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Sequence of lecturesto be covered isasfollowed:

LINEAR ALGEBRA (WEEK 1-WEEK 3)

3 Lectures

1 Matrix

1.1 Matrix Algebra

1.2 Type of Matrices:

Identity Matrix, Special Square Matrices, Inverse of a Matrix, Transpose of a
Matrix, Symmetric Matrices, Conjugate of a Matrix, Hermitian Matrices, Direct
Sums.

2 L ectures

1.3 Determinant of a Square Matrix:

Determinants of orders 2 and 3, Properties of Determinants, Minors and Cofactors,
Adjoint of a Square Matrix, Evaluation of Determinant, The Inverse of a

Matrix, Elementary Transformation.

2 L ectures
1.4 System of Linear Equations:
Solution using aMatrix, Fundamenta Theorems, Homogeneous Equations.

2 Lectures

2 Vector Spaces

2.1 Vector Spaces. Subspace

2.2 Basis and Dimension: Basis and Coordinate 2.3 Linear Transformation:
Definition, Basic Theorems, Change of Basis

CALCULUS (WEEK 4 -WEEK 14)

2 L ectures

Preliminaries

0.1 Functions and Graphs

0.2 Exponentia Functions

0.3 Inverse Functions and Logarithms:

One-to-One Functions, Inverses, Logarithm Functions
0.4 Trigonometric Functions and Their Inverses

2 L ectures

1. Limits and Continuity

1.1 Rates of Change and Limits

1.2 Limits and One-Sided Limits:
Properties of Limits, One-Sided Limits
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2 Lectures
1.3 Limits Involving Infinity
1.4 Continuity

2 Lectures

2 Derivatives

2.1 The Derivative as a Function

2.2 The Derivative as a Rate of Change

2.3 Derivatives of Products, Quotients, and Negative Powers
2.4 Derivatives of Trigonometric Functions

2.5 The Chain Rule

2 Lectures

2.6 Implicit Differentiation

3 Applications of the Derivatives
3.1 Extreme Values of Functions

4 Lectures

3.2 The Mean Value Theorem

3.3 The Shape of a Graph

3.4 Optimization

4 Integration

4.1 Indefinite Integrals

4.2 Integration by Substitution

4.3 Definite Integrals

4.4 The Mean Value and Fundamental Theorems

3 Lectures

4.5 Substitution in Indefinite Integrals
5 Applications of Integrals

5.1 Length of Plane Curves

6 Transcendental Functions

6.1 Logarithms

6.2 Exponential Functions

6.3 Derivatives

3 Lectures

6.4 Hyperbolic Functions

7 Integration Techniques

7.1 Basic Integration Formulas
7.2 Integration by Parts

7.3 Partial Fractions



2 Lectures

7.4 Trigonometric Substitutions
7.5 Integral Tables

7.6 L” H opital’s Rule

1L ecture
7.7 Improper Integrals

3 Lectures

8 Infinite Series

8.1 Limits of Sequences of Numbers
8.2 Bounded Sequences

8.3 Infinite Series Geometric Series
8.4 Series of Nonnegtive Terms

1 Lecture
8.5 Alternating Series
8.6 Power Series

2 Lectures

8.6 Power Series

8.7 Taylor and Maclaurin Series
8.8 Binomial Series

2 Lectures
8.9 Fourier Series
8.10 Fourier Cosine and Sine Series

1 Lecture

A Set

A.1 Set

A.2 Real Numbers

B Complex Numbers



Chapter 1

Matrices

1.1 Algebra of Matrices

A matrix is a rectangular array of numbers.

Example 1.1

73 2
02[1 5 —1]

C'is a 2 x 3 matrix (2 rows and 3 columns).
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In general, an m x n matrix A, is a rectangular array

and n columns.

aiz a2 a4z ... Qaip

21 A22 A23 ... Q2p
A=

Am1 Am2 Am3 ... Am;mp

where a;; is an element of the matrix A, with i = 1,2, .

of numbers with m rows

(1.2)

.,mand j=1,2,... n.

The element can be a number or a function. The matrix A is then of order

m X n and can also be written as
A= [azj].

Example 1.2

73 2

The matrix C = [ L5 1

(1.3)

|

can be the coefficient matrix of a system of homogeneous linear equations

Tx+3y+22=0
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r+5y—2=0 (1.4)
or the augmented matrix of a system of non-homogeneous linear equations
Tx+3y = 2
r+5y = —L (1.5)
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Square Matrix

When m = n, matrix A from Eq.(1.2) becomes a square matrix of order n, or a
n-square matrix. The elements aq1, ase, ass, . . ., a,, are the diagonal elements .
The sum of the diagonal elements of a matrix A is the trace of A .

Two matrices A = [a;j] and B = [b;;] are the same if and only if (iff)

they have the same order and
aij =by, i=12,....m; j=12,...,n (1.6)

A matrix where all its elements are zero is a zero matrix .

Sum of Matrices

If two matrices, A = [a;;] and B = [b;;], are matrices of order m x n, then their
sum is given by
A+B = l|ay]+[by]
= [ai; + bij] (1.7)
and their difference is given by
A—B = lag]— [by]
= [ai; — bijl. (1.8)
The matrices A and B are conformable to addition and subtraction if they are

of the same order, that is m x n.

Example 1.3

: 1 2 3 -1 5 6
Given A_[zl 5 6] and B_[ 0 3 21.
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4 8 8 4 2 4
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Then A+B:l0 ’ 9], A—B:[Q -2 _3]. (1.9)

Multiplication of Scalar with Matrices

If k is any scalar and the matrix A = [a;;], then

kA = klay] = [kaij] = [ai;k]

= [aylk = Ak. (1.10)
Example 1.4
caas[127]
A =3 H g 2] - l132 165 198]' (L11)
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The negative of a matrix A is —A and it is the same as -1 times with A.
A+ (—A) = 0 = a zero matrix of the same order as A.

If the matrices A, B, and C' are conformable to addition, then:

A+B = B+ A, Commutative Law (1.12)
A+ (B+C) = (A+B)+C, Associative Law (1.13)
k(A+B) = kA+kB=(A+ B)k, k =scalar. (1.14)

Hence conformable matrices obey the same addition laws as the elements of these
matrices.
Multiplication of Matrices

If Ais alx m matrix and B a m x 1 matrix, then,

bll
b21
A:[an a1p ... Q1m and B = 3
bml
= AB = a;1bi1 + a12bo1 + ... + a1mbm = C (1.15)

where C'is a 1 x 1 matrix, that is, a number. The product operation is row by

column.



If A= la;]is am x p matrix and B = [b;;] is a p X n matrix, then the
product AB in that order is AB = C = [¢;5] is a m x n matrix,
where Cij = aﬂblj -+ aingj + ...+ aipbpj
p
= Y awby, i=12,....m; j=12,...,n. (1.16)
k=1
NOTE: Each row of A is multiplied once and only once into each column of B.

