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Chapter 1

Matrices

1.1 Algebra of Matrices

A matrix is a rectangular array of numbers.

Example 1.1

C =

[
7 3 2
1 5 −1

]
(1.1)

C is a 2 × 3 matrix (2 rows and 3 columns).

*************************************

In general, an m × n matrix A, is a rectangular array of numbers with m rows

and n columns.

A =




a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n
...

...
... . . .

...
am1 am2 am3 . . . amn




(1.2)

where aij is an element of the matrix A, with i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

The element can be a number or a function. The matrix A is then of order

m × n and can also be written as

A = [aij]. (1.3)

Example 1.2

The matrix C =

[
7 3 2
1 5 −1

]
,

can be the coefficient matrix of a system of homogeneous linear equations

7x + 3y + 2z = 0
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x + 5y − z = 0 (1.4)

or the augmented matrix of a system of non-homogeneous linear equations

7x + 3y = 2

x + 5y = −1. (1.5)

**********************************************

Square Matrix

When m = n, matrix A from Eq.(1.2) becomes a square matrix of order n, or a

n-square matrix. The elements a11, a22, a33, . . . , ann are the diagonal elements .

The sum of the diagonal elements of a matrix A is the trace of A .

Two matrices A = [aij] and B = [bij] are the same if and only if (iff)

they have the same order and

aij = bij, i = 1, 2, . . . ,m; j = 1, 2, . . . , n. (1.6)

A matrix where all its elements are zero is a zero matrix .

Sum of Matrices

If two matrices, A = [aij] and B = [bij], are matrices of order m × n, then their

sum is given by

A + B = [aij] + [bij]

= [aij + bij] (1.7)

and their difference is given by

A − B = [aij]− [bij]

= [aij − bij]. (1.8)

The matrices A and B are conformable to addition and subtraction if they are

of the same order, that is m × n.

Example 1.3

Given A =

[
1 2 3
4 5 6

]
and B =

[
−1 5 6
0 3 2

]
.
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Then A + B =

[
0 7 9
4 8 8

]
, A− B =

[
2 −3 −3
4 2 4

]
. (1.9)

************************************************

Multiplication of Scalar with Matrices

If k is any scalar and the matrix A = [aij], then

kA = k[aij] = [kaij] = [aijk]

= [aij]k = Ak. (1.10)

Example 1.4

k = 3, A =

[
1 2 3
4 5 6

]
,

kA = 3

[
1 2 3
4 5 6

]
=

[
3 6 9
12 15 18

]
. (1.11)

*****************************************************

The negative of a matrix A is −A and it is the same as -1 times with A.

A + (−A) = 0 ≡ a zero matrix of the same order as A.

If the matrices A,B, and C are conformable to addition, then:

A + B = B + A, Commutative Law (1.12)

A + (B + C) = (A + B) + C, Associative Law (1.13)

k(A + B) = kA + kB = (A + B)k, k = scalar. (1.14)

Hence conformable matrices obey the same addition laws as the elements of these

matrices.

Multiplication of Matrices

If A is a 1 × m matrix and B a m × 1 matrix, then,

A =
[

a11 a12 . . . a1m

]
and B =




b11

b21
...

bm1




=⇒ AB = a11b11 + a12b21 + . . . + a1mbm1 = C (1.15)

where C is a 1 × 1 matrix, that is, a number. The product operation is row by

column.
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If A = [aij] is a m × p matrix and B = [bij] is a p × n matrix, then the

product AB in that order is AB = C = [cij] is a m × n matrix,

where cij = ai1b1j + ai2b2j + . . . + aipbpj

=
p∑

k=1

aikbkj, i = 1, 2, . . . ,m; j = 1, 2, . . . , n. (1.16)

NOTE: Each row of A is multiplied once and only once into each column of B.

The elemen cij is a product of the ith row of matrix A and the jth column of

matrix B.

Example 1.5

If

A =




1 2
3 4
5 6


 , B =

[
4 5 6
1 2 3

]

then

C = AB =




1 × 4 + 2 × 1 1 × 5 + 2 × 2 1 × 6 + 2 × 3
3 × 4 + 4 × 1 3 × 5 + 4 × 2 3 × 6 + 4 × 3
5 × 4 + 6 × 1 5 × 5 + 6 × 2 5 × 6 + 6 × 3




=




6 9 12
16 23 30
26 37 48


 . (1.17)

******************************************************

If the product AB is defined, then A is conformable to B for multiplication.

Hence the number of colmns of A is equal to the number of rows of B. However

it is not necessarily true that BA must be defined. Assuming that A,B, and C

are conformable to the below multiplication and addition, then we have

A(B + C) = AB + AC, First Distributive Law (1.18)

(A + B)C = AC + BC, Second Distributive Law (1.19)

A(BC) = (AB)C, Associative Law. (1.20)

However,

(a) AB 6= BA, in general, (1.21)

(b) AB = 0, does not necessarily imply that A = 0 or B = 0, (1.22)

(c) AB = AC, does not necessarily imply that B = C. (1.23)
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*******************************************

Example 1.6

Given A =
[

1 2
]

and B =

[
−2
1

]

AB = 1 × (−2) + 2 × 1 = −2 + 2 = 0

BA =

[
−2 −4
1 2

]
.

Hence AB = 0 does not necessariliy mean that A = 0 or B = 0. Also AB 6= BA

in this case.

**********************************************

Example 1.7

Given A =
[

1 2
]

, B =

[
−2
1

]
, C =

[
2
−1

]

AC = 1 × 2 + 2 × (−1) = 0, AB = 0 (from Example 1.6)

AB = AC = 0 but B 6= C.

**********************************************

1.2 Types of Matrices

1.2.1 Identity Matrix

A square matrix with elements aij = 0 for i > j is called an upper triangular matrix

and a matrix A with elements aij = 0 for i < j is called a lower triangular matrix .

Hence,

A =




a11 a12 a13 . . . a1n

0 a22 a23 . . . a2n

0 0 a33 . . . a3n
...

...
... . . .

...
0 0 0 . . . ann




is an upper triangular matrix, (1.24)

and

B =




b11 0 0 . . . 0
b21 b22 0 . . . 0
b31 b32 b33 . . . 0
...

...
... . . .

...
bn1 bn2 bn3 . . . bnn




is a lower triangular matrix. (1.25)
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If a matrix C is both upper and lower triangular, then C is a diagonal matrix .

Hence,

C =




c11 0 0 . . . 0
0 c22 0 . . . 0
0 0 c33 . . . 0
...

...
... . . .

...
0 0 0 . . . cnn




is a diagonal matrix. (1.26)

C can also be written as

C = diag(c11, c22, c33, . . . . . . , cnn).

If the diagonal matrix C possesses elements,

c11 = c22 = c33 = . . . . . . = cnn = k,

C is called a scalar matrix . If k = 1, matrix C is called an identity matrix ,

and the symbol used is In or I only.

