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Chapter 1 Matrices 
 
Answer the following designed questions. These 
questions are designed in accordance to the 
subsections as sequentially presented in Ayers. Try to 
identify the questions below with the corresponding 
subsection from which these questions are based on 
as it will definitely help while answering these 
questions. 
 
1. Give an example of a 3 × 2 matrix. Call it A. 
 
 
2. Identify the element a13 and a23 in A defined in 

(1).  
 
 
3. Give any example of a square matrix of order 3. 

Call it S. 
 
 
4. List down all the diagonal elements in (3). 
 
 
5. Calculate the trace of S as defined in 3. 
 
 
6. Give an example of a pair of equal matrices. 
 
 
7. Give an example of a zero matrices or order 2 × 

4. 
 
 
8. Consider a square matrix of order 3, A = [aij], 

where aij=1 for all i,j = 1,2,3, and a square 
matrix of the same order, B = [bij], where bij=2 if 
i=j, bij=0 if i≠ j. Calculate the matrix C = A + B. 

 
 
9. What is the negative of B, with B defined in (8). 
 
 
10. If there exist a matrix D such that A + D = B, 

determine D. 
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11. Given , , find, if possible, 

(i) the product XY, (ii) the product YX. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3
2
1

X [ 111=Y ]

 
 
12. If K is a matrix of order 3 by 2, M a matrix of 

order 2 by 3, what is the order of the product (i) 
KM? (ii) MK?  

 
 
13. Give an example of a pair of 3-square matrices 

A, B such that (i) AB≠BA, (ii) AB = BA.  
 
 
14. Give an example of a pair of 3-square matrices 

A, B such that (i) AB= 0 but A≠0 (ii) AB= 0 but 
B≠0, (iii) AB= 0 with A=0, B=0. 

 
 
15. Give an example of a set of 3-square matrices A, 

B, C such that (i) AB=AC with B≠C, (ii) AB=AC 
with B=C.  
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Chapter 2 Some types of matrices 
 
Answer the following designed questions. These 
questions are designed in accordance to the 
subsections as sequentially presented in Ayers. Try to 
identify the questions below with the corresponding 
subsection from which these questions are based on 
as it will definitely help while answering these 
questions. 
 
1. Give an example of a 3 × 3 (i) upper triangular 

matrix (ii) lower triangular matrix. (iii) Give an 
example of a 3 × 3 matrix which is both an 
upper and lower triangular matrix.  
[Ans: (iii) any 3 × 3 diagonal matrix.] 

 
 
2. Give an example of a (i) 2 × 3 upper triangular 

matrix (ii) 2 × 3 lower triangular matrix.  
[Ans:  

(i) Any matrix of the form ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
xx
xxx

0
is a 

2 × 3 upper triangular matrix.  

(ii) Any matrix of the form
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

xx
xx

x 0
is a 3 × 

2 lower triangular matrix. 
] 

 
 
3. (i) Write out explicitly I4. (ii) What is (I4)n, with 

n a positive integer.  

[Ans: (i)

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

1000
0100
0010
0001

4I , (ii) (I4)n = I4 ] 

 
 

4. Given a n×n matrix A with aii= n n , i = 1, 2, …, 

n, where n a positive integer. What is the name 
for this type of matrix?  
[Ans: a scalar matrix.] 
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5. Refer to (4), express A explicitly if n=3. 

[Ans:

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

=
3
1

3
1

3
1

300

030

003

A ] 

 
 
6. Consider the matrix A as defined in (4). Find An. 

[Ans: 

( )
( ) ( ) n

n
n

nn

n
n

n
nn

n

nIIn

InAInA

==

=⇒=
/1

/1/1

    
 

] 
 
 
7. Given B an n-square diagonal matrix, with bii= j, 

where j = 1, 2,…, n. Let C = AB. Let cij denote 
the (i, j) element of the matrix C. (i) What is cij if 

ji ≠ ? What the element cjj?  
[Ans: (i) cij = 0 if ji ≠ , 

(ii) jnbabac n
jjjj

n

k
kjjkjj ⋅===∑

=1

\ 

] 
 
 
8. Say A is a matrix of order n×n. Give three 

simplest matrices you can think of that will 
commute with A?  
[Ans: A, 0, In ] 

 
 
9. Give an example of a matrix that anti-commute 

with In.  
[Ans: 0]. 

 
 
10. Give two simplest examples you can think of for 

an idempotent matrix.  
[Ans: 0, In] 
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11. (i) Given an n×n matrix F=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

100
001
010

. What is 

the period of F? (ii) Construct a 3-square matrix 
which has a period of 3. Hint: you may like to 
test out some trial matrix in which each row or 
column has only a single none zero element.  
Ans: 
(i) F3=F. ⇒ F2+1=F ⇒ F has a period of 

k=2. 

(ii) G= . With G3 = G. 

 
 

12. If A is nilpotent of order n, what is An+1? n 
positive integer.  
[Ans: 0] 

 
 
13. Given an n-square matrix A is the inverse of 

matrix B, then we write A = B-1. (i) Express the 
inverse of A in term of B. (ii) What is AB? (ii) 
What is BA?  
[Ans: (i) A-1=B. (ii,iii) In] 

 
 
14. Prove that (AB)-1 =B-1A-1.  

[Ans: see problem 8, pg 15, Ayers.] 
 
 
15. Give an easiest example you can think of where 

the inverse of a matrix is also the matrix itself.  
[Ans: In] 

 
 
16. Let Q be a scalar n-square matrix such that Q = 

kIn, where k an scalar. What is Q -1?  
[Ans: (1/k) In] 

 
 
17. Given the order of matrix A is nm× , what is the 

order of its transpose, A′ ? Note that sometimes 
the transpose of matrix A is written as AT instead 

of A′.  
[Ans: mn× ].  

 
 
18. Consider a 2 by 2 matrix A. (i) what is the 

sufficient condition that A is also equal to its 
transpose (i.e. A′=A)? 
[Ans: the off diagonal element be the same, i.e 
a21=a21] 
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19. Consider a 3 by 3 non-zero diagonal matrix B. (i) 

Is B symmetric? (ii) Could B ever be 
skew-symmetric?  
[Ans: (i) YES, (ii), NEVER.] 

 
 
20. Let A be an n-square matrix. (i) What is the 

symmetry of A+AT (i.e. is it symmetric or 
skew-symmetric?). (i) What is the symmetry of 
A-AT? 
[(i) symmetric, (ii) skew-symmetric.] 
 
 

 

21. Given the matrix, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

zx
yw

C , (i) express C as 

a sum of a symmetric matrix and a 
skew-symmetric matrix.  
[ 

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−

−

+
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+

+

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

=

′−+′+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=′

0
2

2
0

2

2

22

)(
2
1)(

2
1

;

yx

xy

zxy

xyw

zy
xw

zx
yw

zy
xw

zx
yw

CCCCC

zy
xw

C

 

] 
 
 

22. (i) Express explicitly C , the conjugate of the 

matrix C in (21). (ii) Express explicitly the 
conjugate of the matrix kC, where k a real scalar.  
[Ans: 

(i) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

zx
ywC  

(ii) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

zx
ywk

zx
ywk

kzxk
kykwkC ] 
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23. (i) The transpose of the conjugate of matrix C is 

written as … ? (ii) The conjugate of transpose of 
the matrix C is written as …? (iii) Are both of 
these equal each to other?  

[Ans: (i) ( ) ( )′CC
T

or , , (ii) ( ) ( )′TT CC or  , (iii) 

Yes]. 
 
 
24. (i) What is A*? (ii) If A is a matrix containing no 

complex element, is there any difference 
between A* and AT? (iii) In general, if A is a 
matrix containing complex element, will A* 
equal AT in general?  
[Ans: (i) A* is the transpose of the conjugate of 
A = the conjugate of the transpose of A, (ii) No, 

because for real matrix, AA = . (iii) No. In 

general they are not equal.] 
 
 
25. Is a real, symmetric matrix Hermitian?  

[Ans: Yes.] 
 
 
26. (i) By making use of Theorem X in page 13 of 

Ayers 1982 impression, very quickly give an 
example of a 2 by 2 Hermitian matrix and an 
example of a 2 by 2 skew-Hermitian matrix. 
[Ans: Define any 2 by 2 complex matrix A. 

Then
T

AA + is automatically Hermitian, 

whereas
T

AA− skew-Hermitian.] 

 
 

27. Let
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

333
333
333

,
22
22

,
11
11

CBA . (i) 

What is the order of S = diag(A, B, C), the direct 
sum of A, B, C? (ii) What is the order of S2? 

