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In the preceding sections we were dealing with points and vectors in 2- and 3-space.
Mathematicians in the nineteenth century, notably the English mathématicians
Arthur Cayley (1821-1895) and James Joseph Sylvester (1814-1897) and the Irish
mathematician William Rowai Hamilton (1805-1865), realized that the concepts of
point and vector could be generalized, that vectors could be described, or defined, by
analytic rather than geometric properties. This was a truly significant breakthrough
in the history of mathematics. There is no need to stop with three dimensions.
Ordered quadruples {ay, Gz @3 a., quintuples {a;, as, G3, da, as), and n-tuples
{a, @y, - -+ » B OF real numbers can be thought of as vectors just as well as ordered
pairs {a;, a,) and ordered triples {ai, dz, aa), the only difference being that we lose
our visualization of -directed line seginents Or arrows in four-dimensional, five-
dimensional, or n-dimensional space. o

In formal terms, a vector in n-space is any ordered n-tuple {a;, az, . - - » @) Of
real numbers called the components of a. The set of all vectors in n-space 18
denoted by R”. The concepts of vector addition, scalar multiplication, equality, and
so on listed in Definition 7.2 carry over 10 R" in a natural way. For example, if
a={ai, ay ..., 0y and b= (b, by, - - . » bu), then addition and scalar multiplication
in n-space are defined by

a-!-b-—(al +b1, ai""'bZ? Tt an+bn> and ka:(kals kag, o ’kan)' (1)

The zero vector in R*is {0, 0, . . ., 0). The notion of magnitude or length of a vector
a={a, ... a,) in n-space is just an extension of that concept in 2- and 3-space:

flaf| = Vai+di+ - +ai.

A vector a in R* is a umit vector if ﬂaﬂ = 1. The dot product of tWo r-vectors
a= {a,ay....a,) andb= (b, bs, - . . » by 15 1hE real number defined by

a - b={ay, as e »au} * (b1, bzy o b} = by + aghs+ o + b )

Two nonzero vectors & and b in R" are orthogonal if and only ifa - b=0.

B Vector Space We caneven g0 beyond the notion of a vector as an ordered n-

tuple in R". A vector can be defined as anything we want it to be: an ordered n-tuple,

a number, or even a function. But we are particularly interested in vectors that are

_elements in a special kind of set called a vector space. Fundamental to this notion of

vector space are two kinds of objects, vectors and scalars, and two algebraic opera-
tions analogous to those given in (1). For a set of vectors we want 10 be able to add
+wo vectors in this set and get another vector in the same set, and we want t0 multi-
ply a vector by a scalar and obtain a vector in the same set. Whether a set of objects
is a vector space depends on whether the set possesses these two algebraic opera-
tions along with certain other properties. These properties, the axioms of a vector
space, are given next.
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‘Chapter 7 Vectors

In this abbreviated int'roduction'to abstract vectors, we shall take the scalar n
Definition 7.5 to be real numbers. In this case V is referred to as a real vector sp
although we shall not belabor this term. When the scalars are allowed to be compl
numbers, we obtain a complex vector space. Since properties ({)—(viii) on page 3
are the prototypes for the axioms in Definition 7.5, it is clear that R?is a ve
space. Moreover, since vectors in R® and R" have these same properties, we conclude
that R® and R* are also vector Spaces. Axioms (i) and (vi) are called the closur
axioms: we say thata vecfor Space V is closed under vector addition and scal

| multiplicationj Note too that concepts such as length and the dot product are not phi't

of the axiomatic structure of a vector space.

Example T Checking the Closure Axioms
Determine whether the sets () V= {1} and (b) V= {0} underx ordinary additi
and multiplication by real numbers are vector spaces. :
SOQLUTION (a) For this sysiem consisting of one element, many axioms ar
violated. Tn particular, axioms (i) and (vi) of closure are pot satisfied. Neither the
sum 1 + 1 = 2 nor the scalar multiple k - 1 =k, for k= 1,isin V. Hence V is not.
vector space.

