix 4 tan be written as B+iC where B is real and symmetric and C is real and
skew-symmetric. oo - '

46, Prove: (a) Every skew-Hermitian-matrix 4 can be written as A = B+iC where B is real and skew-symmetric
and C is reel and symmetric, (b) A"4 is real if and only it B and € antl-commute.

. 47. Prove: I 4 and B commute so also'do 4~ and B A" andB’,and 4" and B’

48, Show that for m and » positive integers, A™ and B" commute if 4 and B commute.




-51. Prove: If A is symmetric so also is aA¢+bA
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"1 n An A.n—1 A 1D XN é‘n(n.—l)/\n_2
n -
49. Show (a) | = 2 | & fo a1l =0 N n.\“
o A 0 A 6 o0 ) 0 An

50. Prove: If 4 is symmetric or skew-symmetric then A4’ = A4 and A are symmetric,

H-1

+...+gl where a.b, ..., g are scalars and p is a positive
integer.

52. Prove: Every square matrix A can be written as 4 = B+ where B is Hemmitian and € is skew-Hermitian.

- 53. Prove: If 4 is real and skew-symmetric or if 4 is complex and skew-Hermitian then #i4 are Hemmitian.

54. Show that the theorem of Problem 52 can be stated:
Every square matrix 4 can be written'as ‘4 =B +iC where 8 and C are Hermitian

5. Prove: If 4 and B are such that AB =4 and B4 = B then (a) BA'= A" and A'B - B (b) A" and B are
1dempotent (c) A =8 =1 it A has an inverse.

o

'56. If 4 is involutory, show that 3(/+4) and +(/—4) are idempotent and (I4+4) - 3(I-A) =

57. It the n-square matrix 4 has an inverse A", show:
@ @Y=y ¢y @t=4T (@ @l
Hint. (a) From the transpose of Ad™r =1, obtain (A™Y as the inverse of 4",

58. Find all mattices which commute with (e) diag(1,1,2,3). (‘b) diﬂ-g(l 1.2, 2).

Anss (a) dia.g(A b.c), (b) diag(4.B) where 4 and B are 2-square matrices with arbitrary elements and b, ¢
are scalars.

59. If A1 Ao ..., Ay are- scalar mairices of respectwe orders my. My, . mg, find all matrices which commute

with diag (,41, Ag ol Ag).

Ans. dlag(By. B,, .... Bs) where B, By, ....B are of respective orders My, My, ..., Mg, with arbitrary eiements

: 60. It AR = (0, where A and B are non-zZero A-square matrices then 4 and B are called divisors of zero. Show

that the matnces A4 end B of Problem 21 are divisors of zero,

B3 O ¢ A = diag(Al.Ai,.' e dg) and ‘B = diag (B, By, ... B5) where 4 and B; are of the same order. (i = 1,2,

. &), show that ‘
(@) A+8 = dlag(As+ By, Ag+By. ..., A+ By)
(b)Y AB = diag(A4B;. AoBy, ... A5 By)
(c) trace 4B = trace A4B; + trace AQBQ' + ... + trace AgBy.

62. Prove: If 4 and B are n-gquare skew-symmetric matrices then 4B is symmetric if and only if 4 and B commute.
63..Provg: If 4 is n-square and B =rd + s/, where r and ¢ are scalé.rs, then 4 and B commute,

64. Let 4 and B be n-square matrices a.nd let r,ro, 51,52 be scalars such that risp # rosy. Prove that Cy =
rid+sy B, Cy=ryAd+5,8B commute if end only if 4 a.nd B commute,

65. Show that the n- square matrix 4 will not have an inverse when (a) 4 has a row (column) of zero elements or
() 4 hastwo identical rows (columns)or (¢) 4 hasarow (column) which isthe sum oftwo otherrows (columns}

66, If A and B are n- -square mairices and 4 has an inverse, show that
(A+ByA™ 4 -By = (4- B)A'l(A +B)




Chapter 3

Determinant of a Square Matrix

PERMUTATIONS. Consider the 3!=6 permutations of the integers 1,2,3 taken tbget-her
(3 n , 193 132 213 231 312 321 '
and elght of the 4! = 24 permutatlons of the integers 1,2,3.4 taken together

(3 2) : 11234 2134 3124 41}3
f ) 1324 2314 3214 \4213/:
- If in a given permutation a larger mteger precedes ‘a smaller one, we say that there is an
inversion. If in a given permutation the number of inversions 1s even (odd}, the permutatmn is

fcalled even (odd) For example in (3.1) the permutation 123 is even since there is no 1nver-

sion, the permutation 132 is odd since in it 3 precedes 2, the permutatmn 312 is even since in.

~it 3 precedes 1 and 3 precedes 2. In (3.2y the permutatmn 4213 is even since in it 4 precedes
2,4 precedes 1 4 precedes 3, and 2 precedes 1.

THE DETERMINANT OF A SQUARE MATRlX Conslder the n square matnx

' o R - “11“12“13 - Gan

(3.3) S "A L '_.612_1_7“2.'2 “253 e fop |

’ and & product -
34 B a - (7 T RN A S
@4 o 1j, %21, %ady " Ty

of n_of 1ts elements selected so that one and -only one element comes from any row and one
and only one element comes from any column. In (3.4), as a matter of convenience, the factors

— have been arranged so that the sequence of first subscripts is the natural order 1,2, ,n, the -
T .sequence i, jo. .o jn of second subscripts is then some one of the n! permutations of the inte-

gers 1,2,...,n. (Facility will be gained if the reader w1ll parallel the work of this section be-
ginning. w1th a product arranged so that the sequence of second subr cnpts is in. natuzal order.)
For g given permutatmn Jirjar - ., Jp-of the second subseripts, define € i 5,2 3

= +] or-1
according as the permutation is even or odd and form the 31gned product '

(35 o o Eiﬁ‘;--- n alJl 0'2]2 = a”jn
By the determmant of A denoted by Ifil is meant the sum of all the dlfferent signed prod-
ucts of the form (3.5), called terms of '4}, which can be formed from the elements of A; thus,

(3.6) L4l - = 2 Ejle____jn'aljl.asz aan

Where the summation extends over p=n! permutations jijo...fn Of the 1ntegers 1.2,

The determmant of a square matrix of order n is called a determmant of order .

'*“lsmm& S e e sy roamn \ i P TR
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DETERMINANTS OF ORDER TWO AND THREE. From (3.6) we have for n=2 and n=3,

; 7 Gy 49 ) '
P (3.7) = €19 @il F €5 Gy = G440, - Gy50,
P 851 CG29
H
and
Q11 B2 O13 :
(3-8)_ " 821 Ggo Qag = S123 O11000055 + €15p B1y a8y, + €4 o0y Uag
O31 Gg2 Cag + 95y G10ynlyy + €44 G1aloynn + €goy Gy Gy, Gy -
i :
= @31 doplgg —_311‘7‘2_3%2 = 21505 gy
4 O10Gp85 + B1309:05n - Q13095 0gs
I : : = Gy{0p0895 ~ Gag045) ~ Gyo(p Ggg — A29031) + G13(Gpagy - Goollg)
g Ugo  Ggg Opy  Oog U1 Goo
L = O - O T4q
. U0 gy g1 Ogg Gy gy
A Example 1.
. @ |* zl = 144 - 23 = 4—6 = -2 _
: 3 4 _ .
. 2 1 , '
o (b | = 20 - (=13 = 0+3 = 3
! : & ' . (=1} : :
B B T L I T B [
£ c = - :
() ; 10 20 21
. 210 o 7 :
) = 200~ 1-1) ~ 3(10~-12) + 511 -032) = A-1) - 3(-2) + 5(1) = 9
[ . L : : .
H . N . . . . .
2 =3 —4 S D ‘ '
. @ 10 -2f = 200-8) = (-2~} ~ -Dl1-6) - (230} + (-4){1(~5) - 0-0}
- 0 -5 —6| ' '
34

,—20—18+20,.:-18'~ o ‘ Z

- - N o : A See Problem 1.

- PROPERTIES OF DETERMINANTS; Throughout this section, 4 is the square matrix whose determi-
nant |4] is given by (3.6). ST - -

Suppose that every element of the ith row (every element of thejth goiu-rr_m) is zZero. Since
every term of (3.6) contains one element from this row (column}, every term in the sum is Zero
and we have : '

I. If every element of a row (column) ofa square matrix A is zero, then |4l = 0.

Consider the transpose A of 4. Tt can be seen readily that every term of (3.6) can be ob-
tained from 4 by choosing properly the factors in order from the first, second, ... columas. Thus,

II. If A is a square matrix then |A’f = IAI; that is, for everj theorem concerning the rows
of a determinant there ig a corresponding theorem concerning the columns and vice versa.

Denote by B the matrix obtained by multiplying each of the elements of the ith row of 4 by
a scalar £. Since each term in the expansion of |Bl contains one and only one element from its
tth row, that is, one and only one element having % as a facter,_

- | 1] = l‘-’rc;}::{Ejﬁz---fnaljiazjz""anj},,} - klA]
- Thus, - '
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f a determinant 1Al is multiplied by 2 scalar k, the

1. If every element of a TOW {(column) O
t of a row (coiumn) of a determinant IA\ has k as

determinant is multiplied by L: if every elemen
a factor then & may be factored from lAl For example,

ayy kGip Gia a3y G1p Gi3 - ayn @1 %43
@y, kage G2s = k Qpy Qoo fog = gy Gz2 Oog 5} _
12531 kage, aas Ggq Ba3g fas kegs kag, kagy ;

Let B denote the matrix obtained from A by 1nterchangmg its ith and ({+1)st rows. Each
-product in {3.§) of lA‘ is a product of \Bl and vice versa; hence, except possibly for signs,
(3.6) is the expansion of ‘B\ In counting the inversions in subscripts of any term of (3.6) as a
term of lB| i before i+l in the row subscripts is an inversion; thus, each product of (3.6) with
its sign changed is a term of lBl and \Bl =- ]AI ‘Hence,
YV, If B is obta.med from A by interchanging any two adjacent

~ 14l

rows (columns), then |B\ =

As a consequence of Theorem IV, we have

If B is obtained from 4 by interchanging any {wo of its 10WS (colurnns), then ‘Bi = -;Al.

VI If B is obtained from A by carrying its ith row (column) over p Tows (columns) then
B =1 14].
VIL. If two rows (columns) of A are 1dent10a1 then lAi

VSuppose that each element of the first row of A is expressed B3 2 bmomlal '113 = 513 + €3
(j=1,2,....,n). Then : _ c _ -

o 4l - = S €hhdn (by, +013) 223 iy
= 2 €ihhn bajl%%ja--;-“njn,*‘%?jﬁg---;‘ﬂ 015, %25, Oaf - Py
- byy b1s bag e bip | l€11 €12 f18 - Cin
Qg Qoo .0.273 e Gm.' . agi .022 ogg e GQﬂ
- e U ] -
Gpy %2 Ona %nn Gny %2 %n3 Gnn
In general ;

VI If every element of the ith row (column) of 4 is the sum of p terms' then |A]| can
-be expressed as the sum of p determinants. The elements in the ith rows (columns) of these
p determinants are respectively the ﬁrst second o ptn terms of the sums and all other rows

(c olumns) are those of A..

The most useful theorem is ,

IX. If B is obtained from 4 by adding to the elements of its ith row {column) & scalar mul-
tlple of the cortesponding elements of anothet TOW (column) then - lB| . For example
G114 G12 i3 0_11'*]““1:3 ‘d3g9  O13 - 831 0127' aig

| gy Bag ‘ Gag

3214’]5323 - 322 023
“si*k?ss 250 @33 331"‘]‘5_%1 Qg9 +:’ca22 ass"'kazs
' See Problems 2-7.°

Qgq Goo Ugg =

Gay Gz Caz|.

ua.te matrix (3.3) whose determinant ]Al is given
olumn are removed,-the determinant
¢ 4 or of 144] and denocted by |M1;jl.

FIRST M!NORS AND COFACTORS. Let A be the n-sq
by (3.6). When from A the elements of its ith row and jth e
of the remaining (- 1)-square matrix is called a tirst minor o
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More frequently, it is called the minor of aij. The signed minor,- (—I)W1 IM,;j-f is called the
cofactor of a;; and is denoted by dy ' .
: B11 CGi1p O3

L Example2. If 4 = a5 69 apgf,

g1 Oszp d33

IMu! - 90 Gg3 . ’M12| - 821 dyg ' IMml _ 82s Ogp
Qg0 Ggg , Ga; Ggg 831 Ggq
and - .
®qq =,(—1)1*1IM111 = 1M117!- Gig = (“1)1+2IM12I = —,Mml’
i : G1g = (-—1)“3’”13’_ = iyl
o Then (3.8) is ' '
]A, = “11'“{11,‘ - “12'5!12’ + Fislﬂial

8110, + B1ollip  + @130

e In Problem 9, we prove

X. The value of the determinant | 4], where 4 is the matrix of (3.3), is the sum of the prod-
P : - ucts obtained by multiplying each element of 2 ro {column) of IA’ by iis cofactor, i.e.,

(3.9) 4l = @101 + Bip Qjp + «-0 4 g0 = kz-‘ia-;kaik
- - n .
i (3.10) ]A’ Co= aijalj + 02]'7(12]' oo Uyt = kz:lakjdkj_' (4,),=1,2,....n)
;1 o Using Theorem VII, we can prove

_ _ XI. The sum of the products formed by multiplying the eleménts of a row (column) of an
: : n-square matrix A by the corresponding cofactors of another_ tow (column) of _A is zero.

Example 3. If 4 is the matrix of Example 2, we have

3 o 831031 + Gaalgy + oOggllag = |4

L e 612015 + Gy + aglly, = 4]

Cd while ' , . o : '

E and 931021 + Ggollgy + @gelly; = O

' 81l + apllos + dg20lss = 0. .

) ' See Problems 10-11.
i 5 MINORS AND ALGEBRAIC COMPLEMENTS. Consider the m-atrix (3.3). Let iy,4,,...,4,, arranged in

order of magnitude, be m, (1< m <n), of the row indices 1,2,....n and let j,, j,, ooy J BITADNZ-
ed in order of magnitude, be m of the column indices. Let the remaining row and column indi-
ces, arranged in order of magnitude, be respectively It Epngy oens by and Jpiq, fma g oee b . Such
& separation of the row and column indices determines uniquely two matrices

H 3 ) . P s
B E: . R ad: .z a: . “.a [+ I
4 Who T LER A

Jidereees fm | %2k g odn I
LT) "IRCRTS e

(3.11)

......... LI L I
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~and

'a. . a: o s a: .
bpetidnrl  tmrvdmi2 tas+tsln

N . . . . . N a- = P a‘ :
3.12 bnevinredn _ v dner  tmezidmez Yo r2:In

( ' ) ‘Lm4'111'm+'2,.“, ‘Lﬂ --------------------

.. a
| Qi Jm+a, B Jme2 tn:dn

called sub-matrices of A,

The determinant of each of these sub-matrices is called a mih_or of A and the pair of minors

jm*i:jerQ:---rJn

Fader-ondm }
. ~and A

A
'111,1:2,...,1:1”

Lo +ir T s s n

are called complementary minors of 4, each being the complement of the other.

- Example 3. For the 5-square matrix 4 = {“ij]-
) S _] 812 G14 818
1.3 Go1 o3 | 245 '
142»5 = \ 5 \ and ~ ‘Al.s.A = Ggp da3a 085

gy 853 .
1840 24 045

are a pair of complementary minors.

Lei; :

(3-13) V' B - p = il +£2 + l'“ + im +7j_1. +:j2 + e jm
and ' . : - -
(3.1%) L q = Ipertigagt ¥ in +jpe1 timeot g _
The signed minor {-1) AL1 i, i is called the algebraic complement of
'7-' ’ j‘.’ﬂ."’lsj‘f.ll*Ql' ”'J’ﬂ. ¢ E :
m-ber‘mJ-Q!"_ ’ 1’n o
Jm*-l:im*zv ko N . i
and (- 1) A, o is called the algebraic complement of
1 1{m+1' m—bﬂir"!_"n - L .
| daeeeerdn l —
1:1,_1:2,...,1;,,,,
T- 1,33 -
“: —] A 5 ] is ‘the algebraic complement

21Bi1ed
Exampleé For the minors of Example3, (- 1) |

|A1 and (- 1)1+3+4+2+4+5‘ A1 \ = —l AL ] ;.s the algebraxc complement of
l Ag'_5]. Note that the sién g1ven to t;he two complementary minors is the same., Is this

always true? .

' i '
When m= 1 (3 iy becomes At [a.bm] and l’{‘ﬁ\ = @y, an element of 4. The
Jordar-eeain
compiementa:y minor | 44,454, | 1S ‘ M, 4 ‘ in the notation of the section above, and the

algebraic eomplement is the cofactor dy 4 - _

A minor of A, whose diagonal elements are also dla.gonal elements of 4, is called a principal
minor of A. The complement of & principal minor of A is also a prmcxpal minor of 4; the alge-
braie complement of a principal minor is its complement

R e
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Example3. For the 5-square matrix A = [ﬂiﬂ-

Qoo 494 Ozg

} 1.3 I 211 13

e

[ 24,5 I _

a5

and iz 844 T4s

831 Gg3
852 054 G55
i ' are a pair of complementary principal minors of A. What is the algebraic complement of each ?

The terms minor. complementary minor, algebraic complement, and principal minor as de-
fired above for a square matrix A will also be used without change in connection with 4],

. See Problems 12-13.

SOLVED PROBLEMS

2 3
: o= 244 - 3(-1) = 11
L (a) f | 41 (-1)
102 .
: 45 I35 3 4 - . __
) |3 4 5] = (l)l I - Ul | 2|‘ I = (1)(4T~56) — 0 + 2(3-6 — 4:5)
' 6 7 57 56 '
56 7 , = 22 -4 =--_§
. 10 6 o g =
(¢) {3 4 15[ "= 1(4-21 - 15'6) + 6(3-6 —4-5) = —18
s 8 21] ' -
100 , , ]
(& {23 5] = 1(33-51) = 4
| 41 3

2. Adding to the elements of the first column the corresponding elemen_ts of the other cblumns, _

-4 1 1 1 1y 6 1 1 1 1

1 -4 1 1 1 04 1 1 1

1 1t -4 1 1} = j0 1-4 1 1] = b
1 1 1 -4 1 0 1 1 -4 1}

1 0 1 1 1 -4

1 1 1 -4

by Theorem I.

3. Adding the second column to the third, removing the. common faétor from this third éolu:ﬁn, and
using Theorem VNI ' -

) 11 a b+e 1 a a+b+c 1l a 1.
| .. 1 5 ct+a] = I b atb+e = {a+b+e)|l b 1 = 0
1 ¢ a+b 1 ¢ a+b+e . 1e1

4. Adding to the third row the first and second rows, then removing the common factor 2: subtracting
the second row from the third; subtracting the third row from the first, subtracting the first row

i : o

. from the. second; finally carrying the third row over the other rows
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ay+by oo+by agtbs o+ by ag+by - ag+bs. ‘ ay+by agt by agt by
bitc:s bgtey batea = 2t bty bo+eg ba+ g = 9tby+cy botcg bgtes
ci+ @y Cot+8p Cgtag aq+byiteg ogtbates ag+bgteal ' ay Go an
by bs by by by bg a, G ag
= 9]bi+cy boteg bateg = 2eq cg €3 = 215y by by
aq as g “lag ap ag co ¢y Cg C3
_ _ 4 o 1
.. Without expanding, show that il = 1@ a 1] = —(ar- a)(aa- aa) (@~ @),
=~ g5 as 1
Subtract the second row from the first; then
af—ag gy—a; 0 ai+ap 1 o|
lal = _ag a1 = (3-89 as ag 1| by Theorem I
ag Tiog 1 - : ag Gqg 1 ’

and a,—a. is & factor of ]A‘ Similarly. 6o—aq 8nd ag—a, are factors. Now ]A‘ is of order three inthe
letters; hence, : o o ' :

(i) R SNV . k(a1~a2>(a2~as)(as—ag

The product of the diagona.l elements. aia:2 is a term of ]A! and, from (i), the term is —'kﬂj_ag Thus,
k=—1 and !4} = —(a,—asXap—aglaz—a1). Note that |Al vamshes if’ and only if two of the ay, Gy, og are
equ’a.l. -

6. Prove: If A is skew symmetric and of odd order 2p- 1, then IA‘

; Since 4 is skew-symmetric, Az -4 then A] l—A‘ (- 1)215 1|A| —|A|. Buf. by Theorem K,
1/11 IAI hence EA[-—‘A] and iA]—o ’

1. Prove: If Ais Hermman then |Al isa real number h -

Since A _is Herms.tjla.n. A=4, and IA‘ |A | = ‘A\ by Theorem n. But if
l!il l' = 2 € Jnaihagjz”'anjn = o+t bi

then - _ IE\ -

%Ejifz---jnaiﬁEQjQ"'anjn = a-bi

Now L-ﬂ = ‘Al "requires b = 0; hence, i/il i_s'a-r_eal number.

7 ’ : 12
8. For the matrix A =12 3
: : i 2

04y = (=1)7+2 g g‘ = 2, Oap = (—1)++2 3 g\ = —9 g = (~1)t+3 ? 3 -1
Qgy = (=12** g 2‘ = 2, Qoo = (—1)2+2i :i = —1, Boa = (_1)2+3 13 -0
- 1 23 - ' { 3] 12
Oas = {~1 841 \ = =5, Onn = (= 842 \ = 4, Qe = (=1)2%3 . -
= g s SNV P tg = (=D, 1
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Note tﬁat the signs given to the minors of the elements in forming the cofactors follow the pattem
+ o= 4+ ' '
— 4
+ - ¢+

where each sign occupiés the same position in the display as the element, whose cofactor is required, oc-
cupies in A4, Write the display of signs for 2 5-square matrix. .

9, Prcve: The value ofthe determinant. IAI of an n-square matrix 4 is the sum of the products obtained

by multiplying each element of a row (column) of A by its cofactor.

We shall prove this for a row, The terms of (3.6) having a,, as a factor are
@  su € i g apan

Now = Jodarin = Ejzjs-'-jn sf.nce'in & permutation 1.7, %, ...J;, the 1 1s in natural order., Then {a) may
be written as

(b) | a1 % Shoia-- %% - iy

where the summation extends over the o= (n—lj! permutations qf the integers 2.3, ....n, and hence, as

fg9 Og3 ... dgp
‘ G5 a a
32 Qg3 ... gy
(e) ' ' a1 : : = ,anan! _
nz Opg ... Gpy

e

/" “iConsider the matrix B obtained from A by moving its sth column over the first s—1columas. By Theorem

;f‘ vi.,’ IBl = (—1)3"_1|A |. Moreover, the element standing in the first row and first column of B is 245 and the

_minor of a1 in B is precisely the minor -fM,_sl of ai5 in 4. By the argument leading to {c), the terms of
ay5 -M:.sl are all the terms of ’B l having a;5 as a factor and, thus, all the terms of (—--1)5“i |A| having aig as -
a factor. Then the terms of a;5{(~1)"" 1l 4/} are all the terms of |4| having a5 88 8 factor. Thus, -

(3.15) |A| = '“11{(“‘1)1*1|M11R + “12{(“1)1+2'|M1*2|}- .
oo 4 013[('41)1+32M13I} Foeee F am!(—il)#nlu1n|} _ ‘ N
= ap1llyg + 8405 .""- et gy

since (,—l)f';-"L = (-1)3_+%. We have (3.9) with i = 1. We shall call {3.15) the expansion or,|A| along its first
Tow. - ’ -

. The expansion of |A, albng its rth row (that is, (3.9) for ;=
ments. Let B be the matrix obtaired from 4 by moving its rth row
umn over the first s—1 columns. Then

ry is obtained by repeating the above argu-
over the first r—1 rows and then its sth col-

L B Y= el VI Bt ot Y

The element standing In the first row and the first column of B is 8, 8nd the mihor of g

rs In B is precisely
the minor of a,g in'A. Thus, the terms of S

arsl(=1)" "] Mfs] b

are gll the terms of |A [ having'a,; as & factor. Then

7 : k ) 7 n
|A| k2=1 a-rk{(_'l)r'l' !M-rkj} k= , k%ira‘rka'rk_

and we have {3.8) for i=r.
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10. When aj; is the cofactor of a;; in the n-square matrix A = [a;;], show that

11. Evaluate: (a) |A| = |3 04 () 141 =] 12 3 (ey VA| = |42 38 65
_ 2-51 ~35 -4 | 56 47 83
R 1438 . 2 3 -4 '
by 14l = ]-215 (dy 14] = |5-6 3
~ ' ~324 | ' 4 2-3
(a) TExpanding’ along the second column (see Theorem X)
,, ooz} . . . ' -
- tat . = |3 04| = a1501p + 8p0p * apllay = 0-0p + 0-Qo + (~5)%ap
R R R S o S
e & -.: :‘ -. ,_,,-- ,_H“' _ a5z 1.2- o : — L _
B R RE Tt 134 - 54-8) = -10

DETERMINANT OF A SQUARE MATRIX

O3, Grg «ov G1,f-1 ky 81,5410 Bin

A1 Qg2 - G2 j-1 ko g, 441+ Gon

Gy k1a1j + kzazj + et knanj ’
Gnt Gng -« Op f-1 kr O, j+1 i
.This relation follows from (3.19) by replacing aqj with k; . Ggj with ko, anj with kn. In making these
replacements none of the cofactors & 3 (IQj. d-nj appearing is affected since none contains an element

from the j th column of 4.
_By Theorem VII, the determinant in (i} is 0 when ky=aps, (r=1.2,...,m and s # 7). By Theorems VI,
and VI, the determinant in (i) is JAiwhen k = api+kops, (r=12.....n and s#j). '
. Write the eguality similar to (i) obtained from (3.%) when the glements of the ith row of A are replaced
by kl-kQ- ..‘.,kﬁ, :

1 02 | 34 5 28 25 38

(by Subtracting’ 'tWice-thé second column fr.d-m.the third (s‘ega Theorem 1X)

- 148} |1 48-24f | 140

-3241 [-3 2 ¢—2.2] -320 . Ak

= -B1e) = L42

() jubtracting three times the second row from the first and adding twiice'tlie_s;econd row to the third

EE 1 34 5] | 3-31) 4=3( 5-3®)] |jo-2-¢] 34
|2 s -4 |-z 54202 ~4+23)] 1079 2 A
= —(-4+36) = -32

(d} Subtracting the first column from the second and then proceeding as in (¢)

9 34 12 1-4 g—21) 1 —4%41)

4] = ls-6 3| = {5-11 3] = |[5-2-11) —11 3+4(-1D)
B 4 2-3 4 —2-3]  la-2-2) -2 -3+4(-2)
o 1 o}
7 —d ]
: = |27 -11 -4t} = 123 _‘ﬁ‘ _31
- _ o 8§ -2 -i1 ' '
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(¢} Factoring 14 from the first column.. then using TheoremIX {o reduce the elements in the remaining columns

. 28 25 38 2 25 38] - 2 25-12(2) 38 - 20(2)
fa] - la2 38 65| = 14]3 38 65] - 14]3 33-123) 65~ 2003)
56 47 83] 4 47 83 4 47-~12(4) 83 — 20(4)
2 1-2 o 10| 19
= 14f3 2 5| = 14{-1 29| = —14| 61’ = —1&4(~1-54) = 770
4-1 2 6-11 A

12. Show that p and g, given by (3.13) and (3.14), are either both even or both odd.

Since each row ( column} index is found in e1ther p or g but never in both

P+g = (L42+w4n) + (1+2+--+n) = 22n(n+1} :_n(n+1)

Now p+g¢ is even {elther n oor n+1 is even), hence, p and g are either both even ér both odd. Thus
{(~1Y = (- l)q and only one need be computed

1 2 3 4 5]
- A 6 7 8 910 - ._ : -
13. For the matrix 4 = {a.] = [11 12 13 14 15|, the algebraic complement of fAz':3| is
S 16 17 18 19 207 | ' ‘
121 22 .23 24 25}

_ 1 35
PPl - e 18 20 (see Problem12)
' 21 23 25 _
and the algebralc complement of |Ai i’sl is _|A2 | |1; lil

SUPPLEMENTARY PROBLEMS

14, Show that the permutation 12534 of the integers 1. 2 -3,4,5 is even, 24135 is odd, 41532 is even, 53142 is
odd. and 52314 is even,

15. List the complete set of permutations of 1, 92.3.4, taken together; show that half are even and half a.ré odd.

16. Let the elements of the diagonal of a 5-square matrix 4 be g, b.c.d.e. Show, using (3.6), that when 4 is
diagonal, upper triangular, or lowser triangular then A | = abede,

17. Given 4 = [; 2] and B = [,? g} show that AB 4 BA # AB # AB' £ AB' £ BA' ‘but that the determinant of

each product is 4.