[Ans: 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

C
B

A
S

00
00
00

, number of row = 2 + 

2 + 3 = 7, number of column = 2 + 2 +3 = 7, 
hence the order of S is 7 by 7. (ii) S2=diag(A2, B2, 
C2), dimension is also 7 by 7, since the 
dimension of an square matrix Q, and that of its 
square, Q2, are the same.] 
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Chapter 3 Determinant of a square matrix 
 
Answer the following designed questions. These 
questions are designed in accordance to the subsections 
as sequentially presented in Ayers. Try to identify the 
questions below with the corresponding subsection from 
which these questions are based on as it will definitely 
help while answering these questions. 
 
1. See if you understand what permutation is. 

(i) How many inversions are there in the 
permutation 1234? (ii) 4321? (iii) state whether (i) 
is odd or even?  (iv) state whether (ii) is odd or 
even. (v) Give an example of an odd permutation. 

 
[Ans: (i) 0; (ii) 6; (iii) even; (iv) even; (v) e.g. 21] 

 
 

2. See if you can do this: =
−−− 333
222
111

 

[Ans: Use mathematica to solve, give 0] 
 
 
3. See if you can do this without expanding the 

determinant:  

(i) =

0000
23344386

9.24434365
8.11334.228843

 

(ii) =
804
602
501

 

[Ans: By theorem I, page 21 in Ayers, Det = 0 in 
both cases.] 
 

4. Can you define the determinant of a matrix that is 
not square? How? 
[Ans: Yes, but I do not know how.] 

 
 

5. Given that you know 

330
322
141

−−
=21, find 

331
324

021

−
− without expansion.  

[Ans: By virtue of theorem II, page 21 of Ayers, 

AA =T . Hence 21T =A ] 

 
 

6. Given that 32
323

448
121

=
−−

, find 

323
112
121

−−
without expansion. 

[Ans: by virtue of theorem III, Ayers, page 22 

16)32)(2/1(
323

448
121

)2/1(.
323

111
121

.
323

111
121

2
323

44)4(2
121

323
448
121

32

==
−−

=
−−

−−
=

−−
=

−−
=

] 

 
 

7. Given that ,889.53=
msu
lty
pjg

 find  

(i)

msu
pjg
lty

, (ii) 

pjg
lty
msu

 

Ans[(i) By virtue of theorem IV, page 22, Ayers, 

889.53−=−=
msu
lty
pjg

msu
pjg
lty

;  

(ii) By virtue of theorem V, page 22, Ayers, 
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pjg
lty
msu

= - ,889.53−=
msu
lty
pjg

 

] 
 
 

8. Given A =

00ia
ekil
akus
evol

=999, what is 

(i)

00 ai
elki
asku
elvo

, (ii) 

ai
leki
saku
levo

00

 

[Ans: (i) The matrix of (i) is obtained by carrying 
the {l, s, l, a} column in A 2 column over to the 
right, hence by virtue of theorem VI,  

00 ai
elki
asku
elvo

=(-1)2 A =999;  

(ii) The matrix of (ii) is obtained by carrying the {l, 
s, l, a} column in A 3 column over to the right, 
hence by virtue of theorem VI, 

ai
leki
saku
levo

00

=(-1)3 A = -999 

] 
 
 

9. How do you convince yourself that  

(i) 0000
000

==
pjg

msu

pjg
lty ?  

(ii) =

ai
lki
sku
lvo

00
0
0
0

?0

0000

=
leki
saku
levo

 

10. Given ,9
6
4
3

,10
4
2
2

==
ms
pj
lt

ms
pj
lt

what 

is

ms
pj
lt

10
6
5

? 

[Ans: By virtue of theorem VIII, pg. 22 Ayers,  

ms
pj
lt

ms
pj
lt

64
42
32

10
6
5

+
+
+

=  

= 19910
6
4
3

4
2
2

=+=+
ms
pj
lt

ms
pj
lt

 

] 
 
 

11. Say x=
987
654
321

.  

(i) Consider the operation “add 2×(second row) to the 
first row”. If this operation is applied to the determinant 
above, what do you get? Write down the expression 
explicitly. (ii) Without expansion, work out what is the 
value of the determinant in (i). 
[Ans: 
(i)

987
654

15129

987
654

)6(23)5(22)4(21

987
654
321

=
+++

→

(ii) By virtue of theorem IX, since 

987
654

15129
is 

obtained from x by adding to its first row a scalar 
multiple of the second row, then both determinant has 

the same value, i.e. 

987
654

15129
= x. 

] 
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12. Consider the matrix X =[xij]=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

987
654
321

.  

(i) What is the first minor of x11? Of x23? 
Conventionally what symbol you will use to 
represent these quantities? 

(ii) What is the cofactor of x11? Of x23? 
Conventionally what symbol you will use to 
represent these quantities? 

(iii) What is the matrix of the minors xij, 

|][| ijM ? 

(iv) What is the matrix of the cofactors of xij, 

?][ ijα  

 

[Ans: (i) ==
98
65

|| 11M -3; 6
87
21

|| 23 −==M ; 

 (ii) 

( )
( ) ;6||||1

;3||||1

2323
32

23

1111
11

11

=−=−=

−==−=
+

+

MM

MM

α

α
 

(iii) matrix of the minors xij, |][| ijM  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−

−−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−−−−
−−−−−−
−−−−−−

=
+++

+++

+++

363
6126
363

3)1(6)1(3)1(
6)1(12)1(6)1(
3)1(6)1(3)1(

|][|
332313

312212

312111

ijM
 

See DQ Chapter 3 Q12.nb 
 

(iv) Matrix of cofactors of of xij, =][ ijα  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−

−−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−−−−
−−−−−−
−−−−−−

+++

+++

+++

363
6126
363

3)1(6)1(3)1(
6)1(12)1(6)1(
3)1(6)1(3)1(

332313

312212

312111

] 

 
 

 
13. Consider the matrix in (12). Calculate  

(i) ∑
3

11
j

jjx α (ii)∑
3

33
i

iix α  

(ii) What is the quantity represented by the sum in (i) 
and (iii)? Do you get the same value for both (i) and (ii)? 
(iv) So, what is the determinant of X? 
[Ans:  

(i) ∑
3

11
j

jjx α =1(-3)+2(6)+3(-3) = 0; 

(ii) ∑
3

33
i

iix α =3(-3)+6(6)+9(-3)=0 

(iii) YES  (iv) 0 
] 
 
 
14. If you were to manually find the determinant of 

6.102.4
1.798.16.33
3.5201.44

, along which column or row 

would you like to follow to calculate the 
determinant? 
[Ans: along the j=2 column.]  
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Chapter 4 Evaluation of determinants 
 
Answer the following designed questions. These questions 
are designed in accordance to the subsections as 
sequentially presented in Ayers. Try to identify the 
questions below with the corresponding subsection from 
which these questions are based on as it will definitely help 
while answering these questions. 

 

1. Given A=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

6108
954
321

, what is ARA )2(2
3 −=′ ?  

Ans:  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

6108
954
321

⎯⎯ →⎯ − )2(2
3R

A′=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−− 1200
954
321

)9(26)5(210)4(28
954
321

 

 
2. (i) What is the determinant of A in (1)? (ii) That of A′? 

(iii) What is your conclusion? 
 
Ans:  

(i,ii) |A|=| A′|=-12 36)85(12
54
21

12 =−−=− ; 

(iii) If two matrices are related by an operation of )(kRi
j , 

their determinant equals.  
 
 
3. If you understand the idea intended to be conveyed in 
(1), what is your strategy if you were asked to 

evaluate

43108
9114

54661
? Inspect the values of the elements 

then think of the best strategy possible. 
 
Ans:  
One would first try to see if there is any way to reduce a 
row in the determinant to as many zeroes as possible in 

43108
9114

54661
. One may like to operate )6(2

1 −R so that the 

second row becomes (-23, 0, 0). Then the determinant 
becomes easily evaluated.  
 
 

4. How about evaluating

1687
10117
841

? 

Ans: 
Try to transform either column 2 or 3 of the determinant 
into one containing two zeroes. E.g., carry out the operation 

)2(2
3 −C so that the third column becomes (0, -12, 0)T. Then 

the transformed determinant 

087
12117
041

− becomes easily 

evaluated:  

240)20(12
87
41

)12()1(
087
12117
041

` 32 −=−=−−=− +  

 
 

Consider the operation “add to row j by (k × row 
i)”, j ≠i, where k is a non-zero scalar. We will 
conveniently represent the above operation 

by )(kRi
j , and we have AkRAA i

j
kRi

j )()( =′⎯⎯ →⎯ . 