The elemen ¢;; is a product of the ith row of matrix A and the jth column of

matrix B.
Example 1.5
If
1 2
aofailos-[30)]
5 6
then

1x4+2%x1 1x5+2%x2 1x6+2x%x3
C = AB=|3x44+4x1 3x5+4x2 3x6+4x%x3
Hx44+6x1 5xb54+6x%x2 Hx6+6x%x3

6 9 12
= |16 23 30 |. (1.17)
26 37 48
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If the product AB is defined, then A is conformable to B for multiplication.
Hence the number of colmns of A is equal to the number of rows of B. However
it is not necessarily true that BA must be defined. Assuming that A, B, and C

are conformable to the below multiplication and addition, then we have

A(B+C) = AB+ AC, First Distributive Law (1.18)
(A+B)C = AC+ BC, Second Distributive Law (1.19)
A(BC) = (AB)C, Associative Law. (1.20)
However,
(a) AB # BA, in general, (1.21)

(b) AB =0, does not necessarily imply that A =0or B =0, (1.22)

(c) AB = AC, does not necessarily imply that B = C. (1.23)

4
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Example 1.6
) -2
leenA:[12} and B = |

AB=1x(-2)+2x1=-242=0

-2 —4
ma- [ ]

Hence AB = 0 does not necessariliy mean that A =0 or B =0. Also AB # BA

in this case.
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Example 1.7

. -2 2
leenA:[12} , B:l1] , C:l_ll
AC=1x2+2x(-1)=0, AB=0 (from Example 1.6)

AB=AC=0 but B#C.
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1.2 Types of Matrices

1.2.1 Identity Matrix

A square matrix with elements a;; = 0 for ¢ > j is called an upper triangular matrix

and a matrix A with elements a;; = 0 for ¢ < j is called a lower triangular matrix .

Hence,
[an an as ... an |
0 agn a3 ... as,
A=1| 0 0 ass ... asn | isan upper triangular matrix, (1.24)
00 0 .. au |
and
(b 00 0 ]
B=|bs by bz ... 0 is a lower triangular matrix. (1.25)
L bnl bn2 bn3 bnn |




If a matrix C'is both upper and lower triangular, then C' is a diagonal matrix .

Hence, i i
C11 0 0 e 0
0 C29 0 e 0
c=10 0 ¢z ... 0 is a diagonal matrix.
0 0 0 ... ¢

C' can also be written as
C= diag(cn, C22,C33, ... ... s Cnn)-
If the diagonal matrix C' possesses elements,

Cl] —= C2 = C33 — ...... = Cpn — k,

(1.26)

C is called a scalar matrix . If £ = 1, matrix C' is called an identity matrix ,

and the symbol used is I, or I only.
Example 1.8
1 00
we[3 0] nefo i o]
[O 0 1J
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For p terms,

I,+ I, + ...+ I, = pl, = diag(p,p,...,p)
p terms

P =1.
If Ais 2 x 3 matrix, then,
I, A= Al; = LAI; = A.

1.2.2 Special Square Matrices

If A and B are square matrices and

AB = BA,

(1.27)

(1.28)

(1.29)

(1.30)



then A and B are commutative or A commute with B. If A is a n-square
matrix, then

Al, = I,A. (1.31)

Matrices A and B are anti-commutative, if
AB = —BA. (1.32)

If A = A where k is a positive integer, then the matrix A is said to
be periodic. If k is the smallest possible positive integer where A*! = A,
then the matrix A has period k. If K = 1, then A? = A, and the matrix A is

idempotent . An example of an idempotent matrix is

2 -2 -4
A=]1-1 3 4
1 -2 =3

If AP = 0, where p is a positive integer, then A is nilpotent . If p is the smallest

positive integer where AP = 0, then A is said to be nilpotent of index p.

1.2.3 The Inverse of a Matrix

If A and B are square matrices and AB = BA = I, then B is the inverse of
matrix A, and we can write, B = A~!. Also A is the inverse of matrix B and
A= B

Example 1.9

Please refer to section 1.3.7 for the definition of elementary transformations.

A:ll 2] and B:[ ’ —2]_

13 -1 1
as=[1 3] 125 =] Y] e mean
B 121 Ry(-1)T1 2| 1 0
A B = 13|011_>01|—11
RI(-2) [1 0] 3 =2 .
- 01}—1 11_[[2141]
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Example 1.10

2
A L] = 0
|1
[ 1
1
mey [
| 0
[ 1
Ry(1/2)
AN 0
| 0
[ 1
2(_
mey [
| 0
[ 1
Rs(1/2)
3\ 0
| 0

)

O = O

0
1
0

0
0
1

/2 0 0
., B=|-1/4 0 1/2 |,
1/8 1/2 —1/4

1/2 100
—1/4 1/2 01 0] =1Is

1/8 1/2 —1/4 00 1

100 /2 100/ 1/200
010 P2 120 0 01
00 1 -3, 1 2] 0 10
1/2 0

~1/2 0 1

0 1

12 0 0

—1/4 0 1/2

0 1 0

1/2 0 0

—1/4 0 1/2

1/4 1 —1/2

/2 0 0

—1/4 0 12 | =[I3 A

1/8 1/2 —1/4
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Not all matrices possess an inverse. If the matrix A possesses an inverse, then the

inverse is unique. If A and B are square matrices of the same order with inverse

A=Y and B! respectively, then

(AB)™'=BtA™L. (1.33)

If matrix A is such that, A? = I, then A is said to be involutary . Hence

involutary matrices are matrices of period 2. I is involutary as I? = I and an

involutary matrix is the inverse of itself, that is, A~! = A.

8



If a matrix A has a zero row or column, then A is singular. A singular

matrix does not possess an inverse.

1.2.4 The Transpose of a Matrix

A matrix of order n x m that is obtained by interchanging the rows and columns
of a matrix A of order m x n, is called the transpose of A and is denoted by AT
or A transpose.

Example 1.11

1351

1 2
. o T o
Given A= g ;l then, A" = [ 5 4 6

koo sk sk okoskook sk sk sk koskokok sk skosk skosk sk skokokoskokoskok sk skokoskokoskokokoskoskoskoskokokokskox

If k is a scalar, then,

AT = A (1.34)
(kAT = kAT (1.35)
(A+B)T = AT+ BT (1.36)
(AB)"' = BTAT (1.37)
A = layl, A" = o] = [az)- (1.38)

1.2.5 Symmetric Matrices

A square matrix A with the property, AT = A, is said to be symmetric. So if
A= [azj], then,
laij] = lazi] = lay), ¥V i, j. (1.39)

ij

Example 1.12

is symmetric.

(G200 RN @)
W Ot g

1
The matrix, A= 6
7

>Rk sk sk ok kook sk sk sk kR Kok sk sk sk skosk sk skokok kol skosk sk ko skokokokokoskoskosk skok sk skokokokokoskoskoskosk

If A is symmetric, then kA is also symmetric (k is a scalar). If A is a n-square



matrix, then (A + A7) is symmetric. A square matrix A, such that AT = —A is

said to be skew-symmetric, that is,
lai;] = laji] = [—aq). (1.40)

Hence the diagonal elements of a skew-symmetric matrix are zeros.