Example 1.8

I2 =

[
1 0
0 1

]
, I3 =




1 0 0
0 1 0
0 0 1




**************************************************

For p terms,

In + In + . . . + In︸ ︷︷ ︸
p terms

= pIn = diag(p, p, . . . , p) (1.27)

Ip = I. (1.28)

If A is 2 × 3 matrix, then,

I2A = AI3 = I2AI3 = A. (1.29)

1.2.2 Special Square Matrices

If A and B are square matrices and

AB = BA, (1.30)
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then A and B are commutative or A commute with B. If A is a n-square

matrix, then

AIn = InA. (1.31)

Matrices A and B are anti-commutative, if

AB = −BA. (1.32)

If Ak+1 = A where k is a positive integer, then the matrix A is said to

be periodic . If k is the smallest possible positive integer where Ak+1 = A,

then the matrix A has period k . If k = 1, then A2 = A, and the matrix A is

idempotent . An example of an idempotent matrix is

A =




2 −2 −4
−1 3 4
1 −2 −3


 .

If Ap = 0, where p is a positive integer, then A is nilpotent . If p is the smallest

positive integer where Ap = 0, then A is said to be nilpotent of index p.

1.2.3 The Inverse of a Matrix

If A and B are square matrices and AB = BA = I, then B is the inverse of

matrix A, and we can write, B = A−1. Also A is the inverse of matrix B and

A = B−1.

Example 1.9

Please refer to section 1.3.7 for the definition of elementary transformations.

A =

[
1 2
1 3

]
and B =

[
3 −2
−1 1

]
.

AB =

[
1 2
1 3

] [
3 −2
−1 1

]
=

[
1 0
0 1

]
, then B = A−1.

[A I2] =

[
1 2 | 1 0
1 3 | 0 1

]
R1

2(−1)
−→

[
1 2 | 1 0
0 1 | −1 1

]

R2
1(−2)
−→

[
1 0 | 3 −2
0 1 | −1 1

]
= [I2 A−1].
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***********************************************

Example 1.10

A =




2 0 0
0 1 2
1 2 0


 , B =




1/2 0 0
−1/4 0 1/2
1/8 1/2 −1/4


 ,

AB =




2 0 0
0 1 2
1 2 0







1/2 0 0
−1/4 0 1/2
1/8 1/2 −1/4


 =




1 0 0
0 1 0
0 0 1


 = I3

[A I3] =




2 0 0 | 1 0 0
0 1 2 | 0 1 0
1 2 0 | 0 0 1




R1(1/2)−→
R2

3−→




1 0 0 | 1/2 0 0
1 2 0 | 0 0 1
0 1 2 | 0 1 0




R1
2(−1)
−→




1 0 0 | 1/2 0 0
0 2 0 | −1/2 0 1
0 1 2 | 0 1 0




R2(1/2)−→




1 0 0 | 1/2 0 0
0 1 0 | −1/4 0 1/2
0 1 2 | 0 1 0




R2
3(−1)
−→




1 0 0 | 1/2 0 0
0 1 0 | −1/4 0 1/2
0 0 2 | 1/4 1 −1/2




R3(1/2)−→




1 0 0 | 1/2 0 0
0 1 0 | −1/4 0 1/2
0 0 1 | 1/8 1/2 −1/4


 = [I3 A−1].

******************************************************

Not all matrices possess an inverse. If the matrix A possesses an inverse, then the

inverse is unique. If A and B are square matrices of the same order with inverse

A−1 and B−1 respectively, then

(AB)−1 = B−1A−1. (1.33)

If matrix A is such that, A2 = I, then A is said to be involutary . Hence

involutary matrices are matrices of period 2. I is involutary as I2 = I and an

involutary matrix is the inverse of itself, that is, A−1 = A.
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If a matrix A has a zero row or column, then A is singular. A singular

matrix does not possess an inverse.

1.2.4 The Transpose of a Matrix

A matrix of order n×m that is obtained by interchanging the rows and columns

of a matrix A of order m×n, is called the transpose of A and is denoted by AT

or A transpose.

Example 1.11

Given A =




1 2
3 4
5 6


 then, AT =

[
1 3 5
2 4 6

]
.

*********************************************

If k is a scalar, then,

(AT )T = A (1.34)

(kA)T = kAT (1.35)

(A + B)T = AT + BT (1.36)

(AB)T = BTAT (1.37)

A = [aij], AT = [aT
ij] = [aji]. (1.38)

1.2.5 Symmetric Matrices

A square matrix A with the property, AT = A, is said to be symmetric. So if

A = [aij], then,

[aT
ij] = [aji] = [aij], ∀ i, j. (1.39)

Example 1.12

The matrix, A =




1 6 7
6 2 5
7 5 3


 is symmetric.

***************************************************

If A is symmetric, then kA is also symmetric (k is a scalar). If A is a n-square
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matrix, then (A + AT ) is symmetric. A square matrix A, such that AT = −A is

said to be skew-symmetric, that is,

[aT
ij] = [aji] = [−aij]. (1.40)

Hence the diagonal elements of a skew-symmetric matrix are zeros.

Example 1.13

The matrix, A =




0 −4 3
4 0 2
−3 −2 0


 is skew-symmetric.

********************************************************

If A is skew-symmetric, then kA is also skew-symmetric (k is a scalar). If A is

a n-square matrix, then (A − AT ) is skew-symmetric. Every square matrix A

can be written as the sum of the symmetric matrix B = 1
2
(A + AT ) and the

skew-symmetric matrix C = 1
2
(A − AT ); that is A = B + C.

1.2.6 The Conjugate of a Matrix

If a and b are real numbers and i =
√
−1, then z = a + bi is a complex number.

The conjugate of z is given by z̄ = a − bi. The conjugate of z̄ is ¯̄z = a + bi = z.

Hence,

¯̄z = z. (1.41)

If z1 = a + bi and z2 = c + di, then,

z1 + z2 = (a + c) + (b + d)i

z1 + z2 = (a + c) − (b + d)i = (a − bi) + (c − di)

z1 + z2 = z̄1 + z̄2. (1.42)

z1z2 = (ac − bd) + (ad + bc)i

z1z2 = (ac − bd) − (ad + bc)i

= (a − bi)(c− di) = z̄1z̄2

z1z2 = z̄1z̄2. (1.43)
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If A is a matrix with complex number elements, then the matrix obtained from

A by replacing all its elements with the conjugate of its elements is called the

conjugate of A and is denoted by Ā, or A conjugate.

Example 1.14

Given A =

[
2 + i −i

4 3 − 2i

]
then, Ā =

[
2 − i i

4 3 + 2i

]
.

****************************************

If k is a given scalar, then,

kA = k̄Ā (1.44)

A = A (1.45)

A + B = Ā + B̄ (1.46)

AB = Ā B̄ (in the same order) (1.47)

ĀT = AT = A∗ (1.48)

where A∗ = ĀT is A conjugate transpose.

1.2.7 Hermitian Matrices

A square matrix A = [aij] such that ĀT = A is called Hermitian. Hence,

[aij] = [aji]. (1.49)

Hence the diagonal elements of a Hermitian matrix are real numbers.

Example 1.15

Given the matrix A =




2 1 + i 1
1 − i 4 −i

1 i 6


 is Hermitian.