(b) In this case the closure axioms are satisfied, since 0 + 0= 0 and k - 0=010
any real number k. The commutative and associative axioms are satisfied, since
+0:0+0and0+(0+0):(0+0)+0.1nthis manner it is easy to verify th
the remaining axioms are also satisfied. Hence V 1s a vector space. :

The vector space V = {0} is often called the trivial or zero vector space.
Readers should not take the names vector addition and scalar multiplication 1©
literally. These operations are defined, and the student must accept them at fa
value even though these operations may Dot bear any resemblance to the usd
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understanding of ordinary addifion and multiplication in, say, &, R% R?, or R". For
example, the addition of two vectors X and ¥ could be x — y. With this forewarning
consider the next example. o

Example 2 An Example of a Vector Space
E  Consider the set V of positive real pumbers where addition i defined by

XHYEXY
and scalar multiplication is defined by
kx = x'

Determine whether V is a vector space.
SOLUTION We shall go through all ten axioms.

@ Forx-—-x>0andy’zy_>0,x+y=xy>0.Thus, the sum x+yisin V; V

~ is closed under addition.

(if) Since multiplication of positive real numbers is commutative, we have for
allx=xandy=yin VX+y=xy = yx =y + X. Thus, addition is commu-
tative. ' :

(jif) Forallx=x§ =Y z=zinV, X+(y+z):x(yz)=(xy)z:(x+y)+z.
Thus, addition is associative.

(iv) Since 1+X= lx=x=X and x + 1 = x1 =x = X, the zero vector 0is 1 =1.

g ) Ifwedcﬁne—x;:—l—, thenx+(—x)=xl-—-1=1=0and(—x)+x=—1—x=
x- X x

1 =1 = 0. The negative of a vector is its reciprocal.
(vi) If k is any scalar and x = x > 0 is any vector, then Ix = x* > 0. Hence Vis
" closed under scalar multiplication.
L (i) Ik is any scalar, then k(X + y) = (xy)F = x*y* = kx + ky.
. (viii) For scalars ky and k, (ki + ko)X = k) = xhh = kX + kX
" (ix) For scalars k; and k, ky(fox) = (xFR = xMB = (kiko)X.
() lx=x'=x=X

Since all the axioms of Definition 7.5 are satisfied, we conclude that Vis a vector
. space. : M|

" Following are some important vector Spaces. The operations of vector addition
and scalar multiplication are the usual operations associated with the set.

"o The set R of real numbers
« The set P, of polynomials of degree less than or equal to 7
« The set of real-valued functions f defined on the entire real line
« The set Cla, b] of re_al—valued functions f confinuous On the closed interval
a<x<h . :
« The set C(—oo, o0) of real-valued functions f continuous on the entire real line
« The set C"a, b] of all real-valued functions f for which £, f, .. .» [ ® exist and
are continuous on the interval [a, b}

= Subspace It may happen that a subset of vectors W of a vector space Vis
itself a vector space.




Every vector space V has at least two subspaces: V itself and the zero subspack
{0}; {0} is a subspace since the zero vector must be an element in every vector spac

To show that a subset W of a vector space V is a subspace it is not necessary
demonstrate that all ten axioms are satisfied. Since all the vectors in Ware alsoin V,
these vectors must satisfy axioms such as (if) and (iii). In other words, W inherit
most of the properties of ‘a vector space from V. Indeed, to show that a subset Wi

subspace we need only check the two closure axjoms.

i

Example 3 A Subspace
Suppose f and g are continuous real-valued functions defined on the entire redl
line. Then we know from calculus that f + g and kf, for any real number k, are:
continuous and real-valued functions. From this we can conclude that C(—ee, o
a subspace of the vector space of teal-valued functions defined on the entire re:

line.

to have concrete visualizations of vector spaces an
subspaces. The subspaces of the vector space R® of three-dimensional vectors can be

easily visualized by thinking of a vector as point (a1, @, az). Of course, R®and {
are subspaces; other subspaces are all lines passing through the origin and all planes
passing through the origin. The lines and planes must pass through the origin since .
the zero vector 0 = (0, 0, 0) must be an element in each subspace.

Similar to Definition 3.1, we can define linearly independent vectors:

It is always a good idea
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In R?, the vectors i = (1, 0, 0), j =40, 1, 0, and k =0, 0, 1) are Ifnearly inde-
pendent, since the equation ki + k2 jtkk= () is the same as -

k1<1, Os 0) + k2<01 1: 0> + k3<09 09 1> = <07 03 0> or <k15 st k3> = (Oa Oa O)-

By equality of vectors, (if) of Definition 7.2, we conclude that k; = 0, k2 = 0, and
k; = 0. In Definition 7.7, linear dependence means that there are constants ki, ko, - -« » kn
not all zero such that Xy + k. Xo + ° : + k,%, = 0. Hence the vectors a = (1,1, 1),
b={2,-1,4),and c=3,0, 5y are linearly dependent since a+b €= 0; that is, (3)
is satisfied when k; = k, = 1 and k, = —1. We observe that two vectors are linearly
independent if neither is a constant multiple of the other.

mm Basis Any vector in R® can be written as a linear combination of the lincarly
independent vectors i, j, and k. In Section 7.2 we said that these vectors form a basis
for the system of three-dimensional vectors.