Example 1.13

0 -4 3
The matrix, A= 4 0 2 is skew-symmetric.
-3 -2 0
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If A is skew-symmetric, then kA is also skew-symmetric (k is a scalar). If A is
a n-square matrix, then (A — AT) is skew-symmetric. Every square matrix A
can be written as the sum of the symmetric matrix B = (4 + A”) and the

skew-symmetric matrix C' = 1(A — AT); that is A= B+ C.
1.2.6 The Conjugate of a Matrix

If @ and b are real numbers and ¢ = y/—1, then z = a + bi is a complex number.

The conjugate of z is given by Z = a — bi. The conjugate of Z is z = a + bi = z.

Hence,
zZ=1z (1.41)
If 21 = a+ bi and 2z = ¢ + di, then,
21420 = (a+c)+ (b+d)i
21tz = (a+c¢)— (b+d)i = (a—bi)+ (c— di)
Ntz = 2+ % (1.42)
2122 = (ac—bd) + (ad + be)i
zZizz = (ac—bd) — (ad+ be)i
= (a—=0bi)(c—di) =212
Tz = Z1%. (1.43)

10



If A is a matrix with complex number elements, then the matrix obtained from
A by replacing all its elements with the conjugate of its elements is called the
conjugate of A and is denoted by A, or A conjugate.

Example 1.14

Given A:l2+i - ]then, A [2_2 ! 1

4 3-2 4 3+
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If k is a given scalar, then,

kA = kA (1.44)
A=A (1.45)
A+B = A+B (1.46)
AB = A B (in the same order) (1.47)
AT = AT = A* (1.48)

where A* = AT is A conjugate transpose.
1.2.7 Hermitian Matrices
A square matrix A = [a;;] such that AT = A is called Hermitian. Hence,
[aij] = [a;i]. (1.49)

Hence the diagonal elements of a Hermitian matrix are real numbers.

Example 1.15

2 1+7 1
Given the matrix A= | 1—1 4 —1 is Hermitian.
1 7 6
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If k is a scalar, and A is Hermitian, then,
FA" = EAT = kA = kA, (1.50)

= k=£k = kisareal number if kA is Hermitian.

11



A square matrix A = [a;;] such that AT = — A is called skew-Hermitian. Hence,
[ai;] = [—a;i], (1.51)

and the diagonal elements of a skew-Hermitian matrix are purely imaginary.

Example 1.16

21 14+47 3
Given the matrix A= | —14+1 0 3i is skew-Hermitian.
-3 3i i
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If k is a scalar and the matrix A is skew-Hermitian, then,

FAT = kAT = —kA = —kA. (1.52)

Hence kA is skew-Hermitian if k£ is a real number. If k£ is an imaginary
number, then kA becomes a Hermitian matrix.
If A is any n-square matrix, then (A + AT) is Hermitian and (A4 — A7) is

skew-Hermitian,

(AT A7) = A+ AN = AT 4 A= A4 AT, (1.53)

(A_AT) = (A-ATY = AT _ A= _(A— A7), (1.54)

Any matrix A can be written as the sum of a Hermitian matrix B and a skew-

Hermitian matrix C,
A = B+C
1 _
B = 5(A + AT),  Hermitian

C = %(A—AT), skew-Hermitian. (1.55)
1.2.8 Direct Sum

If Ay, Ay, ..., A are square matrices of order my, mo, ..., mg respectively. Then

the diagonal matrix

A 0 0
0 Ay ... O

A= . . . = diag(Al, AQ, . ,AS) (156)
0 0 Ay



is called the direct sum of the matrices A;.

Example 1.17

1 9 1 47 }
Given the matrices A; = [ 1 and A, =12 5 8 |,
3 4
3 69

1 2000

34000

then the direct sum is A = diag(A4;,A2)=1]0 0 1 4 7

00 25 8

0036 9
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If A; and B; are of the same order for i = 1,2,...,s, then,

AB = diag(A1By, A3Bs, ..., AsBs), where
A = diag(Al, AQ, ey AS)

B = diag(Bl,Bg,...,Bs). (157)

1.3 Determinant of a Square Matrix

In a given permutation, if there exist a larger integer preceding a smaller integer,
then we have an inversion. If the number of inversions in the permutation is
even (odd), then the permutation is said to be even (odd).

Example 1.18

Given 4521 3. There are 7 inversions, hence the permutation is odd.

SRkosk sk ok okokook sk sk sk skokoskokosk sk sk skosk sk skokokokokoskokoskoskok skokokok

1.3.1 Determinant of Matrices of Order Two or Three

The determinant of a matrix A is given by

|A| = Z €12 gn 151 A2 - - - Angy, (158)
P
where the sum is over p = n! permutations of 175 ... j, of the integers 1,2,... n.
air a2

Hence |A| = = €12011022 + €21A12021 = Q11022 — Q12021

a21 A22

13



i dizdis Q22 Q23 21 a21 Q22
Al = |aa a2 a3 |=an sy s | ai sy ‘—i— ai a1 Gag
a31 32 a33
= a11(a22a33 - a23a32) - a12(a21a33 - a23a31)
+  aiz(anaz — azas). (1.59)
Example 1.19
1 2 -1
-3 1 1 = 1(3—4)—2(—9—1)—1(—12—1)
1 4 3
= —1+4+20+13 = 32.
or
1\, 2N, -1, | 1 2
-3 1IN 1IN | 3N 1| = +(B+2+12)—(-1+4-18)
1 4 3 | 1 4 N

= 32

NOTE: The second method in used Example 1.19 is only true for matrices of

order 3.
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1.3.2 Properties of Determinants

(i) If all the elements in a certain row (column) of a square matrix A are zero,
then |A| = 0.

(ii) If A is a square matrix, then

|AT| = | Al (1.60)
(iii)
ann kaip ais kay1 kaiz kags ailr aiz2 a3
a1 kasy asz |= | az @22 az3 |=Fk |asn az ax (1-61)
as; kasy ass a31 @32 @33 a31 Aazz 33
R? Ct
(iv) If A =3 B, then |B| = —|A|. (If A =3 B, then |B| = —|A|.)

R! C?
(v) If A =% B, then |B| = (—1)?|A|. (If A 2 B, then |B| = (—=1)?|A].)

14



(vi) If two rows or columns of the matrix A are the same, then |A| = 0.

(vii) If A is a singular matrix, then |A| = 0.