*******************************************************

If k is a scalar, and A is Hermitian, then,

kA
T

= k̄ĀT = k̄A = kA, (1.50)

⇒ k̄ = k ⇒ k is a real number if kA is Hermitian.
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A square matrix A = [aij] such that ĀT = −A is called skew-Hermitian. Hence,

[aij] = [−āji], (1.51)

and the diagonal elements of a skew-Hermitian matrix are purely imaginary.

Example 1.16

Given the matrix A =




2i 1 + i 3
−1 + i 0 3i
−3 3i i


 is skew-Hermitian.

******************************************************

If k is a scalar and the matrix A is skew-Hermitian, then,

kA
T

= k̄ĀT = −k̄A = −kA. (1.52)

Hence kA is skew-Hermitian if k is a real number. If k is an imaginary

number, then kA becomes a Hermitian matrix.

If A is any n-square matrix, then (A + ĀT ) is Hermitian and (A− ĀT ) is

skew-Hermitian,

(A + ĀT )
T

= (Ā + AT )T = ĀT + A = A + ĀT , (1.53)

(A − ĀT )
T

= (Ā − AT )T = ĀT − A = −(A− ĀT ). (1.54)

Any matrix A can be written as the sum of a Hermitian matrix B and a skew-

Hermitian matrix C,

A = B + C

B =
1

2
(A + ĀT ), Hermitian

C =
1

2
(A− ĀT ), skew-Hermitian. (1.55)

1.2.8 Direct Sum

If A1, A2, . . . , As are square matrices of order m1,m2, . . . ,ms respectively. Then

the diagonal matrix

A =




A1 0 . . . 0
0 A2 . . . 0
...

... . . .
...

0 0 . . . As




= diag(A1, A2, . . . , As) (1.56)
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is called the direct sum of the matrices Ai.

Example 1.17

Given the matrices A1 =

[
1 2
3 4

]
and A2 =




1 4 7
2 5 8
3 6 9


 ,

then the direct sum is A = diag(A1, A2) =




1 2 0 0 0
3 4 0 0 0
0 0 1 4 7
0 0 2 5 8
0 0 3 6 9




.

*******************************************************

If Ai and Bi are of the same order for i = 1, 2, . . . , s, then,

AB = diag(A1B1, A2B2, . . . , AsBs), where

A = diag(A1, A2, . . . , As)

B = diag(B1, B2, . . . , Bs). (1.57)

1.3 Determinant of a Square Matrix

In a given permutation, if there exist a larger integer preceding a smaller integer,

then we have an inversion. If the number of inversions in the permutation is

even (odd), then the permutation is said to be even (odd).

Example 1.18

Given 4 5 2 1 3. There are 7 inversions, hence the permutation is odd.

***********************************

1.3.1 Determinant of Matrices of Order Two or Three

The determinant of a matrix A is given by

|A| =
∑

ρ

εj1j2 ...jna1j1a2j2 . . . anjn (1.58)

where the sum is over ρ = n! permutations of j1j2 . . . jn of the integers 1, 2, . . . , n.

Hence |A| =
a11 a12

a21 a22
= ε12a11a22 + ε21a12a21 = a11a22 − a12a21
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|A| =
a11 a12 a13

a21 a22 a23

a31 a32 a33

= a11
a22 a23

a32 a33
− a12

a21 a23

a31 a33
+ a13

a21 a22

a31 a32

= a11(a22a33 − a23a32) − a12(a21a33 − a23a31)

+ a13(a21a32 − a22a31). (1.59)

Example 1.19

1 2 −1
−3 1 1
1 4 3

= 1(3 − 4) − 2(−9 − 1) − 1(−12 − 1)

= −1 + 20 + 13 = 32.

or

1 ↘ 2 ↘ −1 ↘ | 1 2
−3 1 ↘ 1 ↘ | −3 ↘ 1
1 4 3 | 1 4

−

+

= +(3 + 2 + 12) − (−1 + 4 − 18)

= 32.

NOTE: The second method in used Example 1.19 is only true for matrices of

order 3.

********************************************

1.3.2 Properties of Determinants

(i) If all the elements in a certain row (column) of a square matrix A are zero,

then |A| = 0.

(ii) If A is a square matrix, then

|AT | = |A|. (1.60)

(iii)

a11 ka12 a13

a21 ka22 a23

a31 ka32 a33

=
ka11 ka12 ka13

a21 a22 a23

a31 a32 a33

= k
a11 a12 a13

a21 a22 a23

a31 a32 a33

(1.61)

(iv) If A
Ri

i+1−→ B, then |B| = −|A|. (If A
Ci

i+1−→ B, then |B| = −|A|.)

(v) If A
Ri

i+p−→ B, then |B| = (−1)p|A|. (If A
Ci

i+p−→ B, then |B| = (−1)p|A|.)
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(vi) If two rows or columns of the matrix A are the same, then |A| = 0.

(vii) If A is a singular matrix, then |A| = 0.

(viii)

b11 + c11 b12 + c12 b13 + c13

a21 a22 a23

a31 a32 a33

=
b11 b12 b13

a21 a22 a23

a31 a32 a33

+
c11 c12 c13

a21 a22 a23

a31 a32 a33

a11 a12 b13 + c13

a21 a22 b23 + c23

a31 a32 b33 + c33

=
a11 a12 b13

a21 a22 b23

a31 a32 b33

+
a11 a12 c13

a21 a22 c23

a31 a32 c33

(1.62)

(ix)

a11 a12 a13

a21 a22 a23

a31 a32 a33

=
a11 a12 a13 + ka12

a21 a22 a23 + ka22

a31 a32 a33 + ka32

=
a11 + ka21 a12 + ka22 a13 + ka23

a21 a22 a23

a31 a32 a33

(1.63)

Hence if A
Ri

j(k)
−→ B, then |A| = |B| and

A
Ci

j(k)
−→ B, then |A| = |B|.

(x) If M is an upper (lower) triangular matrix with the diagonal blocks, A1, A2, . . . , As,

then

|M | = |A1| · |A2| · . . . |As.|

If A, B, C, and D are square matrices and

M =

[
A B
C D

]
,

then |M | 6= |A||D| − |B||C| (in general).

(xi) If A and B are n-square matrices, then |AB| = |A| · |B|.