18. Evaluate, as in Proﬁlem 1.
2-11 ' 22 -2 : 0 23
(a) 3 24| = 27 by |12 3} = 4. {(¢) |-2 04] =0
f-1 03 , 23 41 7 -3-40
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13.

20.

21.

2.

. 23.

24.

Z5.

21.

28.

29,

30.

DETERMINANT OF A SQUARE MATRIX [CHAP. 3

1210
23 97 = —4.
4511

{b) Denote by ‘B \ the determinant obtained from iA | by multiplying the elements of its second coclumn by 5.
Evaluate |B | to verify Theorem Ii¥.

(a) Evaluate !Al =

(c) Denote by l C ‘ the determinant obtzined from lfI l by interchanging its first and third columns. Evaluate
| €1 to verify Theorem V.

127 123

235]+ 1234},

4358 4573

thus verifying Theorem VIH.

(d) Show that |4 |

] 12 7

(¢} Obtain from |4 | the determinant D} = |23 3
451

column from the corresponding elements of the third column. Evaluate lD) to verify Theorem X,

b.y subtractin_g three times the elements of fhe first

{(fy In ‘A ] subtract twice the first row from the second and four times the first row from the thll’d Evaluate
the resulting determinant. :

& In ]A! multiply the first column by three and from it subtract the third ¢olumn. Evaluate to show that
| 4] has been tripled. Compare with (e)}. Do not confuse () and {g).

If A is an n-square ma.trix and £ is a scalar, use (3.6) f.'o_ show that |kA ] = kn‘l A | 7

Prove: (a) If lAI:A:‘i then IZIJ:IZ’I )
¢b) If 4 is skew-Hermitian, then M i is either real or is a pure imaginary number.

(8} Count the number df interchanges of -adja.ceht rows (columins) hecessa._ry to obtain B from 4 in Theorem ¥

and thus prove the theorem,
(b) Same, for _Theorem V1.

Prove Theorem ‘VII Hmt Interchange the identical rows and use ’I‘heorem V
Prove: If a.ny two Tows (columns) of B square matrix A are proportmnal then [A I = 0

Use Theorg'r’ns VIIL 10, and VII to prove Theorem IX.

Evaluate the determinants. of Problem 18 as in Problem 11. -

_ ab00 L : o : -
Use (3.6) to evaluate |A | = ; 30? : then check that 'A | - {@ 3 - 2}{[ Thus, if 4 = diag(4y; 4,), where
00gh ’ '
Ay AQ are 2-square matrices, IA | [All . | Agl.
-1/3 ~2/3 -2/3] .

Show thet the cofactor of each element-of | 2/3° 1/3 —2/31 is that element.

' 2/3 -2/3 1/3 - ' -

. -4 -3 -3
Show that the cofactor of an element of any row of 1 0 1} is the correspending element of the same
4 43 : ’

numbered column.

Prove: (a) If 4 is symmetric then a’fd = ap when i #j.

(%) IfA is n-square a.nd skew- symmetnc then a,ﬂ = (= 1) 1 jf; when i.#47.

8
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31. For the matrix 4 of Problem §;
{a) show that IA l =1
« Cyg gy Ogy
(b} form the matrix € = | Oy Oos Oge| 2nd show that AC=1.
Qgg Oos Oag , K o
(¢} explain why the resulf In (b) is known as soon as (z) is known.

be u? a2
32. Multiply the columns of fA | = |52 ca b%] respectively by a.%,c; remove the common factor from each of
€% ¢2 ab '
. : jbe ab en
the rows to show that |4 = |ab ca be
ca be ab
agq 1 bed|. ad aé_a-l
. . B2 b 1 ecd B3 62 b 1 . '
- 33. Without evaluating show that ¢ 1 abd) ® e o2 o L= {a-b)a—c)a—d)b—~c)}b-dXc—-d)
d2 d 1 abc d® 42 4 ] ' '
011...1 611 11
. 101 101 11
) 0... 1 —~
34. Show thai the n-square determinant |A' = H 1 =-{n=1) 10 .11 = (—l)n 1(n—I).
............ l 1 1 - 0 1 . .
111...0 111 11
n-1 n-2
a1 [ - a, 1
an—-i Hn-2 a2‘1 .
2 2 [ R B B
35. Prove: E | = las~a5)ar~a9) ... (a1 at(az —ag)az ~ ag) ... (ag—ap)} oo {ay-q — @y}
n-1 n-2 - ' : '
a, 4, a,l
n31+b1_ n42+b2 naa-}-bs ) a4 aé aq

36. Without expanding, show that '"b1+c1 nbateg nbg+es] = (M+1)P—n+1)| by by byl.

nt:1+'al ﬂ92+02_503+63 . ’ Ci Cz Cq

) i 0 x-a =x-b% . 7
37. Without expanding, show that the equation | x+a 0 x—cl=0 has 0 as a toot.
x+h xtec 0 -

{ 38. Prove | -+v-0.n rerssnesrssas = I?nul(na+b)_

--------------------




Chapter

Evaluation of Determinants

PROCEDURES FOR EVALUATING detefminants, of orders two and three are found in Chapter3. In
Problem 11 of that chapter, two uses of Theorem IX were illustrated: (a) to obtain an element 1

or —1 if the given determinant contdins no such element, (b) to teplace an element of a given
determmant with 0.

For determinants of higher orders, the general procedure is to replace, by repeated use of
Theorem IX, Chapter3, the given determinant IA! by. a.nother |B| lb I having the property
that all elements, except one, in some row (column) are zero, If bpq 1s this non-zero element
and B},,q is its cofactor,

1A I = !B I = qu . Bﬁq = (_1)‘}‘”‘?6#(’ . mi:;or of bpq )

Then the minor of bﬁq is treated in smula.r fashion and the process is  continued untll a determ1~
nant of order two or three is obtained.

Examplel . _ : _ -
2 3-24] 2+423) 3+2(-2) ~2+21) 4+%(2) §8-10 8
3-2 12| | 3 . -2 1’ 2 | j3-21 2
302 34f © [3-3(3) 2-3(-2)  3-31) 4-3D|  [=6 80-2
-2 4 05 -z 4 0 5 -2 40 5
7 8-1 8 8+8(-1) —1 8+8(-1) 0 -1 0
_ o= (~1**7}-6 8-2] = -|-6+8(8) .. 8 -2+8(8) |. = ~|58 8 62
_ L -2 4 5 ~2+8(4) 4 . 5+8(4) 130 4 37
e _(_1)14.2(_'1)'58 62|, - 286 L

30 37 : S
_See Problems 1-3

For determinants having elements of the-type in Example 2 below, the following variatio_n

may be used: divide the first row by one of its non-zero elements and proceed to obtain zero
elements in a row or column.

Example 2. ] 7 _

0.921 0.185 0.476 0.614 ] 1 0.201 0.517 0.667 |1 0.201 0.517 0.667
0.782 0.157 0.527 0.138| 0.2 | 0782 0157 0.527 0138y o |0 0  0.123 —0.384
0.872 0.484 0.637 0.799}  ~ |0.872 0.484¢ 0.637 0.799 |0 0.309 0.196 0.217
0.312 0.555 0.841 0.448 0.312 0.555 0.841 0.448 10 0.452 0.680 0.240

‘ | ] 0 0123 —0.384 0. —0320 1
= 0.921[0.309 0.196 0.217| = 0.921(-0.384)/0.308 0.196 0.217
0.492 0.680 0.240 _ 0.492 0.680 0.240

0 o 1 =

_ 0.309 0.
= 0.921(—0.384)]|0.309 0.265 0.217| = 0.921(-0.334)| 265

o 0.402 0.757

0.452 0.757 0.240 :

= 0.921(~0.384)(0.104) = ~0.037 -

32
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THE LAPLACE EXPANSIGN The expansion of a determmant IA} of order r along a row (column) is

2 speclal case of the Laplace expansion. Instead of selecting one row of |A| let m rows num- -

bered iy, iy, ..., 4, , when arranged in order of magnitude, be selected. From these m rows
_ n(n—l)...{n-m+1) . {71'{2:"'-3"17;
o = e minors Ah i, ..

can he formed by making all possmle selections of m columns from the n columns,

Using these
minors and their algebraic complements, we have the Laplace expansion

J1 Jos eos Jm

Ajmaz- Imsos s
1,1,12, e, im

tritatpig - iy

(4.1) 4] = 3 (-1’

where s = ;‘1+52+...+;;m S T A

-+ +Jn and the summation extends overthe o selections of the
column indices taken m at a time,

Example 3.

2 3-24¢
3-2 12§ .
Evaluate IA I | 3 g g4 Usingminors of the first two rows.
-2 4 05
From (4. 1)._
' 1424142 1 2 14241487 1,3 2,4
IA! = (=1 ! IA + (-1) [A1,2|"A:3,4 '

1+2+144 1,
IA:L

D P e O Vi N ey

I (—1)“2*2*4|Af3| |Aa4] + - 1)“2"3““?4] | 432
- - ‘ H ! - Iz —2H2 4!_-+.|_2 4Hz'3|
| 3 -3 ite sl 7 s 2|'fa o]
R - e B
-2 8] ~ -2 2| =2 o { -2 4
= (1318 - (8- —6) + (~8)(-12) + (-1X23) — (146) + (-8X16)
= _286 '

' o : : ' - See Probiems 4-8 -
DETERMINANT OF A PRODUCT. If 4 and B are n-square matrices, then

(42) - laBl < ]4]-i8]

See Problem 7

EXPANSION ALONG THE FIRST ROW AND COLUMN If 4= [G'»;] is n- square then

_ _ . n oon B £
(4.3) | 4] = ane, - 3§ 35300ty
. . - =2 J=2
where o, is the cofactor of ay; and ozlj is the algebraic complement of the minor ::fl- Zif l of 4.
11 ©1i7

DERIVATIVE OF A DETERMINANT. Let the n- square matrix 4

= [a;;] heve as elements differen-
tiable functions of a variable x. Then .
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I. The derivative, IAI of \A] with respect to z is the sum of n determinants obtained .‘
by replacing in all poss1ble ways the elements of one row (column) of ‘AI by thelr derivatives %

with respect to «.

Example 4, ;é.
e x4l 3 2 1 0] |x?x+1 3 22 x+1 3 4
_-3% 1 2x-1 % = 1 2x—1 ]+ Jo 2 3% + |1 22-15°
0 x -2 o x -201 1o = -2 o 1 0 g
' = 5+ 4 — 122 - 62°
- See Problem 8
"SOLVED PROBLEMS
23-2 4 g .83 . -2 4 2 3-24
74 -310} T-2(2) 4-2(3) —3 - 2(— 2) 10 =2(4) 3-2 12 :
. = = N . = - S E I
Llgz s e 7| 3 2 3 4 3 g g4 T TS xample 1)
-2 4 05,'?- -2 4 0 5 -2 4 05
There are, cf course, many other ws.ys of obtaining an element +1 or ~1; for examnle ‘subtract the ﬁrst
column from the second, the fourth column from the second, the first row from the second ete.
101 2 10<141 2-%D 100 0
o (23 2-21 _ |23 2%2 —2-uA| . |23 4 -6 -~
24 2.1 274 2+2 1=22| 2 4 4 -3
31 5-31 31 5+3 -3-2(3) 13 18-9
34 6|  |3-24) 4-20) —6-20-3] - |-5 -4 0 3
= 4 4 -3 = 4 4 -3 = 4 4 -3
' 18 --9 1=3(4) 8-3(4) ~8-3(-t -11 -4 0
-5 -4 ' '
= 3 = -2
22 .

0 1+i' 1+ 2
1~1 0 2-3i].
1 — 21, 243 0

3. Evaluate IA‘

Multiply the second mw by 1+i and the third row by 1+2i; then

0 1+ ‘1+% 0 1+ 1+ 0 1+ 142

a+iy(r+2ay|d] = (-1+3pld) = 12 @ . 5-ip = {2 O 5-i | = (0 8-14i 25-5i

5 ~4+T8 0]~ 1 -4+Ti -10+2i 1 -4+7 -10+2i

_ I i 1+2;. - _§ + 18
8-14i 25-5i
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4. Derive the Laplacé expansion of IAI = Iai,ji of order n, using minors of order m<n.
: fder o Im
Consider the m-square minor A g, .. ig 1 Of |4] in which the row and column indices are arranged in
order of magnitude. Now by Iy -1 interchanges of adjacent rows of IA E the row numbered i1 can be brought
" Into the first row. by ip— 92 interchanges of sdjacent rows the row numbered i» can be brought into the second
TOW. ..., by ip —m interchanges of adjacent rows the row numbered tn can be brought into the mth row. Thus,
affer (i1 — 13+ (lo—2) + e 4 (ig =m} = i, g o —$m(m+1) interchanges of adjacent rows the rows
numbered iy, iy, ....i, occcupy the position of the first m rows. Similarly. after j, + j, + ot~ dm{m+1)
interchanges of adfacent columns, the columns numbered i12.....Jn Occupy the position of the first m col-
umns. As & result of the interchanges of adjacent rows and adjacent columns, the minor selected above oe-
cupies the upper left corner and its complement oceupies the lower right corner of the determinant; moreover,

!AI has changed sign o = Iy 4 g+ vee 4 im ¥ J1 b fag+ e+ im=m(m+1}. times which is equivalent o
§ = iy +ig+ “rtim +ji+ ok e+, changes. Thus - .

Ao e Jm jm+1-jm4l2v o dn . s ‘
Ail-f‘.?v-”-{'m M it tg g iy Yields mi( —m)! terms of (~1) ,AP or
of Jkoodn] | Jmevimem oids -
(a) (=1} Ain-fu- cotm | Ty iggn, iy YieldS mlmn—m)! terms of [A |
e - I -
Let iy, iz ....in be held fixed. From these rows 0 = =D (1-mil) = ik different m-square

Ir2...m m!(n—m)l
minors may be selected._ Each of these minors when multiplied by its algebraie complement yields ml{n—m)'
terms of [4]. Since. by their formation, there are no duplicate terms of | A| among these products,

B i dn

" jﬂH-l! jm-r-;z' ""jﬂ‘
A :

tmittmen ..,y

41 = 31’4
t4] 36
‘Where s = iy 4 fp¥ e tin +j14 ]+ - ¥y and the summation extends over the O different selections
i1fas ... jy of the column indices. ' _

, - 11 2 3 4 _
- 121 2.1 : o . )
& Evaluate ,A! 1o g 1 1| Using minors of the first two columns.
3412

fA I --_(_1)14-2_;-1*-2

It

12 21 Dsatisn
. + (=
3 4’ l1 1] =1

12 '1 1 1444142
N + (=
2 ll 12 =1

s ol ]

(=3)(1) + (=241} — (5D
0 L ‘

6. If A, B, and C are r-5quare matrices, prove

|P|

291 - 14l.18]

From the first » rows of |PI only one non-zero n-square minor, IA} can be formed. Its algebraic com-
vlement is | B]. Hence, by the Laplace expansion, |P| = [4].|B]

: 7. Prove 4B - l4].1B],

. oo ’ n )
P ‘ Buppose 4 = [aij} and B = [b,;j} are n-square. Let C = [Cﬂj] = AB 80 that oy = %“ﬂkbkj- From
s Problem g, ' : '
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814 G12 ain 0 0 0
Gnq Goo Gop, 0 0 0
@gy Gpz v Gy 0 0 0
Pl - | = |al-l8]
""'1 0 b 0 b11 b12 - b]_n . . .
o -1 0 by oo bon
0 1] + =1 bpy bno bnn
To the (r +1)st column of ‘Pl add by, times the first column, by times the second column, by, times
~ the nth column; we have '
@y G1p v B1p €12 O ¢ 0
Gp1 Gg9 Gon €23 0 0
| p l Gn1 O T 8 my O 0
_ - "-'1 0 0 0 b12 b blﬂ.
0 -1 ] 0 bao +bon
- 0o o < =1 0 gy v bpg
Next, to the (n + 2)nd column of !P"add by ‘times the first column, b,y times the second column, ..., byo

times the nth column. We have

Gyq O1p Gip €13 €12 0 = 0
Ggy Gpg e Gop €1 €g2 O e 0
‘P l — fn1  Gno Gnn - Ent Cp2 O 0

o -1 0 0 0 0 big bin

0 =1 0 0 .0 bag -+ boy

0 0 1 0 0 bps ban

. Continuing this process, we obtain finally |P| = . . From the last n rows of ‘Pl only one non-
_ I, . :

Zero n-squate minor, l-Ini = {~1)" can be formed. Its algebraic complement is (_1)1+2+»--+n+m+1)+---+2nicl

- (—pMetiel Hence. lp| = (—1)“'(-1)""?"*1’|Cl - lcl ana lcl = |48l = |4l -18i.

G142 Gist- ‘ - _ _
8. Let A =|ap, g g} Where ay; = ay(x), (i, j=1,2.3), are differentiable functions of x. Then
31 O3 Ggaf

4] = Gamoge + G000 + GiGmGxn — Ou0mGm - Gulxnlsm < G100y

. , d T
and, denoting- d—x.a-- by G4

v
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d ’ ! , . . . . . _
Tx 1Al = 011020835 + 825811835 + 3501185 + @ipg8y + Ghglip8a + 231212023
- ra ’ rd - rd ’ rd
t Oig8398p1 + Ggoliplpy + 89101383, — Gi0p0up — Gaglylgy — 35011809
Ve 2 » P -, -
= Gi20218g3 — Og181p0Gmg — O30198y — Gigloalny) — Gopligly, — 031831980

! ' 4 4 I ’ N t 4 s -
= 8130y + C1plig + @1y + Gp1 oy + B2 Uno + Apqllog + gy Uy + Ggplgs + G330z

Evalué.te:

r e rd N
11 Oy 833 213 G1p 13 %11 @1 B1g
N . ’ )
= Go1 Op9 Gag| + 821 Ogg Gog| 4+ |49y dop dog
- ’ -
{831 B8gg Gag B33 239 Ggg @31 Gzg dgg

by Problem 10, Chapter 3.

SUPPLEMENTARY PROBLEMS

9. ,
35172 I -2 3 -4
2411 2 -1 ¢4 -3
. = fog - . = —
(a)--zoon_ 156 @ 1, 5 _4 5 304
- 1134 3-4 5 6
1118 1 -2 3 -2 <2
416 12-1.1 3 2
& s129 - #® @ (11 2 1 1] = us
2421 3 N 5

-2 2 2 -2

16. If 4 is n-square, show that ITA 1 is _fea.l and non-negative.

11. Evaluate the dei:erminant of Problem 9(a) using minors from the first two rows; also using minors from the
first two columas. :

r .
. ' by b
12. (@) Let A4 = ala'{] and3=[1 2

—y d4 bQ' bl

Use |AB! = |41 B] to show that (af+a§)(bi+b§ - (@1 by—anby)” + (apby+asbyy . -

_ [ 6 4iay a,+ia bitiby bo+ib
- (b) Let A4 = | “tTT0 %2TI%el o4 B oo | CrtiPs Ootibel
i ’ —02+ fﬂ4_ 01'--3.03 —b2+ ib4 bl—- lbﬁ
< y 2 2 2 2 2 ‘2 2 -
: Use |AB| = |4]|:|B| to express (61+ 85 +ag+a,) (by + b2+b3+bi) as a sum of four squares.
000D 1 _
000CO0Z1
000321 . . .
13. Evaluate 004321 using minors from the first three rows.  das. —720
054321
6 54321
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f1 2121
00111 _
_14. Evaluate 11 1 0 0 0| using minors from the first two columas. Ans. 2
00112
tzz211
15. If A, Ag, ..., A5 are square matrices, use-the Laplace expansion o prove
| diag(ds, Ag ..y A | = {Aglidgl e | 4]
G1 Gg Gy Oy
by by bg ba ' : - .
16. Expand using minors of the first two rows and show that
31 ay a:? 273 . ’
gy Op| 03 4 81 G3f |G 04 8y 4] 102 Gg 0
bl bg ba b4 bl ba 62 _b4 bl bd,, bQ bs

' g ' 0 A :
17.-Use the Laplace expansion to show that the n-square determinant B C I where 0 is k-square, i3 zero when

k> kn.
‘ 18.7'In_ 14] = a1104q + 619040 + G19043 + 03404 expand each of the cofactors Oyq, Uy Ogy along its first col-
umn to show = - . ' : - B '
= - . . N - & 4 o i1
' ' Al = auty - 2 X a40150;
: S ' TR 813 Bgfl v, '
where (3 is the algebraic complement of the minor of |A]. -
- 7 o eiy 8jf Yo

19. 1t 0j; denotes the cofactor of a,;j ig_the n-square matrix 4 = {aj; ] show that the bordgféd determinant

|o11 819 = @inpa) - 0 0 91 ga et
{821 @gg - Gom P2 At o G1p vt B . o om L
 isersessirseenceeriesand - = reerereanseevaesarinn o= S 3 ng o
T A T o ™ T e j=1P1,9‘] if
leni Gpp -t Gun Pn Pn Sn1 Ono -ttt Snn
— g g2 = an O
~ Hint. Use (4.3).
20. For each of the determinants |4|. find the derivative. |
. s " x 1 ' S #%-1 x-1 1
Ll & 1T 2 - : a . & 8 o
(8} (5) | 2x+1 = ¢y | = = 2%+ 5
2% 3x+1} " : ' o
0 3x-2 ="+11]- =+l % x

dns. (@) 2%+ 9x2— 82°, (b) 1 - 62 + 21" + 125° — 1527, (6) 625 = 5x* — 28%° + 927 + 20% — 2

2k Prove: If 4 and B are reel n-square matrices with 4 non-singular and if ¥ = 4+iB is Hermitian, then
2 _ _
2t = 14l 1+ BY




Chapter 5

Equivalence

THE RANK OF A MATRIX. A non-zero matrix 4 is said to have rank r if at least one of its r-square
minors is different from zero while every (r+l1)-square minor, if any, is zero. A zero matrix is
said to have rank 0.

- L ' 1
Example 1. The rank of 4 = is r=2 since g

:l = ~1 # 0 while |A|=d.

L3 BY
A W B
=3 o

See Problem 1.

An n-square matrix A is called non-singular if its rank r=n, that is, if IA[ # 0. Otherwise,
4 is called singular. The matrix of Example 1 is singular. '

From [4B| = [ A[-| B| follows

I. The product of two or more non-singular n-square matrices is non-singular; the prod—
uct of two or more n-square matrices is singular if at least one of the matrices is singular,

ELEMENTARY TRANSFORMATIONS. The following operations, callerd'elemeﬂtary transformations,
on a matrix do not change either its order or its rank: =~~~ S

(D) The interchange of the #th and jth rows, dei;ot_ed by Hyi

' . The interchange of the ith and jth columns, denoted by Ki.j-

{2) The mﬁltip‘lication of every elemenrt of the ith row by-a. non-zero scalar k, denoted by H(ky;
~ The multiplication of every element of the ith coltimn by & non-zero scalar k, denoted by Ki(k).
. (3) 'Ijlflé'adiiiiioh_tb' the elefments '6_'ff the ith row‘ of k, _a;sc:‘é.l_a,r, times. the dorresponding elements
- of the jth row, denoted by Hij(kys I : ' o
" The addition to the elements of the i{th column of k, a scalar, times the corresponding ele-
ments of the jth column, denoted by K,;j(k). : - '

The transformations H are called elementary row transformations; the transformations K are
‘called elementary column transformations. CORE ' - , :

The elementary transformations, being precisely those perfé';med on the rows (e olumns) of 8
determinant, need no elaboration. 1t is clear that an elementary tr'ansforma;tion cannot alter the

order of a matrix. . In Problem2, it is shown that an elementary transformation does not alter its
rank, - ' '

THE INVERSE OF AN ELEMENTARY TRANSFORMATION. The inverse of an elementary transforma-
tion is an operation which undoes the effect of the elementary transformation: that is, after 4
_has been subjected to one of the elementary transformations and then the resulting matrix has
been subjected to the inverse of that eleme ntary transformation, the final result is the matrix 4.