(Viii)
bi1+ci1 bia+c1a bis+cis bir b2 b3 C11 Ci2 Ci3
a21 a22 a23 = |a21 a9 as3 |+| a1 G2 G23
a31 @32 @33 a31 Aazz 33 a31 asz 33
ain a2 biz+cis ain aiz bis ailz a2 €13
a1 QA baz+cCo3 |= | a1 ax bz |+|az ax C3 (1-62)
as; agy bsz+c33 asi asz bsz a31 asz C33
(ix)
a1 a2 A13 ain a2 a3+ kao
Qo1 G2 Q23| = a1 Qg Qg3 + kag
aszy agz as3 asy ase ass+ kasy

a1 + ka1 aia + kage  ais + kass

= 21 a92 23 (163)
a3y a32 ass
R (k)
Hence if A =—— B, then |A| = |B| and
Ci(k)

A “— B, then |A| = |B|.
(x) If M is an upper (lower) triangular matrix with the diagonal blocks, Ay, As, ..., A,

then

[M| = [As] - [Ag] - .. [As]
If A, B, C, and D are square matrices and
C D

el

then |M| # |A||D|—|BJ||C| (in general).
(xi) If A and B are n-square matrices, then |[AB| = |A| - |B|.
1.3.3 First Minors and Cofactors

Given that A is a n-square matrix. Matrix M;; is the matrix A with the ith row

and the jth column removed. The determinant |M;;| is called the first minor
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or minor of A. The minor with sign (—1)""7|M;;]| is called the cofactor of the

matrix [a;;] and is denoted by «;;. Hence

Example 1.20

g = (—1)"™ [ My].

ailr a2 a3 a a
. 12 13
Given |A|: az1 Q22 023 |, then |M21| =
32 ass
a31 asz 33
air a2
|Mas| =
az1 as2
Hence |A| 2191 + G229 + 93023

>Rk sk sk ok skosk sk sk sk sk oskoskokoskoskoskoskosk sk sk skok kol skok sk skosk koo skokokoskokoskosk sk skok skoroskokokoskokosk

|A]

l

|A]

;[ Ma| =

(1.64)

ailr ais

as; ass |’
(1.65)

as1 (= 1) M| + asa(—1)*"?[Mas| 4 azs(—1)*"| Mo

—a91| May| + aga| Mag| — ags| Mas| .

n
1051 + Qg + .o+ Qi Qi = Z Ak ik
k=1

1,2,...,n
Zalkamk = |A| if l=m
k=1

= 0 if 1#m.
Zaklakm = |A| if I=m
k=1

= 0 if 1#m.
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Example 1.21

ailr a2 a3
|A| =021 G22 A23 |
a31 asz 33

ayion + ap0i + azoz = |A
11031 + 12032 + a3z = 0
apony + anam +azgaz = |A
11002 + ag oy + azjazy = 0.

>kkosk sk ok >kokosk sk sk sk sk okokok sk sk sk sk sk sk skokokoskok skok sk skok skokokokoskokoskoskoskosk ko kok

A square matrix A is singular if |[A| = 0, if |A] # 0, A is non singular.

1.3.4 The Adjoint of a Square Matrix

The adjoint of the square matrix A, is denoted by

Q11 Q21 ... Oyl

adjoint A =adj A = Gz G G

A1ip Q2p ... Opp
a1 @12 ... Qip 11 Qay
A(adj A) _ 21 Q22 ... QA2p 12 Qg
ap1 Ap2 ... Qpp Q1n  Qop

— diag(|A], 4], |4],..., ]4])

= |A]- I, = (adj A)A.
Taking determinant of the above equation, we get
|Alladj Al = [A]" = |ad]j Al|A]

If A is non singular, then

ladj A| = A"

17

(1.71)
(1.72)
(1.73)
(1.74)
(1.75)
(1.76)



If A is singular, then
A(adj A) = (adj A)A =0 (zero matrix). (1.77)
If A and B are n-square matrices, then
adj(AB) = (adj B)(adj A). (1.78)

NOTE: If C and A are n-square matrices, k a scalar and C' = kA, then the

determinant
|IC| = k™| Al
Hence
|A(adj A)| = |[A]- L]
|Alladj A = |A["|L,]

= |A|",  where |[[,|]=1.
1.3.5 Evaluation of Determinant

Procedure for evaluating determinant
Use the elementary transformation R’ (k) or Ci(k) repeatedly over the matrix A
to get the matrix B = [b;;] whose elements, except one, of a row (column) are

zero. If by, is the non zero element and [3,, its cofactor, then
|A| = |B| = bpg Bpg = (—1)P7 b,y x minor of by, (1.79)

Example 1.22

1 2 —1 1 2 -1 1 2 -1
Ri(1 R(3 R2(2
31 1| RO, 5 o BB, 5 o | R
1 4 3 1 4 3 4 10 0
1 2 -1 L
-2 3 0 = (=1)*"16 ‘_2 0 ‘:—16(0—2):32.
0 16 0

18
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If A and B are n-square matrices, then
|AB| = |A] - |B|. (1.80)

Differentiation of Determinant

Example 1.23

d ¥ 22+3 5 322 22 0 > 22+3 5
— |2 223 -5 2| = 2 223 —-5 2|+ |0  62® 423
Tl =3 0 r =3 0 =3 0
22 +3 5
+ |2 223 -5 24|,
1 0 0
Skoskoskesk sk sk skesk sk skosk sk skosk sk sk sk skeosk sk sk sk sk skeosk skok sk skok skoskosk skoskeosk skokeoskoskoskoskosk ksk
Example 1.24
A 1 fie) foe)) o df/de dfy/dz| ) fi f2 (1.81)
dr | f3(z) fi(z) [ fa dfs/dz  dfy/dx
d
= fifi= fofs).
The above procedure can also be applied to the columns.
d | fi(x) falz) dfi/dx [ fi dfy/dx
do | fs(z) fa(z) dfs/dz fi fs dfs/dx
d
= %(flle — faf3)-
Skoskoskesk skoskoskesk sk skook skosk sk sk skosk sk skeosk sk skesk sk skeosk skoskeosk skok skoskosk skoskosk skosk skoskoskeoskosk skoskosk skoskoskoskoskoskoskosk
1.3.6 The Inverse of a Matrix
If AB=BA=1,then B=A""1.
(i) The square matrix A has an inverse iff, A is non singular.
(ii) If A is non singular, then
AB=AC = B=C, (1.82)

—> the inverse is unique.
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(iii) The inverse of the diagonal matrix, diag(k, ko, . . ., ky,) is diag(1/ky, 1/ka, ..., 1/ky);
ki,koy ... kn #0.

(iv) From Eq.(1.74), the inverse of matrix A can be written as,

_adjA
Al

At (1.83)

1.3.7 Elementary Transformations

1. Ré» = interchange the ¢th row and the jth row.
C’} = interchange the ¢th column and the jth column.
2. R;(k) = Multiplying every elements of the ith row with the non zero scalar k.
C;(k) = Multiplying every elements of the ith column with the non zero
scalar k.
3. Ré(k) = Multiplying every elements of the ith row with the non zero scalar k
and then adding them to the elements of the jth row.
C;(k) = Multiplying every elements of the ith column with the non zero

scalar k and then adding them to the elements of the jth column.

The transformation R is called the elementary row transformations and the
transformation C' is called the elementary column transformations.

