ZCA 110 Calculus and Linear Algebra Semester I, Academic session 2008/09 **TEST I** 1 August 2008

Name:

Matrix Number: Group (A or B):

Given the 3-square matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 6 & 7 & 8 \end{pmatrix}$. 1. *(i)* Use a sequence of elementary row operation to transform A into its equivalent matrix in reduced row echelon form (RREF). Show your steps clearly. [4 marks] What is the rank of *A*? *(ii)* [2 marks] (iii) Given as set of three 3-vectors, v_1 =[1,2,3], v_2 =[4,5,6], v_3 =[6,7,8]. Based on your answer from (*i*), (*ii*), are these vectors linearly dependent? Explain your answer. [2 marks] (iv) Find the determinant of A. [3 marks] Does the inverse of A exist? Explain your answer. (v)[2 marks] Consider the homogeneous equation system AX=0, where $X=[x_1, x_2, x_3]^T$ is the column vectors of 3 unknowns. (vi) Has the homogeneous equation system any non-trivial solutions? Explain your answer. [2 marks] How many linearly independent solution are there for AX=0? (vii) [2 marks] (viii)

Obtain the solution for *AX*=0.

[3 marks]

Solutions:

<i>(i)</i>	$A \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}_{= RREF(A)}$	4 marks
(ii)	The rank of A = number of leading 1 in RREF(A), r = 2	. 2 marks
(iii)	Yes. The set of the vectors is linearly dependent. Argument: Since $r = 2 < m = 3$, where <i>m</i> is the number of vectors, according to theorem V , Ayers, Page 69, the set of vectors is linearly dependent. 2 marks	
(iv)	Det[A]=0.	3 marks
(v)	Inverse of A does not exist since $ A =0$.	2 marks
(vi)	Since the rank $r-2 < n$ where n is the number of unknowns, then according to theorem W Avers, page 7	

(*vi*) Since the rank r=2 < n, where *n* is the number of unknowns, then, according to theorem **IV**, Ayers, page 78, the HE system has solution other than the trivial one.

Or, alternatively: The HE has non-trivial solution since |A|=0, according to theorem V, Ayers, page 78. **2 marks**

(vii) The number of linearly independent solution is n-r = 3 - 2 = 1. 2 marks

(viii) Use augmented matrix method:

$$[A \mid 0] \sim \text{RREF}([A \mid 0]) = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \equiv x_1 - x_3 = 0; x_2 + 2x_3 = 0;$$

Choose $x_3=a$ to be an independent arbitrary parameter,

$$X_{\text{sol}} = [x_1, x_2, x_3]^{\mathrm{T}} = [a, -2a, a]^{\mathrm{T}} = a[1, -2, 1]^{\mathrm{T}}.$$

3 marks