39
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: 1 23]
Example2. Let 4 = 4 5 6
' 7889

-1 b
=R ]
coc;r.-:|

AT

The effect of the elementary row transformation H,,(—2) is to produce B = [

The effect of the elementafy row transformation Hgq(+2) on B is to produce A agsin.
Thug, Hpy(=2) and Ho4(+2) are inverse elementary row transformations.

The inverse elementary transformations are:

ay B o= By B Iy &
@y B = Bk Kk = Ki1/k)
@) Hyky = Hj-b Kighy = Kigt=h)
We have

H The inverse of an elementary transformatmn is an elementary transformatmn of the
same type.

EQUIVALENT MA’I‘RICES Two matnces A and B are called equivalent A"‘B if one can be obtained
from the other by a sequence of elementary transformations.

Equlvalent matnces have the same order e.nd the same rank

Examplea Applying in turn the elements.ry transformatlons &1( 2) Hm(n Hﬂ(—n

. ‘ -1 4 1 2 -1 4
B A = _5‘ -3 m 0 0 5 -~3F = R
5 -3] jo.o 0 '

o

-1

Sinee all 3—square minors of B ate. zero while l : 4‘\ ;i!' 0, the rank of Bis 2;: henca,

the rank of A is 2. This procedure of obtaining from A an equivalent matrix B from which the
“rank ls evident by inspection is to be compared with that of computing the varlous minors ur A.

‘See Problem 3.

BOW EQUIVALENCE If a metr:.x Alis reduced to B by the use of elementary row transformatmns a-
lone, B -is said to.be row equivalent to A and conversely The matrices 4 and B of Example 3
are row equivalent :

Any non-zero matnx A of rank r is row equlvalent to a canonical matrlx C in which

(@) one or more elements of each of the flrst r 10WS are non-zero while all other TOWS have
only zero elements. : -

('b) in the ith row, (i =1,2, r) the first non-zero element is 1; let the column in which
this element stands be numbered ;-

(€) 1< ja < eoor < e

(d) the only non-zero element in the column numbered ji» (: ~1 2, ...,7), is the element 1 of
“the ith row. - ’
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To reduce A to C, suppose J1 Is the number of the first non-zero column of A.

(i) If a4, #0, use Hl(l,/aljl) to reduce it {o 1, when necessary,
(i) If a;; = 0 but i £0, use H1p and proceed as in (iy).

(ii) Use row transformations of type (3) with appropriate multiples of the first row to obtain
zeros elsewhere in the jst column. . :

If non-zero elements of the resulting matrix B occur only in the first row, B =, Other-
wise, suppose j, is the number of the first column in which this does not occur. If b2j2 #0,
use H2(1/bgj2} as in {i,); .if bngx 0 but bqj2 #0, use ng and proceed as in (i;). Then, as
in (ii), clear the j.nd column of ail other non-zero elements.

If non—,zercj elements of the resulting matiix occur only in the first two rows, we have (.
Otherwise, the procedure is repeated until C is reached.

Example 4. The sequence of row transformationg Hapa(-2), Hyy(1); Ho(1/5); Hyo(1), Han(~5)

applied
to A of Example 3 yields
1 2 -1 4 1 2 -1 4 1 2 -—1_ 4 1 2 06 17/5
A = 2 4 3 S{™i0 0 5 -3|~lo 0 1 —3/5 ~10 0 1 -3/5
-1 -2 8 -7 0 ¢ 5 -3 0 0 5 -3 d 0 0 0

having the properties (a}-(d).
- ‘See Problem 4.

THE NORMAL FORM OF A MATRIX. By means of elementary transformations any matrix 4 of rank
r>0 can be reduced to one of the forms ' ' ‘

: 1 o0 T
Gv. e [g..o]’[l’ o [5]

called its normal form. A zero matrix is its own normal form.

- Since both row and column transformations may be used here, the element 1 of the first row
obtained in the section above can be moved into the first column. Then both the first row and
first column can be cleared of other non-zero elements. Similarly, the element 1 of the second

. Tow can be brought into the second column, and $o on. ' o

For. examDiE, the. sequence VH:az(;z,). Hal{l), Kos(-2), Kaa(1), Kes(-4), Koo Ky(1/5),

o . L, o
H32(-1), K42(3) applied to 4 of Example 3 vields [02 0]-, the normal form.

See Problem 5.

ELEMENTARY MATRICES. The matrix which results when an elementary row (column) transforma-
tion is appliéd to the identity matrix in is called an elementary row (column) matrix. Here, an
elementary matrix will be denoted by the symbol introduced to denote the elementary transforma-
tion which produces the matrix. ‘

i,
07 are:
1

L= B - T

: i
Example 5. Examples of elementary matrices obtained from Iy="10_
: 0

01 0] - 100 _ 100 :
Hip=|1 0 0[=Kip. HyB)=]0 1 0} =RKg(k), Hogtk)=0 1 & = Kgatk)
00 1} 00k 0C1
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~Every elementary matrix is non-singular. (Why?) _
The effect of applying an elementary transformation tc an mxn matrix A can be produced by
multiplying 4 by an elementary matrix. : ' _
Ta effect a given elementary row transformation on A of order mxn, apply the transformation
to I, to form the corresponding elementary matrix K and multiply 4 on the left by H.
To effect é given elementary column transformation on A, apply the transformation to I, to
form the corresponding elementary matrix K and multiply 4 on the right by K.

‘ 123 [0 0 1]f1 23 789
Example6. When 4 = {4 5 6], Hyz-4d = {01 03}4 56| = ]4 5 6] interchanges the first and third
7889 froojlresj. 123
128] [1004] 723|
rows of A4; AKm(z) —Ja5s8l-1010] =116 561 adds to the first column of 4 two times
- 789l |[201] [|2589

the third column.

A AND B BE EQUIVALENT MATRICES. Let the elementafy row and column matrices corre-
sponding to the elementary row and column transformations which reduce 4 to B be designated
as Hy, Ho ..., Hsy KKy, ... Ky where H, is the first row transformation, H, is the second,...;~

K, is the first column transformation, K, is the second,.... Then
2y . H Hy-Hy-A-K Kp..Ky = PAQ = B
where . L T o o : .
53 P = H . HyH ~and =Q = K K oKg
We have T

" L. Two matrices A and B are equivéle_nt if and only if there exist non-singular matrices
P and Q defined in (5.3) such that PAQ = B. - . DR

: Jrz2-12 _ : - _
Example 7. When A = |25-2 3|, . Ho(—1)Hua(-2)-4-Kaa(=2) Kan(1) Kar(—2) - Kaa(1) Ko(D)
LodlTrioect 17200 1016 fioo-3][tood) 1000
b oetolleziola e ro0 o100} loio oflforoatjoroo0
S it oot o o1o{{oo1olloo1 ofjoot1o}]oosol
- - L 0 ooijfoo01] j000 1]j0001 0001}
n-- o ’ 1—-2']2'—4
‘[1o0 0 10 1 _ 1000
= J210f-4+ b - PAQ = |o100} = B
B T 0 02 0 0o010]
L 0 1

- 0 0

Since any matrix is equivalent to its normal form, we have

- IV. If A is an n-square non-singular matrix, there exist non-singular matrices P and @
as defined in (3.3) such that PAQ =1, . _ : s

. See Problem 6.
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INVERSE OF A PRODUCT OF ELEMENTARY MATRICES. . Let
P = K .. H,H, and ¢ = K-K, .. K,

as in (5. 3). Since each 7/ and K has an inverse and since the inverse of a product is the product
in reverse order of the inverses of the factors

-1 -1 1 1 A 1 -1 1
(5-4) P = Hl 'HQ s HS and Q = fv\.t ...KQ ‘Kl .
- Let A be an n-square non- singular matrix and let P and () deflned above be such that PAQ
L= ]?’L' Then C i,
: ) 1 -1 -1 -1 -1 -1
(5.5) - A = P (PAQYY = P d,-Q = P L@

We have proved.

V. Every non-singular matrix can be expressed as a product of elementary matrices.

_ See Problem 7.
Frem this follow

VI. If A is non-singular, the rank of 4B (also of BA) is that of B.
VIL. If P and Q are non-singular; the rank of PAQ is that of A.

'CANONICAL SETS UNDER EQUIVALENCE. In Problem 8, we prove

VIII. Two mxn matrlces A and B are equlvalent if and only if they have the same rank

A set of mxn matrlces is called a canonical set under equlvalence if every mxn matrix is
equlvalent to one and only one mafrix of the set. Such a canonical set is given by (5.1 as r
Tanges over the values 1,2,...,m or 1,2,....n whichever is the smaller

See Pr,obiem 8.

RANK OF A PRODUCT Let A be an mxp matrix of rank r. By The.ofem_- I_ii there exist non—singuldr‘ .
matrices P and ¢ such that _ AR
S I, 0
PAQ =N = |7
{00

Then A = P__l"NQ_i. Let B be a pxn matrix and consider the rank of

e ' 4B - PENOT B

By Theorem VI, the rank of AB is that of NQ “B. Now the rows of NQLlB consist of the firstr

tows of (B and m-r rows of zeros. Hence, the rank of 4B cannot exceed r, the rank of 4.
Similarly, the rank of AB cannot exceed that of B. We have proved

IX. The rank of the product of two matrices cannot exceed the rank of either factor.

Suppose 4B = 0 then from (5.6), NQ B - 0 This requires that the first r rows of Q B

be =zeros while the remaining rows may be arbitrary: Thus, the rank of Q B and, hence, the
rark of B cannot exceéd p-r. We have proved

X If the mXp matrix 4 is of rank r and if the pXn matrlx B is such that AB = 0, the
rank of B cannot exceed p-r.
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SOLVED PROBLEMS

1. (@) The rank of 4 = i g 3] is 2 since 1 3‘ # 0 and there are no minors of crder three.

- 5
123 12 3
(b} The rank of A =11 25 15251ncek,4‘-0 and 25!%0
© j248
' S fo 23 _
{¢) The rank of 4 =10 24 6] is 1 since !AI =0, each of the nine 2-square minors is 0, buf not
069

every element is 0.

2. Show that the elementary transformations do not alter the rank of a matrlx

We shall consider only row transformations here and leave consideration of the column tra.nsfonnanons
as an exercise. Let the rank of the mxn matrix A be r so that every (r+l)-square minor of 4, if any, is zero.
Let B be the matrix obtained from 4 by a row transformation. Denote by |R| any (r+1)-square minor of A and
by |5 the (-+1)-square minot of B having the same position as {R|.

Let the row transformation be Hj 4 - Its effect on |R|is either (i) to leave it unchanged (ii) to interchange
two of its rows, or (ili) to interchange one of its rows with 2 row not of |R|. In the case (i), |5] = IR] =0;
in the case (i), |§] = -|R| = 0; in the case (i), |5} is. except possmly for sign, another (r+1}-square minor
of j4] and, hence, is 0.

- Let the row transformation be H;(k). Its effect on lRl 1s either (i) to leave it unchanged or (11) to mulii-
ply one of its rows "by 4. Then. respectively, \S] {Ri=0 or |S|=k[R]|= : .

) Let the row transformation e H1, (k) Its effect on ERS is e1ther (1) {o leave it unchanged (ii} to increase
one of its rows by %k times another of its rows, or (m) to increase one of its rows by & times a row not of ]RE

_ In the cases (i) and (h) ]S] = IR[ m ,th,e case (Iii) [Sl IR| Lk (anothet (r +1)- squa.re minor of 4) =
0 + k-0 = 0. ’ . .

" Thus. an eIementary oW transformatmn cannot raise. ‘the rank of a matrix. On the other hand, it c'anm'}t ’
lower the rank for. if i did. the inverse tra.nsformatmn would have to raise 1t Hence, an elementary row
transformatmn dees not alter the rank of a matrix ' :

3. For each of the matnces A obtam an equzvalent matnx B and from J.t by mspectmn determme the

rank of A. o _ :

- oo sl o2 s [i23d) Tied] -
@ 4 =121 3}~ 0-3-3]vjo11|~jo11}f- 8
' 132 1] lo-4-8f o1 2] oo 1]

The transformatmns used were sz.( -2} Hal(—S). H2( 1/3), Hg(“1/4), HBQ( 1). The rank is 3

236] f1 o2 3
by 4 - |23 2[fo 0 -3
3213| |o-14 -8

6875] 0-4-11

1 2 a6l [1.2 36 [t 2 3¢

0 —4 = 0 -4 -8 0 ~4 - :

~ 83"41- * 3~ +-831_ The rank is 3.
jo. 0 =32 fo 0-32[ {0 o0-32f

0-4-115] [0 0-32] o o ool

WD

1 14 i 1 0} [t o o
¢y A = {0 & r+a2i|™~{o i 1+2|™~|0 i 1+2| = B. Therankis 2.
1 142 w4 f1 & 1+2) |0 o O

<

Note. The equivalent matrices B obtained here are not unique. In particular, since in (a) and (&) only
row transformations were used, the reader may obtain others by using only column transformations.
When the elements are rational numbers,* there generally is no gain in mixing row and column A }
transformatmns !
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4. Obtain the cancnical matrix C row equivalent to each of the given matrices A.

o013-2] o113 27 fo113 2] foro0 4
_ . o » B
(a)A=0126 ol fo126 0013-2¢ [0013-2f .
Y 60239 2 0239 2] |leoi13-2] |ooco O
0113 25 |[0013-2] [po13-2] |[9000 0
[12-231] 1 2-23 1 10-23 3 1003 7 1000 {1
(b)A_,13—230,v0100—1,v'0-1oﬂ~1m01o-0—1w-0100—1"C
" 124384} o 0 10 2 00 10 2 0010 2 0010 2
[11-1486] (0~r 11 5] joo 11 4f |ooo1 2f jooo1 2

5. Reduce each of the following to normal form.

120-1) [1 2¢-1] 1 o06] {10 06] 1o o 6] [1o o0 d] [Loogd

@ 4 =341 2|~o-21 s{~lo-21s5{~o1-25|~o1-2 s5{~o1 ¢ o|~|lo100
-232 5 _0 72 38 0..'723 02 T3 ¢ 0 11-7 0011-7 JOO 10
= {I5 o]
The elementary transformatlons are!
Hpu(—3). Hgp(2%; Koy(—2). Kas(1%; Kog: Hso—2); ng(Z) K42( 5% Ks(lfll) Kaa()
- :'oz,':s4 23 5 4 1'354 1354 '1'000_ 1006} [too06] [1oo0d
B 4 = 2_3'574"“’0'234"‘0—2'3 4"‘0234"‘02_34"“0134"“0100"‘0100
_481312 481312 281312 0234 0234 0134 0100 0000
20 | -
- 0 o
The elementary transformabmns are;
 Hyos Ku(z)s 5'31( 2); Kp3(-3), Kej.( 5) Kag (—4); Ke(z)- ng( 3) Ka.g( —4); Heg( 1)
--J1 23-2 _ 7 v __ ; .
6. Reduce A =12-21 3} tonormal form N and compute the matrices 7, ‘and (, such that BAQ, =
13 04 1 : ' : ' '
SBince 4 is 3x4 we shail work ‘with the array A I. Each row transformation is performed on a row of
3
seven elements and each coiumn transformation is performed on'a column of seven elemenis.
_ 1 00 0 100 0 © 1-2-3 2 1-2-3 2
f: 60 10 0 c 1 6 0 0 1 0290 0 1 00
: 0 01 o 0 0. 1 0 0 0 10 0 0 10
0 00 1 - 0 0 0 1 = 0 0 01 - 0 0 01
1 23-2100 1 2 3-2 100 1t 0 00 100 1 0 00 1 00
2-21 30160 0-6-5 7-210 0-6-57-210. 0-6-57-2 10
3 04 1001 0-6-5 7-301 0-6-57-301 0 0 00-1-11
1 1/3 -3 2 1 1/3 -4/3 -1/3
0-1/6 00 0 -1/6 -5/6 /8
0 0 10 0 0 1 0 04
5 0 0 01 .= 0 1 . or
§ 1 0 00 1 0O 1 0 0 0 1 00 N P
n 1 -57-2 10 0 .1 0 0-2 160
0 0 00-~-1-11 0 0 0 0-1-11
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1 1/3 —4/3 ~1/3

' 1000
' 0 -1/6 ~5/6 1/8]
Thus, Py =]-2 1 0} @i= ./ and PAQ,=j0 1 00)=N
o 0 1 0
-1 -1 1 0000

0 0 ¢ 1

13 3 o
7. Express A = |1 4 3} as a product of elementary matrices.
- 13 4 :
t

The elementa,ry ransformations Hpq(—1), Has(—1) Koa(—3), Kg:(—3) reduce 4 to L, , that is, [see (5.2)]
I = HyH,y-4 'Kz'KQ = Hay(=1) Hpy(—1)+ A - Ko1(-3) - K52 (=3)
100 100 103 130

- _ . |
From (5.5, A = Hi-H;-Ka-Ki = |110] |lotof Joio} fo1o
po1l 101 001 001

8. Prove: Two mxn matrices A4 and B are equiva‘.lent' if and only if they have the same. rank.

If A and B have the same rank, both are equivalent to the same “matrix {5.1) and are equivalent to each

other. Conversely if A and B are equivalent, there exist non-singular matrices P and Q such that B = P4AQ.
By Theorem VII, 4 and B have the same tank. :

9. A canonical set for non-zero matrices of order 3 is

A 1-00_'= r“,'10'0;
lo, [‘;2 g] =101 0} -__[*;1 g]_= 000
oo Jeoof b _ 000

"A canonical set for non-zero 3x 4-matrices is

: - Toeodl 1y frood 7 fLood
: lol=joroop - [P 1=q0100 1o ol = Jo 000
| - ooy L 0000) {oooo

10. I from a square matnx A of order n and rank 'A: a submatrix B conSJ,stmg of s Tows (columns) of A
ig§ selected, the rank rB of B is equal to or greater than T ¥ s~ n. ’

The notmal form of 4 has’ n—ry rows whose elements are - zeros and the norma.i form of B has s—rg rows
whose elements are zeros. Clearly

R—r -2 5 —

/i

B

from which follows rB ?_ ;;{ + s —n as required.
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12.
13.

14.

15.

. 1
.Let 4 {2
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- SUPPLEME_NT’ARY'PROBLEMS

- 7 -
: 3 45 6 7
. jl212 1 2-2 3 45 6 7 g
_ 1 1322 2 5-4 ¢
Find the rank of (ay {2 3 5 1 (&) 943 af] (© 1.3 9.9 A s 6 7 38 9]
o 1345 ' 10 11 12 13 14
374 2 4-1 5
6 15 16 17 18 19

Ans. (a)2, ()3, (c) 4, (d)2
Shc;w by considering minors that 4, A’ Z. and A" have the same rank.
Show that the canonical matrix C, row equivalent te g given matrix 4, is uniqtiely determined‘_by A,

Find the canonical matrix row equivalent to each of the following:

M-8l 1o f1234] froo /4] (1 11t 4] [1oo00
(@) 25"4:]'v[01‘2:| @) 1341 2|vfo10 1/9 ey 42 1-3-6j~f01 0 of
- 4312 001 11/9) . 3~3 1 2 00132
1 10 100 1 : :

3212 0101 i1 1 11 100-12

, . Coil-1 2 31 010 01
@ [2-1 2 s5]~foo01 1 {e) ' ~ i

56 3 o 000 o ~12~2 1 02f Joo1 20|

: : : 1 1-1-33 000 g9

1 3-1-3 000 0 - : T A |

. - . ’

Write the normal fo-r_m of each of the mé.tr_i—ces of Problem 14.

dns. (a) [I; 0], (8).(c) [Is 0] (d)_'ﬁf”] (e)_[ésg]. I

234 . _ : -
3412 ' - , _
{a) From [ form H,,, Hy( 3)._[11_3(-'-4) and check that each H A effects the corresponding row transformation.

(&Y From I, form Koo Kal~1). Kas(3) and show that each AKX ef ects the cbr;esfﬁ_mding column transformation.
(c) Write the inverses A, 52_,1(3}. H{;(—fi) of the elementary matrices of {a). Check that for each X, . B =],
(d) Writethe inverses Kgi_. K-1). K:,;(3} of the elementary matrices of(b). Check that for each K, KK_"l =1

T ' , {03 0 N L a4 (o 14
{e) Compute B = H]_?"Hg(s).'ngf"‘i) =1 7.0 -4 and C = HIS(""4)'H2 (3 'H}_Q = 1/3 -0 0.
: 00 1 : o 0 01

(f) Show that BC=CB =1, e _

K

(b) Show that if R is a product of elementary column fnatrices. R’is the product _iﬁ reverse order of the same
elementary row mafrices. : Co ;

- (a) Show that Kfl/j: Hij . VKi'(k) = H;(k), and Kf;;(k) = H,;j(k)-

. Prove: (a) AB and B4 are nen-singular if 4 and B are nen-singular.n-square matrices.

- (b} 4B and B4 are singular if at least one of the n-square mattices 4 and B ig singular, _

- It P and @ are non-singular, show that 4,P4, AQ, and PAQ have the same rank,

Hint. Express P and ¢ as products of elementary matrices.

136-1

-Reduce B =145 1]to normal form N and compute the matrices £ and @, such that P,BQ, = N.

154 3
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21. () Show that the number of matrices in a canonical set of n-square matrices under equivalence is n +1.
(by Show that the number of matrices in a canonical set of mxn matrices under equivalence is the smaller of
m+1 and a+l. : ‘

124 4 : :
22, Given A = §1 3 2 86| of rank 2. Find a 4§squa.re matrix B # 0 such that 48 = 0.
25610 )
Hint. Follow the proof of Theorem X and take
' 0000
-1 QoGCo
CEB = libcd
e f g h

where a, b, ..., h are arbitrary.

23. The matrix 4 of Problem 6 and the matrix B of Problem 20 are equivalent. Find P and Q such that B = PA Q

24 If the mxn matrices 4 and B are of rank r and rg réspect_ively. show that the rank of A+R cannot exceed
rntr ' o ! -
47 B

25, Let 4 be an arbltrary n-square matrix and B be an n- squate eiementary matnx By considermg each of the
six different types of matrix B, show that [AB[ ]Al \B|. _

26. Let 4 and B be n-square matrices. (a) If at least one is smgular show that (4B} = |4]- [B\ (b If both are
non-singular,. use (5.5) and Problem 25 to show that \ABI 14]-181.

’ 27 Show that equwalence of matnces is an equlva.lence relatmn

28 Prove: The row equivalent canomca.l form of & non smgula.r matnx A 151 and conversely

29 Prove Not every matnx A can be’ reduced to norma.l form by oW trans‘.’ormatlons a.lone '
Hins. 'Exhibit a matnx which cannot be so reduced.

30 Show how to effect on any ma.tnx A the transfomatlon H ij by usmg a successmn of row tra.nsformations of
types (2) B-ﬂd (3) . -

31. Prove: 1t A is an rﬁxn maﬁrix. (m< n) of ra.nk m then AA is a non- smgulat symmetnc matrix. State the
theorem when the rank of A is < m. o : :
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(6.4) ’ 0 lagidl = )4

Chapter 6

The Adjoint of a Square Matrix

THE ADJOINT. Let 4 = [aijl be an n-square matrix and @ ;; be the cofacior of a;;; then by definition,

' : ®yg Qo wv Opy

iol s a o R &
{6.1) adjoint 4 = adjd = | 22z D22 n2
d’ln a?n ann

Note ca.refully that the cofactors of the elements of the ith row (column} of 4 are the elements .

of the ith column (row) of adj A

[~ N I
W By
B~ W

Example 1. For the matrix A =2

Oyg=6. Oyp= =2, O4g= =3, o= 1, Upp=—5. Upg=3, Uy = =5, Ogy = 4, Olgg = =1

. : 6 1 -5
and ) : adjdA = 1-2 -5 4
-3 3 -1 _ _
' : See Problems 1-2.
Using Theorems X and XI of Chapter 3, we find
- ) Gyq - Q1o ... G || %21 g Ay
(6-2) ’ A(ade) = .3'21 ,-a'22 -"_' %n _ql? Cf?? e an?
Zn4 Byo Cpn am Uan Cnn
-diag(ldl, 4], .. 14 = 141, = (adidr4
Example 2. For the matrix 4 of Example 1, |A| = -7 and
, C[r2sie 13 -7 0 0
Aadjdy = 2 3 211-2-5 ¢4 = -7 0 = =7
3 3 4§1-3 3 -1 0 0 -7
"By taking determinants in (6.2), we have
. - N . n : : .
(6.3) lal-Teasa|l = 14" < ladia]. |4l
~ There follow |
Y. If A is n-square and non-singular, then

i

49
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II‘. It Aris-n—square and singular, then

A@did)y = (djdHA = 0

If A is of rank < n—1, then adj4=0. If 4 is of rank n—1, then adj4 is of rank 1.
' ' ’ : e See Problem 3.