Sometimes this operation is symbolized by {j}  
{j} + k{i}, meaning: “replace row j by (row j + k 
times row i)". In Ayer’s notation, this operation is 

denoted by Hij(k). We will adopt the )(kRi
j notation 

for the rest of the course. There is also a similar 
operation that acts on the columns, denoted by 

)(kCi
j . 



Chapter_4_Evaluation_of_determinants 

5. Given A=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

987
654
321

. Carry out successive operations 

of )(kRi
j to transform A into a matrix which has as 

many zero elements as possible in row 3. Call the 
resultant matrix B. (i) What is your resultant matrix, B?  
(ii) Is A and B equivalent? (iii) Does A and B have the 
determinant? Justify your answer. (iv) Evaluate |A|.  

 
 
Ans: 
(i) 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

987
654
321

⎯⎯ →⎯ − )7(1
3R

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−− 1260
654
321

)3(79)2(78)1(77
654
321

 

⎯⎯ →⎯ − )4(1
2R

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−−

1260
630

321

1260
)3(46)2(45)1(44

321

⎯⎯ →⎯ − )2(2
3R

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−−−−−
−−

000
630

321

)6(212)3(26)0(20
630

321
. 

 
(ii) Yes. (iii) One of the theorems in chapter 3 on the 
properties of determinant says so. (iv) Clearly, |B|=0 due to 
the last row of 3 zeros. Hence, |A|=|B|=0. 
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Chapter 5 Equivalence 
 
Answer the following designed questions. These questions 
are designed in accordance to the subsections as 
sequentially presented in Ayers. Try to identify the 
questions below with the corresponding subsection from 
which these questions are based on as it will definitely help 
while answering these questions. 
 
1. Consider an n-square non-zero matrix A. (i) What is 

the highest possible rank of matrix A? (ii) What is the 
smallest possible rank of A? (iii) What is the condition 
on A for it to assume the highest possible rank? (vi) 
What kind of matrix A is if it fulfils the condition in 
(iii)? 

 
Ans: 
(i) n; (ii) 0. (iii) when |A| ≠ 0. (iii) non-singular. 
 
 
2. In general, for an n-square non-zero matrix A, its first 

minors* are (i) ___-square minors (ii) Can you recognize 
what the “n-square minors” of A is?  
(*We will refer “first minors” simply as “minors” in 
the future unless specify otherwise.) 

 
Ans: 
(i) (n-1)-square minors; (ii) the “n-square minor” of A 
is non other than the determinant of A, |A|. 
 
 

3. Consider the 3-square matrix Y=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

887
654
321

. (i) The 

minors of Y are ____-square minors. (ii) What is the 
“3-square minor” of Y? (iii) What is the rank of Y? (iv) 
What is the 4-square minor of Y? 

 
Ans:  
(i) The minors of Y are “2-square” minors.  
(ii) The “3-square minor” of Y is |Y|=3≠0. (iii) The rank of Y 
is 3 (highest possible rank for a matrix of order 3). (iv) 
Since the order of A is n=3, the 4-square minor of A is not 
defined. 
 

 
 
4. You may refer to Chapter 3, designed question (12). 

Consider the 3-square matrix X=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

987
654
321

. (i) What 

is the value of the “3-square minor” of X? (ii) How 
many “2-square minors” are there in X? (iii) Is ALL of 
the “2-square minors” zero? (iv) What is the rank of X? 

 
Ans: (i) |X|= 0. (ii) There are 9 of them. (iii) The 
matrix of “2-square minors” of Y is [Mij]= 

. Not all of them are zero. (iv) The rank 

of X is r = 2. 

5. Consider the 3-square matrix Z=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

321
321
321

. (i) What is 

the value of the “3-square minor” of Z? (ii) How many 
“2-square minors” are there in Z? (iii) Is ALL of the 
“2-square minors” zero? (iv) How many “1-square 
minors” are there in Z? (v) Is ALL of the “1-square 
minors” zero? (vi)What is the rank of X? 

 
Ans:  
(i) |Z|=0. 
(ii)  There are 9 of them.  
(iii) The matrix of “2-square minors” of Y is [Mij]= 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

000
000
000

. ALL of the 2-square minors are zero.  

(iv) There are 9 “1-square minors” in Z. (v) The matrix of 

“1-square minors” of Z is =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

|3||2||1|
|3||2||1|
|3||2||1|

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

321
321
321

. 

 (v) Not all of the “1-square minors” of Z is zero. (vi) rank 
of Z is r = 1.  
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6. Consider matrix X as defined in (4). What is X′, the 
image of X when it is transformed under the operations 

(i) 1
2R  (ii) 1

2C  (iii) )3(2R  (iv) )3(2C   

(v) )3(1
2R  (vi) )3(1

2C  

 
7. (i) What do you call the operations in (6)?  

(ii) What is the determinant of X′ in each case in (6)?  
(iii) What is the order of X′ in each case in (6)?  
(iv) What is the rank of X′ in each case in (6)?  

 
Ans:  

(i) Elementary transformations.  
(ii, iii, iv) Determinant, order and rank of a matrix remain 
unchanged under elementary transformations.  
 
 
8. Given two examples of equivalent matrices to X as 

defined in (6). 
 
Ans: 
All of the examples in 6(i-vi) are equivalent matrices to X. 
 
 

9. Let A=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

100
020
031

. Find a single row elementary 

transformation (let’s call it EA B) that transforms A into 
a 3-square diagonal matrix, B? We will use the notation 
B=EA B A. 

 
Ans: 

A=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

100
020
031

( )2/32
1 −R  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

100
020
001

=B 

 
10. Find a single row elementary transformation (let’s call 

it
3IBE → ) that transforms B in (9) into the unit matrix I3? 

We will denote I3=
3IBE → A. 

Ans: 

B=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

100
020
001

( )2/12R 3

100
010
001

I=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
 

 

11. If we define the operation U=
3IBE → EA B, what will 

you get if U is operated on A? We will denote the 
resultant matrix as V = UA.  

 
Ans: 

V = UA =
3IBE → (EA B A) =

3IBE → B= 3I . 

 

12. Let A=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

105
020
231

. Transforms A into a 3-square 

diagonal matrix, call it D, by successively applying 
row elementary operations. I can achieve a 3-square 
diagonal matrix in three steps (I call it Rstp = Rstp3 Rstp2 
Rstp1, so that RstpA is diagonal matrix.) How many steps 
you need, and what is your that Rstp?  

 
Ans: 

A=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

105
020
231

( )23
1 −R

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛−

105
020
039

( )2/32
1 −R

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛−

105
020
009

( )9/51
3R

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛−

100
020
009

=D.  

Hence Rstp = Rstp3 Rstp2 Rstp1= ( )9/51
3R ( )2/32

1 −R ( )23
1 −R . 

 
13. Reduce the resultant diagonal matrix in (12) into a unit 

matrix by applying a Sequence of row elementary 
transformations. Call this operation Rd. What is your 
Rd? 

Ans: 

D=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛−

100
020
009

( )9/11 −R
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

100
020
001

( )2/12R
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⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

100
010
001

. Hence, Rd = ( )2/12R ( )9/11 −R  

14. Now, I will call the operation that transforms A, as in 

(12), into a 3-square matrix identity matrix
3IAE → . 

With this notation, we have 
3IAE → A= I3`. Write down 

the form of 
3IAE →  in terms of the operations Rstp and 

Rd as obtained in (12) and (13).  
 
Ans: 

3IAE → = RdRstp 

= ( )2/12R ( )9/11 −R ( )9/51
3R ( )2/32

1 −R ( )23
1 −R  

 
 
15. “Canonical matrix” as mentioned in page 40, Ayers, is 

a general form of matrix that fulfills the set of 
properties (a)-(d) stated in the same page. A special 
case of canonical matrices are matrices in Row Reduce 
Echelon form (RREF). These are matrices that have the 
following properties:  

 
1. Rows of all zeros, if there are any, appear at the bottom 

of the matrix. 
2. The first nonzero entry of a nonzero row is 1. This is 

called a leading 1. 
3. For each nonzero row, the leading 1 appears to the 

right and below any leading 1’s in preceding rows. 
4. Any column in which a leading 1 appears has zeros in 

every other entry. 
 
A matrix in RREF appears as a staircase pattern of leading 
1’s descending from the upper left corner of the matrix. The 
columns of the leading 1’s are columns of an identity matrix. 
A matrix is in row echelon form (REF) if properties 1, 2, 
and 3 above are satisfied. 
 