1.3.3 First Minors and Cofactors

Given that A is a n-square matrix. Matrix Mij is the matrix A with the ith row

and the jth column removed. The determinant |Mij| is called the first minor

15



or minor of A. The minor with sign (−1)i+j |Mij| is called the cofactor of the

matrix [aij] and is denoted by αij. Hence

αij = (−1)i+j |Mij|. (1.64)

Example 1.20

Given |A| =
a11 a12 a13

a21 a22 a23

a31 a32 a33

, then |M21| =
a12 a13

a32 a33
, |M22| =

a11 a13

a31 a33
,

|M23| =
a11 a12

a31 a32
. (1.65)

Hence |A| = a21α21 + a22α22 + a23α23

= a21(−1)2+1|M21| + a22(−1)2+2|M22| + a23(−1)2+3|M23|

= −a21|M21| + a22|M22| − a23|M23| . (1.66)

****************************************************

|A| = ai1αi1 + ai2αi2 + . . . + ainαin =
n∑

k=1

aikαik

i = 1, 2, . . . , n. (1.67)

|A| = a1jα1j + a2jα2j + . . . + anjαnj =
n∑

k=1

akjαkj ,

j = 1, 2, . . . , n. (1.68)

n∑

k=1

alkαmk = |A| if l = m

= 0 if l 6= m. (1.69)

n∑

k=1

aklαkm = |A| if l = m

= 0 if l 6= m. (1.70)
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Example 1.21

|A| =
a11 a12 a13

a21 a22 a23

a31 a32 a33

,

a11α11 + a12α12 + a13α13 = |A|

a11α31 + a12α32 + a13α33 = 0 (1.71)

a11α11 + a21α21 + a31α31 = |A|

a11α12 + a21α22 + a31α32 = 0. (1.72)

********************************************

A square matrix A is singular if |A| = 0, if |A| 6= 0, A is non singular.

1.3.4 The Adjoint of a Square Matrix

The adjoint of the square matrix A, is denoted by

adjoint A = adj A =




α11 α21 . . . αn1

α12 α22 . . . αn2
...

... . . .
...

α1n α2n . . . αnn




. (1.73)

A(adj A) =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

an1 an2 . . . ann







α11 α21 . . . αn1

α12 α22 . . . αn2
...

... . . .
...

α1n α2n . . . αnn




= diag(|A|, |A|, |A|, . . . , |A|)

= |A| · In = (adj A)A. (1.74)

Taking determinant of the above equation, we get

|A||adj A| = |A|n = |adj A||A|. (1.75)

If A is non singular, then

|adj A| = |A|n−1. (1.76)
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If A is singular, then

A(adj A) = (adj A)A = 0 (zero matrix). (1.77)

If A and B are n-square matrices, then

adj(AB) = (adj B)(adj A). (1.78)

NOTE: If C and A are n-square matrices, k a scalar and C = kA, then the

determinant

|C| = kn|A|.

Hence

|A(adj A)| = ||A| · In|

|A||adj A| = |A|n|In|

= |A|n, where |In| = 1.

1.3.5 Evaluation of Determinant

Procedure for evaluating determinant

Use the elementary transformation Ri
j(k) or C i

j(k) repeatedly over the matrix A

to get the matrix B = [bij] whose elements, except one, of a row (column) are

zero. If bpq is the non zero element and βpq its cofactor, then

|A| = |B| = bpq βpq = (−1)p+q bpq × minor of bpq (1.79)

Example 1.22

1 2 −1
−3 1 1
1 4 3

R1
2(1)−→

1 2 −1
−2 3 0
1 4 3

R1
3(3)−→

1 2 −1
−2 3 0
4 10 0

R2
3(2)−→

1 2 −1
−2 3 0
0 16 0

= (−1)3+216
1 −1
−2 0

= −16(0 − 2) = 32.
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************************************************

If A and B are n-square matrices, then

|AB| = |A| · |B|. (1.80)

Differentiation of Determinant

Example 1.23

d

dx

x3 x2 + 3 5
2 2x3 − 5 x4

x −3 0
=

3x2 2x 0
2 2x3 − 5 x4

x −3 0
+

x3 x2 + 3 5
0 6x2 4x3

x −3 0

+
x3 x2 + 3 5
2 2x3 − 5 x4

1 0 0
.

**********************************************

Example 1.24

d

dx

f1(x) f2(x)
f3(x) f4(x)

=
df1/dx df2/dx

f3 f4
+

f1 f2

df3/dx df4/dx
(1.81)

=
d

dx
(f1f4 − f2f3).

The above procedure can also be applied to the columns.

d

dx

f1(x) f2(x)
f3(x) f4(x)

=
df1/dx f2

df3/dx f4
+

f1 df2/dx
f3 df4/dx

=
d

dx
(f1f4 − f2f3).

*******************************************************

1.3.6 The Inverse of a Matrix

If AB = BA = I, then B = A−1.

(i) The square matrix A has an inverse iff, A is non singular.

(ii) If A is non singular, then

AB = AC =⇒ B = C, (1.82)

=⇒ the inverse is unique.
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(iii) The inverse of the diagonal matrix, diag(k1, k2, . . . , kn) is diag(1/k1, 1/k2, . . . , 1/kn);

k1, k2, . . . , kn 6= 0.

(iv) From Eq.(1.74), the inverse of matrix A can be written as,

A−1 =
adjA

|A|
. (1.83)

1.3.7 Elementary Transformations

1. Ri
j = interchange the ith row and the jth row.

C i
j = interchange the ith column and the jth column.

2. Ri(k) = Multiplying every elements of the ith row with the non zero scalar k.

Ci(k) = Multiplying every elements of the ith column with the non zero

scalar k.

3. Ri
j(k) = Multiplying every elements of the ith row with the non zero scalar k

and then adding them to the elements of the jth row.

C i
j(k) = Multiplying every elements of the ith column with the non zero

scalar k and then adding them to the elements of the jth column.

The transformation R is called the elementary row transformations and the

transformation C is called the elementary column transformations.

Two matrices A and B are said to be equivalent, if B is obtained from A through

a sequence of elementary transformations.

Equivalent matrices have the same order and rank.

(a) A matrix A is of rank r if there exist at least a r-square minor that is non

zero while every (r + 1)-square minors are zero. A zero matrix has rank r = 0.

(b) For a non singular matrix A (that is |A| 6= 0), the rank r = n (order)

(c) For a singular matrix, the rank r < n.
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Example 1.25

(a)

A =




3 1 2
6 1 3
1 2 2




[A I] =




3 1 2 | 1 0 0
6 1 3 | 0 1 0
1 2 2 | 0 0 1




R1
2(−1)
−→




3 1 2 | 1 0 0
3 0 1 | −1 1 0
1 2 2 | 0 0 1




R2
1(−1)
−→




0 1 1 | 2 −1 0
3 0 1 | −1 1 0
1 2 2 | 0 0 1




R1
3(−2)
−→




0 1 1 | 2 −1 0
3 0 1 | −1 1 0
1 0 0 | −4 2 1




R1
3−→




1 0 0 | −4 2 1
3 0 1 | −1 1 0
0 1 1 | 2 −1 0




R1
2(−3)
−→




1 0 0 | −4 2 1
0 0 1 | 11 −5 −3
0 1 1 | 2 −1 0




R2
3−→




1 0 0 | −4 2 1
0 1 1 | 2 −1 0
0 0 1 | 11 −5 −3




R3
2(−1)
−→




1 0 0 | −4 2 1
0 1 0 | −9 4 3
0 0 1 | 11 −5 −3




= [I A−1]

A−1 =



−4 2 1
−9 4 3
11 −5 −3


 .

What is the rank of the matrix A?

(b)

B =




3 1 2
6 2 4
1 2 2




|B| = 0; Minor of B, |M11| =

∣∣∣∣∣
2 4
2 2

∣∣∣∣∣ = 4 − 8 = −4.