THE ADJOINT OF A PRODUCT. In Problem 4, We prove
I If 4 and B are n-square matrices, )

65 ' edj AB = adjB - adj4

MINOR OF AN ADJOINT. In Problem g, we prove

Jardas vees Jm \
IV. Let ;o ; be an m-square minor of the n-square matrix 4 = {a;;],
ipigs oon bn i A _ )
. Jmerdmeos o dn ; :
let i i ;| be its complement in 4, and
ML Y e U
jl_t jﬁ’ s jm . — L : . . '
let By, Ay ey Ty denote the m-square minor of adjd whose elements occupy the -
L L , ' ji’j";"xj S |
same position in-adj 4 as those of A.;l ; : ,;m occupy in 4.
- -' -- T ‘ ";'! m .
Then _ ) ,
_ o Jus Jos veer Jm | Fmes dmea e dn
©6) lal- (w0 | = evtlAl|4

1'm,-;.f[_l ?’m +2r "-:_T’n

where s = iy +ip+ - +ig ¥Fji g+ o+ fp .

If in (6.6) , 4 is non-singular, then
- FaJas e Im
My i oin

In+irJmaos oo in

(6.7)

= (=14

Taats Igaos o5 in

' When m = 2, (6.7) becomes

a» . a-' - . - . . T ) j.sja"'rjﬂ.
(6.8) Vi Skl o CpRtRREA 4,
B ine Yigde : ' e

. | T : J1Je

= IAI . algebraic complement of A,;l,,;Q

When m = -1, (6.7) becomes

Fardar ovev n-t © dptin
-1y 4

M

11@—2
. . a
t1,0g, e B

(6.9)

nodn

When m =n, (6.7) becomes (6.4).
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SOLVED PROBLEMS

' b A, o d —b
1. The adjoint of 4 = {:a J is [ 1t 21:' = { ]
[ d a12 (XQQ - a

[ 134) 23 23

r43_43 34
, 123 —T 6 -1
2. The adjoint of 4 = {1 3 4] is “’1_4 i I RCE I N
- L 43 13l lrs 14 PR

’ 31 |12 12

14 13} ]

3. Prove: If A is of order n and rank n -1, then adjA is of rank 1.

First we note that, since 4 is of rank n—1, there is at least one non-zero cofactor and the rank of adj 4
‘is at least one. By Theorem X, Chapter 5, the rank of adj4d is at most =» —(rn—1) = 1. Hence, the rank is
exactly one, - : ‘

. Prove: adj 4B = adjé- adjAd.
By (6.2)  apasian - lasls - adnyas
Since  AB-adjB-adjd = A(B-adiB)adid = A(BlDadia = Bl(dagiay < 1Bl - lag].1
and  (adiB - adj A)AB < 20 Bledj YAB = adiB-{4]-1-B - |aliadiB) B} - | 481
we c¢onclude that o adj AB = 'aij-ade_ '
5. Show that adj(adjd) = |A]" *- 4, if |4] 40,
By (6.2) and (6.4),

}diag(|'ade§, | adj 4], lade])

adj 4 - adj¢adj 4y

n-1 n-1 - #n-1
_ = diag{’AI , IA’ s PAI )
Then - = - -
_ E : n-1
A-adjd-adjadid) = 'A' |
. L ) n-1 - 7
Pal agjaaity - a4
: ' - ' n-2
and . adiadjdy = 14]" ". 4
. ‘ Jusdoreens . . L
. P;ove. Let |4 A be an m-square minor of th_e n-square matrix 4 = [aij] ,
jm4-1gjm+2""’jn . - &
let imit. bieg, -, in| D€ 1tS complement in 4, and
Hader i dml . . .
let | M 4, ....ip| denote the m-square minor of adj4 whose elements occupy the same
} o - S e eejml -
position in adj4 as those of {4 “‘occupy In 4. Then

i ey iy
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Jmev Imeor oo ln

(-7 14" -1 4

i

N I 15 Jar oo
Pt

gets bman e Ty

where § = i1+£2+"'+im+ji+j2+"'+]:m-_

From
~ B - -
%G Yju | s Oin | %hd %eh 7 Ywd 100 0
. .. .. ] . . . : .
% Clade Hpjm 1 Yizdmn Sigein inj,  Ciode indo 100 0
e I
.................... e R
1 I
Bigh  Cip.fo i Jm ) Fimdmis Hydn Xiim %, Jm Cip i 20'0 oo
A e e - e J
[}
i . '
Ipatft Timeada tprrndn 1 Cimardnea Simaridn 011’1 T+t d"ﬂdmﬂ T Jmt1 i 10 0 s
. o : i
................... :a--u------..-.- ...-----.<...-.--..n:.-.--. z
] 1
1 H
................... R T
o i )
: § :
La{-n.h Gin o Gindm ' Plndma %indn Ld'il in Yadn Cipjn ' 0 ¢ -1
Al o 0 e gy |
- 1 )
0 ‘A‘ . 0 E %-jm—'-l %
i e .. i A
= -
!
4] G lAl :- 1y -71!.-'-17 by oI
R P S S
- L]
| A
0 0 0 My ydan ga1.dn,
..... . T
t.
L
e TR R L IR aa s ne e
: T
B 1 B
0 0 - 0 ! nImtr *nedn
by taking determinants of bd.th'sides. we l*_i_a\re'
. 5| |“ Mji.ji' --.-jm IAI‘N. jm&i.jm‘i-g.. _"--jﬂ.
(—'1) A:i. 1:1' i‘Z' ey ‘I‘:m o - ) iM“‘.l' i’m.'.g.' A in

wh’eré s is as defined in the theorem. Ffom this, the required form follows immediately.

7. Prove: If Adisa skew-symmetric of ordet 2n, then IAl is the square of a polynomial in the elements
of A. : .

By its definition, lAl is a polynomial in its elements; we are to show that undet the conditions given
above this polynomial is a perfect square.

The theorem is true for n=1 since, when A = [2:] IAI =a?,

Assume now that the theorem is true when n=k and consider the skew-symmetric matrix 4 = [a,-,j] of

: ’ - . B C}- 0 a, ..
order 2k +2. By partitioning, write 4 = [ ] where E = [ ' _ 2k+1,2k+2]_ Then B is skew-sym--
D E azk&-z, 2k+1 0
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metric-of order 2% and, by assumption, IB] = f? where f is & polynomial in the elements of B.

i a,;j denctes the cofactor of ajj in A, we have by Problem 6. Chapter 3. and (6.8

l%k«u, oh+1 Qoko skia| 0 Cokio okin| |4l .]8]
]. Ooka1, 2ksz  Oobiz oho Qok+s ohso 9
Mcreovef. a?k"'Q. ék“'l = —‘aék;l‘ 2}34.2; henCé.
a 82
A R U 4l - {Lff_%zv_ﬂ} |
a perfect square.
SUPPLEMENTARY PROBLEMS
8. Compute the adjoint of: = : S y
y . 5002
123 123 102 - 110 39
@)10 1 21. (o1 21, (C)2107. (d)0021
00 : 001 321 : N
00 _ 1001
0.0 1 2 1] - 1 4 P 2004
3 N 26 015
Ans. (@) {0 0 =24, (Y jo0 1 -2}, ey |-2-5 4. (&) 1 03 =5
.00 1 ' 0 O 1 . 1'-_2 1 200 10
9. Verity: . |
(e) The adjointof a scalar matrix'is a scalar matrix.
(b) The adjoint of a diagonal matrix is a diagonal matrix. -
{c) The adjoint of a triangular matrix is a triangular matrix.
10. Write a matrix 4 £ 0 of order 2 such that adjAd = 0.
11. It4disa 2-square matrix, show that adj(adjAd)= 4.
~1 -2 -2 T4 -3 -3 :
12. Show that the adjoint of 4 ={ 2 1 -2{ is 34’and the adjointof 4 = 1 o 1| is A itself.

2-2 1 . 4 4 3
13. Prove: If an n-square matrix 4 is of rank < n—1, then adjA = 0.
14. Prove: If 4 is symmetric. so also is adi 4.

15. Prove: If 4 is Hermitian, so also is adj 4.

16. Prove: If 4 is skew-symmetric of order n, then adj4d is symmetric or skew-symmetric according as n is odd
or even, ’
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17. Is there a theorem similar to that of Problem 16 for skew-Hermitian ‘matrices?

18. For the elemeni;a.ry matnces show that
(a) adj Htj = "Ht]

(b} adi H,; (k) diag(1/k,1/k. ....1/%,1,1/k. ... 1/k). where the element 1 stands in the ith fow

() adj Bij(ky = Hij(k). with similar results for the K's.

19. Prove: If 4 is an n-square matrix of rank n or n—1 and if H .. Hy-H,-4-K,;-K,...K, = A where Ais

Iy 0
Iyor " t 71 then
0 0

= -1 - o a1 — -4 .
adj A = adiK: -adiK, ..adiKy -adj\-adjH; ... adj By - adj s

20. Use the method of Problem 19 to éompute the adjoint of

, 1110
- - 2332
A of Problem'7, Chapter b :

(@) ! "’I De.sl :.(;‘) {93 3

- 4874
. g 3 f-14 2 -2 2
. T 14 -2 2 =2
Anrs. (@) -1 1 of. . (b . 0 0 0 0

-1 0 1 1 :

- ,, ~7‘ 1 ;1
21, Let 4= ["1.3] a.nd B = [k—»a,’j] bé 3—square matnces ¥ S(C) = sum of elements of matrix C, show that

S{a.dJA) SadjB)  end |2l =& . .S'(addA) - IAI

22 Prove: If 4 is n-squeire then 1 ach (ad.i A) | lf‘fl(n—_l)

23. Let A4, = .["ij] (i.j =1, 2. ...0) bg the Iower‘ tria.ngular rhatrix whose triangle is the Pascal tr_ianglé;_ for

example, -
i 1.0 0 0
4, = [P L O 0f
{1210
o 13 3 1
Define by = (—l)ﬁjaij and verify for n = 2, 3, 4 that o
o | adfdy = [b,;j] = A4

24. Let B be obtained from 4 by deleting its ith and pth rows angd ;th a.nd gth columns Show that
% %pj
%g pq
where 0;; is the cofactor of ag; in |4l

'”ﬁ”*qlﬂ 14|




Chapter 7

The Inverse of a Matrix

. -1
IF A AND B are n-square matrices such that AB = B4 =1, B is called the inverse of 4, (B=A ) and
A4 is called the inverse of B, (4= B, : ' '

In Preblem1, we ijrove

I. An n-square matrix A has an inverse if and only if it is non-singular,

The inverse of a non-singular n-square -matrix is unique. (See Problem 7, Chapter2.)
IL If 415 non-singular, then AR = AC implies B = C.

THE INYERSE of a hon—singular diagonal matrix diag (g, kg, o k) is the diagonal matrix
- diag(1/ky, 1/k,, ... 1/ky)

S . P PO AS are hori;sin-gﬁlair mafrices, then the inverse of the direct‘sum_ diag (4. 4,,
LAy s - '

diag (4;1; A?. v A;I} .

Procedures for computing the inverse of a general non-singular matrix are given below.

- INVERSE FROM THE ADJOINT. From (§.2) 4 adjd = |4]. 1. X 4 is non-singular -

B - 'r-an/.’Al a?l/l-A, {xm”A,-
. c112/“”- aQQI_/IAI aﬁz_/IAi
.0 YRR\ BRI R e e
) ‘- ,AI 5 . P
W/ |4} e/l 4l Unn/ 1 4]
S o _ 123 -1 821
Example 1. From Problem 2, Chapter6, the adjoint of A = 13 4] is 10 -1,
' Ct4e3) o Lr-2 o1
' . _ 72 -8 41
- - L B
o d ey

See Problem 2.
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!NVERSE FROM ELEMENTARY MATRICES. Let the non-singular n-square matrix 4 be reduced to /
by ele mentary transformations so that

Hy..Hy H-A-K K. Ky = PAQ =1

Then A=P . Q_1 by (5.5) and, since (B—l)-1 = B,

[ wl ~1-1 . . .
(7.2) A7 = (P QY = @Q-P = K -K,...Ki - Hgoo Hyo )
Example 2. From Problem 7, Chapterb. - - . ’
100} 100j 1-30fj10-3
' \'_—'101_-001 0o oilloo 1 B
) . 1 -3 0l{10- 100]{ 100 7 -3 -3
Then A = K KH-H; = |0 10101 Ofj-110}] 010} = |~-1 1 0
jo oijjoo -1yl ooijl-101 -1 0 1

In Chapter 5 it-was shown that a non-singular matrix can be reduced to normal form by row
transformations aloneé. Then, from (7.2) with Q =1, we have
(1.9) | Y2 P o= B BB )
Thatls, R -

HI. If 4 is teduced to.] by a sequence of row transformations alone, then A™ is equal
to the product in reverse order Qf the corresponding elementary matrices.

- : 133 1 _ o
Example3. Find the inverse of A4 = |1’ 43 of Example 2 using only row transformations to reduce 4 tol.
311 3 4 :

 Write the matrix f4 L] and perform the sequence ‘of row tra.nsfonnatmns whzch carry 4 into
- 13 on the rows of six elements. We have .

133,16486}

, 133r 100f 7T -3 -3
] '_.[-,413]= 143:i010{~010;~1.10} -1 -1 0 !
134,001 001;-—1'01 -1 0 1 i
= 147 o
: ) : ] T -3 =3
by (7,3). Thus. as 4 is reduced tol,, I is carried into A= ~1 1 of. —
: ' : -1 0 1} ~

See Problem 3.

" INVERSE BY PARTITIONING. Let the matrix 4 = Layl of order n and its inverse B = [b.uj] be par-
titioned into submatrices of 1ndlca.ted orders

Ay 0 A : By E Byo
(pxp) ' (pxq) - (pxp). (pxq : :
----- ————- and B where peg=Tn
Ay 1 Ao By, ' Ba,
L(s‘rxp) gx g | lgxpr (gx9)
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we have
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Since AB=BA=1,,
1.4 § (1) Aj3Byi+ A,B, = I (iii) Bhy A4y + Bypda, = ©
¢ (if) A1y Bio + AipByy = 0 (iv) B21A12+BQ’2A22 = lrc,w
Then, provided A,; is non-singular,
-1 -1
By = Aj, (An '412)5 (Am An) Boy = =& (Ayy A1)
(7-5) ] -1 .
Bip = - (.Ali A19)€ Boy = &
whete & = Ay, — A, (A7) A1)
See Problem 4.
In practiée, Aq. is usuglly taken of ordern—-1. "To obtain A;li, the following procedure is
used. Let
. . Q11 G5 Ugg Goy
@11 Qip Oyg
a,, Aoy @
G, = 1 G2 f Co = | ag Gy gy |, G, = Bo1 oo gy Uy ’
o1 fpg @ _ 31 Ogp Ogg Ggy
- O3; Ozg Gag _
Qao 34_3 s

After computing GQ . partition G, so that Az, =[as;] and use (7.5) to obtain (’

gy

. Repeat the proe-

€8s on G after partltlonlng it so that A Qm{a.u] and so on.

. Mg ,
Example 4. Find the inverse of 4 =11 4 3 '. using partitioning.
' 134
- 13 NE e : _
Take Ay = [1 4], Ay = 3], 421 =113]. and 45, =[4]. Now
a4 .4 -3 oA [ 4 CoAc 4.—3
- Ay = [_1 .1]-_' Apdy = 1 ][] [] /'1721/411 = [1 3][_.1 1] = [10].
] . . i .
x AQQ —A21(A11A12) —[1 3][0] [1]. and fl =T1]
“Then . '
4 =31
Byy = A11 + (A11A12)<f (A21A13) = [ ) ] [][1] {10}
: 4 - for-3
_ - -1 ST
-1 -1 -3 .
Big = — (414100 = [0]
~1 =1
Byy = ~& (Apdsy) = [-1.0]
-1
Byy = &7 = {1]
e 7 -3 -3
and it 11 Biof 11 o
: Boy By
-1 0 1

See Problems 5-6. -
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THE INVERSE OF A SYMMETRIC MATRIX. When A is symmetiic, ot,;j = 04 and only sn(n+1) cofac-
tors need be computed instead of the usual n? in obtaining A from adjA.

If there is to be any gain in computmcr A as the product of elementary matrlces the ele-

mentary transformations must be performed so that the property of being symmeiric is preserved.

. This requires that the transformations occur in pairs, a row transformation followed immediately
by the same column transformation. For example,

0 b c . . ¢ b o....... .
b a..... b 0 ¢
C oreiiiiannns _ -
Hm Km =
e b e .. fa 0 ¢ ...
, b 0
_ o .
- B Rat-B -
L . i _ - - . _"‘_~:

However, when the element a in the diagonal is replaced by 1,.the'pair of transformations are
H(1/\/a) and K,(1/va). In general, \/E‘i_s either Ai;rrational_or.imagin&ry; hence, this pmcedure
" is not recommended : . '

The maximum gain occurs when the method of partltlonlng is used since then ( 7. 5) reduces to

Byy = A'Ili +. (4 Aiz)fdi(An 12) By :'Big )
(7.8) _ _ Y , _ .
7 _81 = --:k":'(_-A_nAiz)fw , : : By =&

where {-‘ Agg - Am(A Amﬂ}.- - : o -
_ e See Pgoblem ’?.

When A is not symmetric, the above procedure may be used to f1nd the mverse of A4, which
is symmeiric, a.nd then the 1nverse of 4 1s found by -

an o At -(AA_)”lA’

SOLVED PROBLEMS

1. Prove: An n-square matrix A has an inverse if and only if it is non- singul__ar.

Suppose 4 is non- singular By Theorem IV, Chapter 5, there exist non-singular matrices P and Q such
that PAQ =], Then 4 = p* Q and A7 = @+P exists. '

Buppose At existe. The A-A~ =1 is of rank n. It A were singular, A4 would be of rank <na: hence,
4 is non-singular. : :
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2 3 VI 4 -3 - _T a/5 -3/5
. (z) When A4 = ., then 1Al =5, adj4 = ,and 4 = .
2. (a) Ll. 4] : 1 _—l. 2 . -1/5 2/5
(231 1 -5 T} W 15
(b) When A =112 3|, then |4 =18, adid=| 7 1 -5/ and 4 = = 1 ~5].
312 -5 7 1] Bles 7 1
24 3 2
36 5 2f
. Find the i = .
3. Fin the. inverse of 4 25 2 -3
4 514 14
24 3 271000| [123/2 1'1/20080} [1 23/ t!1/2000
[4r,] - [36°5 2101000 4365 270 100 |0 01/2 -11-3/21 00
7 |25 2-310010| 425 2 -3{ 0 010| |0 1 -1 51 -1 010
4514 1410001 4512 14/ 0 001| J0-3 8101 —2 001]
1 23/2 1] 12000] [1o072 11]5/2 0°-2 0
|
I R RS - —1910,\101—1”5:—10-10
0 01/2-1'-3/2100| j00 1 -2,-32 00
6 -3 8 10, -2001 00 5 -5, -50 31
100 18! 13 -7 -290 100 18) 13 =7 =2 0 -
P . E
~0TO-TI—4 2o re] JO10 T -4 2 1 0
001 -2¢-3 2 00) |0601-2-3 2 0 0
- 900 5i10-10 31} j000 1! 2~23/51/5
160 0;-23 29 -64/5 —18/5
~l0 1ol 16 -12 26/5 /5
- 0010, I -2 6/5 25
0001: 2 -2 .35 1/5
- LAY
23 29 ~84/5 -18/3] | ., :
-1 10 ~12  26/5 /5| ' ' -
The 1 s A = : _- , ]
e lnverse 18 1 3 6/5 2/5
3/5  1/5

2 -2

(1) AiBiy + A1oBy =1
(i) Ay By + A1pByy = 0

(iii) 82114'11 + B22A2’1 =0
4. Solve :

' ' - for Byy, B,,, B,y and B,,.
(iv) By A+ Boodyy = 1 112819, Bog 29

Set By = &7

-t -1
All - AllAIQBQﬂ. =

From (if), By, ="~ (A4 ™ from (i), By = — £ (ApADS); and. from (1), By,
~1 1 -1 ~1 . :

Avs + (A (Ap Ay

Finally, substituting in (iv), "

a4, e} 1
— & (AnAnYA1g + & Ay = T and &= Ay~ (A A1) Axg
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5. Find the inverse of A = by partitioning.

Lol S S T Y IV ]
LR - ob I S

[l v I ]
o P WD

123
(2) Take G4 = |1 3 3] and partition so that
' 24 3
All = [1 2]! A‘_LQ = [g]' AQi = [2 4]. and AQQ = [3]

-1 3 - —3 3 - 3 -1 3 -2
Now Ay = [_3 ﬂ A3dyp = [_&1 ﬂ [g] = [0] Apdy = (2 4][__1 l] = {2

£= Azz;Azz(AziiAm) = [3]-[2 4][3] = [—31. and f_i = [7_.-1/31

1.

o

Then ‘. Byy-= AL + (ARA ) E ATy = | 3 =21+ 3 1z 0]=) 3 2} 0
) . -1 1 0 3 -1 1 090
_1| 3-6) . ' '
“3l-3 3]
. | -1 =y - ) 1
Bip = —(Apdi)§ = ‘31‘[2] By = =& (AgiAys) = %{2 0], Bp =& = [ %]
o ) | o 3 -6 3
: - - . -, . B B T
and : _ i} G; = [Bll -Bi{l = “;E.“ ~373 0
' S N | 2 01

' 123 B o
(b) Partition 4 sy that Ay = |13 3] Aio=|2]. dor= [111], and Ayp=[1].
' ' o 1243 3l S L

. 3 -6 3 S of - :
Now ' Au = 1.3 3 ol - Apdyy = % 31— Apdy = %[2 -3 2],
2 0-1 S -1
& = [11-T11 1](~31.~) 3] = [%] and &= [3]
, - kA A
‘ | f3-6 3 0 R 3-6 3 o o of [t-2 1
Then Bn=§1.._3-s 0+—; 3[3]%[27—32]273_3 370+% 6-s 8| <l1-2 2|
| 2 0-1 -1 2 0 -1 -2 3 -2 0 1 -1
a _
By =[-8\ Bgy = [-23-2]. By = [3]
) 7

- E 1-2 1 0
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We cannot take 44, = [i g] since this is singular.

100 133 " 7 ~3 -3
By Example 3, the inverse of Hysd = |0 0 114 = 143/=8is B = |1 1 0| Then
¢10 134 . -1 0 1
s T ~3 -3 1060 T ~3 -3
-1 o
A = BHpy = -1 ¢ of-loo = 4-1 0 1

-1 0 1 010 -1 1 0

Thus, if the (n—1)-square minor As; of the n-square non-singular matrix 4 is singular, we first bring a
nen-singular (n—1)-square matrix into the upper left comer to obtain B, find the inverse of B, and by the prop-
er transformation on B obtain A2,

2 1-1 2

7. Compute the inverse of the symmetric matrix - 4 = i : g f _:: .

_ _ o 2 -3 -1 4]

o 21 -1 o _ .

Consider first the submatrix G5 = | 13 2| partitioned so that : '

: 12 .1 o _

91 1 ' J

All = [1 3]| A12 = [2], AQI, = [""1 2}| A22 = {1] j:

] ' -1 " 3/5 ~1/5 oA “3/5 -1/5{{-1} {[-1 :

No Ay = : v AsAs, = : - . I

R t [—1/5 2/5]_ 1z Ll/_s' 2/5][ 2] [ 1] , . f

I = PP ST R gl 1

£ = Agy - Aoy(A1ads0) = [11 - [-1 2]} i [~2] and ¢ = [-3]

3/5 -1/5 -ilr 3¢ - [ 3/5 -1/5 -3 3] 1l 3 -

Then B = + -51f-1 11 = y 3 ‘ :

: - [—-1/5 2/5] [ 1][- zl{-11] [—1/5 2/5] +[ z ~5) ~ 10{3 -

O i S

- . TR

and ' 6. = = -

e 5| 31 5 :

~5 5 -5 g

Consider now the matrix 4 partitioned so that -

21 -1 Tl : :

A = 113 2] Ay = 1-3l Ay o= [2 -3 2110 Ay = [4]

—]1-12 1 -1 1

. 1 o83-s| o [ews - .

Now Ay, ;% =3 -1 5} Audi, = | 2/5) £={18/5], ¢ = [s/18].
-5 5 -5 -2
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7 2 5 -7} 1 1 -
Ther By = '11_8 5-1 51} By, = ~i~1§ -2 By = ﬁ[l -2 10), By, = [5/18]
-7 5 11} 10
2 57 1
4 1l -1 522
AT - L
and 18{-7 5 11 10

1 -2°10 5

SUPPLEMENTARY PROBLEMS -

8. Find the adjoint and inverse of each of the following:

. - e 1200 .
1 o2 -1 23 4] 123 0300 B
(@ -1 1 21 (&) 14 3 11, () 2-4'5.;('1)0021
2 -1 1 12 4] 13 58] 050 3
- r - - : 1-2/3 .0 o]
3-1 5 -10 4 9 1-3 .2 1o 1j3 o o
Ans. Inverses (@) #|'5° 3 -1|. (&) §| 15 <4 ~14f (@ 1=3 3=1) @f % ~1/6
- Y - : 2-1 0 ‘
153_ 151_6, : 0 0 0 1/3
9. Find the inverse-.rof_rthe matrix of 'Probl(em 8(dyas a direct sum.
1. Obtain the inverses of the mairices of Problem 8 using the method of Problem 3.
(R 3424 To s 275] P8 ez
7 '1.234’ 2332“ "l 334 Loe 33l
11. Same. for the matri ) g 2 . ey o {d
e. for the matrices (a) 33 5-5 (_) 573 g .‘(.Cf)‘: 3 632 T(,) i j ‘111 71.
3 -4 -5 8 2323 412 08 :
] _ _ _ : 1-2-12 2
2 16 -6 4 -144° 38 60 21 ' :
22 41 —30 -1 1] 48 —20 -12 -5
Ans. (@) L ¢) =1 -
“V 18| 10 —as 30 -2 © 48] 45 -4 _12 -13
4 -13 6 -1 0 12 -12 3
- : [ 30 -20 —15 25 -3
-1 1 - e
) _1‘, ; ?g , 30 -11 -18 7 -8
5y 1 ‘ @ Ll-s0 12 21 -5 6
Il 1 <1 0 1 ,
Lt i 3 -15 12 8 -9 8
- 15 ~T -6 -1 -1 -
12. Use the result of Example 4 to obtaln t_he_ inverse of the matrix of Problem ii(cf) by b@rtitioning.
13. Obtain by partitioning the inverses of the matrices of Problems &(a), 8(b). 11(a)~ 11(c).
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I 2-1 2 0122
S 2 2-1 1 1123
4. tain b itioning the i s of the symmetric matrices , (b .
14 Oba.;n yp_arh@om_gg He inverse e symmetric matrices (a) -1 11 (5) 52 33
) 2 1-1 2 23 3 3
1 -1 -~-1-1 -3 3-3 2
-1 -1 -1 1 3 -4 4 -2
. —= b )
Ans (@) =21 s ] Dy 4s s
=1 1 -1 -1 2 -2 3 -2

13. Prove: If 4 is non-singular, then A8 = AC implies B = C.

16. Show tha.t if the non—smguiar matnces A and B commute, so also do-
(@ 4" and B, by A and B, () 4" and B - Hint. (ay ANABY A = A BAy A

17. Show that if the non- smgular matrlx A is symmetric, so a.lso is At
Hint: A4 = = (AA ) (A )A

18. Show that if the non-singular symmetnc matrices A and B commute then (a) A~ g (5) AR and (c) Atg?
-1, . :

are symmetric. Hint: (a) (4 B) (BA V= A }B = AB.