Two matrices A and B are said to be equivalent, if B is obtained from A through
a sequence of elementary transformations.

Equivalent matrices have the same order and rank.

(a) A matrix A is of rank r if there exist at least a r-square minor that is non
zero while every (r 4+ 1)-square minors are zero. A zero matrix has rank r = 0.
(b) For a non singular matrix A (that is |A| # 0), the rank r = n (order)

(c) For a singular matrix, the rank r < n.
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Example 1.25

—
o
—
1 19ﬂ0 3_
o O
10
0 — 24_
— —
o<~ <+ >
<~ —
o~ o 2‘I_AA_“L | = o
— . -
— o -
_ o O
—_— o O — -
- o O o =<
N~ ™ — o o — o o
— O O
— O o S o  —
o E— —
me oS = T
& _ h%
— - .MARAZ R
; =
N~—
ﬂR«Z r 1 r 1 1On4u
o O — O O
co- Tre aaT a7y
c < <t <t
— — —
— o o R | | N~
- - - -
[a\ENaaRNaN| AN M AN — — O S S
— — N — — O — O A o O o — O
o O oM O o oo — M O — O O
L 1 L 1 L 1 L 1
—~
—
| —o [>oe)
Il Il o
&5
< =
=

-5 -3

11

What is the rank of the matrix A?

A < AN

Minor of B,

Bl = 0;

What is the rank of the matrix B?
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Example 1.26

(102 1
A - 31 =2
4 -3 -1
(1 2 1 | 1007 1 2
RY(-3
[A ] - 31 —=21010 2(=3)
4 -3 -1 ] 001 4 -3
12 1 | 1 0 0
Ry(—1/5
et | 3/5 —1/5 0]
4 -3 -1 ] 0 0 1J
121 ] 1 0 0
R%(3
i) 01 1| 35 —1/5 0
402 | 9/5 —-3/5 1
(10 -1 | =1/5 2/5 0
R%(—2
1(=2) 01 1 | 35 —1/50
40 2 | 955 -=3/5 1
Ry(2) [10 -1 | -1/5 2/5 0 ]
Ra(1/6) 1 1 | 3/5 —1/5 0
A 10 0 | 7/30 1/30 1/6 |
Bl 10 0 | 7/30 1/30 1/6 ]
3
-3, 1 1 | 3/5 —1/5 0
10 —1 | -1/5 2/5 0
Ry(=1) [1 00 | 7/30 1/30 1/6
Ra(—1) 11| 355 —=1/5 0
EANR 0 0 1 | 13/30 —11/30 1/6
R3(—1) (1.0 0] 7/30 1/30 1/6
2, 010 1/6 1/6 —1/6
0 0 1 | 13/30 —11/30 1/6
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7/5 1/5 1
A7t = - 1 1 -1
13/5 —11/5 1

What is the rank of the matrix A?

1.3.8 Echelon Forms

A matrix is in reduced row echelon form (RREF) if

1. Rows of all zeros, if there are any, appear at the bottom of the matrix.

2. The first nonzero entry of a nonzero row is 1. This is called a leading 1.

3. For each nonzero row, the leading 1 appears to the right and below any leading
1’s in preceding rows.

4. Any column in which a leading 1 appears has zeros in every other entry.

A matrix in RREF appears as a staircase pattern of leading 1’s descending from
the upper left corner of the matrix. The columns of the leading 1’s are columns

of an identity matrix.

A matrix is in row echelon form (REF) if properties 1, 2, and 3 above are

satisfied.

Example 1.27
Determine which of the following matrices are in upper triangular form, REF,

RREF or none of these forms.

1 25
A = 0 1 3|, upper triangular and REF.
10 0 0
1 0 0 3 2
00127 .
B = 0000 0] upper triangular, REF and RREF.
L0 0 0 00
[1 2 0 0
C = 0 0 0 1], none ofthese forms.
|01 10
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D = , upper triangular.

O O =
O NN O

1
3
0

O
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1.4 System of Linear Equations
A system of m linear equations is given by

a1171 + a2 + . .. + a1, = hy
a21.£L“1 + a2.2$2 + ... +.a2n~.rn :. s (1.84)
amla.sl —|— am.21'2 —|— . —i—.amn.xn : hom

If the system of m linear equations possesses solutions, it is said to be consistent,
if not it is said to be inconsistent. A consistent system possesses either only
one solution or infinitely many solutions.

Two systems of linear equations are said to be equivalent if every solu-
tion of one of the systems is the same as the solution of the other system. An

equivalent system can be obtained from a system A by applying the elementary

transformations over it.

1.4.1 Solution Using a Matrix

In matrix notation, the system of equations, Eq. (1.84), can be written as

a1 A2 ... Qip € ha
Q21 Q22 ... d2p X2 B s
m1 Am2  -.. Gmn T hm
AX = H (1.85)
where A = [a;] is the coefficient matrix, X = [z1,79,...,2,]", and H =
[h1, ha, ..., hy)T. X isan-vector and H is a m-vector. The augmented matrix

is given by
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a1 a12 e A1n | hl
a a ... Qop h

AH=| 7 : : ? (1.86)
Aml Am2 ... Qmn | hm

Example 1.28

Solved the following non-homogeneous system of equations

T+ 20+ 13 = 2
3$1+$2—2$3:1
4.%'1 — 3.%'2 — T3 = 1.
1 2 1 | 2] = 12 1 | 2
R(—3
[A H| - 3.1 -2 |1 2(—>> 0 -5 =5 | =5
4 -3 —1 | 1] 4 -3 -1 ] 1
(12 1 | 27 121 | 2
Ry(—1/5 R2(3
2<_>/)011|1i>)011|1
4 -3 —1 | 1] 40 2 | 4
r 1
R2(—2) 10 -1 | ] Rg_(g) [1 —1 | 0]
AR 11|1R(1/6>011|1
40 2 | J pASA [1 0 |2/3J
Rl (10 | 2/3 Rg(_—}) 100 | 2/3
3 11 | 1 Ry(—1) 11| 1
10 —1 | AN 001 2/3
[ 1 0 | 2/3
R3(—1
2(_>> 10| 1/3
00 1 | 2/3
2 1
T1=T3=—, XTog=—.
1 3 37 2 3
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1.4.2 Fundamental Theorems

1. A system of linear equations AX = H is consistent iff the coefficient matrix

[A] and the augmented matrix [AH| have the same rank.
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2. If H is not a zero vector, then the system, AX = H, is called a
non-homogeneous system . A system of n non-homogeneous equations with n
unknowns possesses a unique solution provided that the matrix A is non singular,

that is |A| # 0.

