Chapter_11_Vector spaces

1． Definition: n-vector
An vector a with n-component is an n-tuple of real numbers, a ={a1, a2,…, an}. We call this an n-vector. ai, i=1, 2, …,n are the components of a. It has n components.
2． As an special example, for n=3, a={a1, a2, a3}. a can be imagined as a point in 3-space, the 3-dimensional space we human resides in. For example, the 3-vector a={0,0,0} represents a point with spatial coordinates {0 , 0, 0}. 
3． Imagine the collection of all possible 3-vectors into a set V containing all points in the 3-space. We call the set of all 3-vectors, (or in other words, all points in the 3-D space), R3. Each vector in R3 is equivalent to a point in the 3-space.
4． Similarly, R2 is the set of all 2-vectors. R2 is the set of all points in 2-space. 
5． R, the set of all real number, is the set of all ‘1-vector’ (‘1-vector’ is just the real scalar we all familiar with). The collection of all ‘points’ in the 1-space is equivalent to the set of all points in a 1-dimensional ‘real-number line’. 
6． For the 2-vectors and 3-vectors, we know that we can add and do scalar multiplication on them according to well-defined rules of vector addition and scalar multiplication. As an illustration, consider this: Given two 3-vectors in R3, a={a1, a2, a3} and b={b1, b2, b3}, the vector addition a + b is defined as a new 3-vector, c = {a1+b1, a2+b2, a3+b3}. Similarly, the scalar multiplication between a scalar k and a vector a is defined as a new vector d={ka1, ka2, ka3}. 
7． Definition: Consider a set V containing some elements on which operations of vector addition and scalar multiplication are defined. The set V is called a vector space if the following ten properties are satisfied: 

[image: image52.png]
8． Consider the 3-space, R3. As mentioned, this a vector space. Can you justify this claim by referring to the definition as given?
Ans:

This is a vector space because (i) vector addition and scalar multiplication are well defined on all of the 3-vectors, the elements in R3, (ii) all of the 3-vectors, the elements in R3, fulfill the 10 axioms. In particular, all 3-vectors are closed under vector addition and closed under scalar multiplication. 
9． Explain what do you understand by (i) ‘closure under vector addition’. (ii) ‘closure under scalar multiplication’.

Ans: 

(i) Closure under vector addition means: any two vectors in R3, when added vectorially, will result in a vector which is also an element of R3. 
(ii) Similarly, closure under scalar multiplication means: Any vector in R3, when multiply by a scalar k will result in a vector which is also an element of R3.

10. Consider R2. Is it also a vector space? How about the set of all real number, the 1-space, R? How do you convince yourself that they are indeed also vector space?

Ans: 

Both are also vector spaces, since both of these set fulfill all criteria of being a vector space as defined. 
11. Definition: A set of vectors Vs from a vector space V is a subspace of V if Vs is closed under addition and scalar multiplication. 

Example: The set containing only the element 0, Vs={0}, is a subspace of the vector space R, since the {0} is 
(i) a element vector from R,
(ii) closed under scalar multiplication:
k(0 = 0 ( Vs,
(iii) closed under vector addition:

0 + 0 = 0 ( Vs.
Note that the subspace {0} has only a single element. The criteria of being closed under addition are fulfilled: “if x and y are element is Vs, then x + y is also an element in Vs”. Here, x=0, y=0, because there is no any other element in Vs other than 0. In other words, ‘any element’ in {0} (the x), when vectorially added to ‘any element’ in {0} (the y) will result in x+ y = 0, an element of Vs. 
12. Every vector space V has at least two subspaces. One of if is the zero subspace, {0}, which is illustrated above. Can you think of what’s the other one? 
Ans: The vector space V itself. 
13. Definition: Consider a set S containing vectors x1, x2, …xm in a vector space V. (To help you visualize better, think of V as the vector space of R3 that contains an infinite number of 3-vectors. Think of S as a set containing, say, m=3 vectors selected from R3.) We form linear combinations of these m vectors in the form of k1x1+ k2x2+ …kmxm, where ki are scalars. The set of all linear combinations of the vectors x1, x2, …xm is called the span of the vectors, and is written as Span(S). 
14. Span(S) is a subspace of V. Span(S) is said to be a subspace spanned by the vectors x1, x2, …xn. 
15. If every vector in the vector space V can be written as a linear combination of the vectors in S, then S is called a spanning set for V. 
Example: Let V be the vector space containing all 3-vectors, R3. Consider the set S={i, j, k} containing the three rectangular unit vectors. The set of all linear combination ai+bj+ck, where a, b, c are scalar, is the span of the vectors {i, j, k}, Span(S). Span(S) is a subspace in R3 spanned by i, j, k. 