18. Anmxn matrix 4 is sa.ld toc have a nghz inverse B if AR _l and a lefc inverse C if CA =I. Show that 4 has
a rlght mverse if and only it A is of rank m and has a left inverse 1f and only if the rank of 4 isn.

if one exists.

L2 ST g b
[ o V]
[1- N S

. B 1
20. Find a right inverse of 4 =11 |
o - ' 1

. 1132
. L
Hint. The rank of A is 3 and the submatrix S= {1-4 1} is non-singular with inverse S- . A right inverse of
135 :

17 -9 -5
: ' 57 4 3 1
: A is th atrix B = =117 B
‘e 4x3 matrix ol 3l-1 & 1
L 1 o o of
o 7 -3 -3
21. Show that the submatrix 7 = |1 4 3] of 4 of Problem 20 is non-singular and obtain 0 o 0 as another
: ' 134 K ' '
. | ~1 0 1
right i_nvex_-se of 4. L
\ [ 1 .
22. Obtain {~3 1 0 bl asa left inverse of 23 4l where a, b, and ¢ are arbitrary.
-3 0 '
Le 000

132407 )
N - 23. Show that 4 = |1 4 5 9| has neither a right nor a left inveise.
2358
. A11 Ass il 7 =1
s 24. Prove: If |A11| # 0, then 4 |A11| |A22 - A21A11A12[ .
: 21 dog

25.1t [{+4] #0, then (I+4)" and (—A) commute.

26, Prove:(i) of Problem 23. Chapter 6.

)
1
i
!




GENERAL FIELDS. A collectio

Chapt’er 8

Fields

NUMBER FIELDS. A collection or set S of real or complexr numbers, consisting of more than the e
ment 0, is called a number field provided the operations of addition, subtraction, multiplication,

and division (except by 0) on any two of the numbers yield a number of 5.
Examples of number fields are:
(a) the set of all rational numbers,
(by the set of all real numbers, _
(¢) the set of all numbers of the form a+ b\/_:’: where a and & are rational numbers,
(d) the set of all complex numbers .a+ bi, where a and b are real numbers.

The sef of all integers. and the set of all numbers of the form 'b\[Sj, where b is a rational

number, are not number fields. -

F, i.e. scalars), o -
A;: a+b is a unique element of F - " - .' o L
A,: a+b=b+a ' g |
Agt - a+(b+e) = (d_-+b)‘_+..c | § _ : e

A For every element a in F there exists an eleméht 0 in F such that a+0=0+a= a.

Ag: For each element a in F there exists a unique element —a in F such that a+(-a) = 0.

M,: ab=a-b is a uniqueelement of F'
Mp: ab=ba L - -
Mg: (_ab)c = a(bc) R , C , Lo f B - E

M,: Yorevery element @ in F there exists an element 1 # 0 such that 1. a=a-1=a.

Ms: For each element a#0 in F there exists a unique element a *in F such that a-a”

'a‘i-az 1:

D,: a(b+ c).ﬁ ab+ ac

Dyt (a+bje = ac+be

In addition to the number fields listed above, other examples of fields are:

(e) the sef of a:]l guotients Lix) of polynomials in x with real coefficients,

Q(x)

(f) the set of all 2x2 matrices of the form [z _ﬂ where ¢ and b are real numbers.

le-

n or set § of two orﬁno-re elements, together with two operationé-caﬂed
addition (+) and multiplication (-), is called a field F provided that( a,b,c,:.. are elements of

12

(g) the set in which e+a= 0. This field, called of characteristic 2, will be excluded hereafter.
In this field, for example, the customary proof that a determinant having tworows identical

is 0 is not valid. By interchanging the two identical rows, we are led to D =~-D or 2D = 0;

but D is not necessarily 0.

64
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SUBFIELDS. If § and T are two sets and if every member of S is also a member of T, then S is called
a subset of 7.

If S and T are fields and if S is a subset of T, then § is called a subfield of 7. For exam-
ple, the field of all real numbers is a subfield of the field of 41l complex numbers; the field of
all rational numbers is a subfield of the field of all real numbers snd the field of all complex
numbers. :

MATRICES OVER A FIELD. When all of the elements of a matrlx A are in a field F, we say that-

"4 is over F"'. For example,

Y280 er the rational field and B =1 Y*ti g over the complex field
1/4 2/3 . 2 1-3i

Here, 4 is also over the real field while B is not; also 4 is over the complex field.

Let A4,B8,C,... be matrices over the same field ¥ and let F be the smallest field which-

contains all the elemenis; that is, if all the elements are rational numbers, the field F is the

. rational field and not the real or complex field. An examination of the various operations de-

fined on these matrices, 1nd1v1dually or collectively, in the previous chapters shows that no
elements other than those in F are ever required. For example:

‘The sum, difference, and product are matrlces over F.
If 4 is non- smgular its mverse is over F.
I A ~] then there exist matrices P and Q over F such that PAQ = | and ] is over F.
If 4 is over the rational field and is of rank r, its rank is unchanged when con51dered over'
the real or the complex field.
_ Hereafter when A is said to be over F- it will be assumed that F is the smallest field con-
_tammg all of its elements.

In later chapters it will at times be necessary to restrict the field, say, to the real field.
At other times, the field of the elements will be extended, say, from the rational fieid to the real
fieid. Otherwise, the statement "4 over F" implies no restriction on the field, except for the
excluded field of charactenstlc two.

SOLVED PROBLEM

1. Verify that the sét of all complex numbers constitutes a field.

To de this we smply check the properties 4, -Ag, My —Ms. and D, —D,. The zero element (45) is 0 and
the unit element (M) is 1. If a+5i and c+di are two elements, the negative (Ag) of e+bi is —a— bi, the
product (M) is (a+di)(c+di) = (ac—bd) + (ad+be)i; the inverse Mgy of a+bi #0 is

1 _ a—bhi _ a bi

a+ bi a? + b2 a?+ 52 g2y p?

Verification of the remaining properties is:left as an exercise for the reader.
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19.

. Describe- the ring of. all 2% 2 matrices

SUPPLEMENTARY PROBLEMS

. Verify (a) the set of all real numbers of the form a+b\5 where a and b are rational numbers and

(by the set of all quotients P (x) of polynomiale in z with real coefficients constitute fields.

Q=

. Verify (a) the set of 21l rational numbers,

(b) the set of all numbers a+b\/§, where o and b are rational numbers, and
(¢) the set of all numbers a+bi, where ¢ and b are rational numbers are subfields of the complex field.

. Verify that the set of ail 2x2 matrices of the form .[a _b]. where a and b are rational numbers, forms a fleld.
. a

. ‘ _b .
Show that this is a subfield of the field of ell 2x2 metrices of the form [: a] where 2 and & are real numbers.

. Why does not the set of all 2>< 2 matrices ‘with real elements form a fleld'?

. A set R of elements a, b c.... satisfying the conditions (A.g_. Ao As As A5, My Mgy Di, Dy of Page 64 ig called

a ring. To emphasize the fa.ct that multiplication is not commutative R may be called a non-commutative
ring.. When a ring R sat:.snes Mg. it'is called commutative. When s ring R satisfies M., it'is spoken of as
8 ring with unit element.” : ’ ’

_ Verify: :

(a) the setof gven integers 0,£2,14,... is an example of a commutative ring w1thout unit element.

{0 the set of all integers 0, £1, +2; ta s an example of a commutative ring w1th unit element.

{c) the. set of all n-gquare matrices over F is an example of 8 non- -commutative ring with unit element.

L b
(d) the set of all 2x2 matrices of the form [Z ) _a]. where o and b are real numbers is an exa.mple of &
commutative ring with unit element - T : . : ' '

.-Can the set (a) of Problern 6 be tumed into & commutative ring with unif. element by simply adjommg the ele-

_ments 11 to the set‘J

. By Problem &, the'set (d) of Pmblem 8 is ) !1eld Is every f}.eld a ring‘? Is every commutatlve ring w1th unit

element a field?

0 , o .' _
a b]' whete g and b are in F. If 4 is any matrix of the ring_a.nd

00
L= [ nE show that L4 = 4. Call L aleft unlt elemmt. Is thﬂre 8 rlght unit element"

1

. __ ' u —v 7
Let C be the field of all complex numbers p +¢/ and K be the field of all 2x2 matrices [v a] where p, g,

: ) ) a —b )
“u,v are real numbers. Take the complex number a+bi and the matrix [b a] as corresponding elements of

the two sets and call each the image of the other.

2 - 0 - 2
o) Write the image of . 3+ 2 5.
@ § [3 2] L 0] "

(5 Show that the image of the sum (product) of two elements of K is the sum (product) of their images in C.
(¢} Show that the image of the identity element of K is the identity el_ement of C.
{d) What i3 the image of the conjugate of a+bi? '

(2) What is the 1mage cf the inverse of - [: - ] ? .
a

This is an example of an iscmorphism between two sets.




Chapter 9

Linear Dependence of Vectors and Forms

THE ORDERED PAIR of real numbers (%1, %) is used to denote a point X in 2 plane. The same pair
of numbers, written ag [z, x,}, will be used here todenote the two-dimensional vector or 2-vector

v 0X (see Fig. 9-1). _ . S . S
P e ' : ' _ %o - Az + x01, 40 *+ %0)
3 Xo(xg3, xa9) |
Xz, 2) . Ii
!
Xi(x11. %10) l[
- 1
i ! X9 {
5 -0 = _ %11 F Xpq =
I ©oFger . Fig. 9-2
I Xi= [z and X, = (25, 25,] are distinet- 2-vectors, “the ‘parallelogram law for
, their sum (see.Fig. 5-2) yields - i ' '
'f -XS_ B K+ Xy = gyt omy, 1o+ Ko
' Treating X, and X, as 1x2 matrices, we see that this is merely the rule for adding matrices giv-
.en in Chapter1. Moreover, if k is any scalar, o - ' '
o S kX = rk”n; ko]
. is-the ;familiaf:—.multip1ic-atic_m- of a'vector by & réal number of physics "
VECTORS By an ri—tiiméﬁéidﬁai vgctor'dr n-vector X over F is meant an ordered set of n elements x;
of F, as , '
: {9.1) t I . =[xy e x,]
i - The elements x,, P xn dre Caﬁllé.d"r'é;s_péctivél‘y the first, second: ..., nth components of Y.
N Later we shall find it more conven__ie_ntrto write the components of a vector in a column, as
£ —XI-
X
! (91’) B A = £x1, xQ. , xn,}' = )
. Xp
Now (9.1) and (9.1’) denote the same vector; however, we shall speak of (9.1) as a row vector
.

| and (9.1 as a column vector. We may, then, consider the pxg matrix 4 asdefining p row vectors
i (the elements-of a row being_ the lcd_mponents of a g-vector) or as defin.ing_ ¢ column vectors.
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The vector, all of whose components are zero, is called the zero vector and is denocted by 0.

The sum and difference of two row (column) vectors and the product of & scalar and a vec-
tor are formed by the rules governing matrices.

Example 1. Consider the 3-vectors _
X, =03.1,-4], X,=[2,2.-31, Xg=l0.-4,1], end X, =[-4,-4,6]
(@) 2X, — 5%, = 2[3.1.—4]1-5[2.2.~3] = [6.2.-8) - [10.10,-15] = [~4.-8,7]
5y 2X,+ X, = 2[2.2.-3]1+1-4.-¢,6] = [0.0.0} = ¢
(¢) 2X, — 8Xp— Xg = 0 ' '
(4) 2X; ~ Ky~ Xg+ Xy = 0

The vectors used here are row vectors. Note that if each bracket is primed to denote col-
umn vectors, the results remain cormrect. '

LINEAR DEPENDENCE OF VECTORS. The m n-vectors over F

B
Fd
[

= '{xn,xm,..;.,rxm] ' .

(9.2) - ' '.‘X'z = _[3‘21'%2_,.....xﬁn]

Xm = ["m:xmz-----:xmn]_ -

_ are said to be linearly dependent over F provaded there exist m elements ks, kz. .erkp of F, not
all zero, such that - , .

O R ¥ AN A
__Othermse the m vectors are sald to be linearly independent

Example 2. Consider the four vectors of Exa.mple 1. By (&) the vectors X2 and X4 are lines.rly dependent;
‘80 also are Xa, X.z, and X5 by (c) and the entlre set by (dy. ;

The vector_s Xy end Xzi.however are linearly independent ‘Fot, assume the contrary so that
ks kix + k2X2 = [3]‘1 + 2k2 k1 + Zkg "4)‘51‘—' 3;52] = [0 0 0]
' Then 3k, + 2k, = 0 I:1+ 2k2 = 0, and —4]:1 31:2 = 0. F’rom the first two rela.tions kl-"',
© and then ky=0. :

Any n-vector X and the n-zero vector 0 are linearly dep'endent'

- A vector sz is said to be expressible as a linear combinaﬂon of the vectors Ko Koo ol Xy
if there ex1st elements ki, kp, ..., %y Of F such that’ ,

Xorr = kX b kX bt Xy
BASIC THEOREMS. If in (9.3), & # 0, we may solve for
. | o
Xi = —Et{kl‘X,l'!' ok ki g Xig 4 b Xpg + oo+ En Xy} or
(2 . .
(9-4) . Xy = B AR T, FINFI0. P ST P A
Thus,

I If m vectors are linearly dependent some one of them may always be expressed a5
a linear combination of the others. :
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: II. If m vectors X, X,, ..., X, are hnea:ly independent while the set obtained by add-
3 ing another vector X,., is lmeazly dependent, then Xn+: can be expressed as a linear com-
b bination of Xy, X,. ..., X, .

Example 3. From Example 2. the vectors X,, and X, are linearly independent while X1 Xy and Xy are
linearly dependent satlsfymg the relations ZXI— 3X,—Xg= 0. Clearly, Xz =2X,-3X,.

III. If among the m vectors X, X,. ..., Xm there is a subset of r<m vectors which are
linearly depend.e_nt, the vectors of the entire set are linearly dependent,.

Example 4. By () of Example 1. the vectors X, and X4 are linearly dependent; by (d). the set of four
vectors is linearly dependent. : See Problem 1.

IV. If the rank of the matrix

X111 Xao Xan
(9.5) A = T TR e o m<n,
. Xms Ty Xmn

associafed with the m vectors (9.2) is r<m, there are exactly r vectors of the set which -
are lmearly 1ndependent while each of the remaining m-r vectors can be expressed 4s a
linear combination of these r vectors o . : See Problems 2-3.

V. A necessary a.nd sufflcmnt condltmn that the vectors (9.2) be hnearly dependent
is that the matrix (9.5) of the vectors be of rank r<m. If the rank is m, the vectors are
lmearly mdependent o :

The set of vectors (9.2) is necessarily linearly dependent if m>n.
If the set of vectors (9.2) is linearly independent so étlso is every subset of them.

A LINEAB FORM‘OVBI F inn vanables X4, Xg, xn is & polynomial of the type
(9 6) - V : 2 a; % 7 = -a;_:xir + 52-;_(2 + e 4 (o ML Y
=1 ) . :
where the coefflcxents are in. F.

Consider a system of m lln‘ear forms in n variables

- | A = a4 512952’;*, U 'qun
(8.7) . | o= amm o+ apm o+ e 4 agx,
: fo = apaxy + apory + + QX
and the associated matrix
| Gyq  Gyg- sy,
A'- _ Q91 Ogp oy,

If there exist elements &y, k,, ..., &, , not all zero, in F such that

kifo + hofy v o+ ko fy = 0
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the forms (9.7) are sald to be linearly dependent, otherwise the forms are said to be linearly i
independent. Thus, the linear dependence or independence of the forms of (9. 7) is equivalent ‘
to the linear dependence or independence of the row vectors of A.

Example 5. The forms f; = 2%y — %o+ 3%, fo = %+ 2%p 4 42:3. fa'= 42y ~ Tag + x5 are linearly depend-

2 -1 3 : .
entsince 4 = |1 2 al isofrank 2. Here, 3/, —2fo—f3= 0.
4 -7 1

The system (9.7) is necessarily dependent if m>n. Why‘?

SOLVED PROBLEMS

1. Prove: If among the m vectors X, Xy, .. Xn there is a subset, say, Xi, Xo.nin, Xy r<m, which is
llnea.rly dependent so also are the m vectors S .

Sinoe by hypothesis kX, + kpXp + - + kX, = 0 with not all of the k’s'eqnal {6 zero; then
;ﬁxlarkgxg .--+er,+ax,,,,1%_-+ox — 0

*with not a.lI of the k's equal to Zern and the entire set of vectors is linearly dependent

2 Prove: If' the rank of the. matrix assoclated w1th 8 set of m n-vectors is r<m, there are exactiy r
vectors which are linearly independent whhe ‘each of the remaming m-r vectors can be expressed .
_asa linear combination of these r vectors : - '

Let (9. 5) ne the matrlx angd suppose first tha.t m<n . If the r—rowed nminor in the upper left hand corner
is equal to zero, we interchange rows and columns as are necessary to bring a non-vanishing :owed minor
-+ into this position and then renumber all rows and columns in natural order. hus we have

%y1 %gp oo Xr

- x. Xoo ' X -
21 %o2 or

A = £ 0
Xry %re Err
Consider now an (r+ 1)-rowed minor
%41 F1p ..o Far Xug
Xor Koy .-l For Zag
V e T - 0
Zyy Xpo - Erro¥eg
xp1 Xpo - Xpr XHg —

where the elements Xp g and %jq are tespectively from any row and any colunin not included in A, Let ks, ko,
ki = A pe the respective cofactors of the elements X1q. %oq. .__,x,rq Ty of the last column ofV Then
by {3.11) o
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kyxeg + kg + ot hexpg o kpagpi = 0 (=1.2,..0)
and by hypothesis klxlq + kyxog + v+ Rrapg v krygapg =Y =0
Now let the last column of V be replaced by ancther of the remaining columns . say the column numbered

u. not appearing in A. The cofactors of the elements of this column are precisely the k's obtained above
s0 that '

Eyxgy 4+ ooy + v+ krxeg, 4+ hrogepy = 0
Thus, _ '
Eygp + koxos + o+ krxpy 4 kﬂ_lxﬁt = 0 {t=1.2.....n)
and. summing over all values of ¢,

By Xy + k;2X2 oo ke X b ke Xy = 00

Since k41 = A £ 0, Aj is a linear combination of the r linearly independent vectors X,, X, ....X,. But Xy
‘was any one of the m-r vectors Xpuy, Xpyo ... Xp; hence, each of these mzy be expressed as a linearcom-
bination of X, X, .... X, :

] Yor the case m > n. consider th‘e.'_ matrix when fo each of the given m vectors m-n additional zero compo-
nents are added. This matrix is [A to]. Clearly the linear dependence or independance of the vectors and
_also the rank of 4 have not been changed.

Thus. in either case, the vectors "X, ..., X5 are linear combinations of the linearly independent vec-
tors X3, X,.....X, as was to be proved. ' ' ' '

. S8how, using a matrix, that each triple of vectors

X ={ue-34] -~ 7 x-(23,1,-1]
() X, =03,-1,21] oend T (b) Ke=[2,3,1.-2]
Xs= [-'1,4.5'. 8_,.-;7‘] - r | X;=14.6.2,-3]

is Hnearly Tiependent. -In each determine a maximum subset of linearly independent vectors and
express the others as linear COmbinati_ons of these.- B : ‘

(1. 2-3 4 - _
{@) Here, [3 =1 2 1} is o_r'_rank 2; there are two linearly independent vectors, say X, and X,. The minor
-5 87 SR ' ' o
. _2-”* Cooees o T 2=3
: # 0. Consgider then the miror |3 —1 2§. The cofactors of the elements of the third column are
s - , el . :
1 -5 8

respectively —14, 7. and 7. Then —14X; + 7X; — TXz = 0 and X; = ~2X; + X,.

2.3 1 -1 .
{b) Here [2 3 1.~2| is of rank 2, there are iwo linearly independent vectors, say Xl and X,. Now the
46 2-3 ' o
o ) 2 -1 13 :
73 : o . 2 -1
minor 9 3 = 0; we Interchange the 2nd and 4th columns to obtain |2 —=2 1 2] for which | £0.
' 4 -3 26 e
. : 2-11 .
The cofactors of the elements of the last column of 12 -2 14 are 2,2,-2 respectively. Thén
4 -3 2 :

2X;1+2X2—'2X3=0. and X3=X1+X2




72 .~ LINEAR DEPENDENCE OF VECTORS AND FORMS [CHAP. 9

4. Let P(1.1,1), B(1,2,3), P31, 2) and P(2,3,4) be points in ordinary space. The points B, P,
and the origin of coordinates determine a plane 77 of equation

x v z 1

. 111 1]
(1) {231 = x-2y+z = 0

0001

.Substituting_ the coordinates of P, into the left member of (i), we have

27341 2340
: o 23 4
1111 1110 .
= = 111 = 0
123 1} 1230 : ‘
. 1 23
000 1} 6001
234 .
Thus, P, lies in 77.. The significant fact here is that [P Py, PQE.. 1 1 1} is of rank 2.
123

We have verified: Any three points of ordma.ry space he ina pla.ne through the origin provided the matrix
of their coordinates is of ra.nk 2.

Show thet B, does not lie in'77. -

SU_PPLEMENTARY PROBLEMS -
5. Prove: Ifm vectors Xi.XQ. ...,X are hnea.rly mdependent while the set obtamed by a.dding another vector .
Xp.q is hnearly dependent then X, =S can be ‘expressed as a 1inear combmetmn of X, XQ Xm. ’

6. Show that the representatmn of Xm+1 in Problem 5 is umque _ . -
Hint: Suppose )«.’,,,.H,1 = E EX; = E siX; and conmder 2 (ks ~—s,,)X1, '
i=1 ,

7. Prove: A necessary and sufficient condltmn that the vectors (9. 2) be lmearly dependent is that the matrix
(3.5) of the vectors be of rank r<m.
Hint: Sappose the m vectors are linearly dependent sethat (9. 4) holds. In (9 5) subtract from the ith row the
product of the first row by s., the product of the second Tow by sQ . 8§ mdmated 1n {9.4). For the
converse, see Problem 2.

8. Examine each of the following sets of vecto:s over the real field for linear dependence or independence. In
each dependent set select & maximum linearly mdependent subset and express each of the remaining vectiors
a3 a linear combination of these,

(12,17 X

X, = = [2.1.3.2.91]
X, = [2‘.-1;3._2] ' _ .
X, = [2.1.4] X, = [4.2.1,-2.3]
(3 X, = {1.3.4.2] (b . (€ ‘ -
% - [3.5.2.2] Xq = [4.5.6] X, = [0,0.5.6,-5]
37 REeTEeAy X, = [1,8-3] X, = [6.3.-1.-6.7]
_ : Xy = 2%+ Xy C Xa = 2% - X
Ans. . - _ b 3 1 2 83 = 1 2
ns. (@) Xg = 24y - Xy Oy, - osx -2, ) x, = 2, X,
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10.

11

1z2.

13.

14.

15.

16,

. Why can there be no more than n linearly independent n-vectors over F?

Show that if in (9.2) either X = Xj or X; = aXJ @ in F. the set of vectors is linearly dependent. Is the
converse true?

Show that anyn-vector X and then-zero vectorare linearly dépendent; hence, X and 0 are considered proportional.
Hint: Consider kX +k,-0 = 0 where ky=0and ky £ Q.

(@) Show that X, = [1.1+4,0], X, = [i.—i1—i] and X, = [1+2¢,1-i.2-i ] are linearly dependent over
the rational field and. hence. over the complex field.

(b) Show that Xo= (11461, X, = (i =i 1-:], and X3 = [0.1-2:,2—:] are linearly independent over
the real field but ere lirearly dependent over the cemplex field.

Investigate the linear dependgnce ot independence bf the linear forms:
_ h o= 3x w xp 4 254 x, fi = 2%y ~ 3xp + dxy - 2y
@) fo = 2xq + 3xp, — % + 2x, () fo = 3z + 22, < 224+ 5x,

fa = Bxy — 9%, + Bxg — x4 : = B2y = o+ 2xa+ x
3 1 2 a 3 %y~ %p gt Xy

Ans. (@) 3fi =2 —f5 = 0O

Consider the linear dependence or independence of a system of polynomials

n. . . . :
i = ajpx ¥ oajgx 0 4 e 4 am -i% “tn {(¢=1.2.....m)

and show that the system is lmearly dependent -or mdependent according as the row vectors of the coeffi-
cient matrix : '

_ .alo a4 e am
B GQO a21 7,... a?ﬂ.

A = i .
Ono Gmi ... Gpy

are linearly debendent or ihdebendént. that is. according as the rank r of 4 is less than or equal to m.