Althoungh we cannot prove it-in this course, every vector space has a basis. The
vector space P, of all polynomials of degree less than or equal to 1 has the basis
1, x, 2, ...,x" since any vector (polynomial) p(x) of degree n o1 less can be written
as the linear combination px) = cxt 4+ cox? + €1x + Co. A VECIOT Space may
have many bases. We mentioned previously that the vectors i, j, k are a basis for R
But it can be proved that w; = 1,0,0,u=(1 0), and wy = (1, 1, 1) are lineatly
independent (see Problem 23 in Exercises 7.6) and, furthermore, every vector
a ={ay, a,, a;) can be expressed as a linear combination of w,, U, Us

a=cy + ¢l + Calls.

Hence, the vectors wy, T, B3 arc another basis for R®. Indeed, any set of three linearly
independent vectors in R® forms a basis for that space. However, the vectors i, J, kK
are referred to as the standard basis. For the space P, the standard basis 1s
1, x, ¥, ..., x5 for the vector space R" the standard basis consists of the n vectors
e, =(1,0,0,...,0), &=, 1.0,...,0)...,€={0,00...,1)

Example 4 Dimensions of Some Vector Spaces

. In agreement with our intuition, the dimensions of the vyector spaces R, R?, R®, and
? R™ are, in tumn, 1, 2, 3, and n. Since there are n + 1 vectors in the basis
1, x 2,...,x", the dimension of the vector space P, of polynomials of degree
less than or equal to nisn+ 1. ' 2
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If a vector space has dimension n, then every basis for that space must contain n
vectors. If the basis of a vector space contains a finite number of vectors, then we-
say that the vector space is finite dimensional; otherwise itis infinite dimensional.
The function space C"({) of n times continuously differentiable functions on an inter-
val I is an example of an infinite-dimensional vector space. The zero vector space
{0} is given special consideration. This space contains only 0 and since 0 is linearly
dependent, it is not a basis. In this case it is customary to take the empty set as the
basis and to define the dimension of {0} as zero. ' ,

B Linear Differential FEquations Consider the bomogeneous linear nth-
order differential equation .

da'y
dax"
on an interval I on which the coefficients are continuous and a,(x) # 0 for every x in
the interval. A solution y; of (4) is necessarily a vector in the vector space C*(I). In
addition, we know from the theory examined in Section 3.1 that if y;, and y, are solu-
- tions of (4), then the sam y; + ¥, and any constant multiple ky; are also solutions.
Since the solution set is closed under addition and scalar multiplication, it follows
from Theorem 7.4 that the solution set of (4) is a subspace of C"(I). Hence the solu
tion set of (4) deserves to be called the solution space of the differential equation
We also know that if yy, ¥2,'. . ., Yo are linearly independent solutions of (4), then its

dr! d
0.5 22 + a, (%) dxﬂ_’j + o+ a(®) Eﬁ' +agx)y="0 4

general solution is
y=cn(x) + caya(x) + oo F Y n()-
Recall that any solution of the equation can be found from this general solution by

specialization of the constants ¢y, €2, - - -5 Cn- Hence the set of linearly independent
solutions vy, ¥z, - - - » Y COIMPprise a basis for the solution space. The dimension of this "

solution space 1S 1.

Example 5 - Dimension of a Solution Space ,

The general solution of the homogeneous linear second-order differential equa-
fion y’ + 25y =0 is y = ¢; cos 5x + €2 sin 5x. A basis for the solution space
consists of the linearly independent vectors cos 5x and sin 5x. The solution space

is two-dimensional. L

The set of solutions of a nophomogeneous linear differential equation is not a
vector space. Several axioms of a vector space are not satisfied; most notably the set
of solutions does not contain a zero vector. In other words, y = 0 is not a solution of

a nonhomogeneous linear differential equation.