16. We say ‘the set S={i, j, k} is a spanning set for R3’. Think of Span(S) in terms of the set of all possible linear combination in terms of i, j, k, ai+bj+ck. Can you imagine what does Span(S) represent? Hint: Imagine the point at the tip of the 3-vector ai+bj+ck. Imagine the pervasive cloud form by the tip of ai+bj+ck when a, b, c vary continuously. 
Ans: Span(S) represents all the spatial points in R3. As is well known, all the vectors in the vector space R3 can be expressed as linear combination ai+bj+ck. 
17. Can you think of any other spanning set for R3?
Ans: e.g. {r, , }. 
18. Is the set {i, j, k, i+j, k+i, i + k} also spanning set for R3?
Ans: Both answers are yes
19. Is {i, j} a spanning set for R3? Explain your answer.

Ans: No, since not all vectors in R3 can be expressed as linear combination of ai+ bj. 
20. Consider the set S containing the following 4 3-vectors: K1=[1,1,1]T, K2=[1,3,5]T, K3=[1,5, 3]T, K4=[5, 3, 1]T;

S={K1, K1, K3 K4}. How would you prove that the S is the spanning set of R3 (or in other words, S span R3)? Hint: To prove that the set of vectors in S span R3, one needs to prove the existence of the solution X=[
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from R3. If the solution X exists, then S spans R3, otherwise it doesn’t. The reasoning is: If the solution X exists, this means that any arbitrary vector A from R3 can always be expressed as a unique linear combination in the form of
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. Hence, by definition, if the set of vectors in S is a spanning set of R3.
Ans:
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Hence, rank of K, r = 3. The rank of [K | A] is also 3 irrespective of what the values of a, b, c are. By the fundamental theorem in page 76, Ayers, the system KX = A is consistent. Hence, it is always possible to express any 3-vector A in R3 as linear combination in
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 guaranteed to exist. This prove S= {K1, K2, K3, K4} spans R3.
21. In general, given a set of m n-vectors, Ki=(k1, k2,…, kn)T , i=1,2,…m, we can determines whether they span a vector space Rn, the vector space containing the set of all n-vector by looking for the existence proof of solution X to the non-homogeneous system. The procedure is as followed:
22. Let K=
[image: image12.wmf](

)

m

K

K

K

,...,

,

2

1

, an n by m matrix, X=
[image: image13.wmf](

)

m

x

x

x

,...,

,

2

1

T, an m by 1 column vector, A=
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T, an arbitrary n-vector in Rn. Consider the NH system
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. If the solution for the NH systems does not exist, i.e.  rank[K] ( rank [K | A], then the set of vectors Ki does not span Rn. Otherwise, they do. 

23. In (20), we see that the set {K1, K2, K3, K4} comprises of 4 3-vector spans R3. Can we span R3 with less than 4 3-vectors (e.g., say, 3 or even 2 3-vectors)? In general, for a vector space V containing elements made up of n-vectors, we want to know what is the smallest number of linearly independent n-vector that spans the vector space V.
24. In fact, out of the four 3-vectors in the set S in (20), only three are linearly independent (refer DQ 13, Chapter 9), namely K1, K2, K3, whereas K4 can be expressed as a linear combination of the other three vectors. 
(i) Prove the linearly independence of the vector set K1, K2, K3. (Hint: Refer to DQ 12, 13, 14 in Chapter 9.) 
(ii) Prove, using the procedure mentioned in (22) above, that this set of vectors K1, K2, K3 spans R3.

Ans:
(i) 
Consider the homogeneous problem
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~[image: image20.png], hence rank [K] = 3; so is the number of unknown = 3. The HE system also has the same number of unknowns. Hence, the HE system,
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, admits only trivial solution, X=0. By definition, this proves the linearly independence of the vector set {
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(ii)
KX=A, A=(a1, a2, a3)T, an arbitrary 3-vector in R3. 