Now, see if you can demonstrate your understanding on 
what RREF is by answering the following questions:  
 
 

 
Given the following matrices, state whether they are in 
RREF, REF or neither. 
 

(i) 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

0000
0000
1010
7001

(ii) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
410000
606100

 

 

(iii)
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−
0000
1010

2051
(iv) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −−
410000
626100

 

(v)
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −−

5200
6510
1121

. 

Ans: (i) RREF (ii) RREF (iii) REF  (iv)REF (v) 
neither. However, under R3(1/2), matrix (v) will be reduced 
to REF.  
 
 
16. Convert the above non-RREF matrices in to RREF via 

elementary row transformations.  
 
Ans: 

(iii) ( )52
1 −R

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−
0000
1010

2051
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−
0000
1010

7001
 

 

(iv) ( )22
1 −R ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −−
410000
626100

= 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
410000
1406100

 

(v) 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −−

5200
6510
1121

( )2/53
2 −R

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−
−−

5200
2/13010

1121

( )2/13
1R

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

5200
2/13010

2/3021
( )22

1 −R
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⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

5200
2/13010

2/29001
( )2/13R

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

2/5100
2/13010

2/29001
 

[See mathematica file for verification]. 
 
 

17. Consider
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

321
112
021

B . (i) Transform B into a row 

echelon form via elementary row transformations. (ii) 
What is the reduced row echelon form of B? (iii) Is the 
REF as obtained in (ii) the same as your friend’s? (iv) 
Is the RREF as obtained in (iii) the same as your 
friend’s? (v) What can you conclude from (iv) and (v)? 
After this exercise you should have learnt the trick of 
reducing any generic matrix into RREF form.  

 
Ans: 
(i) (non-unique) 
(ii) Using mathematica, 

  
(iii) No. (iv) Yes. (v) REF is not unique but RREF is. 
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Chapter 6 The adjoint of a square matrix 
 
Answer the following designed questions. These questions 
are designed in accordance to the subsections as 
sequentially presented in Ayers. Try to identify the 
questions below with the corresponding subsection from 
which these questions are based on as it will definitely help 
while answering these questions. 
 

1. Given A=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

987
654
321

. (i) Obtain the cofactor αij for all 

i, j. (ii) Form the matrix of the cofactors of A, and call 
it X. (iii) How is X be related to adj A? (iv) What is |A|? 
(You should have been very familiar with A, see DQ in 
Chapter 5.) (v) What is adjA⋅A? Try to relate the 
answer in (v) to theorem II, page 50, Ayers. 

 
Ans: 
 

98
65

11 =α =45-48=-3; 
97
64

12 −=α =-(36-42)= 6 

87
54

13 =α = 32-35=-3; 
98
32

21 −=α = -(18-24)= 6;  

 

97
31

22 =α = (9-21)=-12;
87
21

23 −=α = -(8-14)=6;  

65
32

31 =α =12-15=-3;
64
31

32 −=α = -(6-12)=6; 

54
21

33 =α =5-8=-3; X=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−

−−

363
6126
363

 

(iii) X = adj A; (iv) |A|=0; (v) adjA⋅A=0, this is due to 
the fact that A being square and singular. 
 
 
2. How would you convince yourself that indeed adjA⋅A= 

A⋅adjA=diag(|A, A, A, …,|A|)? 
 
Ans: See (6.2), page 49, Ayers. 

3. Say A, B are two matrices conformable for a product in 
the order of AB. What is |A||B|? 

 
Ans: 
See (4.2), page 33, Ayers. 
 
4. How would you convince yourself that |A| |adjA| = |A|n? 

[Hint: use DQ (2).] 
 
Ans: 
Eq. (6.2), page 49, Ayers. 
 
5. Consider this statement: If X a square matrix and 

singular, then |adjX|=0. Is this statement true? 
 
Ans: I don’t know. If one can show a counter example of 
the existence an |adjX| ≠ 0 yet |A|=0, that means the 
statement is false.  
 
 
6. Try to relate this question with what you have learnt in 

the secondary school. Given G= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
43
21

, (i) what is 

Adj G? You should be able to write down the answer 
by inspection. (ii) What is |G|? (ii) Let H = Adj G /|G|, 
work out what is HG. (iii) Based on the answer of (ii), 
what is the product GH? (iv) So, what can you 
conclude from the above exercise?  

 
Ans:  

(i) Adj G = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
13
24

12
34 T

; (ii) |G|=-2;  

(ii) HG =(-1/2) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
13
24

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
43
21

= 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
−

10
01

20
02

)2/1(  

(iii) Since HG=I, that means H is the inverse of G. 
Hence GH=HG=I. 

(iv) Adj G /|G| is simply the inverse of G. 
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Chapter 7 The inverse of a matrix 
 
Answer the following designed questions. These questions 
are designed in accordance to the subsections as 
sequentially presented in Ayers. Try to identify the 
questions below with the corresponding subsection from 
which these questions are based on as it will definitely help 
while answering these questions. 
 
1. For the following two questions, please refer to the 

designed questions (12), (13), (14), in Chapter 5. There, 

3IAE → A= I3. Now, what would you get when 

if
3IAE → is operated on I3 instead of on A? In other 

words, ask yourself, what is
3IAE → I3? 

Ans: 

Comparing I3=
3IAE → A with the definition of the inverse of 

A, i.e. I3= A-1A, we conclude that
3IAE → ≡ A-1. Hence, 

3IAE → I3= A-1I3= A-1. 

 
 
2. So, by now, have you learnt how to find the inverse of 

a matrix? Find A-1, where A is as defined in DQ (12), 

Chapter 5, A=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

105
020
231

.  

Ans: 

A-1=
3IAE → I3= 

( )2/12R ( )9/11 −R ( )9/51
3R ( )2/32

1 −R ( )23
1 −R

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

100
010
001

 

= ( )2/12R ( )9/11 −R ( )9/51
3R ( )2/32

1 −R
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −

100
010
201

 

= ( )2/12R ( )9/11 −R ( )9/51
3R

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −−

100
010
22/31

 

= ( )2/12R ( )9/11 −R
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−

−−

9/16/59/5
010
22/31

 

= ( )2/12R
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−

−

9/16/59/5
010

9/26/19/1
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−

−

9/16/59/5
02/10

9/26/19/1
=A-1 

 

3. Now carry out the 
3IAE → A= and 

3IAE → I3 operations 

in a “two-in-one” manner, i.e. if the augmented matrix 
form. First form the augmented matrix of the 

form ( )IA =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

100
010
001

105
020
231

. Carrying out 

3IAE → on both sides to arrive at ( )1−AI . 

 
4. In the designed questions (12), (13), (14) of Chapter 5, 

you are asked to find a sequence of elementary 
transformations that transform a generic matrix A into a 

unit matrix. Now, if A were our old friend
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

987
654
321

, 

what would happen if you were to attempt to reduce it 
into an identity matrix via a sequence of elementary 
transformations? Explain. 

 
Ans: 
Since our old friend is a singular square matrix with no 
inverse, it is not possible to reduce it into a unit matrix via a 
finite sequence of elementary transformation. If we were 
able to achieve that, that means there exists a finite 

sequence of operation similar to
3IAE → such that 

3IAE → I3 
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gives us the inverse of A, which is a contradiction. Hence, it 
is not possible to obtain a finite sequence of elementary 
transformation to reduce out old friend to identity matrix. 
 
 
5． Deduce A-1, where A is as defined (2), using A-1= adjA/|A|. 

Do you get the same answer as in (2) where the inverse is 
obtained using row reduced echelon form method? 
 

Ans: Of course yes.  
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Chapter 9 Linear dependence of vectors and forms 
 
Answer the following designed questions. These questions 
are designed in accordance to the subsections as 
sequentially presented in Ayers. Try to identify the 
questions below with the corresponding subsection from 
which these questions are based on as it will definitely help 
while answering these questions. 
 
1. Give examples of two distinct, non-zero 2-vectors in row 

vector form. Call them X1 and X2. (ii) What is their sum, 
X3= X1+ X2? Write it down explicitly. (iii) Sketch a picture 
representing these vectors in a 2-dimensional space. Label 
your drawing properly (including the vectors and the 
axes).  

 
Ans: 
 
(i) X1 = [1, 2]; (i) X2= [2, 1]; X3 = X1 +X2 = [3, 3]. 
 

 
2. (i) Repeat (i) and (ii) of the above question but for  

2-vectors in column form (i.e. giving examples, writing 
down their sum). (ii) If you were to sketch a picture 
representing these 2-dimensional column vectors in a 
2-dimensional plane, as you did in (1)(iii), will the 
drawing be the same as in (1)(iii)? 