If the polynomlals of elther system are 11near1y dependent find a lmear combmation which is identically
Zero. C

Pl.zx-3x+4x.-27_. T Py

=" 2x* 4 3xa-——4x2+51+3
(@) Py = 222 _Gx + 4 ) By PARAL TN N
Py = % _ 2224 x _ Py = x4+23c5— x2+_x+'2
Ans. (ay 2Py + Py— 2Py = 0 () Pr+Pp— 2P, = 0

s I

: . a b{ e
Consider the linear dependence or independence of a set of 2x2 matrices ¥, = [ d]' Mo = [ ﬂ M= [p q]
S , ' £ £
over F. ) _
Show that kyM, + kM, + k3M3 = 0. when not all the k's {in F) are zero, requites that the rank of the
abcd
matrix fe—f g k| be < 3. (Note that the matrices My Mo My are considered as defining vectors of four
P g st

components. )

Extend{n the résult to a set of mxn matrices.
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17.

18:

19.

20.

21.
~ (a) Show that the fank of [P} PG] is 1 so that the poinis lieon & iine through the origin.

22.

23.

24.

132 {221 04 3

: L . - - . 1 0f |01 0 0}
Show that any 2x2 matrix can be written as a linear combination of the matrices ool 1o ol 11 of and
[g 2] Generalize to nxa matrices.
If the n-vectors Xp. X5 ....&, are linearly independent, show that the vectors ¥y, Y, ...Y%,, where ¥ =
E ajiX;. are linearly independent if and only if 4 = [dij] is non-singular.
J—l
If A is of rank r. show how to construct a non-singular matrix B such that AB = [€y,Co....Cr,0,....0]
where C,.Cs. ....C, area given set of linearly independent columns of 4.
Given the points Fy(1.1.1,1). P, 2, 3, 4, P3(2 3, 2.9, and Puy(3,4. 5 6y of four—dlmensmnal space.

| Hin: Consider I,4,4° A

LINEAR DEPENDENCE OF VECTORS AND FORMS - [CHAP. 9

123 213 1o 3 3
Show that §3 2 4].13 4 2|, and |3 O 6| are linearly dependent.

(b) Show that [Py, P, Pa. P41 is of rank 2 so that these points lie in a plane through the origin.
(¢) Does ‘_Ps(z 3,2.5) lie in the plane of (b)9

Show that every n-square ma.tnx A over F sa*lsfies an ec;ua.tlon of the form
| L Af’uuﬁ" +k,4p27..,.+ki,1A+k¢I

where the k are sca.la:s of F 7 .

4" 1o the light of Problem 16.

Fmd the équatio_n of minimum deg?e'e {see P_rcblem 22) which is satisfie_d by

' _)" A oo -I;)"'# RO (»} A 10|
T - = . . = . 3, . c} = .
_(a ot ot o R | C 1o
A;;s. (a) A"’——ZA 0, (b A2—2A+2! 0. (c) A —2A+I- B ‘
In Problem 23(b) and(c) multmly each equation by A‘lto obtam (b) AT 1“!—-2/1 (c) ATtz — A and

thus verify: If A over F is non—smguiar. then A~ can be expressed as a polynom1a1 in 4 whose coefn—
cients are scaia.rs of F ‘ :



Chapter 10

Linear Equations

DEFINITIONS. Consider a system of m linear equations in the n unknowns X1, %o, .., X

n
Ty 1%y + Qg pXo + ...+ Gap Xy, = h]_
' Gp:%4 + QopXp + ... + Gppxy = hy
{10.1)
Qi+ ApoXo + ... + AunXy = hg

in which the coefficients (a’s)y and the constant terms (h 'sj- are in F.

By a solution in F of the system is meant any set of values of x,, Ko, vei s Xy in F which sat-

isfy smultaneously the m equations. When the system has a solution, it is said to be consistent;

- otherwise, the system is said to be mconsmtent A consistent system has en:her Just one solu-
tion or 1nf1n1tely many solutlons '

~Two systems of Imear equations over F in the same number of unknowns are called equiv-
alent if every solution of‘either system is a. solution of the other. A system of equations equiv-
alent to (10.1) may be obtained from it by applying one or more of the transformations: (¢) in-
-terchanging any two of the equatlons {b) multiplying any equation by any non-zero constant in
F, or (c) addmg to any equatmn a constant multiple of another equatlon Solving a system of

7 consistent equatmns consmts 1n replacmg the gwen system by an equwa.lent system of pre-
“scribed form, : : : :

' SOLUTION USING A MATRIX. In matrix nofation the system of linear equations (10.1) may be written

7 . {81r @2 . ayplixi| - ki
(10.2) | 2t G2 o ayplixal _ Ay
= {@ny Gpo ... Aan||%n A

or, more compactly, as :
(10.3) T - AX = F
where 4 = {“ij] is the coefficient matrix, X = [x,,x,, ... %, 1, and H = [ki,ilg, e b 1

Consa.der now for the system (10, 1} the augmenfed matrix

: fﬁi'i- Q1o .. Gy By
(10.4) oy 8o .o Gomho!f _ (4 H]
Omi GOpg -

(Each row of (16.4) is simply an abbreviation of a correspondlng equation of (10.1); to read the
equatlon from the row, we simply supply the unknowns and the + and = szgns properLV )
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FUNDAMENTAL THEOREMS When the coefflclent matrix A of the system (10.1) is reduced fo the .

-.hleSx x
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To solve the system {10.1) by means of (10.4), we proceed by elementary row transformations
to replace 4 by the row equivalent canonical matrix of Chapter 5. In doing this, we operate on

the entire rows of (19.4).

x, + Zxg + xz = 2
3x, + X0 — 2 = 1
Example 1. Solve the system 1 2 o
T 411-3%2- Xg = 3
Y ox, + dxy + 2% = 4
1.2 127 o2 1 2 1 2 1.2
3N -21 0 —5 -5 =5 01 1 1
T d mattix 1A H] = R I e ~ -
hea.ugmente ma.:x[ ] 4 -3 =113 0 —11 -_5 -5 0 —11 5 —5
242'4-4}_000 0 0 0 O
1 0=1 0 16017 1-
101 11y for o},
00 11 001t
0o 00 060 ol

Thus, the soclution is the equivalent system of equatmns 2 =1, 2p=0, %3 =1,

pressed in vector form, we have X = {1 g, 1]’

row equivalent ‘canonical form C, suppose [4 H]is reduced to [C K} whete K= [k, ko, oo ok a1
I A is of rank r, the first r rows of € contain one or more non-zaro elements. The first non-Zero
element in each of these rows is 1 and the column in which that 1 stands has zeros elsewhere,
The remaining rows conmst of zeros. - From the flrst r rows of [C K], we may obtain each of
the variables xj , % j - (the notation is that of Chapter 5) in terms of the remammg varia-
J ey %y and one of the ki, k2, O k,r. v s '

o krﬁ: F"ﬂ-"zf -7 k

values for xJ s 1r+2 e s xj

a solution ‘On the other hand, if at leasj; one of k,r i kr s2)
ky ?5 0, the correspondlng equatlon reads |

Jf+2, . :
= 0, then (10 1) is consmtent and an arbltranly salected set of

together with the resultmg valués of % oy x g

gt PURARI

Oy + Omg + . # 0, = ?s,;'_f# 0-

and (10 1) is inconsistent.

In the consistent case, A and [A H] have the same rank in the mconsmtent case, they -
have dlfferent ranks. Thus

I. A system AX = H of m llnear equations in n unknowns is consistent if and only if
the coefficient matnx and the augmented matrix of the system have the same rank.

II'. In & consmtent system (10.1) of rank r<n, n—r of the unknowns may be chosen
's0 that the coefficient matrix of the remaining r unknowns is of rank r. When these n—r
unknowns are assigned any values whafever, the other T unknowns are umquely determined.

\ xq + 2x5 — 3x5 — 4z, = 6
Example 2. For the system { =z + 3zp + x5 — 2x%4 = 4
{221 + 5xp — 225 — 5z = 10

Ex- _

constitute
w.» Ky is different from zero, say -
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12-3-416 (1.2 -3 —¢ ¢] 10-11 -8 10
(A Hl = |13 1-2)a]~]01-4 2_9]|~ 01 4 2-3
2522 -5 10 01 4 '3 -2 30 0 1 o
! [0 —11 0of 107 Loy, 25T
~10 1 402! = [C K] o
oo o1 o] - '

Since 4 and [4 H] are each of rank r = 3, the given system is consistent; moreover,
the genera! solution coptains n—r = 4-3 = 1 arbitrary constants. From the last Tow
of [C K], %z = 0. Let x3 =a, where a is arbitrary; then %1 = 10+1la and xy = —2-4q,.
The solution of the system is given by %1 = 10+1lae, %9 = ~2~4a, x5=a, x, = 0 of
X =1{10+1la, ~2—4a,a, 0]'..

If & consistent system of equations over F has a unique solution (Example 1) that solution
is over F. If the .system has infinitely many solutions (Example 2) it has infinitely many solu-
tions over ¥ when the arbitrary values to be assigned are over F. However, the system has
infinitely many solutions over any field ¥ of which F is a subfield. Flor example, the system
of Example 2 has infinitely many solutions over F (the rational field) if ¢ is restricted to rational -
numbers, it has infinitely many real solutions if @ ‘s restricted to real numbers, it has infinitely

" many complex solutions if ¢ is any complex number whatever.
: ' : See Problems 1-2.

NON-FHOMOGENEOUS EQUATIONS. A linear equation

812+ agxg + . tax, = ko

is Cafiled non-homogeneous if A # 0. A system' AX =H is c_alied & system of non-homogeneous
equations provided Hris not a zero yector. The systems of Examples 1 and 2 are non-homogeneous
systems. = ' ' - '

In Problem 3 we prove | _ _ _
~IH. A system of n non-homogeneous equations in n unknowns hag 2 unigue solution
provided the rank of its coefficient matrix 4 is n, that is, provided |A| #.0,

In addition to the method above. two additional procedures for solving a consistent system
of » non-homogeneous equations in as many unknowns AX = H are given below. The first of
these is the familiar solution by determinants. '

(a) Solution by Cramer’s Rule. Denote by 4;, =1,2,....n) the matrix obtained from 4 by re-
placing its ith column with the column of constants- (the A’s). Then, if'{4] # 0, the system
AX = H has the unique solution : . B

|44 4o o

(_10'5) o xy = m, Xy = I_’ZI_ I '|Anl
- ' See Problem 4.
2261 + x2+5x.3+ X, = 5
) X1+ xp — 3xg ~ 4xg = —1

Exaniple 3. Solve the system using Cramer’s Rule.

3% + 6xp — 2xg + x4 =

le + ZXQ + 2—'53 bl BX4 = 2
We find 7
21 5 1 51 8 1
11-3 -4 -1 1-3 -4 .
- Al = = A = =
4] 36-2 1 120, 4] 8 6-2 1 240
2 2

2 -3 22 2-3
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2 5 5 1
1A|="1—1—3_4 -

2 3 8-2 1

‘2 -2 2 -3
and 1*‘14‘ =
Then -3 . |A l 190 X

o laa_-es 4

T 14l 1200 5

(b} Solution using 4~
by

(10.6) CANAR = A

Example 4. The coefficient matrix of the system

"A_-?-',IX = X = A

"From Problem 2(b), Chapter 7, ~A™?

LINEAR EQUATIONS

-24, 4]
21 5 5
11-3-1
36-2 8

fa2 2 2
}igl -2
|A| -120

X

[CHAP, 10

21 5 1

11 -1 -4 _
ag g 1] °
22 2 -3

-96
xa"'@:”“o_—ﬂ,&nd
]! —120

|A|#0, 4t exists and the solution of the system AX = H is given

of . X =AH
(2% 320 + 25 = s a3
%y + %%y + 3% = 6-1s 4 =11.23
3¢ + %o + 2xg = 8 1

L1 T
=1l 7 1 5{. Then
-5 T 1
C Ties A e
R e ais]- PLs

BOMOGENEOUS EQUATIONS A linear equation

(107) ‘ aixj_ + agxg + .. +

anxn =

is called homogeneous. A system of linear equations

(10.8) “AX =0

The solution of the system 1s x1 = 35/18 272 = 29/18 xs = 5/18

© See Problem 5.

in n unknowns is called a system of homogenecus equations. F’or the system (10 8) the rank
of the coefficient matrix A and the augmented mafrix [4 0] are the same; thus, the system is

always consistent. Note that X =0, that is,
called the trivxal solution.

Xy =

x2

=x, =0 is always & solution; it is

If the rank of 4 is n, then n of the equatioas of (10. 8) can be solved by Cramet’s rule for the

unigue solution x: = xy =

A is r<n, Theorem II assures the exzstence of non-trivial solutlons Thus,

IV. A necessary and sufficient condition for (10.8) to have a solutlon other than the .

trivial solution is that the rank of 4 be r <n.

=x,=0 and the system has only the trivial solution. If the rank of

V. A necessary and sufficient condition that a system of n homogeneous equations in

n unknowns has a solution other than the trivial soiuticm is

14|

= 0.

VI. If the rank of (10.8) is r < n, the system has exactly n-r linearly indeperdent solu-
tions such that every solution is a linear combmatwn of these n-7 and every such linear

combination is a solution.

See Problem 8.
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LET X, and X, be two distinct solutions of AX = H. Then AX, =H, AX,=H, and 4 (X,~ X,) = AY = ¢.
Thus, ¥ =X,- X, is & non-trivial solution of 4X = 0. : :
Convéi'sély, if Z is any non-trivial solution of AX = 0 and if _X?j is any solution of AX = F,
then X = Xﬁ +Z 1is alsoa solution of AX = H. As Z ranges over the complete solution of AX =0,
X?5+ Z ranges over the complete solution of AX = H. Thus, :
VII. If the system of non-homogeneous equations AX = F is consistent, a complete
solution of the system is given by the complete solution of AX = 0 plus any particular so-
lution of AX = H. '

x) — 2%g + 3xg

sef =§; then x3 = 2-and x, = 1. A particular
x1 + Xo + ZXS 1 3 2 P culs

4
- Example 5. In the system { 5

. . — +3 = .
solution is Xp = [0, 1, 2]" The complete solution of { "1 275 +3z5 = 0 is [-7a,a,3d],
: ) ] o %4t Xp +2x3 = 0
where a is arbitrary. Then the complete solution of the given system is
X = [-Te,0,3e] +[0,1,2]" = {-7a, 1+a, 2+3a)
Note. The above priocedure may be extended to larger systems.r However, it is first
. necessary to show thaf; the system isr_consistent. This is a long step in solving the
. system by the augmented matrix method given earlier.

SOLVED PROBLEMS
) Xy + xQ - Z-xs + x4 —:*" 3x5 =
1. Solve 2%1 = xp + 2 + 23, + Buy =
3%; + 2%y - 4%g — 3%, — G5 .=

Sclution:

The augmented matrix _
1 1-2 1 311 1 1-2 1 31 1 1-2 1 31
el = J2-1 2 2 620~ |e-3.6 0. 0lo| ~ fo 1-2 0 ojo
C13 2+4-3-9]3 [0 -1 2 -6 -18,0 10 ~1 2.-6-18'0
(10 0 1 31 10 01 38i1
_ ~ lo1-2 0 olol] ~ lo1=200lo
- 00 0 -6-1810 00 01310
10 0001
~ 01—20'030
00 01310

Then z; = 1, xp~2x5 = 0, and x,+3x5 = 0. Take x3 = ¢ and x5 = &, wherea and b are arbitrary; the complete
solution may be given as x4 = 1, zp = 2a, x3 = a, x, = —3b, x5=b oras X =[1,2a,a,-35, 5]

Xyt % + 2xq + xy

2. Solve {2x; + 3%, - x5 - 2x, = 2
N dx) + 52, + x5 = T
Solution: _ : _
, 11 2 15 11 2 1 5 190 7.5 13
(48] = |238~-1-22]~]01-5-4 -8~ lo1-5—4—3
45 3 017 0

1-5 -4 ~13 00 0 0-5

The last row reads 0.x3 + 0.x, + 0-x5 + 0.%, = —5; thus the given system is inconsistent and has no solution,
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3. Prove: A system AX = H of n non- homogeneocus equations in n unknowns has a unique solution
provided |4} # 0.

I A is non-singular, i is equivalent to [. When 4 is reduced by row transformations only to I, suppose
[4 H) s reduced to{/ K]. Then X = K is a solution of the system.

Suppose next that X = L is a second solution of the system; then AK H and AL = H, and AK = AL,
Since 4 is non-singula.r K =L, and the solution is unigque.

4. Derive Cramer's Rule.

Let the system of nen;homogeneous equations be

Gy1%1 F Gyp%g * ... tOmEn =k
(1) ‘ Gp1%1 + dgoXo + ... FaopXn * hQ.
apixs * Gpa¥o t e t OnnFn = hn

Denate by 4 the coefficient matrix [“ij] and let O Jbe the cofactor of a;; in 4. ‘Multiply the first equa-

tion of (1) by 0,4, the second equa.tion by &4, -..., the 1ast equatxon by Ctm. and a.dd We have
,2 “1,1051,1951 + 2 01,2051,1"2 “— i .2 eintii%ny = .Z hilg
Ct=1 o i=t o t=

which by Theorems X and Xl.'and Prol:jlem 10, Chap_ter-a, reduces fo

hy 012 cri- Bam .

| l.Al-xl = hg Ao ... Gop = 4] sothat x = -ll—-ii—l )

| h?l Gpg vinv a,.m__ o | ' | , _ - ]

Fext, puliely 12 equations of (1) fespectively by 1z, Ggz. - o a'i?’{i-Sum, to obtain
aj:l hl qia :--:.. asgn - ' . N i . B
. aon ks Gog ... G R T 4 -

|4]-% = 21 f2 %23 1 = |4] . sothat =z = ll_Az\‘_ -

ans k‘r.', a'?’_i'ﬂ- -- ann - . | : | : B

C‘orif_ir_mir_ié in this manner, we- finally multiply the eqﬁations ‘of (1) respeciively by Qan, Oon ..o tnn
and sum to obtain ' R o ' ‘

_ Gyq o '51,11-1" By )
Ny : don i ot he l—T 1 ‘ Y
I | R (N .
Gnt -an,'_n-j_ hﬂ, .

2%, + xp + 5xg T x4 = 5
. %y + %p — 3%~ 4xy = =1 . . L et s
3. Solve the system : using the inverse of the coefficient matrix.
3x, + 625 — 22z + Xy = 8 : '
%, + 2%, + 2% — 3%, = 2
Seluticn: ' -
21 5 1t _120 120 0 —120
. . 11-3—4 1 {—~69 —73 17 80 '
The inverse of A4 = 56 -2 1 is To0|_15 —35 -5 40| ‘Then
22 2-3 24 8§ 8 —40
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126 120 9 -120 5 2

1 |—-69 =73 17 80 {|—-1 1/5
X = =
120 {—15 —35 -5 40 8 ]
24 8 8 —40 2 4/5
(See Example 3.)
%y * xo *t x5t x4, = 0
§. Solve xy +3xg + 225 + 44 = 0
7 2X1 + xs - x4 - 0
Solution;
111 10 110 _
A H] = 132 40 30 ™~
1 -1 0 0«2 =1 -3 0
11110 103 =30
13 -1
- ~ 161z 3z0! ~ otz 30
D 0000 000 o0

The complete.solution of the system is =z, = —3a +-2'+b, %y = —§a—
A is 2, we may obtain exactly n—r = 4—2

first taking a =1; b=1 and then a =3, b=1is

Xq = Q, X = -—2, Xa = 1, x4'= 1 a.ﬂdr' Xy = -1, Xo = -3, Xq

3 _ -
30, xg=a, xy=b.

81

L= T o I
[= N
(oo B O
G o
[ R = |

Since the rank of

= 2. linearly independent solutions. One such pair, obtained by

=3, %41

What can be said of the pair of solutions obtained by teking ea=b=1and a =b =39

1. Prove: In a square matrix 4 of order n and rank n- 1 ‘the cefactors of the elements of any two TOWs

(columns) are proportlonal RN

Since |A| = 0 the cofactors of the elements of any row {column) of 4 are a solutmn X:. or the system

AX =0 (A'X = ).

Now the system has but one linearly independent solution smce A (A ) is of rank n-1.
cofactors. of another row (column) of 4 (another solution X, of the system), we have X, = kX,

8. Prove: If 3, fo, .0,
linear forms

. n
&3~ E S,;jf'-

fs 1e m<n linearly independent lineer forms over F in n variables, then the p

G=12,..

Hence, for the

VP

are linearly dependent if and only if the m xp matrix {s; ] is of rank r<p.

The g's are linearly dependent if and only if there exist scalars ag,ag, ...,

that
— G181 + dogp t .. tapgy = Gy 1:21 sinfi + Az 121 Siafy +
p p
= (JEI is1iifa E GiSo5)fa
- m 4
MR- R 0

ap' in F, not all zero, such

m

2 sipfi
R

+- +. (jgiajs’-"j)f”‘

+ap
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Since the f's are linearly in’dependent, this requires

P
3 aJ 1] a18;, * 08, + ... + apsw = 0 (=12 ...,m})
j 1
_ P
Now, by Theorem IV, the system of m homogeneous equations in p unknowns .21 Si3%) = ¢ has a nom-
: =

trivial solution X ={a1,ap,...,a,]' if end only if [s; ;1 1s of ran r<p.

9. Suppose A = [aij] of order n is singular. Show that there always exists'a matrix B = [bij] # 0 of
otder n such that AB = 0. )

ABl = ABQ = ...

Let B4, Bg, ...,7B'n be the column vectars of 8. Thern, by hypothesis, =AB, = Con-
sider any one of these, say ABy =0, or
aj‘.ib_ﬂ.t_+d12b2t+ .'...+ eip bpt =
321_61t+a-22b2t_+ T ngbnf' = 0
Gpabig + “n-zbzt + ... tapnbat 0

., bnt has solutions other
0, ... have solutions, each bemg a column of B.

Since the coefficlent matrix 4 is singular, the system in the unknowns b1, bat, ..
than the triviel solution. Sinularl_y, ABy =0, 48, =

. SUPPLEMENTARY PROBLEMS

10, Find all solutions -efl.

(a)k Xy ~ 2x:2 + %y - 3x = 11 _ (o) { 2mg + 5xp — 2% S 3
- : / o %y o+ Txp — Txg =
= - 1 %+ +x2+x3 + x4 == 0
it et me a ST PO - 4
=+ (BY A T2 SE 3 T s dy 1 F Xy xR 4 .
o 2%y F Bxg = 2xg .= T x,_ +"2 g ‘5"54 = o
’ - h 7 xl““x2+x3+x4 =7 2
Ans.As) # = 1+2a=b +3c, 5p=a, ‘g = b, xg=c
by % = —Ta/3 +17/3, x5 = 4a/3 — 5/3, %=a
o (d) Xy = —Xg = 1 Xq = —x4 = 2 . .
11. Find sll non-trivial soiuj:ions of:
. ( ) x1—2x2+3x3 = 0 _' x1+2x2 +3x3 g
a o : o+ Fxg . =
2x1_+ 5XQ + Bxg = 0 (c) ¥2 3""3
. - . 3x1 + 23}'2 + Xg = 0 -
e 4wy — xo t 2%a + mg =
Ixq = % + 3xg = 0 ) le N 3x2 2% 2x4 0.
(Y {3xy +2xp + x = 0 @) = ‘7x2 ) 4x3 i ;4 = X
- % — 42+ Bxg = 0 : e 0
7 o 2xgy — 1lxg + T2y + 8% = 0
Ans. (a) %, =—-3a, %=0, zg =0
(b) %y =—xg=—xg=a
! 5 3 T '
dy %y = 2 +2h, xp=a, xg =—a —--b, % =p
*T g g ? 5% e
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12. Reconcile the solution of 10(d) with anocther %, = ¢, 2o =d, xg = — 13—9 _%, g = %C +—§d.
1°1 2 :
13. Given 4 = |2 2 4}, find a matrix B of rank 2 such that 4B = 0. Hint. Select the columns of B from -
33 6
the sciutions of 4X =

14. Show that a square matrix is singular if and only if its rows (columns) are linearly dependent.

15, Let AX =0 be a system of n homogeneous equations in n unknowns and suppose 4 of rank r =n-1. Show
that-any non-zero vector of cofactors [Otu, Uigs vens Ctm]' of & row of 4 is a solution of 4X = 0.

16. Use Problem. 15 to solve: . ) ‘

Ky — 2%y + 3% = 0 2%y + 3xp— %5 = 0 2%y, + 3%, + 4%y = O
(@) _1 4 Xy 3 T 1 2 il B (c) 1 2 T %E3
2x1 "!"-52:2 + 6273 = 0 3%1 —_ 4952 + 2%3, = )] 22:1 - Xg + SXQ = 0
Hin{. To the equations of (a) adjoin 0xy + 0z, + 0x;3 = 0 and find the éwofactors of the elements of the
1-23 '
thirdrowof {2 5 8
0 00
Ans. (@) % = —2Ta, %y = 0, 2.=9a or [3a,0,—a), (6)[2a,~7a,—174]", () [11a,~24,—4a)'
17. Let the coefficient and the augmented matrix of fhg system of 3 n'on—ht')mogeneous.' equations in 5 unknowns
AX—=H be of rank 2 and assume the canonical form of the augmented matrix to be
L 1 0 big big. bis ¢y
C- ' o E 0 1 bgg bga bos L2
T 000 0 0 0
with not both of ¢y, co equal to 0. First choose xg=x4=%5=0 and obtain X, =[ey, ey, 0, 6,0} s a solu-
tion of AX =H. Then choose x5 =1, 2, =25 =10, alsc x3=x5=0, x4 =1 and x4 =%4=0, xzg= 1 to ob-
© tain other solutions Xj, X3, and X;. Show that these 5— 2 +1 = 4 sclutions are linearly independent.
18. Consider the linear combinafion ¥ = 31X1 +s'QX2+s'3X3 +34X4 of the solutions of Problem 17. Show
~that ¥ is a solution of AX = K if and only if (i) .53 +sg+sq +s4 = 1. Thus, with 54,55, 54,5, arbifrary except
for (z.) Yisa complete solutmn of AX H. : : ’

19. Prove: Theorem VI. -Hint. Follow Problem 17 with ¢4 2 eo = 0.

%0. Prove: f A isanmxp matnx of rank 7, and B is a an mabnx of rank ro such that AB =0, then r1+ rg £ p.
Hlﬁf Use Theoren V1. ‘ :

%1. Using.the 4x§ mater A= [a ] of rank 2, verify: In an mxn matrix 4 of rank r, the r-square determi-
nants formed from the columns of & submatrix consisting of any r rows of A are proportional {o the r-square
determinants formed from any other submatrix consisting of r rows of 4. )
Hint. Suppose the first tworows are linearly independent so that agj = pslaij *Pagfag, Gaj = pagayg t P4292 3,
(7 =1,2,...,5). Evaluate the 2-square determinants :

a ta
- 21q 91s ) 21q G1s . - and tdag Cfss
Cog Ggs Gaq Gas G4q G453
22. Write a proof of the theotem of Problem 21.
23. From Problem 7, cbtain: If the n-square matrix 4 is of rank n-1, then the following relations among its co-

factors hold B
- : S (@) Ggiapg = Qg U (b) Ggly = iy
where (,i,/,k=1,2,...,n) '

1
1
A
1
:
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24.