Rank [K|A] = Rank[K] =3, hence, solution X exists. This means that an arbitrary 3-vector in R3 can always be expressed as a linear combination in
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25. Now, we ask: can any of the 2 vectors (which are necessarily linearly independent) form the set {
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} span R3? The answer can be proven to be negative. (Prove this). So, it appears that the minimum number of linearly independent 3-vectors to span R3 is 3, not 2. 
26. Definition: The minimum number of linearly independent vectors that is required to span a vector space is called the dimension of the vector space. In the above example, the dimension of the vector space R3 is 3 since the minimum number of linearly independent vectors in R3 is 3. 
27. Definition: Consider a vector space V with dimension r. A set of r linearly independent vectors in V is called the basis (or basis set) of the vector space. It happens that given any set of r vectors, which are linearly independent, from V, they (i) will form a basis set for V, and (ii) any vector in V can be expressed as a unique linear combination in this set of r vectors. 
28. Let’s consider the vector space R3. We know that the dimension of it is r=3. (i) If I simply pick any three vectors in R3, say X1 = (a, b, c), X2 = (d, e, f), X3 = (g, h, i), in general, will the set {X1, X2, X3} form a basis for R3? (ii) Is the basis set of R3 unique? (iii) How many basis set can R3 possibly has?  

Ans:
(i) Not in general. Only a set of 3 linearly independent vectors in R3 is the basis of R3. Those that are not linearly independent cannot form a basis for R3.

(ii) No, not unique.

(iii) There can be infinitely many basis set in R3.

29. Consider the set of three vectors in R3, S={E1, E2, E3}, where E1= [1, 0, 0]T, E2= [0, 1, 0]T, E3= [0, 0, 1]T. 
(i) Are the vectors in S linearly independent (you should be able to answer this simply question by visual inspection)? 
(ii) Do the vectors in the set S form a basis set for R3? 
(iii) Do the vectors in the set S span R3? 
(iv) Can every vector in R3 be expressed as linear combination of E1, E2, E3? 
(v) What’s the name of these E-vectors? (Hint: see page 88 of Ayers). (Note: we will refer this basis set by the name ‘the E-basis’). 
Ans:
(i - iv) Yes. (v) Elementary or unit vector over R3.
30. You may like to refer to Ayers page 88. Say I have an arbitrary vector in R3, X=(a, b, c)T. 
(i) Write X as a linear combination of the unit vectors, Ei, defined in (30). 
(ii) What are the components (or referred to as ‘coordinates’) of X relative to the E-basis? Write these components in the form of a column vector and call it ‘the component vector of X relative to the E-basis’, denoted by XE.

Ans:

(i) X = (a, b, c)T = aE1 +bE2 + cE3 . 

(ii) XE = (a, b, c)T. 

31. In the previous question, we have an arbitrary vector in R3, X. Let’s say that the vector X when expressed in the E-basis is represented by the component vectors XE=(1, 2, 3)T. Normally, a vector is by default expressed in the E-basis. In general, other than the E-basis, we can also represent a vector in other basis set. To illustrate this point, let’s consider another basis set Z = {Z1, Z2, Z3} (‘the Z-basis’), where Z1= [2, -1, 3]T, Z2= [1, 2, -1]T, Z3= [1, -1, -1]T. What is the component vector of X relative to the Z-basis, XZ? [Hint: In order to obtain XZ, you need to express X as a linear combination of {Z1, Z2, Z3}: XE = a1Z1+ a2Z2+ a3Z3. Then the component vector of X in the Z-basis is simply XZ = (a1, a2, a3)T.]
Ans:
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Writing the above compactly in matrix form, 
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The solution is then XZ =Z-1
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32. Refer to Example 5, page 88 Ayers. Now, see if you can do things another way round: If the component vector of X is given in the Z representation, i.e. XZ= (1,2,3)T is known. What is component vector of X in the E-basis? In other words, what is XE? Hint: Follow the procedure as described in (32), then try to find a similar relation that relates XE to XZ in the form of 
XE = [some matrix](XZ
Ans:

From the previous procedure, we have
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