 
Ans: 
X= [x1, x2]T;  
(i) X1= [1, 2]T; (i) X2= [2, 1] T; X3 = X1 +X2 = [3, 3] T, or, 

equivalently, X1 = ⎥
⎦

⎤
⎢
⎣

⎡
2
1

; (i) X2 = ⎥
⎦

⎤
⎢
⎣

⎡
1
2

; X3 = X1 +X2 = ⎥
⎦

⎤
⎢
⎣

⎡
3
3

 (ii) 

YES. 
 

3. (i) Give an example of a simplest possible 3-vector in 
column vector form, with all positive, non-zero 
components you can think of. Call it X. (iii) Sketch a 
picture representing this vector in a 3-dimensional space. 
Label your drawing properly (including the vectors and 
the axes).  

 
Ans: 
 
(i) X = [1, 1, 1]T. 

 
 
4. (i) Give an example of a simplest possible 4-vector in 

column vector form, with all positive, non-zero 
components you can think of. Call it X. (ii) Can you 
possibly sketch a picture to represent this vector in the 
similar manner as you do for (2) and (3)? Explain.  

 
Ans:  
(i)X = [1, 1, 1, 1]T. (ii) Not possible. Since we live in a 3-D 
world, we can only draw vectors up to 3-D but not higher 
than that.  
 
5. What is the dimensionality of the vectors in (1), (2), (3) 

and (4)?  
Ans:  
For (1), (2), the vectors are 2-demensional; For (3), 
3-dimensional; For (4), 4-dimensional. 
 
 
6. Consider the 3-vectors pair X1= [1, 2, 3], X2= [-1, -2, -3]. (i) 

Find any possible values of k1 and k2, with {k1 k2} ≠ {0, 0}, 
such that k1Xb+ k1X2= 0. (ii) Are the vectors linearly 

x1 

x2 

X (1, 1 ,1) 

x3 

O 1 

1 

1 

x1 

x2 

X2(2, 1) 

0 

X1(1, 2) 
X3(3, 3) 



Chapter_9_Linear_dependence_of_vectors_and_forms 

independent?  
 
Ans: (i) Any arbitrary value of k1= k2 = k ≠ 0 will do. (ii). 
They are linearly dependent, since there exist values of {k1, k2}, 
not all zero, such that k1Xb+ k1X2= 0. 
 
 
7. Explain why is that a zero 3-vector is always linearly 

dependent with any 3-vector? 
 
Ans: [0, 0, 0] is linearly dependent with any 3-vector X since 
there always exist some {k1, k2}≠{0, 0} such that k10 + k2X = 0 
is satisfied, e.g. k1= 101, k2= 0. 
 
 
8. Consider X1=[a, b, c] and X2=s[a, b, c], where s a non-zero 

scalar. (i) Are these 3-vectors linearly independent? (ii) 
Explain why you say so. 

 
Ans: 
k1X1+k2X2= k1X1+ sk2X1= X1(k1+sk2). For k1X1+k2X2=X1(k1+sk2) 
= 0, any values of k2 and k1 satisfying the condition k1 + sk2= 0 
will do the job, e.g. k1 = 0, k2= 1. In other words, there always 
exist NOT ALL ZERO coefficients {k1, k2} that satisfy 
k1X1+k2X2=0. Hence, X1, X2 are NOT linearly independent. 
 
 
9. Consider X1=[1, 2, 3] and X2=[4, 5, 6]. (i) Are they linearly 

independent? (ii) Explain why you say so. 
Ans: 
For k1X1+ k2X2=[0, 0, 0], we need k1 + 4k2 = 0, 2k1 + 5k2 = 0, 
3k1+6k2= 0. The only possible solution is k1, k2 both being zero. 
This means that for k1X1+ k2X2=[0, 0, 0], the coefficients {k1, 
k2} must be all zero. This prove the linearly independence of 
X1 and X2. 
 
 
10. Give a set of three distinct, non-zero 2-vectors, X1, X2, X3 

that are linearly independent.  
 
Ans: 
This is not possible. Such a set must necessarily be linearly 
dependent. 
 
 
11. (i) Consider 3 distinct, non-zero 2-vectors. These vectors 

must be (linearly dependent / linearly independent). (ii), 
Consider 2 distinct, non-zero 3-vectors. Furthermore, 
these vectors are not in the form of X1=sX2 (in other words, 
they are not parallel nor anti-parallel). These vectors must 
be (linearly dependent / linearly independent). 

Ans:  
(i) linearly dependent; (ii) linearly independent. 
 
 
12. Refer (9.5) in page 69, Ayers. Given a set of m vectors, we 

want to know whether they are linearly independent or 
otherwise. What is the easiest way (or one of the easier 
ways) to determine the linear independence of such a set 
of vectors?  

 
Ans: Use row elementary operations to reduce the matrix A 
formed by these vectors to RREF. The number of non-zero 
row in the RREF of A is the rank of the matrix A, r. The rank, r, 
also tells us how many linearly independent vectors are there 
in the set of m vectors.  
If r = m, then the set of this m vectors is linearly independent. 
If r < m, then the set of m vectors is linearly dependent.  
In such a case, there are exactly r vectors of the set which are 
linearly independent while each of the remaining m-r vectors 
can be expressed as a linear combination of these r vectors.  
 
 
13. Consider the set S containing the following 4 3-vectors: 

K1=[1,1,1]T, K2=[1,3,5]T, K3=[1,5, 3]T, K4=[5, 3, 1]T; 
S={K1, K1, K3 K4}. (i) Form the matrix A whose rows 

are made up of the vectors T
iK , i=1, 2, 3, 4. (ii) Reduce 

A into RREF. (iii) What is the rank of A? (iv) How 
many linearly independent vectors are there in the set S? 
(v) Are the vectors in set S linearly independent? 

 
Ans: 

(i) A = ( TK1 , TK2 , TK3 , TK4 ) =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

135
351
531
111

  

(ii) A~   (iii) r = 3 
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(iv) There are r=3 linearly independent vectors in the set S.  
(v) Since the number of vectors in S, m = 4 is larger than the 
number of linearly independent vectors, r = 3, the set of 
vectors in S is not linearly independent. They are linearly 
dependent, by the virtue of theorem V, page 69, Ayers.  
 
 
14. There is another way to prove the linearly independence 

of a set of vectors. Consider a set of three vectors K1= (1, 
4, 7)T, K2= (2, 5, 8)T, K3= (3, 6, 9)T. Let’s find out whether 
they are linearly independent or otherwise. If the set of 
these vectors is linearly independent, then the only 
solution to the homogeneous equation system  

x1K1+x2K2+ x3K3 =0 
is the trivial solution, i.e. X=(x1, x2, x3)T=(0, 0, 0)T. 

(i) If we write the homogeneous equation system in the matrix 
form of KX = 0. What is the matrix K? (ii) Reduce K into 
RREF to determine rank(K). (iii) How many unknowns are 
there in the HE system? (iv) By comparing your answer in (ii) 
and (iii) what can you say about the solution X? (iv) Is the set 
of three vectors linearly independent?  
Ans: 

(i) x1K1+x2K2+ x3K3 = (K1, K2, K3)
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3

2

1

x
x
x

=K
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3

2

1

x
x
x

. Hence, 

K= (K1, K2, K3)=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

987
654
321

. 

(ii) K~RREF (K) =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

100
010
001

. Hence, rank (K)=3.  

(iii) Number of unknown = 3.  
(iv) Since rank (K) = n = number of unknown, the HE 

system has only the trivial solution, X=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

0
0
0

3

2

1

x
x
x

, 

see Ayers, page 78, the statement before theorem IV.  
(v) Since the only solution to x1K1+x2K2+ x3K3 =0 is the 

trivial solution, by definition, the set of vectors is 
linearly independent.  

 
 

15.  
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Answer the following designed questions. These questions 
are designed in accordance to the subsections as 
sequentially presented in Ayers. Try to identify the 
questions below with the corresponding subsection from 
which these questions are based on as it will definitely help 
while answering these questions. 
 
1. Consider a system of 3 linear equations in 3 unknown, 

x1, x2, x3. 

0321 =++ xxx  

0222 321 =++ xxx  

0333 321 =++ xxx  

(i) Give the most trivial solution to the system of equations 
above. (ii) Give a not-most trivial solution to the system of 
equations above. (iii) Is the system consistent? (iv) Explain 
why you say so in (iii). (v) How many solutions are there 
for the linear equation system?  
 