What is the rank of the matrix B?
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**************************************************

Example 1.26

A =




1 2 1
3 1 −2
4 −3 −1




[A I] =




1 2 1 | 1 0 0
3 1 −2 | 0 1 0
4 −3 −1 | 0 0 1




R1
2(−3)
−→




1 2 1 | 1 0 0
0 −5 −5 | −3 1 0
4 −3 −1 | 0 0 1




R2(−1/5)
−→




1 2 1 | 1 0 0
0 1 1 | 3/5 −1/5 0
4 −3 −1 | 0 0 1




R2
3(3)−→




1 2 1 | 1 0 0
0 1 1 | 3/5 −1/5 0
4 0 2 | 9/5 −3/5 1




R2
1(−2)
−→




1 0 −1 | −1/5 2/5 0
0 1 1 | 3/5 −1/5 0
4 0 2 | 9/5 −3/5 1




R1
3(2)−→

R3(1/6)−→




1 0 −1 | −1/5 2/5 0
0 1 1 | 3/5 −1/5 0
1 0 0 | 7/30 1/30 1/6




R1
3−→




1 0 0 | 7/30 1/30 1/6
0 1 1 | 3/5 −1/5 0
1 0 −1 | −1/5 2/5 0




R1
3(−1)
−→

R3(−1)
−→




1 0 0 | 7/30 1/30 1/6
0 1 1 | 3/5 −1/5 0
0 0 1 | 13/30 −11/30 1/6




R3
2(−1)
−→




1 0 0 | 7/30 1/30 1/6
0 1 0 | 1/6 1/6 −1/6
0 0 1 | 13/30 −11/30 1/6




= [I A−1]
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A−1 =
1

6




7/5 1/5 1
1 1 −1

13/5 −11/5 1


 .

What is the rank of the matrix A?

1.3.8 Echelon Forms

A matrix is in reduced row echelon form (RREF) if

1. Rows of all zeros, if there are any, appear at the bottom of the matrix.

2. The first nonzero entry of a nonzero row is 1. This is called a leading 1.

3. For each nonzero row, the leading 1 appears to the right and below any leading

1’s in preceding rows.

4. Any column in which a leading 1 appears has zeros in every other entry.

A matrix in RREF appears as a staircase pattern of leading 1’s descending from

the upper left corner of the matrix. The columns of the leading 1’s are columns

of an identity matrix.

A matrix is in row echelon form (REF) if properties 1, 2, and 3 above are

satisfied.

Example 1.27

Determine which of the following matrices are in upper triangular form, REF,

RREF or none of these forms.

A =




1 2 5
0 1 3
0 0 0


 , upper triangular and REF.

B =




1 0 0 3 2
0 0 1 2 7
0 0 0 0 0
0 0 0 0 0


 , upper triangular, REF and RREF.

C =




1 2 0 0
0 0 0 1
0 1 1 0


 , none of these forms.
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D =




1 0 1 4
0 2 3 1
0 0 0 0


 , upper triangular.

***********************************************

1.4 System of Linear Equations

A system of m linear equations is given by

a11x1 + a12x2 + . . . + a1nxn = h1

a21x1 + a22x2 + . . . + a2nxn = h2
...

...
... . . .

...
...

...
am1x1 + am2x2 + . . . + amnxn = hm

. (1.84)

If the system of m linear equations possesses solutions, it is said to be consistent,

if not it is said to be inconsistent. A consistent system possesses either only

one solution or infinitely many solutions.

Two systems of linear equations are said to be equivalent if every solu-

tion of one of the systems is the same as the solution of the other system. An

equivalent system can be obtained from a system A by applying the elementary

transformations over it.

1.4.1 Solution Using a Matrix

In matrix notation, the system of equations, Eq. (1.84), can be written as




a11 a12 . . . a1n

a21 a22 . . . a2n
...

... . . .
...

am1 am2 . . . amn







x1

x2
...

xn




=




h1

h2
...

hm




AX = H (1.85)

where A = [aij] is the coefficient matrix , X = [x1, x2, . . . , xn]
T , and H =

[h1, h2, . . . , hm]T . X is a n-vector and H is a m-vector. The augmented matrix

is given by
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[A H] =




a11 a12 . . . a1n | h1

a21 a22 . . . a2n | h2
...

... . . .
... | ...

am1 am2 . . . amn | hm




(1.86)

Example 1.28

Solved the following non-homogeneous system of equations

x1 + 2x2 + x3 = 2

3x1 + x2 − 2x3 = 1

4x1 − 3x2 − x3 = 1.

[A H] =




1 2 1 | 2
3 1 −2 | 1
4 −3 −1 | 1




R1
2(−3)
−→




1 2 1 | 2
0 −5 −5 | −5
4 −3 −1 | 1




R2(−1/5)
−→




1 2 1 | 2
0 1 1 | 1
4 −3 −1 | 1




R2
3(3)−→




1 2 1 | 2
0 1 1 | 1
4 0 2 | 4




R2
1(−2)
−→




1 0 −1 | 0
0 1 1 | 1
4 0 2 | 4




R1
3(2)−→

R3(1/6)−→




1 0 −1 | 0
0 1 1 | 1
1 0 0 | 2/3




R1
3−→




1 0 0 | 2/3
0 1 1 | 1
1 0 −1 | 0




R1
3(−1)
−→

R3(−1)
−→




1 0 0 | 2/3
0 1 1 | 1
0 0 1 | 2/3




R3
2(−1)
−→




1 0 0 | 2/3
0 1 0 | 1/3
0 0 1 | 2/3




x1 = x3 =
2

3
, x2 =

1

3
.

***********************************************

1.4.2 Fundamental Theorems

1. A system of linear equations AX = H is consistent iff the coefficient matrix

[A] and the augmented matrix [AH] have the same rank.
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2. If H is not a zero vector, then the system, AX = H, is called a

non-homogeneous system . A system of n non-homogeneous equations with n

unknowns possesses a unique solution provided that the matrix A is non singular,

that is |A| 6= 0.

This system, AX = H, with n equations and n unknowns can be solved

by two methods:

(a) Method 1 ( Cramer’s Rule , provided |A| 6= 0.)

If Ai, i = 1, 2, . . . , n is a matrix obtained from A by replacing the ith column

with the constant column H, then the unique solution of the system is the given

by

xi =
|Ai|
|A| , i = 1, 2, . . . , n. (1.87)

Example 1.29

x1 + 2x2 + x3 = 2

3x1 + x2 − 2x3 = 1

4x1 − 3x2 − x3 = 1

|A| =
1 2 1
3 1 −2
4 −3 −1

= 1(−1 − 6) − 2(−3 + 8) + 1(−9 − 4)

= −7 − 10 − 13 = −30

|A1| =
2 2 1
1 1 −2
1 −3 −1

= 2(−1 − 6) − 2(−1 + 2) + 1(−3 − 1)

= −14 − 2 − 4 = −20

|A2| =
1 2 1
3 1 −2
4 1 −1

= 1(−1 + 2) − 2(−3 + 8) + 1(3 − 4)

= 1 − 10 − 1 = −10
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|A3| =
1 2 2
3 1 1
4 −3 1

= 1(1 + 3) − 2(3 − 4) + 2(−9 − 4)

= 4 + 2 − 26 = −20

x1 = x3 =
−20

−30
=

2

3
, x2 =

−10

−30
=

1

3
.