This system, AX = H, with n equations and n unknowns can be solved
by two methods:
(a) Method 1 ( Cramer’s Rule , provided |A| # 0.)
If A;;, +=1,2,...,n is a matrix obtained from A by replacing the ¢th column

with the constant column H, then the unique solution of the system is the given

by
| A .
T, = ., i=1,2,...,n. (1.87)
|Al
Example 1.29
T+ 20+ 13 = 2
31 +x9—2x3 = 1
4.%'1—31‘2—1‘3 =1
1 2 1
Al=13 1 —=2| = 1(-1-6)—2(—-34+8)+1(—-9—14)
4 -3 -1
= —7—10—13=-30
2 2 1
|Al=]1 1 =-2| = 2(-1-6)—2(-1+2)+1(-3-1)
1 -3 -1
= —14—-2—-4=-20
1 2 1
|As] =13 1 2| = 1(-1+4+2)—2(-3+8)+1(3—4)
4 1 -1

= 1-10-1=-10
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1
143]=|3 1 1| = 1(1+3)—2(3—4)+2(-9—14)
4 -3 1
— 44+92-96=—20
—920 2 ~10 1
Tl =T33 =—= = =, Tg=——"= —.
L AT 37 7T 230 3
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(b) Method 2 (By using the inverse A7'.)

AX = H

ATTAX = A'H

X = A'H (1.88)
Example 1.30
From Example 1.26
1 2 1 1 7/5 1/5 1
A= 13 1 -2, A‘lzg 1 1 -1
4 -3 -1 13/5 —11/5 1
X = A'H
1 [ 7/5 1/5 1
= 3 1 1 -1 1
| 13/5 —11/5 1 1
| [ 14/5+1/5+1 HE 2/3
= 3 2+1-1 = 3 2 = 1/3
| 26/5 —11/5+1 4 2/3

>kkosk sk sk okkosk sk sk sk sk ok kR sk sk sk skosk sk skokok skok skok sk skok skokokokoskokoskoskoskosk sk skok skokoskoskokosk

1.4.3 Homogeneous Equations

A system of linear equations, AX = 0, isa homogeneous system of equations .
For this system, the rank of the coefficient matrix A and the augmented matrix
[A 0] is the same. Hence the system is always consistent. X = 0 is a solution of

the system and it is the trivial solution. If the rank of A is n, then the unique
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solution is the zero solution, X = 0. If the rank of A is r < n, then non-trivial

solutions exist.

1. A necessary and sufficient condition for a homogeneous system to possess non-
trivial solution is that the rank r of the coefficient matrix A must be less than n,

that is r < n.

2. If the system AX = H is consistent, the complete solution of the system
is given by the complete solution of the homogeneous system AX = 0 plus the
particular solution of the non-homogeneous system AX = H.

If given X, is the particular solution of AX = H and X, is complete
solution of the homogeneous system AX = 0, then the complete solution of
AX = H is given by

X=X, + X} (1.89)

Proof: AX, = A(X,+ Xj)
= AXp—l—AXh =H+0

— AX. = H.
Hence X, is also a solution of the system AX = H.

3. If the rank of the coefficient matrix A of the homogeneous system, AX = 0, is
r < n, then the system possesses exactly (n — r) linearly independent solutions.
Every given solution is a linear combination of the (n — r) linearly independent
solutions and every linear combination of solutions is also a solution.

Example 1.31

1+ 2x+x3 = 2

3.%'1 —+ X9 — 2.%‘3 =1
xr1 + 2.%'2 = . .
Suy 1y = 1 Fixed x3=0.
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1 2
|A] = 3 1 =1—6= -5, (Cramer’s Rule)
2 2
Al = |] j|=2-2=0
1 2
|As] = 3 1 =1-6=-5
Ty = O, .1'2:—:1
0
Particular solution, X, = 1
0
T+ 229 + x3 0
31+ x9 — 213 0
Tit2m = —a Say x3=a
3r1+122 = 2a o=@

The complete solution for, AX =0, is

The complete solution for, AX = H, is

Al
| Ay

| Ag|

1

Xn

Xe

1 2
3 1

—a 2
2a 1

1 —a

‘: 1—-6=—5, (Cramer’s Rule)
‘: —Qa — 4a = —5(1

= 2a + 3a = ba

3 2a

a+0 a
—a+1|=| —a+1
| a+0 a

>Kkosk sk ok ok skook sk sk sk sk oskokokoskoskosk skosk sk skoskokoskok skok sk skok skokokoskokokoskokoskosk sk skok skoroskokokoskokoskoskokok

Example 1.32

1+ 2209+ 224 =
To+ 3xr3 =

Hence AX =
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1 2 0 2
) ) 0130
where the coefficient matrix A = 000 0
0000
rank r = 2 < n=4,
If given 3 = a and x4 =0,
xr1 -+ 2.%'2 = -2b
To = —3a
= x1 = 6a—2b, =

M
HEES NN

Hence, the homogeneous system of equations, AX = 0, possesses two linearly

independent solutions , that is, [6,—3,1,0]7 and [—2,0,0,1]7 and all linear com-

binations of these two solutions is also a solution of the system.
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Chapter 2

Vector Spaces

2.1 Vector Spaces

Assume that that all vectors are column vectors , that is

€
B I e (2.1)
In

A collection or a set S of two or more elements, together with two operations,
that is addition (4) and multiplication (-) is called a field F'.
If a,b,c,... € F, then

l.a+be F.

2.a+b=b+a, a+(b+c)=(a+0b)+ec

3. For every a € F, there exist 0 € F', where a+0=0+a = a.

4. For every a € F, there exist —a € F, where a+ (—a)=0.

5. a-beF.

6. ab=ba, (ab)c= a(bc).

7. For every a € F, there exist 1(# 0) € F' where 1-a=a-1=a.
8. For every a € I, there exist a™! € F where aa™'=a"'ta = 1.

9. a(b+c¢) =ab+ac, (a+b)c=ac+ be.

A set of n-vector over F' is said to be closed under addition if the sum

of two vectors from F' is also a vector from F'. This set is said to be closed
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under scalar multiplication, if every scalar multiple of a vector from the set

is also a vector of the set.
Example 2.1

d

The set of all vectors [a, b, c]" of ordinary 3-space is closed under addition and

scalar multiplication.
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A set of n-vectors over F' which is closed under addition and scalar mul-
tiplication is called a vector space or a vector space of n-dimension.

If given the n-vectors Xi, Xo, ..., X,, € F, then the set of all the linear
combinations k1 X7 + ko Xo + ... + kX, (Where ky, ko, ..., k,, are scalars) is a
linear vector space over F.

The set of all the vectors [a, b, c|” from Example 2.1 is a vector space.

2.1.1 Subspace

A set of vectors V' from the vector space V,,(F) is a subspace of V,,(F) if V is
closed under addition and scalar multiplication. Hence the zero n-vector from
V.(F) is a subspace of V,,(F).

If given the n-vectors X, X5, ..., X, € F, then the space of all linear
combinations of the vectors is a subspace of V,,(F).