 
2. Consider a system of 2 linear equations in 2 unknown, 

x1, x2: 221 =+ xx , 121 =+ xx   

(i) Try sketching the two equations given in the x2-x1 
plane. (ii) Do these two graphs intersect at all? (iii) Can 
you find a solution to the linear equation system given? 
(iv) Is the system consistent? (v) Explain why you say 
so in (iv).  

 
 
3. Express the linear equation system in (1) and (2) in (i) 

matrix form AX=H. (ii) augmented matrix form [A H].  
 
 
4. Consider the following system of equation:  

121 =− xx     (Eq. 1) 

221 =+ xx     (Eq. 2) 

(i) Express the equation system above into augmented 
matrix form.  
(ii) Perform the following operation: Replace (Eq. 1) by 
(Eq.1) + (Eq. 2), and call the resultant equation (Eq 1’). At 
the mean time, leave (Eq. 2) untouched. Write down the 
resultant equation system. What are the corresponding row  
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elementary operations that have an equivalent effect on the 
augmented matrix?  
(iii) Now, perform a follow-up operations: Replace (Eq. 2) 
by (Eq. 2) added with (Eq 1’) multiplied by (-1/2). Write 
down the resultant equations. What are the corresponding 
row elementary operations that have an equivalent effect on 
the augmented matrix?  
(iv) Now, multiply (Eq. 1’) by a factor of 1/2. Write down 
the resultant equations. What are the corresponding row 
elementary operations that have an equivalent effect on the 
augmented matrix?  
(v) Now, reduce the augmented matrix in (i) into RREF. Do 
you get the same augmented matrix as resulted in (iv)? (vi) 
Can you read off the solutions of x1, x2 from the resultant 
RREF matrix by inspection? 
 
 
5. (i) Express the following linear equation system in 

augmented matrix form [A H].  

1321 =++ xxx ; 232 321 =++ xxx ; 

03 321 =++ xxx .  

(ii) Reduce the augmented matrix [A H] into reduced 
row echelon form. (iii) Write out the equation system 
represented by the RREF augmented matrix as obtained 
in (ii). Read off the solutions by inspection.  

 
 
6. Choose the correct answer: (i) REF is a (special / 

general) case of RREF. (ii) The procedure you used in 
(5), in which the augmented matrix is reduced into 
RREF, to solve for the solutions, is called (Gaussian 
/Gaussian-Jordan) elimination. 

 
 
7. The equation system in  
(i) (1) is a (homogeneous/non-homogeneous) system. 
(ii) (2) is a (homogeneous/non-homogeneous) system. 
(iii) (5) is a (homogeneous/non-homogeneous) system. 
 
 
8. Refer to theorem III, page 77, Ayers. Answer the 

following properties of the equation system in (5):  
(i) The system in (5) is (homogeneous or  

non-homogeneous). 
(ii)  The number of unknowns in (5) is _______. 
(iii)  The number of equation in (5) is _______. 
(iv)  The determinant of |A| in (5) is (zero / non-zero).  
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(v) The solution as obtained in (5) is (unique / 
not-unique). 

 
 
10. Given an arbitrary linear equation system of the form 

AX=H, there are two possibility on the existence of its 
solution, i.e. either the solution exists or _________. If 
the solution exists, it could be __________or 
___________, __________ or ____________.  

 
 
11. Give a simple example of a non-homogeneous system 

that (i) has a unique solution. What is the unique 
solution? (ii) has no solution (i.e. not consistent); (iii) 
has non-unique solutions.  

 
 
12. Give an example of a 2 by 2 homogeneous system that 

(i) has a unique solution; (ii) has no solution (i.e. not 
consistent); (iii) has non-unique solutions.  

 
 
13. Given a non-homogeneous equation AX=H, with |A| ≠0, 

A an n-square coefficient matrix, X column vector of n 
variables, H non-zero column vector of n components. 
(i) List down all the ways you can think of that can be 
employed to solve the linear equation systems. I can 
think of 5, how many can you think of? 
(ii) As an exercise, solve the given equation system 
using all the methods you have listed. You should get 
the same answer with all these different methods.  

 
 
14. Consider an equation system AX=H, which represent m 

equations in n unknown. What is the sufficient 
condition that this equation system is consistent? (Hint: 
find the answer in page 76 of Ayers “fundamental 
theorems.”) 

 
 
15. Consider a homogeneous equation system AX=0, which 

has n equations in n unknowns. 
(i) Does the system is guaranteed consistent? Explain 
by referring to your answer in (14).  
(ii) What can you say about the solution X if the rank of 
A, r, is equal the number of unknowns, n? (Give your 
answer in terms of its existence, uniqueness and 
triviality.) 
(iii) What can you say about the solution X if the rank  
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of A, r, is less than the number of unknowns, n? (Give 
your answer in terms of its existence, uniqueness and 
triviality.) 
(iv) Consider the statement: ALL homogeneous 
equation system is consistent. Is this statement true?   

 
 
16. Consider the homogeneous equation system in (15), 

AX=0. (i) If A is not singular, A-1 exist. What do you get 
if you operate A-1 on AX=0 from the left-hand-side 
(LHS)? Try to figure out what will happen to the 
solution X. (ii) So, what is your conclusion? 

 
 
17. Consider (16) again. (i) If A is singular, i.e. A-1 does not 

exist, can you claim that AX=0 has no solution? (ii) 
What’s the difference in the solution of a homogeneous 
equation system of singular coefficient matrix A and 
one that is not? Give your answer in terms of its 
existence, uniqueness and triviality. 

 
 
18. Consider the equation system  

432 321 =+− xxx ; 52 321 =++ xxx . (i) Express the 

system in matrix form. (ii) Is the number of unknowns 
larger than the number of equation? (iii) So, how many 
solutions would you expect? (iii) Solve the equation system 
using Gaussian-Jordan elimination. 
 
 
19. Refer to solved problems 2, page 79 of Ayers. We will 

learn how to ‘count’ the rank of a matrix in this DQ. 
Consider a homogeneous system of 2 linear equations 
in 3 unknown, x1, x2, x3, AX=H, where  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−=

4

3

2

1

,
0354
2132

1211

x
x
x
x

XA , 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

7
2
5

H  

(i) Transform the augmented matrix [A H] into    
[A1 | H1], the RREF form of [A | H] using row 
elementary operations. Express [A1 | H1] 
explicitly. 

(ii) Is the rank of [A1 | H1], [A | H] equal? 
(iii) Count the number of non-zero row in [A1 | H1]. 

The number of non-zero row equals the rank of 
the augmented matrix [A1 | H1]. This number is the 
same as the number of leading 1 in the RREF. 
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(Note that this simple fact is not mentioned 
explicitly in Ayers.) Hence, what is the rank of  
[A | H]? 

(iv) From the expression of [A1 | H1], what is the rank 
of the matrix A1? What is the rank of matrix A? 

(v) By referring to the fundamental theorem I, page 
76, Ayers, is the system consistent?   

 
 
20． Consider the homogeneous equation system of  

022 421 =++ xxx , 03 32 =+ xx .  

(i) Express the system in the matrix form of AX=H. 
(ii) This is an equation system with _____equations and  

_______ unknowns.  
(iii) Determine the rank of A and [A | 0].  
(iv) Is this system consistent? 
(v) By comparing the rank of A and the number of 

unknowns, can you determine whether the system will 
admit non-trivial solution? State explicitly whether the 
non-trivial solutions are expected. (Hint: refer to 
theorem IV, page 78, Ayers.) 

(vi)  From the answer to (ii), state your expectation 
whether the solutions will be unique or otherwise. 

(vii)  Based on your answer to (v) you know what the rank 
of the matrix A is. Hence, how many linearly 
independent solutions do you expect for the HE 
system? (Hint: refer to theorem VI, page 78, Ayers.) 

 
 
21. Solve the HE system in the previous DQ. Your solution 

should agree with the number of linearly independent 
solutions is as given in (vi) in the same question. 

 
 
22. You may like to refer to Example 5, page 79, Ayers. 

Consider a non homogeneous equation system: 

432 321 =+− xxx , 52 321 =++ xxx . 

(i) Express the system in the matrix form of 
AX=H. 

(ii) This is an equation system with 
_____equations and _______ unknowns.  

(iii) Determine the rank of [A | H] and A. 
(iv) Is this system consistent? 
(v) From the answer to (ii), state your expectation 

whether the solutions will be unique or 
otherwise. 

(vi) Based on your answer to (iii) you know what  
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the rank of the matrix A is. Hence, how many 
linearly independent solutions do you expect 
for the HE system? (Hint: refer to theorem VI, 
page 78, Ayers.) 