*************************************************

(b) Method 2 (By using the inverse A−1.)

AX = H

A−1AX = A−1H

X = A−1H. (1.88)

Example 1.30

From Example 1.26

A =




1 2 1
3 1 −2
4 −3 −1


 , A−1 =

1

6




7/5 1/5 1
1 1 −1

13/5 −11/5 1


 .

X = A−1H

=
1

6




7/5 1/5 1
1 1 −1

13/5 −11/5 1







2
1
1




=
1

6




14/5 + 1/5 + 1
2 + 1 − 1

26/5 − 11/5 + 1


 =

1

6




4
2
4


 =




2/3
1/3
2/3


 .

**************************************************

1.4.3 Homogeneous Equations

A system of linear equations, AX = 0, is a homogeneous system of equations .

For this system, the rank of the coefficient matrix A and the augmented matrix

[A 0] is the same. Hence the system is always consistent. X = 0 is a solution of

the system and it is the trivial solution. If the rank of A is n, then the unique
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solution is the zero solution, X = 0. If the rank of A is r < n, then non-trivial

solutions exist.

1. A necessary and sufficient condition for a homogeneous system to possess non-

trivial solution is that the rank r of the coefficient matrix A must be less than n,

that is r < n.

2. If the system AX = H is consistent, the complete solution of the system

is given by the complete solution of the homogeneous system AX = 0 plus the

particular solution of the non-homogeneous system AX = H.

If given Xp is the particular solution of AX = H and Xh is complete

solution of the homogeneous system AX = 0, then the complete solution of

AX = H is given by

Xc = Xp + Xh. (1.89)

Proof: AXc = A(Xp + Xh)

= AXp + AXh = H + 0

=⇒ AXc = H.

Hence Xc is also a solution of the system AX = H.

3. If the rank of the coefficient matrix A of the homogeneous system, AX = 0, is

r < n, then the system possesses exactly (n − r) linearly independent solutions.

Every given solution is a linear combination of the (n − r) linearly independent

solutions and every linear combination of solutions is also a solution.

Example 1.31

x1 + 2x2 + x3 = 2

3x1 + x2 − 2x3 = 1

x1 + 2x2 = 2
3x1 + x2 = 1,

Fixed x3 = 0.
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|A| =
1 2
3 1

= 1 − 6 = −5, (Cramer’s Rule)

|A1| =
2 2
1 1

= 2 − 2 = 0

|A2| =
1 2
3 1

= 1 − 6 = −5

x1 = 0, x2 =
−5

−5
= 1

Particular solution, Xp =




0
1
0




x1 + 2x2 + x3 = 0

3x1 + x2 − 2x3 = 0

x1 + 2x2 = −a
3x1 + x2 = 2a

Say x3 = a.

|A| =
1 2
3 1

= 1 − 6 = −5, (Cramer’s Rule)

|A1| =
−a 2
2a 1

= −a− 4a = −5a

|A2| =
1 −a
3 2a

= 2a + 3a = 5a

x1 = a, x2 = −a

The complete solution for, AX = 0, is Xh =




a
−a
a


 .

The complete solution for, AX = H, is Xc =




a + 0
−a + 1
a + 0


 =




a
−a + 1

a


 .

*******************************************************

Example 1.32

x1 + 2x2 + 2x4 = 0

x2 + 3x3 = 0

Hence AX = 0 ,
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where the coefficient matrix A =




1 2 0 2
0 1 3 0
0 0 0 0
0 0 0 0




rank r = 2 < n = 4,

If given x3 = a and x4 = b,

x1 + 2x2 = −2b

x2 = −3a

⇒ x1 = 6a − 2b, ⇒



x1

x2

x3

x4


 =




6a − 2b
−3a
a
b


 = a




6
−3
1
0


 + b




−2
0
0
1




Hence, the homogeneous system of equations, AX = 0, possesses two linearly

independent solutions , that is, [6,−3, 1, 0]T and [−2, 0, 0, 1]T and all linear com-

binations of these two solutions is also a solution of the system.
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Chapter 2

Vector Spaces

2.1 Vector Spaces

Assume that that all vectors are column vectors , that is




x1

x2
...

xn




= [x1, x2, . . . , xn]
T

. (2.1)

A collection or a set S of two or more elements, together with two operations,

that is addition (+) and multiplication (·) is called a field F .

If a, b, c, . . . ∈ F , then

1. a + b ∈ F.

2. a + b = b + a, a + (b + c) = (a + b) + c.

3. For every a ∈ F , there exist 0 ∈ F , where a + 0 = 0 + a = a.

4. For every a ∈ F , there exist −a ∈ F , where a + (−a) = 0.

5. a · b ∈ F.

6. ab = ba, (ab)c = a(bc).

7. For every a ∈ F , there exist 1( 6= 0) ∈ F where 1 · a = a · 1 = a.

8. For every a ∈ F , there exist a−1 ∈ F where aa−1 = a−1a = 1.

9. a(b + c) = ab + ac, (a + b)c = ac + bc.

A set of n-vector over F is said to be closed under addition if the sum

of two vectors from F is also a vector from F . This set is said to be closed
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under scalar multiplication, if every scalar multiple of a vector from the set

is also a vector of the set.

Example 2.1

The set of all vectors [a, b, c]T of ordinary 3-space is closed under addition and

scalar multiplication.

*********************************************************

A set of n-vectors over F which is closed under addition and scalar mul-

tiplication is called a vector space or a vector space of n-dimension.

If given the n-vectors X1,X2, . . . ,Xm ∈ F , then the set of all the linear

combinations k1X1 + k2X2 + . . . + kmXm, (where k1, k2, . . . , km are scalars) is a

linear vector space over F .

The set of all the vectors [a, b, c]T from Example 2.1 is a vector space.

2.1.1 Subspace

A set of vectors V from the vector space Vn(F ) is a subspace of Vn(F ) if V is

closed under addition and scalar multiplication. Hence the zero n-vector from

Vn(F ) is a subspace of Vn(F ).

If given the n-vectors X1,X2, . . . ,Xm ∈ F , then the space of all linear

combinations of the vectors is a subspace of Vn(F ).

The vector space V is said to be spanned by the n-vectors X1,X2, . . . ,Xm

if X1,X2, . . . ,Xm ∈ F and every vector in V is their linear combination. However,

X1,X2, . . . ,Xm are not necessarily linearly independent.

Example 2.2

The vectors

K1 =




1
1
1


 , K2 =




1
3
5


 , K3 =




1
5
3


 , K4 =




5
3
1


 ,

are from S = V3(R) where R is the field of real numbers. Any vector [a, b, c]T
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from S can be written as



a
b
c


 = x1K1 + x2K2 + x3K3 + x4K4




a
b
c


 =




x1 + x2 + x3 + 5x4

x1 + 3x2 + 5x3 + 3x4

x1 + 5x2 + 3x3 + x4


 .