25,

%8,

21.

29,

30.

31.
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11 1 14 10000
12 3-4 2 01000
21 1 2 8] . . o100 ' .
P e 1 . From B =|4A Hj infer that th
Show that B 3 0113 is row equivalent to 50010 [ ] er o
12 2-2 4 coo0o01
23-3 1 1] 10000 0]

system of 6 linear equations in 4 unknowns has 5 linearly independent equaiions. Show thatl a system of
m>n linear eqnatmns in n unknowns can have at most n +1 linearly independent equa.tlons Show that when
there are n +1, the system is inconsistent,

If AX =H is consistent and of rank r, for what set of r variables can one solve?

Generalize the results of Problems 17 and 18 to m non-homogeneocus equations in » unknowns with coeffi-
cient and augmented mafrix of the same rank r o prove: If the coefficient and the augmented matrix of the -
system AX=H ofm non—homogeneous equations inn unknowns have rank r and if X, X, ..., Xn-r+1 are
linearly 1ndependent solutions of the system, then
X = Sle + 81X2

it ct sy reiXnoren

where 2 s; = 1, isa complete solution.
i=1 . ‘

Ina fonr-pole electrical network, the input qnant_ities E;, and I; are given in terms of the output quantities
By =aBprbl o B ,“_ {Ba| L 4] P2
. ’ 11 CEQ + dIQ 11 ¢ 12 . 12
| E 3 1Al TE Alli 1.
Show that o l,_l L] I R R L t I
R 21 B i | 1 Ll T a1 ||

Solve n_lso for E’zand IQ; [_1 a.nd Ip, 1; and Ez.

. Lat the system of n hnear equatlons inn unknowns AX H H ;ﬁ 0, have a umque solntlon Show that the

system AX =K ha,s a umque SOlilthI‘l for any n- veotor K #£0.

R . - 1 -1 el : - ‘
Solve the set of linear forms " AX = |2. 1 ‘3||xs| = ¥ = {yp| for the x; as linear foms in the y's.

1 2 3 _xg_ X s )
Now write down the' Esoiution of X = Y. . N .

Let A be n-square and non- smgular and let S be the solutlon of AX = E,b. (r. =1,2,....a), where E is the
n-vector whose ith component is 1 and whose other components ate 0. Identify the. matrix’ [Si, Soi . ,S n]

Let A be an mxn : matrix with m <n and let S;be a soiutmn of AX=E;, (i=1,2,...m), where E; is the
m- veotor whose zth component is 1 and whose. other components are 0. If. K= [k1 ko oo, km]’. show that

kySy o+ kaSo + 0+ kS,

is a solution of 4X =K.




Chapter 11

Vector Spaces

UNLESS STATED OTHERWISE, zll vectors will now be column vectors. When componeﬁté are dis-
played, we shall write [x, x,, ..., x,]". The transpose mark (") indicates that the elements are
to be written in a column.. - — . ‘ : ‘

A set of such n-vectors gver F is said to be closed under addition if the sum of any two of

them is a vecfor of the set. Simllarly. the set is said to he closed ander scalar multlphcatlon
1f every scalar multiple of a vector of the set is a vector of the set

i Example 1. (a) The set of all vectors { %4, %5, %3] of ordinary space having equal cemponents (X3 = %o = %g)
E - - is closed under both addition and scalar multiplication. For, the sum of any two of the
vectors and k times any vector (% real) are again vectors havmg equal components.

e (b} The set of all vectors [x,, 2, %1 of ordmary space is closed under additien and scalar
5 ' s e multiplication. : .

l - YECTOR SPACES JAny set of n-vectors over F which is closed under both addition and sr'alar multl-
plication is called a vector space. Thus, if X, X ..., Xy are-n-vectors over F, the set of all
!  linear comblnations . o o _ o

It A S Y N R

is a vector space over F. F‘or example, both of the sets of vectors (a) and (b) of Examplel are
vector spaces. Clearly, every vectdr space (11. 1) contams the zero n-vector while the Zzero
" n-vector alone is a vector space. (The space (11.1) is also called a lmear vector space ¥

The tdtalit-y (F) of all n-vectors over F is called the n- dlmensmnal vector space over F.

SUBSPACES. A set V of the vectors of ¥,(F) is called a subspace of ¥, (F) prmrlded V is closed un-
der addition and scalar multiplication. Thus, the zero n-vector is a subspace of |4 (F), ‘80 also
s b (F) itself. The set (a) of Example 1 is a subspace (a line) of ordinary space. In general,
_ 1f X . S Xm belong to ¥, (F), the space of all linear combinations (11.1) is a subspace of
Vi (F)y. '
A vector space V is said to be spanned or generated by the n-vectors X,, X, ..., X, pro-
vided (a) the Xilie in V and (b) every vector of V' is a linear combination (11.1). Note that the
vectors AX,, X,, ..., X, are not restricted to be linearly independent.

Example2. Let F be the field R of real numbers so that the 3-vectors X, = [1,1,1]" X, = [1.2, 3]
X3 =[1.3,2], and X, = [3.2.1]" le in ordinary space S = V4R). Any vector {a,b.c] o
S can be expressed as _

- O

85
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Yz + ¥z + Ia
2y, + 3yz + 2Ya
30 + 2¥a + Ya

~d
N
+

I
[y
P

+

nXy + yoXa + yaXa + yfs

-2
>
+

since the resulting system of equations

y1 + ¥+ ya+ 3ys = &

() oyt 292+ 3 b 2y = b -
v + 3y + 23t ¥4 = € '

is consistent. Thus, the vectors X, X.é, Xa Xy snen-S .

The vectors Xy and X, are linearly independent. They span & subspece (the plene ) of _
" § which contains every vector hX,+kX,, where h and k are real numbers. :

-The v_ector X, spans a subspace (the line Lyof § which confains every vector AX,, where
k is a real number. | ' ' : _

See Problem 1.

BASIS AN 3] DIMENSION By the dlmensmn of a vector space V is meant the Tmaximum number of lin-
eerly mdependent vectors in ¥V or, what is the same thmg, the minimum. numbet of linearly in- -
dependent vectors requued to span V. In elementary. geometry. ordmary space is considered as
& 3-space (space of dimension three) of points (a, b, e). Here we heve been considering it as a-

- 3-space of vectors [a b, c)’. The pla.ne T of Exemple 2 is of drmensron 2 and the line [ is of .
dimension 1. . = :

A vector space of dimension r consmtmg of n- vectors w111 be denoted by )/ (F).'When' 7= n, o
we shall agree o write V (Fy for / (F) . z ' :

A set of r lmearly 1ndependent vectors of (F) 1s called & ‘basis of the spece Each vec--
tor of the space s then a uruque linear combmatlon of-the vectors of this basis. All bases of
¥, (F 3 hsve exactly the same numher of vectors but any T, 11near1y 1ndependent vectors of the
space. will serve asa basrs : : : . ;

Example?. The vectors Xg X, Xs of Exs,mple 2 spa.n S since any vector [a b c] of S can he expres_w.ed

_’-'-S.A . T R S o -
. 1% + 72 ;" 3’_3 | )
Xy + yoXo + vaXe =yt 22 ¥ 35’3
o + 3t 23’3
. : 71+ Yo ¥ st =6 , R | S
- The resulting systerrr of equa_.ttons oy i+t 3y = b, 'unlike the system (1), has a u- )

c

yi+ 32+ 2a

nique solution The vectors X4, X, X, are a basis of S, The vectors X,_,X2 X4 are not a
basis of 5. (Show this) They span the subspace 7 of Exemple 9, whose hasis is theset X, X5.

Theorems I-V of Chapter 9 epply here, ot course. In particular. Theorem IV may be re-
stated as:

LI X, XQ, . X,,_ are a set of n-vectors. over F and if r is the rank of the nxm matrix
of thelr components then from the set r inearly independent vectors may be selected. These
r vectors span a Vn(F ) in which the remaining m-r vectors lie. -

~ Bee Problems 2-3.
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Cf considerable importance are:

1x. If X1, KXo ..., Xy are m<n linearly independent n-vectors of ¥,(F) and if Knsts
Kpao - X are any n-m vectors of ¥,(F) which together with X,, X,, ..., Xy form 2 linearly

: mdependent set, then the set X, X, ..., X, is a basis of W (F). '
Ses Prob_lem' 4.

m. i X, . X,,... X, are m<n linearly independent n-vectors over F, then the p vectors
Yj = Es X (j=1,2,...p)
f=1 )
- are linearly dependent if p>m or, when p<m, if {Sij] is of rank r<p.

IV. If X, X,,..., X, are lmearly 1ndependent n- vectors over F then the vectors

Yt = 2 a‘LjX (L—].,z,..., )

7
are linearly 1ndependent if and only if (%7] is nonsmguier

IDENTICAL SUBSPACES. If V?F} and 7r(F) are two subspaces Cf n(F), they are identical if and
only if each vector of V (Fyis a vector of V (F) and conversely, that is, if and enly 1f each

— 1s a subspace of the other. .
. See Problem 5.

SUM AND INTERSECTION OF TWO SPACES. Lét 1 (F) and n% ) be two vector spaces By their
sum is meant the totahty of vectors X+Y where X is in ¥, (F)and Y isin ¥, (F) “Clearly, this
is a vector space; we call it the sum space F, (F) The dimension s of the sum spa.ce of two
vector Spaces does not exceed the sum of their dimensions. :

By the mtersectmn of: the two vector spaces is meant the totality of vectors common to the.
two spaces. Now if X is a vector COMMONR to the two spaces s0 also is aX; l1kew1se 1f X and
< ¥ are common to the two spaces $0 also is aX + bY Thus, the 1ntersect10n of two 'spaces is a
" vector space “we call'it the‘intersection space v e F ). The dimension of the mtersectmn space
of two vector spaces cannot exceed the smailer of the dlmenszons of the two spaces. ‘

V. If two vector spaces V (F) and (F) have | {F) as sum space and I/ (F) as inter-
section space, ‘then ﬁ-r»}s = s+t

VExampleG Consn}er the subspace 77, spanned by Xl and. X, of Example 2 and the subspace Ty spanned
- by X3 and X4 Since 77; and 772 are not identical (prove tms) and smce the four vectors span

§. the sum space of 77; and 7, is S. 7 A
Now 4X, — X, = X,; thus, X4 lies in both 77, and 77,. The subspace (line L) spanned
by X4 is then the intersection space of 77, and 77,. Note that 77y and 77, are each of dimensicn

2, 5 is of dimension 3, and L is of dimension 1. This agrees with Theorem V. _
: See Pmbl_ems 6-8.

NULLITY OF A MATRIX. For a system of homogeneous equations AX = O, the solution vectors X
constitute a vector space called the null space of 4. The. dlmensmn of this space, denoted by
Ny, is called the nullify of 4.

Restating 'Ijheorem VI, Ch_apter 10, we_have
© VL If 4 has nullity Ny, then 4X =0 has ¥, linearly independent solutions X, X,, ...,
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X& such that every solution of AX = 0 is a linear combination of them and every such
linear combination is a solution. '

A basis for the null space of 4 is any set of N, linearly independent solutions of 4X = 0.°
' See Problem 9.

VII. For an mxn matrix 4 of rank r4 and nullity Ny,

(11.2) o+ N = m

SYLVESTER'’S LAWS OF NULLITY. If A and B are of order n and respective ranks "A and rg, the
rank and nulllty of their product AR satisfy the 1nequa11tles

_ TR 2 gt~
(11.3) : Nag > Ny, Ngg > Mg

Nig' £ N+ N - . See Problem 19.

BASES AND COORDINATES. The n-vectors

'El = [1, o:o" 01, E,=[0,1,0,...,00, o E, =[0.0.0,..17

are celled elementary or unit vectors over F The elementary vector E whose jth cempcnent
-is 1, is called the ]th elementary vectOL The. elementary vectors El, EQ, E.n cer_;stit'ute'a.n
1mportant basis for ¥, (F). : : ' . '

“Every vectq: X = [xi, xg,.-..} ,'xn}’ "of_-Vn(:_F) can-be ex'pres'sed u‘niqﬁely as the sum
N X = .%HE@- = ..xl.Ex‘ + By 4 e b Ey
’ . :'1":,. ) - o _

B -.-of the elementary vectors The components Xy, x2. xn of X are now called the coordinates of
X relatlve to the E baszs Hereafter unless otherwrse spec1f1ed we shall assume that a vector‘
X is given relatwe to thls basis.- .

. Let Z,Z, .. ., Zy be another ba31s of ¥, (F)r.: Then_ t'ljereiexi_strurlique scalars a,, gy, ..,
~in Fsuch that - ST : S L '
X = 2 a;Z; - = ' aizi + (ZQZ + ot anZ

1=

These' 'ec'e.la.r's’ a,, a.2, an are called the coordmates of X relatwe to the Z- ba51s Writing
X, = [a, a.z, ] we have :

(e _' . ¢ 20,2, 20% = Z-Xp
where Z is the metrix w_hdse columns are the baSiis' vec_tors 724 79 s 2y

Example5. 1f Z,=[2.-1,3) Z,=[1,2.-11. Zg=[1,-1.-1]" is & basis of % (F) and Xy =[1,2.3]
" is a vector of W(F) relative to that basis, then :

, 2 1 1 7
X = [2.72,Z1%; = |-1 2-1{jz2| = o} = f[70-27
: E 3 -1 -1}!3 -3

relatlve to the E- ba,sm -

\g!:. / ‘f’}}z)j
A

(i & 5 Ln E-bnsss

See Problem 11.
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Let W,VWQ', ..., ¥, be yet another basis of ¥ (F). Supposer Xy = [ by by ... by so that
(11.5) o X = [(WW .. BlXy, = ¥.X

From (11.4) and (11.5), X = Z-X; = W-Xy and
(1.e) X = Whz.X, = PX,

where P = vz

"~ Thus,

VIH. If a vector of V,(F) has coordinates Xy and Xy respectively relative to two bases

f ¥, (F), then there exists a non-singular matrix P, determined solely by the two bases and
given by (11.6) such that Xy = PX;. :
. ‘See Problem 12.

'SOLVED PROBLEMS

1. The set of all vectors X = [, %, %3, x4i’ where %, + %, + %3+ %, = 0 is a subspace V of ¥V (F)
since the sum of any two vectors of the set and any scalar multlple of a vector of the set have

= ecomponents whose sum is zero, that is, are vectors of the set

13°1)
2. Since 5 40 is of rank 2, the vectors Xy =_[1,2__,2_, 1] \ X,=[3.4,4,3Y, and X, =[1.0,0,17

- . 131

are lmearly dependent and span a vector space ¥ 2(F ).

Now any two of these. vectors are linearly lnéependent heénce, we may take Xl and X, X1 and Xg. or X,
and Xgas a basm of the VAF). :

1 4 2 4
. 1.3 1
3. Since | ) ' . ‘is of rank 2, the vectors Xl— [r11.0] X,=143.2-11" X =[2,1.0,11],
0-1-1-2

and X,=[4,2,0~-2]" are linea_rly dependent and span a Vf(F).

For a basis, we may take any two of_ the vectors except the pair X X,.

4. The vectors X,, X,, X; of Problem 2 lie in V;(F). Find a basis.

For a basis of this space we may take X, X5, Xy = [1,0.0.0]" and X5 = [0.1.0.01 or X,. X,. Xg =

. = [
_ l1.2.3.4Y and Xy = [1.3.6.8)", ... since the matrices [X;, X, X, X5] and {Xi. Xo. Xg X7 ] are of rank
4. S o |

H
H
IJ.
§

i
a3
it
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5 Let X, =[1,2.11, X,=[1,23), X5=03.6. 57, ¥, =[0011, ¥,=[1,2,56] be vectors of Vo(Fy.
Show that the space spaﬂned by X, X;, X, and the space spanned by Y,, Y, are identical.

First. we note that X, and X, are linearly independent while X5 = 2X; + X;. Thus, the X; span a space
of dlmensmn twao, say 1VQ(F) Also. the ¥; being linearly independent span a space of dimensior two, say

QVS(F)-

Next, ¥, = ZXQ— 2X1 Y, = ZXQ— Xy Xy =Y, — 41’1 X, = Y, — 2¥;. Thus, any vector el + bY, of
JVE(F) is a vector (5a+20) Xy — (2a+b) X, of 1V5(F) and any vector c¢X, + dX, of iVQ(F_') is a vector
(e+dYY, — (dc+2d)Y; of JVE(F). Hence, the two spaces are identical.

6. (a) If X =[x, xgjis]’ iies in the V;(F) spanned by X; = [1,-1,1] and X, = {3.4,-2]", then

% 1-3

L -—'_1 4 = —2x% + 5% + T%g = 0.
Xg 1 -2

(b) If X =[x;,%,%,%,] lies in the I{,,%F} spanned by X, = [-1.1,2,3.]’ and X, = [1,0,-2,1}, then

=§é¢i+2x2- x;, = 0.

=1

11 .
%1 o 1t w il - |
xj 5 is -of rank 2. Since 0‘# 0, this requires fjx, 1 O =—2x1+4x2~x3-¥0 and
g 31 ' E 2 -2
L. J—
%y 1-11

1

3

%3 1 T

Thesé problems illustrate that every V—( Fymay be def:ned as i;he totahty of solutxons over Fofa system '

of n-klmearly mdependent homogeneous linear equations over Fiinn unknowns

& ) . : k, S,
q. Prove If two vector spaces KL(F) and (F) have VS(F) s’ sum space and (F)-as inters_ection :
space, then h+k s+t. S

Suppose t=h: then h(F yis a subspa.ce of thF y and’ thelr sum space is Vn 1tself Thus §= k t=F and
s+i=h+k. The reader will show that the same is true’ ifr=k.

Suppose next that t<h t<k a.nd let XAy, X2 .;-..Xt span lﬁlt(F ) Then by Theorem !I there enst vectors'
Yf:*i Yiio. oo Yy so that X, Ko . SN PR .Y, span B(F) and vectors Zyya. Ziyg, .- Zp 50 that
Ky Xp Ky Zgag Zy span VRFY, .

Now suppose there exist scala.rs a’s and b's stuch that

R .
11.4 : E ¥y 3T e o+ X bZ; = 0 ot
¢ _), ’ ‘ f=1 ai i f,=t+:1.'aq' v i=ta1 T b )
i o .
3 a;X; + . b a; Y3 = 3 ~b;Zy
i=1 i=t# BTN

The vector on the left belongs to-P,'f(F), and from the right member, belongs also to Kbk(F y: thus it belongs

to VTE(F) Bui XI'XQ' .Xt span Vr.f(F); hence, @fiq = Bfye = ... = O = 0.
: t *
Now from {11.4), 3 oapX; v S 82 = 0
| = dsim |
But the X's and Z's are linearly Independent so that a3 = @ = ... = 8¢ = btes = bt+g = ... = bp= 0; thus,

_ the X’s,Y's. end Z's are & Unearly independent set and sps.n VS(F) Then s = h+k~t a8 was to be proved.
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8.

. 18.

. Determine a basis for the null sbace of 4 =

Consider lT/';(F) having X, = [1',2.3 Vand X,=[1,1,1] as basis and QV;(F) having ¥, = [3,1,27
| _ 113 1'}
and ¥, =[1,0,1] as basis. Since the matrix of the components |2 1 1 0} is of rank 3, the sum
3121
space is J(F). As a basis, we may take Xy Xo, and ¥, .

l . .
From & + % = s +¢. the intersectior space is a V3(F). To find a hasis, we equate linear combinations
2 2 ) )
of the vectors of the bases of V5(F) and ,V5(F) as

ey + bX, = ¥ o+ dY,
e+b—13%¢c =1 _
take d = 1 -for convenience, and solve 204b - ¢ =0 obtaining a=1/3, b= -4/3, ¢ = —2/3. 'Then
' 3a+b -3¢ =1

aX,+ 5X, = [-1.-2/3.~1/3] is a basis of the intersection space. The vector [3.2.1] is also a basis.

N
W b M W
[N " - |

1
2
o
1
- T ' L - ) . xl--l-'--2x3+-' %y = 0

Consider the system of equations AX = 0 which reduces to -
: o ’ - Xg + x9+_2x430-

A basis forthe nitll space of 4 is the pait of Hneerly independent solutions 12,011 and [2.1.~1.0]

of these equations. . oo

Prove: r_ >

g = o™

B
Suppose first that 4 has the form OA ol -Then the first r; rows of 4B are the first ry rows of B while’
the remaining rows are zeros. By Probiem 10, Chapter 5, the rank of AB is ng > htp-—n.

Suppose next that 4 is not of the above form. Then there exist nonsingular matrices P and Q such that

7 PAQ hag that form while the rank of PAQEB is exactly that of A8 (whjr?).

11.

The reader may consider the special case when 8 = [rﬂ il
‘ 0

Let X=[1,2,1)" relative to the E-basis. Find its coordinates rela:tive to & new basis'Z,={1,1,0]",
Zy=[1,0,1], and Z, =[1,1.1]. '

Solution (a). Write

1 1 H 1 G+b+e =1
)y X = aZi +bZp+ cZg, thatis, {2] = a1 + blo tell). Then ¢ ¢ . +c=2 and a=0, b= ],
1 o 1 1 . bte=1

¢ = 2. Thus relative to the Z-basis, we have Xy = [0.~1.27.
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Solution (b). Rewriting (i) as X = [Z4. 70 Zg]1Xy = ZXj;. We have

1 0 -ti{1
X, = ZX = | 1-1 0fj2| = [o.—1.2)
-1 1 i1

12. Let &, and X, be the coordmates of a vector X with respect to the two bases Z, =-'[1,1,07,
Z,=[1.0.1], Zg=[1,1,11 and ¥ =[11.2], K =[22.1T, =[1,2.2]". Determine the ma-
trix P such that X, = PX,. '

111} 121 o 2 -3 32
Here Z = [Z,,Z5 23] =11 0 1], # =12 2| =nd W‘1=% 2 0 -1}
: o011 - fz1z2| . 7 -3 3 0
: 1 4 1]
Then P = W'Z =3{- 2 1 1] by@aié).
0 =3 0]

SUP:Pi;EMENTARY_ PROBLEMS

13. Let {xl, Xg, %at x4] be an a.rb}.tmry vector of K(R) where R denotes the fleld of real numbers. Wiich of the
' followmg sets are ‘subspaces of V;(R)‘J : .
(@) All vectors with %y = %p = %g = X4, ' (d) All vectors with x1 =1 _
. (b) ‘All vectors with x, =%p, Xg= 2Xg. (e) ALl vectors w1th Xy, %, %, Zs mtegral
(¢) All-vectors with x,=0. B : : : . ‘
Ans All except (d) and (e).

14, Show ‘that [1 1.1, 11 and” [2 3.3, 2] are a basis of the Vf(F) of Problem 2.

13 Determme the dlmensmn of the vector space spanned by each set of vectors. ‘Select a basis for 'e_ach'.-

'{1.2.'3.4_.5]’ I § B N 1].__ ,_ [[;1;{1;% ,
@ [54321]). @) [1.23.47 (é)' [1:2:3:4], . o -
{11.1.1.1] E {z.‘g.a.ra_] . o oete2l . ]

Ans. ‘(a), by, (¢), r=2

16. (a) Show that the vectors X, =[1,-1. 1] and X,=[3.4. -2} span the same space as Y1 - [0.5.-1] and
Yy = [-17.-11.37"
(b} Show that the vectors X, = [1 —1.1} &na XQ = [3 4, 2} do not span the same space as ¥y = [~ 2.2, -2
and ¥, =[4,3,1}.

17. Show that if the set X, Xo.....Xp is a basis for ¥ (F ), then any other vector Y of the space can be repre-
sented umguely as a linear combination of Xy, Xo, ..., X . :

k 2 _
Hint. Assume Y = 3 a;X; = 2% biXj.
) i=1 i=




is.

19.

29.

Zz1.

22.

23.

24

25.

26.

27.

28.

29.
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Consider the 4 x 4"matriﬁc whose columns arse the vectors of a basis of the HLQ(R) of Problem 2 and a hasis of
the KE(R) of Problem 3. Show that the rank of this matrix is 4; hence, Vi(R) is the sum space and IQO(R). the
zero space, is the intersection space of the two given spaces.

Follow the pro-of given in Problem 8, Chapter 10, to prove Theorem HI.

Show that the space spauned by [1.0.0.0.01, [0.6.0.0.17, [1.0.1.0.01. [0.0.1.0.0], [1.0.6.1,1] and the
space spanned by [1.0.0.6.1]" [0.1.0.1.0]". fo.1.-2.1.07 [1.0.-1.0.1]" [0.1.1.1.0)" are of dimensions
4 and 3. respectively. Show that {1.0,1,0.11 and [1.0.2.0.1] are a basis for the intersection space.