(vii) Obtain the solution. 
 
 
23. You may like to try out the trick you have learnt from 

the above DQ on the solved problem 1 in page 79, 
Ayers. 
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1． Definition: n-vector 
An vector a with n-component is an n-tuple of real 
numbers, a ={a1, a2,…, an}. We call this an n-vector. ai, 
i=1, 2, …,n are the components of a. It has n 
components. 

 
2． As an special example, for n=3, a={a1, a2, a3}. a can be 

imagined as a point in 3-space, the 3-dimensional space 
we human resides in. For example, the 3-vector a={0,0,0} 
represents a point with spatial coordinates {0 , 0, 0}.  

 
3． Imagine the collection of all possible 3-vectors into a set 

V containing all points in the 3-space. We call the set of 
all 3-vectors, (or in other words, all points in the 3-D 
space), R3. Each vector in R3 is equivalent to a point in 
the 3-space. 

 
4． Similarly, R2 is the set of all 2-vectors. R2 is the set of all 

points in 2-space.  
 
5． R, the set of all real number, is the set of all ‘1-vector’ 

(‘1-vector’ is just the real scalar we all familiar with). 
The collection of all ‘points’ in the 1-space is equivalent 
to the set of all points in a 1-dimensional ‘real-number 
line’.  

 
6． For the 2-vectors and 3-vectors, we know that we can 

add and do scalar multiplication on them according to 
well-defined rules of vector addition and scalar 
multiplication. As an illustration, consider this: Given 
two 3-vectors in R3, a={a1, a2, a3} and b={b1, b2, b3}, the 
vector addition a + b is defined as a new 3-vector, c = 
{a1+b1, a2+b2, a3+b3}. Similarly, the scalar multiplication 
between a scalar k and a vector a is defined as a new 
vector d={ka1, ka2, ka3}.  

 
7． Definition: Consider a set V containing some elements 

on which operations of vector addition and scalar 
multiplication are defined. The set V is called a vector 
space if the following ten properties are satisfied:  
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8． Consider the 3-space, R3. As mentioned, this a vector 

space. Can you justify this claim by referring to the 
definition as given? 

Ans: 
This is a vector space because (i) vector addition and scalar 
multiplication are well defined on all of the 3-vectors, the 
elements in R3, (ii) all of the 3-vectors, the elements in R3, 
fulfill the 10 axioms. In particular, all 3-vectors are closed 
under vector addition and closed under scalar multiplication.  
 
9． Explain what do you understand by (i) ‘closure under 

vector addition’. (ii) ‘closure under scalar 
multiplication’. 

 
 
10. Consider R2. Is it also a vector space? How about the set 

of all real number, the 1-space, R? How do you convince 
yourself that they are indeed also vector space? 

 
 
11. Definition: A set of vectors Vs from a vector space V is a 

subspace of V if Vs is closed under addition and scalar 
multiplication.  

Example: The set containing only the element 0, Vs={0}, is a 
subspace of the vector space R, since the {0} is  
(i) a element vector from R, 
(ii) closed under scalar multiplication: 

k⋅0 = 0 ∈ Vs, 
(iii) closed under vector addition: 

0 + 0 = 0 ∈ Vs. 
Note that the subspace {0} has only a single element. The 
criteria of being closed under addition are fulfilled: “if x and 
y are element is Vs, then x + y is also an element in Vs”. Here, 
x=0, y=0, because there is no any other element in Vs other  
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than 0. In other words, ‘any element’ in {0} (the x), when 
vectorially added to ‘any element’ in {0} (the y) will result in 
x+ y = 0, an element of Vs.  
 
 
12. Every vector space V has at least two subspaces. One of 

if is the zero subspace, {0}, which is illustrated above. 
Can you think of what’s the other one?  

 
 
13. Definition: Consider a set S containing vectors x1, 

x2, …xm in a vector space V. (To help you visualize 
better, think of V as the vector space of R3 that contains 
an infinite number of 3-vectors. Think of S as a set 
containing, say, m=3 vectors selected from R3.) We form 
linear combinations of these m vectors in the form of 
k1x1+ k2x2+ …kmxm, where ki are scalars. The set of all 
linear combinations of the vectors x1, x2, …xm is called 
the span of the vectors, and is written as Span(S).  

 
14. Span(S) is a subspace of V. Span(S) is said to be a 

subspace spanned by the vectors x1, x2, …xn.  
 
15. If every vector in the vector space V can be written as a 

linear combination of the vectors in S, then S is called a 
spanning set for V.  

 
Example: Let V be the vector space containing all 3-vectors, 
R3. Consider the set S={i, j, k} containing the three 
rectangular unit vectors. The set of all linear combination 
ai+bj+ck, where a, b, c are scalar, is the span of the vectors 
{i, j, k}, Span(S). Span(S) is a subspace in R3 spanned by i, j, 
k.  
 
 
16. We say ‘the set S={i, j, k} is a spanning set for R3’. 

Think of Span(S) in terms of the set of all possible linear 
combination in terms of i, j, k, ai+bj+ck. Can you 
imagine what does Span(S) represent? Hint: Imagine the 
point at the tip of the 3-vector ai+bj+ck. Imagine the 
pervasive cloud form by the tip of ai+bj+ck when a, b, c 
vary continuously.  

 
 
17. Can you think of any other spanning set for R3? 
Ans: e.g. {r, θ, φ}.  
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18. Is the set {i, j, k, i+j, k+i, i + k} also spanning set for 
R3? 

 
 
19. Is {i, j} a spanning set for R3? Explain your answer. 
 
 
20. Consider the set S containing the following 4 3-vectors: 

K1=[1,1,1]T, K2=[1,3,5]T, K3=[1,5, 3]T, K4=[5, 3, 1]T; 
S={K1, K1, K3 K4}. How would you prove that the S is 
the spanning set of R3 (or in other words, S span R3)? 
Hint: To prove that the set of vectors in S span R3, one 
needs to prove the existence of the solution 

X=[ 4321 ,,, xxxx ]T for the non-homogeneous equation 

system 44332211 KxKxKxKxA +++= , given an 

arbitrary 3-vector A= ( )T,, cba from R3. If the solution X 

exists, then S spans R3, otherwise it doesn’t. The 
reasoning is: If the solution X exists, this means that any 
arbitrary vector A from R3 can always be expressed as a 
unique linear combination in the form 

of 44332211 KxKxKxKx +++ . Hence, by definition, if 

the set of vectors in S is a spanning set of R3. 
 
 
21. In general, given a set of m n-vectors, Ki=(k1, k2,…, kn)T , 

i=1,2,…m, we can determines whether they span a 
vector space Rn, the vector space containing the set of all 
n-vector by looking for the existence proof of solution X 
to the non-homogeneous system. The procedure is as 
followed: 

 

22. Let K= ( )mKKK ,...,, 21 , an n by m matrix, 

X= ( )mxxx ,...,, 21
T, an m by 1 column vector, 

A= ( )naaa ,...,, 21
T, an arbitrary n-vector in Rn. Consider 

the NH system KXKxKxKxA mm =+++= L2211 . If 

the solution for the NH systems does not exist, i.e.  
rank[K] ≠ rank [K | A], then the set of vectors Ki does not 
span Rn. Otherwise, they do.  
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23. In (20), we see that the set {K1, K2, K3, K4} comprises of 
4 3-vector spans R3. Can we span R3 with less than 4 
3-vectors (e.g., say, 3 or even 2 3-vectors)? In general, 
for a vector space V containing elements made up of 
n-vectors, we want to know what is the smallest number 
of linearly independent n-vector that spans the vector 
space V. 

 
 
24. In fact, out of the four 3-vectors in the set S in (20), only 

three are linearly independent (refer DQ 13, Chapter 9), 
namely K1, K2, K3, whereas K4 can be expressed as a 
linear combination of the other three vectors.  
 
(i) Prove the linearly independence of the vector set K1, 
K2, K3. (Hint: Refer to DQ 12, 13, 14 in Chapter 9.)  
 
(ii) Prove, using the procedure mentioned in (22) above, 
that this set of vectors K1, K2, K3 spans R3. 

 
 
25. Now, we ask: can any of the 2 vectors (which are 

necessarily linearly independent) form the set 

{ 321 ,, KKK } span R3? The answer can be proven to be 

negative. (Prove this). So, it appears that the minimum 
number of linearly independent 3-vectors to span R3 is 3, 
not 2.  

 
 
26. Definition: The minimum number of linearly 

independent vectors that is required to span a vector 
space is called the dimension of the vector space. In the 
above example, the dimension of the vector space R3 is 3 
since the minimum number of linearly independent 
vectors in R3 is 3.  