This system of equations is consistent. Hence the vectors K1,K2,K3,K4 span S.

The vectors K1 and K2 is linearly independent and span a subspace of

planes π of S which contains all the vectors pK1 + qK2 where p, q ∈ R.

The vector K4 spans the subspace of lines L of S which contains all the

vectors pK4, where p ∈ R.

***************************************************

2.2 Basis and Dimension

The dimension of a vector space V is the maximum number of linearly indepen-

dent vectors in V or the minimum number of linearly independent vectors that is

required to span the space V . Ordinary space is of linear dimension 3, the space

of planes is of dimension 2 and the space of lines is of dimension 1.

A n-vectors space of dimension r over F is denoted by V r
n (F ). When

r = n, we write Vn(F ). A set of r linearly independent vectors from V r
n (F ) is

called the basis of that space. Every vector from the space is a unique linear

combination of the basis vectors.

All bases from V r
n (F ) have the same number of vectors and r linearly

independent vectors from that space form a basis.

Example 2.3

From Example 2.2, the given vectors are

K1 =




1
1
1


 , K2 =




1
3
5


 , K3 =




1
5
3


 , K4 =




5
3
1


 .
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The vectors K1,K2, and K3 span S because any vectors can be writen as




a
b
c


 = x1K1 + x2K2 + x3K3

=




x1 + x2 + x3

x1 + 3x2 + 5x3

x1 + 5x2 + 3x3


 .

and the system of equations has a unique solution. Hence K1,K2, and K3 is a

basis of the space.

Proof:




1 1 1
1 3 5
1 5 3




R1
2(−1)
−→

R1
3(−1)
−→




1 1 1
0 2 4
0 4 2




R2(1/2)−→
R3(1/2)−→




1 1 1
0 1 2
0 2 1




R2
3(−2)
−→

R3(−1/3)
−→




1 1 1
0 1 2
0 0 1




R3
2(−2)
−→

R3
1(−1)
−→




1 1 0
0 1 0
0 0 1




R2
1(−1)
−→




1 0 0
0 1 0
0 0 1


 .

The unit vectors, e1 =




1
0
0


 , e2 =




0
1
0


 , e3 =




0
0
1


 , is a basis of the space S.

The vectors K1,K2, and K4 is not a basis of the space S.

Proof:




1 1 5
1 3 3
1 5 1




R1
2(−1)
−→

R1
3(−1)
−→




1 1 5
0 2 −2
0 4 −4




R2
3(−2)
−→

R2(1/2)−→




1 1 5
0 1 −1
0 0 0




R2
1(−1)
−→




1 0 6
0 1 −1
0 0 0




e1 = [1, 0, 0]T and e2 = [0, 1, 0]T spans the subspace π of planes. Hence K1,K2 is

a basis of the subspace π.
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********************************************************

1. If X1,X2, . . . ,Xn are linearly independent n-vectors of the vector space Vn(F ),

then the set X1,X2, . . . ,Xn is a basis of Vn(F ).

2. If X1,X2, . . . ,Xn are linearly independent n-vectors over F, then vectors

Yi =
n∑

j=1

aijXj , i = 1, 2, . . . , n (2.2)

are linearly independent iff the matrix [aij] is non singular. The set Yi, i =

1, 2, . . . , n is also a basis of Vn(F ).

2.2.1 Bases and Coordinates

The n-vectors

e1 =




1
0
0
...
0




, e2 =




0
1
0
...
0




, . . . , en =




0
0
...
0
1




, (2.3)

are called the elementary vectors or unit vectors over F.

ej = the jth unit vector.

e1, e2, . . . , en is an important basis of Vn(F ).

For every vector X ∈ Vn(F ), X can be uniquely written as,

X =
n∑

i=1

xiei = x1e1 + x2e2 + . . . + xnen, (2.4)

where (x1, x2, . . . , xn) is the coordinate of X relative to the e-basis.

Given that Z1, Z2, . . . , Zn is a basis of Vn(F ), then there exist the unique

scalars a1, a2, . . . , an ∈ F such that

X =
n∑

i=1

aiZi = a1Z1 + a2Z2 + . . . + anZn

X = [Z1, Z2, . . . , Zn] ·XZ = Z · XZ (2.5)
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where XZ =




a1

a2
...

an




, is the coordinate of X relative to the Z-basis.

If given that W1,W2, . . . ,Wn is also a basis of Vn(F ), so that,

X = [W1,W2, . . . ,Wn] · XW = W · XW , (2.6)

then

X = Z · XZ = W · XW

XW = W−1 · Z · XZ = PXZ (2.7)

where P = W−1 · Z is a non singular matrix and XW is the coordinate of X

relative to the W -basis.

2.3 Linear Transformations

2.3.1 Definition

Given the vectors, X =




x1

x2
...

xn




, Y =




y1

y2
...

yn



∈ Vn(F ), are of the same basis

and

y1 = a11x1 + a12x2 + . . . + a1nxn

y2 = a21x1 + a22x2 + . . . + a2nxn
...

...
... . . .

...
yn = an1x1 + an2x2 + . . . + annxn

=⇒ Y = AX, (2.8)

where A = [aij] is over F . Then Eq.(2.8) is a transformation that takes the vector

X ∈ Vn(F ) to the vector Y ∈ Vn(F ). Y is called the image of X.

If Y1 = AX1 and Y2 = AX2, then for every scalar k, a, and b,

kY1 = A(kX1), (2.9)

aY1 + bY2 = A(aX1 + bX2). (2.10)

This transformation is then said to be linear .
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2.3.2 Basic Theorems

If X = ej and A = [aij], then

Y =




a1j

a2j
...

anj




where Y = AX. (2.11)

1. The transformation Y = AX is non singular iff the matrix A is non

singular.

2. A non singular linear transformation takes linearly independent (de-

pendent) vectors into linearly independent (dependent) vectors.

3. If the transformation, Y = AX, is non singular, then it maps the vector

space Vn(F ) onto itself.

4. The elementary vectors ei of Vn(F ) can be transformed into any set

of linearly independent n-vectors by a non singular linear transformation and

conversely.

5. For any given two sets of linearly independent n-vectors, there exist a

non singular linear transformation that can take the vectors of one of the sets

into the vectors of the other.

2.3.3 Change of Basis

If given two matrices A and B, and there exist a non singular matrix Q such that

B = Q−1AQ, (2.12)

then the matrices A and B are said to be similar .

If YZ = AXZ is a linear transformation over Vn(F ) relative to the Z-basis

and YW = BXW is another linear transformation relative to the W -basis, then A

and B are similar.

Proof: From Eq. (2.7), XW = PXZ , we let Q = P−1, then

XZ = QXW and YZ = QYW
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YW = Q−1YZ = Q−1(AXZ) = Q−1A(QXW )

YW = (Q−1AQ)︸ ︷︷ ︸
B

XW

B = Q−1AQ.

Hence A and B are similar.