B Span If S denotes any set of vectors Xy, X, - - . » X, in a vector space V, then a
sum of the form kX1 + kzXo + ...+ KuXps where the k;, i = 1, .. ., n are scalars, s
called a linear combination of X, Xo, . . . » Xn. The set of alf linear combinations of |
the vectors X, Xa, - . . » X, is called the span of the vectors and written Span($) or

Span(X;, Xy, . - - » Xn)- 1t is left as an exercise to show that Span(S) is a subspace of -
the vector space V. See Problem 33 in Exercises 7.6. Span(S) is said to be a subspace
spanned by the vectors X, X, . - - x,. If every vector in the vector space V can be
written as a linear combination of the vectors in S, then S is called a spanning set for .

V. For example, each of the three sefs
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ik and Li+hi+j+k and iLiki+ii+jtk

is a spanning set for the vector space R, But note that the first two sets are linearly
independent, whereas the third set is dependent. With these new concepts we can
rephrase Definitions 7.8 and 7.9 in the following manner:

A set S of vectors X3, X, ..

., X, in a vector space V.is a basis for Vif Sisa

spanning set for V and S is linearly independent. The number of vectors in this
spanning set S is the dimension of the space V.

fn Problems 1-10, determine whether the given set is a vector
space. If not, give at least one axiom that is not satisfied. Unless
stated to the contrary, assume that vector addition and scalar
multiplication are the ordinary operations defined on that set.

1. The set of vectors {a;, 2,), where 4, 20,2, 20
2. The set of vectors {a;, gz}, where a; = 3a; + 1

3, The set of vectors {a,, &), scalar multiplication defined by
iay, ay) = {kay, 0)

&. The set of vectors {a,, a,), Where a; + a;=0
5. The set of vectors {a;, dz, 0

6. The set of vectors {a;, a2), addition and scalar multiplication
defined by

(ﬂ], ﬂg) + (b], bz} = {ﬂl + b; + 1, Iy + b2+ 1)
k(ﬁl, az)-——"(ka] +k- 1, ka2+k— 1)
7. The set of real numbers, addition defined by x+y=x -y

8. The set of complex numbers a + bi, whiere i* =—1, addition
and scalar multiplication defined by

(ay + Bb) + (@, ++ bof) = (@ + ag) + (b1 + ba)i
k(a + bi) = ka + kbi, Kk a real number

9, The set of arrays of real numbers

(ﬁ“ ”12), addition and scalar multiplication defiried by
21
(-’111 ﬂlz) n (bn bu) - (alz +byy an + bu)
Gz G, by by dp + by an + by
k(a” alz) - (kﬂu kﬂm)
a1 Gz kay; kan

10. The sei of all polynomials of degree 2

Tn Problems 11-16, determine whether or not the given set is a
subspace of the vector space C(—o, o).

11. All functions f such that f{1) =0
12. All functions f such that f(0) =1
13. All nonnegative functions f

14. All functions f such that fi—x) =f(x)
15. A]l differentiable functions f

i 16. All functions f of the form f(x) = € + c.x€*

In Problemns 17-20, determiné whether or not the given setis a
subspace of the indicated vector space.

17. Polynomials of the form p(x) = c;x’ + c1x; P3
18. Polynomials p that are divisible by x — 2; P;
19. All unit vectors; R’

20. Functions f such that r fx) dx=0; Cla, b)

21. In 3-space a line through the origin can be written as
S={(x y. 9lx=ar, y=bt, z=ct, a, b, ¢ real numbers}.
With addition and scalar multiplication the same as for
vectors {x, ¥, z) show that S is a subspace of R

22. In 3-space a plane through the origin can be written as
S={(x, y, Dax + by + cz =0, a, b, ¢ real numbers}. Show
that § is a subspace of R®.

23, The vectors u, = {31, 0, 0), u;=(1, 1, 0), and 0, = 1,1, 1)
form a basis for the vector space R’.

(a) Sbow that w,, u,, and u; are linearly independent.

(b) Express the vector a = (3, —4, 8) as a linear combina-
tion of 1, 4;, and a;.

24. The vectors py(x) =x+ 1, p(x) =x— 1 form a basis for the
vector space Py. '

(a) Show that p;(x) and p,(x) are linearly independent.

(b) Express the vector p(x) = 5x + 2 as a linear combina-
tion of p,(x) and p,(x).