 
27. Definition: Consider a vector space V with dimension r. 

A set of r linearly independent vectors in V is called the 
basis (or basis set) of the vector space. It happens that 
given any set of r vectors, which are linearly 
independent, from V, they (i) will form a basis set for V, 
and (ii) any vector in V can be expressed as a unique 
linear combination in this set of r vectors.  

 
 
28. Let’s consider the vector space R3. We know that the 

dimension of it is r=3.  
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(i) If I simply pick any three vectors in R3, say X1 = (a, b, c), 
X2 = (d, e, f), X3 = (g, h, i), in general, will the set {X1, X2, 
X3} form a basis for R3?  

(ii) Is the basis set of R3 unique?  
(iii) How many basis set can R3 possibly has?   
 
 
29. Consider the set of three vectors in R3, S={E1, E2, E3}, 

where E1= [1, 0, 0]T, E2= [0, 1, 0]T, E3= [0, 0, 1]T.  
 
(i) Are the vectors in S linearly independent (you should be 

able to answer this simply question by visual 
inspection)?  

 
(ii) Do the vectors in the set S form a basis set for R3?  
 
(iii) Do the vectors in the set S span R3?  
 
(iv) Can every vector in R3 be expressed as linear 

combination of E1, E2, E3?  
 
(v) What’s the name of these E-vectors? (Hint: see page 88 

of Ayers). (Note: we will refer this basis set by the name 
‘the E-basis’).  

 
 
30. You may like to refer to Ayers page 88. Say I have an 

arbitrary vector in R3, X=(a, b, c)T.  
 
(i) Write X as a linear combination of the unit vectors, Ei, 

defined in (30).  
 
(ii) What are the components (or referred to as ‘coordinates’) 

of X relative to the E-basis? Write these components in 
the form of a column vector and call it ‘the component 
vector of X relative to the E-basis’, denoted by XE. 

 
 
31. In the previous question, we have an arbitrary vector in 

R3, X. Let’s say that the vector X when expressed in the 
E-basis is represented by the component vectors XE=(1, 
2, 3)T. Normally, a vector is by default expressed in the 
E-basis. In general, other than the E-basis, we can also 
represent a vector in other basis set. To illustrate this 
point, let’s consider another basis set Z = {Z1, Z2, Z3} 
(‘the Z-basis’), where Z1= [2, -1, 3]T, Z2= [1, 2, -1]T, Z3= 
[1, -1, -1]T. What is the component vector of X relative 
to the Z-basis, XZ? [Hint: In order to obtain XZ, you need  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter_11_Vector spacesQ 

to express X as a linear combination of {Z1, Z2, Z3}: XE = 
a1Z1+ a2Z2+ a3Z3. Then the component vector of X in the 
Z-basis is simply XZ = (a1, a2, a3)T.] 
 
 
32. Refer to Example 5, page 88 Ayers. Now, see if you can 

do things another way round: If the component vector of 
X is given in the Z representation, i.e. XZ= (1,2,3)T is 
known. What is component vector of X in the E-basis? In 
other words, what is XE? Hint: Follow the procedure as 
described in (32), then try to find a similar relation that 
relates XE to XZ in the form of  

XE = [some matrix]⋅XZ 
 



Linear transformation and the change of basis

Abstract

This short note supplements the Linear algebra part of ZCA 110. In particular it discusses
in understandable language (i) the idea of linear transformation involving different bases, as
discussed in Chapter 12, Ayers, and (i) the idea of bases and coordinates, page 88-89, Ayers.

1 Going from one basis to another

Consider a generic n−vector, X, in Vn(R). The vector X can be represented in different basis
(as a simile: think of the appearance of an actor viewed through different coloured glasses by
different autdience. Despite it is the same actor, to different audience the actor appears differ-
ently.) As an illustration, we will discuss how the vector be represented in two different basis.
Let’s agree to call these two generic basis the W−basis and the Z−basis.

The W -basis consists of a set of n n−vector, namely {W1, W2, · · · , Wn}, where each of the
Wi, i = 1, 2, · · ·n is an n by 1 column vector, Wi = (w1, w2, · · · , wn)T . Similarly, the Z−basis
consists of the set {Z1, Z2, · · · , Zn}, Zi = (z1, z2, · · · , zn)T , i = 1, 2, · · ·n. The connection be-
tween the two bases can be worked out via the following consideration:

In the W−basis, the vector X presents itself as a linear combination in terms of Wi’s, i.e.

X = a1W1 + a2W2 + · · · anWn. (1)

ai are scalars called the components of X in the W−basis. By definition, the components vector
of X in the W− basis is the column vector that contains all of the components, or coordinate,
of vector X in the W−basis. It is denoted by XW = (a1, a2, · · · , an)T . Let us arrange all of the
basis vector Wi column-by-colum into the matrix W = (W1, W2, · · · , Wn), where W is a n × n
matrix. Now, Eq. (1) can be compactly written in the form of

X = a1W1 + a2W2 + · · · anWn = (W1, W2, W3, · · · , Wn)(a1, a2, · · · , an)T = W · XW . (2)

XW is the coordinate vector of X relative to the W -basis.
Similarly, if the vector X were to be represented in the Z−basis,

X = b1Z1 + b2Z2 + · · · bnZn = (Z1, Z2, Z3, · · · , Zn)(b1, b2, · · · , bn)T = Z · XZ . (3)

XZ = (b1, b2, · · · , bn)T is the coordinate vector of X relative to the W -basis.
The vector X is the same vector irrespective of its basis representation, hence

X = W · XW = Z · XZ (4)

Eq. (4) relates the coordinate vector of vector X represented in the Z-basis to that in the
W -basis. The coodinate vector in one basis can be determined if the coordinate vector in the
other is known, and vice versa.

For example, if we know XW , we can determine XZ by making use of Eq. (4): We form the
matrix

P = Z−1 · W, (5)

operate it to XW from the left to obtain

XZ = P · XW = (Z−1 · W ) · XW . (6)

Conversely, we can obtain XW if XZ is known via

XW = P−1XZ . (7)
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2 Linear Transformation

In simple language, a transformation is an operation that operates onto a vector to make it
into another vector. Normally the operation is realised via matrix multiplication. Say X is a
vector to be transformed into anoter vector, call it Y . To implement the transformation, we will

operate a matrix A onto X to make it into Y . Symbolically, X
A→ Y ; operationally, Y = AX.

The transformation matrix A contains the information (instruction) of how the vector is to be
transformed (e.g. to rotate X about the origin by +90 degree, to reflect the vector X about the
origin, etc.). Y , the resultant vector under the transformation, is called the image of X under
transformation A.

A transformation can be carried out in any basis. Consider a vector X is tranformed into
vector Y . Such a transformation can be represented in both the W -basis and the Z-basis. In
each basis the transformation takes on different forms. Say A is the transformation matrix
in the W -basis representation, whereas B is the correspoinding transformation in the Z-basis
representation. The linear transformations in both bases are given by:

W -basis Z-basis

W = (W1, W2, · · · , Wn) Z = (Z1, Z2, · · · , Zn)

X
A→ Y X

B→ Y

In component form In component form

XW
A→ YW XZ

B→ YZ

In matrix form In matrix form
YW = AXW YZ = BXZ

Question: What is the definition of ’linear transformation’? (Hint: Refer to Ayers, page 94.)

Now, we shall prove that: If

XW
A→ YW in the W -basis

XZ
B→ YZ in the Z-basis,

then the two transformation A, B are similar, i.e.,

B = Q−1AQ,

where Q = P−1 = (Z−1W )−1 = W−1Z.

Question: What does it mean, mathematically, when it is said that matrix A and matrix B
are ‘similar’?

The proof is as followed: We begin with

YZ = BXZ . (8)

In Eq. (8), the LHS, i.e. YZ is related to YW via YZ = PYW [see Eq. (6)], whereas XZ in the
RHS is related to XW via XZ = PXW [see Eq. (7)]. Hence, Eq. (8) can be written as

PYW = B(PXW )

⇒ YW = (P−1BP )XW . (9)

Eq. (9) is just the tranformation of XW into YW by A (in the W -basis), i.e.

YW = (P−1BP )XW ≡ AXW . (10)
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Hence, we can identify
A = P−1BP,

or
B = PAP−1 = Q−1AQ,

where P is given by Eq. (5).

Questions: (i) Attempt example 2, page 96, Ayers, yourself. (ii) Attempt Solved Problem
1, in the same page, yourself. Try to make yourself proud by solving these problems without
reading the solutions.
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