The vector space V' is said to be spanned by the n-vectors Xy, Xo, ..., X,

if X1, Xo,..., X, € F and every vector in V' is their linear combination. However,
Xi, Xo, ..., X, are not necessarily linearly independent.
Example 2.2

The vectors

1 1 1 5
Ki=|1|, Ke=|3]|, Ky=1|5|, K,=|3]|,
1 5 3 1

are from S = V3(R) where R is the field of real numbers. Any vector [a, b, |7
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from S can be written as

b = 1K1+ 29K9 + 23 K3 + 14K,

a l‘1+l‘2+l‘3+5l‘4
b = T+ 31‘2 + 51‘3 + 31‘4
c 1+ dxy + 3x3 4+ 24

This system of equations is consistent. Hence the vectors Ky, Ky, K3, K4 span S.
The vectors K7 and K5 is linearly independent and span a subspace of
planes w of S which contains all the vectors pK; + qKy where p,q € R.
The vector K4 spans the subspace of lines L of S which contains all the

vectors pKy4, where p € R.

>k sk sk skskook sk sk sk skosk kR sk sk sk skosk sk skokok skokoskosk sk ko skokoskokokoskoskosk skok sk skokokokokoskoskoskosk

2.2 Basis and Dimension

The dimension of a vector space V' is the maximum number of linearly indepen-
dent vectors in V' or the minimum number of linearly independent vectors that is
required to span the space V. Ordinary space is of linear dimension 3, the space
of planes is of dimension 2 and the space of lines is of dimension 1.

A n-vectors space of dimension r over F'is denoted by V(F'). When
r = n, we write V,,(F). A set of r linearly independent vectors from V' (F') is
called the basis of that space. Every vector from the space is a unique linear
combination of the basis vectors.

All bases from V(F') have the same number of vectors and r linearly

independent vectors from that space form a basis.

Example 2.3

From Example 2.2, the given vectors are

1 1 1 )
Kl — 1 5 K2 == 3 5 K3 = 5 s K4 =
1 ) 3 1
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The vectors K7, Ky, and K3 span S because any vectors can be writen as

>
Il

21K + 29Ky + 23 K3

o

1+ T2+ 23
= T + 319 + Hxs
T + Dxo + 373

and the system of equations has a unique solution. Hence K, Ky, and K3 is a

basis of the space.

Proof:
(11 1] R(=D) [101 1] Re(1/2)
1 ) 02 4
15 3 BED gy 9| U2
(1 1 1] R§(_—>2) 111 R%(_—?)
1 01 2|
02 1] BEYY g 1) BED
1 10 R (~1) 1 00
0 1 — 010
0 1 001
1 0 0
The unit vectors, e;=| 0|, e= |11, e3= 1|0 |, isa basis of the space S.
0 0 1

The vectors K7, K5, and K4 is not a basis of the space S.

Proof:
115 R%(_—)l) 11 5 R%(_—>2)
1 3 ) 02 —2
1 5 1 R3(__>1> 0 4 —4 R2(_1/>2>
11 5 R (1) 10 6
01 —1 NN 01 —1
00 0 00 0

e1 = [1,0,0]7 and ey = [0, 1,0] spans the subspace 7 of planes. Hence K7, K, is

a basis of the subspace 7.
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1. If X3, Xy, ..., X, are linearly independent n-vectors of the vector space V,,(F'),
then the set X1, Xo,..., X, is a basis of V,,(F).

2. If X1, X, ..., X, are linearly independent n-vectors over F, then vectors
Vi=Y ayX;, i=12,....n (2.2)
j=1

are linearly independent iff the matrix [a;;] is non singular. The set Y;, i =

1,2,...,n isalso a basis of V,,(F).

2.2.1 Bases and Coordinates

The n-vectors

1 0
1 0

€1 = 0 ) €2 = 9 9 €n = ) (23)
_O_ _O_ _1_

are called the elementary vectors or unit vectors over F.
ej = the jth unit vector.
€1,€2,...,6, is an important basis of V,,(F').

For every vector X € V,,(F'), X can be uniquely written as,

n
X = Z:ciei =x1e1 + Tels + ...+ Tpey, (24)
i=1
where (z1,29,...,2,) is the coordinate of X relative to the e-basis.

Given that 7y, Z, ..., Z, is a basis of V,,(F), then there exist the unique

scalars ai,as,...,a, € F' such that

X = ZaiZi:alZl—l—ang—i—...—i—anZn
i=1

X = [Z1,%0,....2:) Xz =2 Xy (2.5)
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as

where X7 = , is the coordinate of X relative to the Z-basis.

Qn

If given that Wy, Ws, ..., W, is also a basis of V,,(F'), so that,

X =Wy, Wa, ..., W,]- X =W - Xy, (2.6)
then
X = 7 -Xz=W- Xy
Xy = W' Z.X;=PXy (2.7)

where P = W~!. Z is a non singular matrix and Xy is the coordinate of X

relative to the W-basis.

2.3 Linear Transformations

2.3.1 Definition

T Y1
. T2 Y2 )
Given the vectors, X = , Y = | . | € Vo(F), are of the same basis
Tn Yn
and
Y1 = a11%1 + a12T2 + ... + A1pTy
Y2 = A21%1 + A22T2 + ... + A2pTn
Yn = Ap1Tq + apoo + ...+ App®y
— Y = AX, (2.8)

where A = [a;;] is over F'. Then Eq.(2.8) is a transformation that takes the vector
X € V,.(F) to the vector Y € V,,(F'). Y is called the image of X.
If Y = AX; and Y, = AX,, then for every scalar k, a, and b,

k) = A(kXy), (2.9)

aYy + bY; A(aXq + bXy). (2.10)

This transformation is then said to be linear .
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2.3.2 Basic Theorems

If X =e; and A = [a;], then

alj

25
Y=| . where Y = AX. (2.11)

anj

1. The transformation ¥ = AX is non singular iff the matrix A is non
singular.

2. A non singular linear transformation takes linearly independent (de-
pendent) vectors into linearly independent (dependent) vectors.

3. If the transformation, Y = AX, is non singular, then it maps the vector
space V,,(F') onto itself.

4. The elementary vectors e; of V,,(F') can be transformed into any set
of linearly independent n-vectors by a non singular linear transformation and
conversely.

5. For any given two sets of linearly independent n-vectors, there exist a
non singular linear transformation that can take the vectors of one of the sets

into the vectors of the other.

2.3.3 Change of Basis

If given two matrices A and B, and there exist a non singular matrix  such that
B =QAQ, (2.12)

then the matrices A and B are said to be similar .

If Y, = AX7 is a linear transformation over V,,(F') relative to the Z-basis
and Yy = BXyy is another linear transformation relative to the W-basis, then A
and B are similar.

Proof: From Eq. (2.7), Xy = PXz, welet Q = P~!, then

Xz = QXw and Yz =QYw
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Yiw = Q7'Yz=Q '(AXz) = QA(QXw)
Y = (Q'AQ)Xw
———

B
B = QAQ.

Hence A and B are similar.