Example 2.4

A =




1 1 1
1 3 5
1 5 3




From Example 2.3, A is non singular. Given that Y = AX is a linear transfor-

mation with respect to the e-basis and the vectors,

W1 =




1
3
4


 , W2 =




2
1
−3


 , W3 =




1
−2
−1


 ,

formed a new basis. If X =




1
0
2


 , find the coordinate of the its image relative

to the W -basis by answering the following questions:

(a) First find the coordinate of X relative to the W -basis.

(b) Find the linear transformation YW = BXW corresponding to Y = AX.

(c) Find the image YW of XW .

Solution

(a) From Example 1.26,

W =




1 2 1
3 1 −2
4 −3 −1


 , W−1 =

1

30




7 1 5
5 5 −5
13 −11 5




Eq. (2.7) =⇒ X = WXW =⇒ XW = W−1X.

XW =
1

30




7 1 5
5 5 −5
13 −11 5







1
0
2


 =

1

30




7 + 10
5 − 10
13 + 10


 =

1

30




17
−5
23




(b) YW = BXW and Y = AX
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Y = WYW =⇒ YW = W−1Y = W−1AX = (W−1AW )︸ ︷︷ ︸
B

XW

B = W−1AW

=
1

30




7 1 5
5 5 −5
13 −11 5







1 1 1
1 3 5
1 5 3







1 2 1
3 1 −2
4 −3 −1




=
1

15




113 −10 −42
25 −20 0
−43 50 12




B =




113/15 −2/3 −14/5
5/3 −4/3 0

−43/15 10/3 4/5




(c)

YW = BXW =




113/15 −2/3 −14/5
5/3 −4/3 0

−43/15 10/3 4/5


 × 1

30




17
−5
23




=




4847/450
53/6

−47/30


 .

*****************************************************
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Chapter 3

Tutorials

3.1 Tutorial 1

1. The matrices given are:

A =




3 4 p2 + 1
2 3 1
1 4 −1


 , B =




1 −5 1
2 1 −3
4 −4 3


 , C =




5 1 2
4 0 3
2 4 −1


 ,

A1 =




3 q2 10
2 3 1
1 4 −1


 .

(a) If A = A1, find all the possible values of p and q.

(b) Find the matrix D1 = AC + B and

(c) the matrix D2 = CA + B. Is the matrix D1 the same as D2. If not, why?

Give reasons.

(d) Find the determinant of the matrices A, B, and C and

(e) their respective adjoints.

(f) From part (d) and (e), find the inverse of the matrices A, B, and C.

(g) Find the inverse of the matrix A again by using the elementary row trans-

formations of matrices.

2. The matrices given are:

A =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 , B =




b11 b12 b13

b21 b22 b23

b31 b32 b33


 .
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(a) If A is an upper triangular matrix, and its determinant |A| is equal to one,

what is the matrix A?

(b) If B = AT , find the matrix B? What type of matrix is B if the elements

b21, b31 and b32 are non zero?

(c) What type of matrix is B if the elements b21, b31 and b32 are zero? Given the

matrix C = kB, where k is a scalar. What type of matrix is C?

3.

(a) Given the matrix,

A =

[
a b
c d

]

is an idempotent matrix. If b = 2, what is the matrix A? (That is find the value

of a, c, and d.) Is the matrix A singular?

(b) Find an idempotent matrix that is non singular.

4.

(a) Show that ALL nilpotent matrices are singular.

(b) Show that the given matrix is nilpotent,

A =




0 1 1
0 0 1
0 0 0


 .

(c) Given B = I−A. Show that the matrix B is non singular and find the inverse

of matrix B.

5. Find the matrix (AB)−1, if

A−1 =




1 3 0
0 1 1
1 −1 4


 , B−1 =




2 1 1
0 0 −2
1 1 −1


 .

6. Given the matrix,
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A =




3i 3 + 2i 1 − 3i
3 − 2i 5 − i 3 − 2i
1 − 2i 1 + 2i 2


 .

Construct from matrix A, the following matrices:

(a) B, a Hermitian matrix;

(b) C, a skew-Hermitian matrix;

(c) D, a symmetric matrix; and

(d) E, a skew-symmetric matrix.

(e) Show that F = iC and G = B̄ are Hermitian matrices.

7. Show that the following matrices are periodic,

A =



−1 −1 −1
0 1 0
0 0 1


 , B =




0 1 0
0 0 1
−1 −1 −1


 , C =




0 1 0
−1 −1 −1
0 0 1


 .

Find the period of these matrices.

3.2 Tutorial 2

1. (a) Write the following system of linear equations,

x1 + 3x2 + x3 = 1

2x1 − x2 − 3x3 = 1

x1 + x2 − 2x3 = 5.

in matrix notation. What is the coefficient matrix of this system of linear equa-

tions?.

(b) Find the inverse of the coefficient matrix by using the elementary row trans-

formation.

(c) Find the adjoint of the coefficient matrix.

(d) Find the inverse of the coefficient matrix by using the answer from part (c)

above. Make sure that the answer is the same as the answer for part (b).
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(e) Find all possible solutions of the system by using the inverse of the coefficient

matrix.

(f) Make sure that the answers for part (e) are correct by using Cramer’s Rule.

2. Given the following system of linear equations:

x1 + 3x2 + x3 − 2x4 = 2

2x1 − x2 − 3x3 = 1

x1 + 2x2 − 2x3 = 2

x2 + 3x4 = 0.

Find the solution for this system of linear equations by using Cramer’s Rule. Is

the solution unique?

3. Find all the possible solutions for the following system of linear equations:

3x1 + x2 + 2x3 + x4 = −2

2x1 + x2 + 3x3 − x4 = 3

x1 + x3 + 2x4 − x5 = 4.

4. Given the matrix,

A =




2 2 −4
1 1 −2
3 3 −6


 ,

find the matrix, B, of rank two such that AB = 0. What is the rank of matrix

A?

5. A given vector space is spanned by the following vectors;

K1 =




1
2
1


 , K2 =




1
2
3


 , K3 =




4
3
1


 , K4 =




1
3
2


 .
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By using the elementary row transformation, choose a suitable set of basis from

the above vectors for this vector space. What is the dimension of this vector

space?

6. Given that XZ dan XW are coordinates with respect to a pair of bases,

Z1 =




1
2
2


 , Z2 =




2
2
1


 , Z3 =




1
1
0


 ; and

W1 =




1
1
2


 , W2 =




1
2
3


 , W3 =




1
2
1


 ,

respectively. The vector, X = [2, 7, 1]T . Find the coordinates, XZ and XW , and

the matrix P , such that, XW = PXZ .

7. The matrix equation,

Y = AX =




1 −2 3
3 2 −1
1 0 1


 X,

is a linear transformation relative to the e-basis. A new basis chosen is

Z1 =




2
1
0


 , Z2 =



−1
0
1


 , Z3 =




1
1
−1


 .

Relative to the e-basis,

X =




7
1
3


 .

Find:

(a) the image Y of X for the given linear transformation,

(b) the inverse Z−1 of the basis matrix Z,

(c) the coordinate XZ of X and the coordinate YZ of Y with respect to the Z-

basis, and

(d) the matrix R of the new transformation YZ = RXZ .
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