Find. relative to the basis Zy = [11.2] Zo={2.21). Z;=[1.2.2] the coordinates of the vectors
@ [t10] ®» [1.01]. 11,117 N '
Ans. (o) [-1/3.2/3.01"  (b) [4/3.1/3.-11. (e) [1/3,1/3.0]

Find, relative to the basis Z; = [0,1.0]. Zy={1,1.1}, Z;=[3.2,1]" the coordinates of the vectors

(@ [2.~10), & [1.-35Y. (o) [0.0.1). . ] '
Ans. (@) [-2.-11]. &) [-6.7.-21" (o) [-1/2.3/2.—1/2]

Let XZ a_nci' XW be the coordinates of a vector X with respect to the given pair of hases. Determine the ma-
trix # such that Xy = PX,. . 7 : :

(@) Zi=[1.00), Z=[1.01], Zz=[1.1.1) Z;=lo1.0), Zo=[1.10Y, Z;=[1.23)
a : R ’ - - . / , (. ] # N
Po=loaol’ H=[123). W={1.-11F Wo=[110], B=[1.11] #=[1.2.1]

o 524 [Ter-2] ’
Ans. (@) P = 3z|-1 o6al. (B P=J-10 2 :
32 2] 10 1f

]

Prove:. If P] is a s_olution.bf, "AX = Ej, {Jj = 1-..'2;...,&)'. then
T : . i=1

[hi,hg,...,hn]’. _
Hint. H = hyEy+hsEg+ < +hyEy,.

hj P] is a solution__of AX = H, where H =

The vector space defined by ali linear combinations of the columns of & matrix 4 is called the column space
of 4. The vector space defined by.allrlinear combinations of the rows of 4 is called the [OW Space of A.
Show that the columns of AR are in the cqumn space of A dnd the rows of 4B are in the Tow space of B,

Show that AX = H, a system of m-non-homogeneous equations in nunknowns, is consistent if and only if the
the vector # belongs to the c_blurr__zn space of A_.

110 1111

Determine a basis for the null space of (a) [0 1 ~1), (5) |1 2 1 2|

_ 1o 1] 343 4f
dns. (@) [1.-1.-17, &) [L1-1-17, [L2-1.-2)7

Prove: (a) Neg 2Ny Ng 28 (0 Ny <N, +N,

Hint: (a) ‘YdB = ,n_t‘fB; g S rnandrp .

{b) Consider n —7;g » using the theorem of Problem 10,

Derive a procedure for 'Problem 16 using only column transformations on A4 = [Xl, Xo. Y4, Yol Then resolve
Problem 5. :

i
i
i
[




Chapi'%er 12

Linear Transformations

DEFINITION. Lt X = [y %p oo %) and ¥ = (3,75 . 3,17 be two vectors of W, (Fy, their co-
ordinates being relative to the same basis of the space. Suppose that the coordinates of X .
Y are related by - '

Gy %y + GuoXp + oor + Gy ¥

Y1
(12 1} | Yo = Ong%q + GooXg + *or t aznxn

------------------------------------

of, briefly, | Y = AX

" whete _‘:,A-= taij_]' is over F. Then (12_.1) is a trgn_sf_orrﬁé.'fio-ﬁ T which carries any vector X of

¥, (F) into (usually) ancther vector Y of the same space, called its image. ,
If (12.1) carties X, into ¥, and X, into ¥y, then

( a) it carries kX, into,;k-Yi, for every scalar &, and - = _ 7

(b)) it”c‘arries' ;;_X,_:=+ bX, into a¥, + bfé, for ,e?er’y pair of scalats a and b.- For this reason, the -

' transformatien is called linear. SR B '

a . Examplel. -Ccnsidef,the 'i__i_ne_éa.’r transformation Y = AX =11 X ';in‘ordi;i'_s.ry:spage Va(R).
_ | L I '
- - | | " Tre] 12] |
. (a) The image of X = [2.0.5)1s ¥ = }1 2 5} o7} = [12.27.177"
R = SRR B O I 1) - :
(b) The vector X whose image is ¥ = [2,0.5]" is obtelned by solving |1 2 5 %] = |0].
| S o 13 3|lxs] |

Cli1z22) {100 13/ o :
gince |12 5 0{~fo t o 11/5{, X=[18/5.11/5.-7/5]"
1335} 4001 -7/

BASIC THEOREMS. It in (12.1), X = [1,0,....,0) = E, then Y = [@a13, 809, - ana ) and, in ger_ieral,
if X=E;then ¥ = Layj, Ggj0-en an;1. Hence, - :

1. A linear transformation (12.1) is uniquely determined when the images (Y's) of the
basig vectors are known, the respective columns of A being the coordinates of the images
of these vectors. : . - See Problem 1.
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A linéar transformation (12.1) is called non-singular if the images of distinct vectors X
are distinet vectors ¥;. Otherwise the transformation is called singular.

II. A linear transformation (12.1) is non-singuler If and only if A, the matrix of the
transformation, is non-singular. ‘ : : See Problem 2.

II. A non-singular linear transformation carries linearly independent (dependent) vec-
tors into linearly independent (dependenty vectors. See Problem 3.

From Theorem HI follows

k
IV. Under a non-singular transformation (12.1) the image of a vector space V,(F) is a
vector space KfiF), that is,_ the dimension of th_e vector space is preserved. In particular,
the transformation is a mapping of T;L(F) onto itself, '

When 4 is non-singular, the inverse of (12.1)

X = 4

1 - carries the set of vectors Y, %, ..., Y, whose components are the columns of 4 into the basis -
vectors of the space. It is also a linear transformation. :

: , ~ V. The elementary vectors k; of ¥(F)y may be transformed into any set of n linearly
e ' independent n-vectors by a non-singular linear transformation and conversely. -

— L VI If ¥ = AX carries fa vector X into a vector Y, if Z=2BY carries Y into Z, a,n.d if
__ W=_CZ carries 7 into ¥, then Z = BY = (BAYX carries X into Z and W =(CBAYX carries
. X'into W. i S . =

N VIIL. When any two sets of n linearly independent n-vectors are giiren, there exists a
: . - non-singular linear transformation which carries the vectors of one set into the véctors of
- the other. - ’ : ' ‘

'~ CHANGE OF BASIS. Relative to a Z-basis, let Yy = AXg be a linear transformation of ¥(F). Suppose —
_ that the basis is changed and let Xy and ¥; be the coordinates of X, and Y; respectively reia-

\ tive to the new basis. - By Theorem VIII, Chapter 11, there exists a ron-singular matrix P such’
that Xy = PX, and ¥, = P¥, or, setting P~ = (), such that . ' o '

XZ = Q'XW and - Y, = QY

R RN S W

- e : _ S ‘1 L - - B =
Then Yy = 0% = Q74X; = 074Qx, - BXy
where ‘
- (12.2) B = Q49
. Two matrices 4 and B such that there exists a non-singular matrix @ for which B = Q‘iAQ
; are called similar. We have proved . - B -
J ' VIIL If Y, = AX, is a linear transformation.of V.(Fy relative to a given basis (Z-basis) w
and ¥y = BXy is the same linear transformation relative to another basis (W-basis), then- N
- A and B are similar. : : ' :

_ Note. Since Q = P™, (12.2) might have been written as B =PAP™ A study of similar matrices
- will be made later, There we shall agree to write B = R™4R instead of B-= SAS" put -
for no compelling reason. E - o
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‘ , 113 :
Example2. Let Y = AX = {1 2 1]X be a linear transformation relative to the E-pasis and let W) =

132
1211 % =[1.-1.2]. Ws=[1.—1.-11 be a new basis. (a)GiventhevectorX [302]

find the coordinates of its image relative to the ¥-basis, (b) Find the lnear transformation
Yy = BXy corresponding to Y = AX. (c) Use the result of (b) to find the image Yy of Ay =

f13.3]" _
| 111 NEREE
Wiite W = [#. W% %) = |2 -1 —1]: then ¥ =g|1 -2 3}

-2 -1 15 -1 -3

_(2) Relative to the ¥- basls the vector X = [3.0.2]" has coordinates X;, vix = [1.117.
The image of Xis ¥ = AX = [9,5.7] which, relative to the W-basis is ¥ = ’“y -
[14/3.20/9.19/9 1"

_ 36 21 —15
(b)Y ¥y = WY = WAX = (W AW)XV = BXy = 3l21 10 <11{Xy
- : = ~3 23 -1

1} |s o
3| =|z2|=[627].
3| |7 '

e S " See Problem 5. -

'_ S(}-LVED 'PROB-LE_MS
1.(a) Set. up the linear transformatxon Y= AX which carrles Ei lnto Y = [1 2, 3]’ EQ- into [3,1,2],
. andEslnto Y,=[21.3Y. ’ S :
(b) Find the images of X, = (1.1, 17 X, = [3. 1 4] -and Xa— {4 0, 5]
() Show that X, and X, are linearly independent as also are their 1mages
() Show that X,, Xo. and X5 are lmearly dependent as also are then images.

. . : _ : ) o ‘ 13 21

(a) By Theoreml, 4 =Y, ¥, Yol the equatich of the linear transformation is ¥ = AX = |21 1]X.
' o o 323
7 - : 13 2|1 ‘ _
(b) The image of X, = [1.1.1]"1s ¥y = {2 1 1}]1}= [6.4.8]". The image of Xo1s ¥, =[8.9.19]" and the
. ' f3 2 3fjt ' -
image of X4 is Yo = [14.13,27]" )
19 e 4] _

(¢) The rank of [Xi, Xg] = {1 ~1] 1s 2 as also Is that of [Y.Y,] = |4 9] Thus, X, and X, are linearly

1 4 | ' 8 19
independent as also are their images. '

(d) We may compere the ranks of [ X;. X, X5] and [Y1 Y. Y3} however Xa = X+ X, and Y5 = Y+ so that-
both sets are linearly dependent.
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" 4. A certain linear transformation ¥ = 4X carries X, = ['1',0,1]’ into [2,3,—17, X, = [1,——1,1 1" into
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2. Prove: A linear transfqrmat'ion (12.1) is non-singuiar if and only if 4 is non-singular.

Suppose A is non-singular and the transforms of X; # X; are ¥ = AX, = 4X,. Then A(X{-X5) = 0 and
the system of homogeneous linear equations AX = 0 has the non-trivial solution X = X1~ X, This is pos-
sible if and only if | A? = 0. a4 contradiction of the hypothesis that 4 is non-singular.

3. Prove: A non-singular linear transformaticn carries linearly independent vectors into ifneany in-
dependent vectors. '

Assume the contrary, that is, suppose that the images Y = 4X;, (i - 1.2.....p) of the linearly independ- !
ent vectors Xy, X, ..., ij are linearly dependent. Then ther_e exist scalars sq,55...., S not all zern, such that - 5
5 | -
2 Y = s Y+ spYo 4 e Sgﬁyﬁ = {
i=1 , :
or 2 siAXD) = Ay Xy 4 s Xp 4 e spXp) = 0
e o

Since A is non-singular, s X, + SQXQ + ot s¢X¢ = 0. But this is contrary to the hypothesis that the 'X1; are
linearly independent. Hence, the ¥; are lineatly independent. '

[3,0,—21, and X,={1,2,—1]" into [—2,7,—1]". Find the images of E,, £,, E, and write the equa- -
tion of the transformation. ' . T - -

a+b+ ¢

Lét aX+bXp+cXg=E,; then { —b+2c=04anda=-%, b=1, ¢c=5. Thus, E, = —5X1 £ X2+%X3*

. - - i 2+ b - ¢ = g - . : .

and its image is' ¥, = —4[2.3.-1) +[3.0—2] +4[-27.21) = [1.2~2T. Similarly, the image of E, is -

Yp=T-1.31 ¥ and the image of E5is Y= [1.1.1]. The equation of the transformation is B
. _ , | 1 -1 1
Y = [YY, Y%l = 12 31 X
1-2 11 -
| 11-2] _ - . |

51t ¥; =4X, =2 2 1§X; is a linear transformation relative to the Z-basis of Problem 12, Chap-
312 : : C . ' : T

ter 11, find the same transformation Y = BXy relative to the W-basis of that problem,

-1 41

From Problem 12, Chapter 11, Xy = PX; = % 2 11 le. Then
0-30
-1 1 1]~ S :
X, = PTX, = 00-1|x; = QX
21 3
, . -2 14 -6
: _ - -1 _ -1 1 -
and f Yy = PYZ = Q AXZ = @ AQXE,. =2 7 14 QXW
0 -8 3| -
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18.

1.

12.

13

‘4.

15-

16.

17.

. In Problem 1 show: (a) the transformation is non-singular, (&) X = A™Y carries the column vectors of 4 into
; Using the transformation of Problem 1. find {a) the image of X = {1.1,_2}’, (b) the vector X whose image is

. Study the effect of the tranéformation Y =iX, alsoc Y = kIX.

_Set up the linear transformation which carries £, into [1.2.3], E, into [3.1.2], and E5into [2,~1.-11" .

Suppos'er (12.1) is non-singular and show that if X, X,. ..., X are linearly dependent so also are their im-

%QE,R) Spanned by [t1.1) and [3.2.0 ]'flies‘_:in thé VSI(R) s;ﬁdﬁn_edhy_ﬁ.?.ﬁ T

-Prcvé:_ Similg‘r matrices have equal determinants.

LINEAR TRANSFORMATIONS - [CHAP. 12

SUPPLEMENTARY PROBLEMS

the elementary vectors.

{_9.-5-51.  dns. () [8.5111. (& [-3.-12]

Show that the transformation is singular and carries the linearly independent vectors [1.1t1) and {2,027 .
into the same image vector. : ' ' '

ages Y1.1,. ... 1.

Use Theorem HI to show that undér a non-singular tr@nSformaﬁon the dimension of a vector space is un-
changed.  Hint. Consider the images of a basis of Vo (FY. ’ '

S 110 o
Given the linear transformation Y = | 2 3 1]X, show (a) it is singulat, ‘() the images of the linearly in-

dependent vectors X; = 1117, XQ ={2.1.2]" and X5=01.2.3]" are linearly dependént, {c) the image
of Va(R) is & (R, S o _

_ , B _ _ o
Gii}en the lineat transformation Y = 12 4]X._ show (g} it is singular, (b) the im’ag'é_ of every vector of the

Prove Theorem Vil. o S

Hint. Let X; and %, ((=1 2....,7) be the g_iveni sets of vectors. Let Z = AX camy the set X;into E; and
Y = BZ camy the E; into ¥j: Lo A , :

: - 123

Let Y=4AX =,
STt P : .

[1.1.07, Zo=[1.01]1, Zg=T1,1.1) be chosen. Let X = [1.2.3] relative to the E-basis. Show that -

(@) Y =[14.10.6]" is the image of X under the transformation, o o :

(by X, when referzed to the new basis, has coordinates Xy = [-2.-1.4] and Y hascoordinates ¥ = [8.4,2]".

3 2 11X be a linear transformation relative to the E-basis and let a new basis, say Z;=

_ , 1.0 =1
{e) XZ = PX and YZ = PY. where Po= 1 -1.0]= [le ZQ’ Z:}l]—i
. ' -1 1 1
(@) Y, = 040X, where Q=P
o 1110 - _
Given the linear transformation Yy = 0.1 1Ay, relative to the W-basgis: W= [0.-1.2]’. W, = [4.1,0)"

101
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18.

19.

20.

W, = [-2.0.-4]". Findtherepresentation relative tothe Z-basis: Zy=N1-111, Z,=11.0-1), Zg=[1.2.17.

-1 0 3
Ans. YZ = 2 2 =5 XZ
-1 0 2

If. in the linear transformation ¥ = AX. A is singular. then the null space of 4 is the vector space each of
whose vectors transforms into the zZero vector. Determine the nuil space of the transformation of
123
(e} Problem12, (b} Problem13., (&Y ¥ =1{2 4 5]X.
' 369

s.-(ay %YR) spanned by [1.~1.1]
(b Igl(R) spanned by [2.1.-11"
() VSQ(R) spanned by [2.-1.0]" and [3.0.-1]

. b
If ¥ =AX carries every vector of & vector space I{,L into a vector of that same space, Vhls called an In-
variant space of the transformation. Show that in the real space Vy(K) under the linear transformation

o

1 90-1

(e Y =11 2 1{X. the ' spanned By [1.-1.0]", the ¥ spanned by [2.—1.-2V. and the 1 spanned by

22 3

{1.-1.—2]" are invariant vector spaces.

2 21 _ N - _ .
Y = |1 3 1{X the Vs1 spanned by [1.1.11" and the ¥ spanced by [1.0.—1)" and [2.-1:0]" are invariant
B 1 2 2 ) : . ‘ L

spaces (Note that every vector of the F/ is camed into itself.)

() ¥ = X the IQ spanned by {1 1 1. l] is an invariant vector space

= =T~
B O O

o = o
e = O O

Consider the lineas transformatlon Y=PX: ¥ = xj_,' =12 ...,n}_ in which jq, jo, cfy isa permuta;
tion of 1, 2,. L

(a} Describe the permutation matrix P. A
(b) Prove: There are n! permutation matrices of order n. o B g o
(¢} Prove: If Py and P, are permutation matrices so also are Py=P,P; and Jf’4 = Poly,

(d) Prove If P is & permutaticn matrix so also are P’ and PP =1..

(e} Show that each permutation matrix P can be expressed as a product 6f & number of the elementary col-

umn matrices Kio Koa, ..., Ky —1n- _
(f) Write P = [Ef,l- Ejp vonr Ein] whare iy, ig, ....Ln is a permutatlon ¢f 1.2, ....n and Eij ate the e;e_
mentary n-vectors. Find 2 rule {(cther than P " = P’ ) for writing P, For example, when n = 4 and

P = [Eq By, By Bp). then P™ = [By Eq By, Ey); when P = [E, Ey By, Eq}, then P™* - [Es Eq Ea By
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under similarity, 203 Hermitian and skew-Hermitian parts, 13
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of adj A, 151 polynomials, 73
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Determinant

definition of, 20

derivative of, 33

expangion of ’ s
along first row and column, 33
along a row (column), 23
by Lapiace method, 33

multiplication by scalar, 22

of conjugate of a matrix, 30

of conjugate transpose of & matrix, 30
of elementary transformation matrix, 42

of non-singular matrix, 39
of product of matrices, 33
of singular matrix, 39
of transpose of a matrix, 21
Diagonal
elements of & square matrix, 1
matrix, 10, 156
Diagonable matrices, 157
Diagonalization
by orthogonal transformation, 163
by unitary transformation, 164
Dimension of a vector space, 86
Direct sum, 13
Distributive law for
fields, 64
matrices, 3
Divisors of zero, 19
Dot product, 100

Eigenvalue, 149
Rigenveetor, 148
flementary
matrices, 41
n-vectors, B3
transformations, 39
Equality of )
matrices, 2
matrix polynomials, 179 -
(scalar) polynomials, 172
Equations, linear
equivalent systems of, 75
solution of, 75
system of homogeneous, 78-
system of rion-homogeneous, T7
Equivalence relation, ¢
Equivalent
bilinear forms, 126
Hermitian forms, 146
matrices, 40, 188 .
guadratic forms, 131, 133, 134
systems of linear equations, 76

Factorization into elementary matrices, 43, 188

Field, 64
Field of values, 171
First minor, 22 .

Gramian, 103, 111
Gram-Sehmidt process, 102, 111
Greatest commeon divisor, 173
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definite, 147
index of, 147
rank of, 146
gemi-definite, 147
signature of, 147

" Hermitian forms

equivalence of, 146
Hermitian matrix, 13, 117, 164
Hypercompanion matrix, 205

Idempotent matrix, 11
Identity matrix, 10
Image
of a vector, 94
of a vector space, 95
Index
of an Hermitian form, 147
of a real quadratic form, 133
Inner product, 100, 110
Intersection space, 87
Invariant vector(s)
definition of, 149
of a diagonal matrix, 156
of an Hermitian matrix, 164
of & normal matrix, 164
of-a real symmetric matrix, 163
of similar matrices, 156
Inverse of a (an}
diagonal matrix, 55
direct sum, 55
elementary transformation, 3%
matrix, 11, B 7
product -of matrices, 11
symmetric matrix, 58

7 Involutory matrix, 11

Jacobson canonical form, 205 -
Jordan (clas_sical) canonical form, 206

Kronecker's reduction, 136

Lagrange’s reduction, 132 -
Lambda matrix, 179

~Laplace’s expansion, 33

Latent roots (vectors), 149
Leader of. a chain, 207

" Leading principal minors, 135

Left divisor, 180
Left inverse, 63
Linear combination of vectors, 68
Linear dependence (mdependence}
of forms, 70
of matrices, 73
of vectors, 68
Lower triangular matrix, 10

Matrices
congruent, 115
equal, 2
equivalent, 40
over & field, 65




Matrices {cont.)
product of, 3
scalar multiple of, 2
similar, 95, 156
square, 1
sum of, 2
Matrix
definition of, 1
derogatory, 197
diagonable, 157
diagonal, 10
elementary row (column), 41
elementary transfermation of, 39
© Hermitian, 13, 117, 164
idempotent, 11
inverse of, 11, 55
lambda, 179
nilpotent, 11-
non-derogatory, 197
non-singular, 39
normal, 164
normai form of, 41
nullity of, 87
of a bilinear form, 125
of an Hermitian form, 146
of a quadratic form, 131
order of, 1
orthogonal, 103, 163
periodie, 11
permutation, 99
polynomial, 179
positive definite (semi-definite), 134,.147
- rank of, 39
sealar, 10
singular, 39 .
skew-Hermitian, 13, 118
-skew-symmetric, 12, 117
symmetric, 12, 115, 183
triangular, 10, 157
unitary, 112, 164
Matrix polynomial (s)
definition of, 179
 degree of, 179
product of, 179
proper {improper), 179
scalar, 180 '
_singular {non-singular), 179
sum of, 179 '
Minimum polynomial, 196
Multiplication
in partitioned form, 4
of matrices, 3

Negative
definite form (matrix), 134, 147
o a matrix, 2 .
semi-definite form (matrix), 134, 147
Nilpotent matrix, 11
Non-derogatory matrix, 197
Non-singular matrix, 39
Normal form of a matrix, 41
Normal matrix, 164
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Null space, 87
Nullity, 87 _
n-Vector, 85

Order of 4 matrix, 1
Orthogonal
econgruence, 163
equivalence, 163
matrix, 108
similarity, 157, 163
transformation, 103
vectors, 100, 110
Orthonormal basis, 102, 111

Partitioning of matrices, 4
Periedic matrix, 11 '
Permutation matrix, 99

~Polynomial

domain, 172
matrix, 179
monic, 172
secalar, 172
sealar matrix, 180
Positive definite (semi-definite)
Hermitian forms, 147
matrices, 134, 147
quadratic forms, 134
Principal minor
definition of, 134 -
leading, 135
Product of matrices
adjoint of, H0
conjugate of, 13
determinant of, 33
inverse of, 11
rank of, 43
transpose of, 12

Quadratic form
canonical form of, 133, 134
definition of, 131
factorization of, 138
rank of, 131
reduetion of
Kronecker, 136
Lagrange, 152
regular, i35
Quadratic form, real
definite, 134
index of, 133
semi-definite, 134
signature of, 133
Quadratic forms
equivalence of, 131, 133, 134

Rank
of adjoint, 50
of bilinear form, 125
of Hermitian form, 146
of matrix, 89
of product, 43
of guadratic form, 131
" of sum, 48
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Right divisor, 180
Right inverse, 63
Reot

of polynomial, 178

of sealar matrix polynomlal 187

Row
equivalent matrices, 40
gpace of a matrix, 93
transformation, 39

Scalar
matrix, 10
matrix polynomial, 180
multiple of a matrix, 2
polynomial, 172

product of two vectors (see Inner product}

Sehwarz Inequality, 101, 110
Secular equation (see
Characteristic eguation)
Signature
of Hermitian form, 147
of Hermitian matrix, 118
-of real quadratic form, 133
of real symmetric matrix, 116
Similar matrices, 95, 196"
Similarity invariants, 196
Singular matrix, 32
Skew-Hermitian matrix, 13, 118
Skew-symmetric matrix, 12, 117
Smith norma! form, 183
Span, 85
Spectral decomposition, 170
Spur (see Trace)
Sub-matrix, 24
Sum of -
matrices, 2
veetor spaces, 87
Sylvester’s law .
of inertia, 133 -
of nullity, 88
Symmetric matrix
characterlstlc roots of 163

Symmetric matrix (cont.)
definition of, 12
invariant vectors of, 163

Systern(s) of equations, 75

Trace, 1
Transformation
elementary, 392
linear, 94
orthogonal, 103
singutar, 95
unitary, 112
Transpose
of a matrix, 11
of a preduct, 12
of a sum, 11
Triangular ineguality, 101, 110
Triangular matrix, 10, 157

Unit vector, 101
Unitary
matrix, 112
similarity, 157
transformation, 112
Upper triangular matrix, 10

Vector{s)
belonging to & polynemial, 207
coordinates of, 88
definition of, 67
inner product of, 100
invariant, 149
length of, 100, 110
normalized, 102
orthogonal, 100
vector product of, 109
Vector space
basis of, 86~
definition of, 85
dimension of, 86
over the complex ﬂeid 110
over the real field, 100
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H (B, K (R
Hii (k) Kk

N
adj 4

X, X
¥, (F)
V. EY

Index of Symbols

Page _ _ Symbol _
1 E;, (vector)
1 X-¥;, XY
1 B4
3 G
i0 XxY
11 \ . 9
11 p
12 . s
20 , | E
22 M A
23 B (N
23 ' E;, (matrix)
39 | foo.
36 FIAl
39 _ AN
39 : - ARG, A0
40 Ny
43 AN
49- ) m{A)
64 _ Clg)
67 I
85 S
86 Cq(p)
87
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