Example 2.4

A=

—_ = =

1
3
)

wW Ut =

From Example 2.3, A is non singular. Given that Y = AX is a linear transfor-

mation with respect to the e-basis and the vectors,

1 2 1
Wi=13|, W= 11, Wy=| =21,
4 -3 —1
H
formed a new basis. If X = | 0 |, find the coordinate of the its image relative
2

to the W-basis by answering the following questions:

(a) First find the coordinate of X relative to the W-basis.

(b) Find the linear transformation Yy = BXy corresponding to Y = AX.
(c) Find the image Yy of Xyy.

Solution

(a) From Example 1.26,

1 2 1 ] 7 1 5
W=1|3 1 —-2], W—lzﬁ 5 5 =5
4 -3 -1 13 —11 5

Eq. (27) = X=WXy = Xp=W'X

1 71 5 1 1 7+ 10 1 17
13 —11 5 2 13+10 23

(b) Y =BXwy and Y =AX
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Y =WYw

B = W1'AW
7 1 5 111
:%{5 5 —5] {135]
[13—11 5J [153J [
L[ 118 —10 42
- 25 —20 0
—43 50 12
113/15 —2/3 —14/5
B = 5/3  —4/3 0
—43/15 10/3  4/5
(c)
[ 113/15 —2/3 —14/5]
Yiw = BXy = 5/3  —4/3 0
| —43/15 10/3  4/5 J
[ 4847/450
= 53/6 .
| —47/30

= Yy =W1'Y =W"1TAX = (W AW) Xy

—_———
B

1
3
4

2
1
-3

1
—2
—1

|
|

>kkosk sk sk okokosk sk ok sk sk skoskok kol sk skosk skokoskoskokoskokoskoskoskoskosk sk skokok skok skok sk skok skokokoskokoskoskoskoskosk
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Chapter 3

Tutorials

3.1 Tutorial 1

1. The matrices given are:

(3 4 p*P+1 1 -5 1 51 2
A= 123 1 |, B=|2 1 =3|, C=140 3 [,
14 -1 4 —4 3 2 4 -1
3 ¢* 10
A = |2 3 1
14 -1

(a) If A= Ay, find all the possible values of p and g.

(b) Find the matrix D; = AC' + B and

(¢) the matrix Dy = CA+ B. Is the matrix D; the same as Ds. If not, why?
Give reasons.

d) Find the determinant of the matrices A, B, and C' and

) their respective adjoints.

f)  From part (d) and (e), find the inverse of the matrices A, B, and C.

(
(e
(
(g) Find the inverse of the matrix A again by using the elementary row trans-

formations of matrices.

2. The matrices given are:

ailr a2 a3 [ bir b1z Dis -|
A= [ a1 QA3 J ., B= [ ba1 bz Dog J .
a31 asz 33 bs1 b3z bs3
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(a) If A is an upper triangular matrix, and its determinant |A| is equal to one,
what is the matrix A?

(b) If B = AT, find the matrix B? What type of matrix is B if the elements
ba1, b31 and b3y are non zero?

(c) What type of matrix is B if the elements by, b3; and bsy are zero? Given the

matrix C' = kB, where k is a scalar. What type of matrix is C'?

3.

(a) Given the matrix,
a b
St
is an idempotent matrix. If b = 2, what is the matrix A? (That is find the value

of a,c, and d.) Is the matrix A singular?

(b) Find an idempotent matrix that is non singular.

4.
a) Show that ALL nilpotent matrices are singular.
g

(b) Show that the given matrix is nilpotent,
01 1
A = 0 0 1
0 0 0

(c) Given B = I — A. Show that the matrix B is non singular and find the inverse

of matrix B.

5. Find the matrix (AB)™, if

1 3 0 2 1 1
A'=]0 1 1|, B*'=]00 -2
1 -1 4 11 -1

6. Given the matrix,
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3t 34+2i 1-31
A=|3-2t1 5—1 3—-2
1—-2¢ 1424 2

Construct from matrix A, the following matrices:

a) B, a Hermitian matrix;
)

b) C, a skew-Hermitian matrix;

(

(

(¢) D, a symmetric matrix; and
(d) E, a skew-symmetric matrix.
(

e) Show that F' = iC and G’ = B are Hermitian matrices.

7. Show that the following matrices are periodic,

-1 -1 -1 0 1 0 0 1 0
A=l 0 1 o], B=|0 0 1], Cc=|-1 -1 -1
0 0 1 ~1 -1 -1 0 0 1

Find the period of these matrices.

3.2 Tutorial 2

1. (a) Write the following system of linear equations,

1 +3x2+x3 = 1
2.%'1 — X9 — 3.%'3 =1
X1+ xo — 2.%'3 = b.

in matrix notation. What is the coefficient matrix of this system of linear equa-
tions?.

(b) Find the inverse of the coefficient matrix by using the elementary row trans-
formation.

(c) Find the adjoint of the coefficient matrix.

(d) Find the inverse of the coefficient matrix by using the answer from part (c)

above. Make sure that the answer is the same as the answer for part (b).
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(e) Find all possible solutions of the system by using the inverse of the coefficient
matrix.

(f) Make sure that the answers for part (e) are correct by using Cramer’s Rule.

2. Given the following system of linear equations:

T, +3x2+x3 — 204 = 2
2.%'1 — T9 — 3.%'3 =1
xr1 + 2.%'2 — 2.%‘3 = 2

To+3xy = 0.

Find the solution for this system of linear equations by using Cramer’s Rule. Is

the solution unique?
3. Find all the possible solutions for the following system of linear equations:

31 +xo+ 203 +x14 = —2

21‘14‘1‘24‘31‘3-1‘4 = 3

T+ 23+ 204 — 25 = 4.
4. Given the matrix,
2 2 —4
A=11 1 =2 |,
3 3 —6

find the matrix, B, of rank two such that AB = 0. What is the rank of matrix

A?

5. A given vector space is spanned by the following vectors;

1 1 4 1
Ki=|2|, Ko=|2|, K=|3|, K=]|3
1 3 1 2
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By using the elementary row transformation, choose a suitable set of basis from
the above vectors for this vector space. What is the dimension of this vector

space?

6. Given that X, dan Xy are coordinates with respect to a pair of bases,

1 2
Zl = s ZQ = 2 s Zg = 3 and
2 1 0
1 1 1
Wl - 1 ’ W2 - 2 ’ W3 - 2 ’
2 3 1

respectively. The vector, X = [2,7,1]7. Find the coordinates, Xz and Xy, and

the matrix P, such that, Xy = PX .

7. The matrix equation,

1 -2 3
Y=AX=|3 2 —-1|X
1 0 1

Y

is a linear transformation relative to the e-basis. A new basis chosen is

2 ~1 1
Zi=|1|, Zo=| 01|, Z=|1
0 1 —1

Relative to the e-basis,

Find:

(a) the image Y of X for the given linear transformation,

(b) the inverse Z~! of the basis matrix Z,

(c) the coordinate Xz of X and the coordinate Yz of Y with respect to the Z-
basis, and

(d) the matrix R of the new transformation Y; = RX .
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