
Chapter_11_Vector spaces 

1． Definition: n-vector 

An vector a with n-component is an n-tuple of real 

numbers, a ={a1, a2,…, an}. We call this an n-vector. ai, 

i=1, 2, …,n are the components of a. It has n 

components. 

 

2． As an special example, for n=3, a={a1, a2, a3}. a can be 

imagined as a point in 3-space, the 3-dimensional space 

we human resides in. For example, the 3-vector a={0,0,0} 

represents a point with spatial coordinates {0 , 0, 0}.  

 

3． Imagine the collection of all possible 3-vectors into a set 

V containing all points in the 3-space. We call the set of 

all 3-vectors, (or in other words, all points in the 3-D 

space), R
3
. Each vector in R

3
 is equivalent to a point in 

the 3-space. 

 

4． Similarly, R
2
 is the set of all 2-vectors. R

2
 is the set of all 

points in 2-space.  

 

5． R, the set of all real number, is the set of all ‘1-vector’ 
(‘1-vector’ is just the real scalar we all familiar with). 
The collection of all ‘points’ in the 1-space is equivalent 

to the set of all points in a 1-dimensional ‘real-number 

line’.  

 

6． For the 2-vectors and 3-vectors, we know that we can 

add and do scalar multiplication on them according to 

well-defined rules of vector addition and scalar 

multiplication. As an illustration, consider this: Given 

two 3-vectors in R
3
, a={a1, a2, a3} and b={b1, b2, b3}, the 

vector addition a + b is defined as a new 3-vector, c = 

{a1+b1, a2+b2, a3+b3}. Similarly, the scalar multiplication 

between a scalar k and a vector a is defined as a new 

vector d={ka1, ka2, ka3}.  

 

7． Definition: Consider a set V containing some elements 

on which operations of vector addition and scalar 

multiplication are defined. The set V is called a vector 

space if the following ten properties are satisfied:  

 

 

8． Consider the 3-space, R
3
. As mentioned, this a vector 

space. Can you justify this claim by referring to the 

definition as given? 

Ans: 

This is a vector space because (i) vector addition and scalar 

multiplication are well defined on all of the 3-vectors, the 

elements in R
3
, (ii) all of the 3-vectors, the elements in R

3
, 

fulfill the 10 axioms. In particular, all 3-vectors are closed 

under vector addition and closed under scalar multiplication.  

 

9． Explain what do you understand by (i) ‘closure under 

vector addition’. (ii) ‘closure under scalar 

multiplication’. 
 

Ans:  

(i) Closure under vector addition means: any two 

vectors in R
3
, when added vectorially, will result in a 

vector which is also an element of R
3
.  

(ii) Similarly, closure under scalar multiplication means: 

Any vector in R
3
, when multiply by a scalar k will 

result in a vector which is also an element of R
3
. 

 

10. Consider R
2
. Is it also a vector space? How about the set 

of all real number, the 1-space, R? How do you convince 

yourself that they are indeed also vector space? 

Ans:  

Both are also vector spaces, since both of these set fulfill all 

criteria of being a vector space as defined.  

 

11. Definition: A set of vectors Vs from a vector space V is a 

subspace of V if Vs is closed under addition and scalar 

multiplication.  

Example: The set containing only the element 0, Vs={0}, is a 

subspace of the vector space R, since the {0} is  
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(i) a element vector from R, 

(ii) closed under scalar multiplication: 

k0 = 0  Vs, 

(iii) closed under vector addition: 

0 + 0 = 0  Vs. 

Note that the subspace {0} has only a single element. The 

criteria of being closed under addition are fulfilled: “if x and 

y are element is Vs, then x + y is also an element in Vs”. Here, 

x=0, y=0, because there is no any other element in Vs other 

than 0. In other words, ‘any element’ in {0} (the x), when 

vectorially added to ‘any element’ in {0} (the y) will result in 

x+ y = 0, an element of Vs.  

 

12. Every vector space V has at least two subspaces. One of 

if is the zero subspace, {0}, which is illustrated above. 

Can you think of what’s the other one?  

 

Ans: The vector space V itself.  

 

13. Definition: Consider a set S containing vectors x1, 

x2, …xm in a vector space V. (To help you visualize 

better, think of V as the vector space of R
3
 that contains 

an infinite number of 3-vectors. Think of S as a set 

containing, say, m=3 vectors selected from R
3
.) We form 

linear combinations of these m vectors in the form of 

k1x1+ k2x2+ …kmxm, where ki are scalars. The set of all 

linear combinations of the vectors x1, x2, …xm is called 

the span of the vectors, and is written as Span(S).  

 

14. Span(S) is a subspace of V. Span(S) is said to be a 

subspace spanned by the vectors x1, x2, …xn.  

 

15. If every vector in the vector space V can be written as a 

linear combination of the vectors in S, then S is called a 

spanning set for V.  

 

Example: Let V be the vector space containing all 3-vectors, 

R
3
. Consider the set S={i, j, k} containing the three 

rectangular unit vectors. The set of all linear combination 

ai+bj+ck, where a, b, c are scalar, is the span of the vectors 

{i, j, k}, Span(S). Span(S) is a subspace in R
3
 spanned by i, j, 

k.  

 

 

16. We say ‘the set S={i, j, k} is a spanning set for R
3’. 

Think of Span(S) in terms of the set of all possible linear 

combination in terms of i, j, k, ai+bj+ck. Can you 

imagine what does Span(S) represent? Hint: Imagine the 

point at the tip of the 3-vector ai+bj+ck. Imagine the 

pervasive cloud form by the tip of ai+bj+ck when a, b, c 

vary continuously.  

 

Ans: Span(S) represents all the spatial points in R
3
. As is 

well known, all the vectors in the vector space R
3
 can be 

expressed as linear combination ai+bj+ck.  

 

 

17. Can you think of any other spanning set for R
3
? 

Ans: e.g. {r, , }.  

 

 

18. Is the set {i, j, k, i+j, k+i, i + k} also spanning set for 

R
3
? 

Ans: Both answers are yes 

 

 

19. Is {i, j} a spanning set for R
3
? Explain your answer. 

 

Ans: No, since not all vectors in R
3
 can be expressed as 

linear combination of ai+ bj.  

 

 

20. Consider the set S containing the following 4 3-vectors: 

K1=[1,1,1]
T
, K2=[1,3,5]

T
, K3=[1,5, 3]

T
, K4=[5, 3, 1]

T
; 

S={K1, K1, K3 K4}. How would you prove that the S is 

the spanning set of R
3
 (or in other words, S span R

3
)? 

Hint: To prove that the set of vectors in S span R
3
, one 

needs to prove the existence of the solution 

X=[ 4321 ,,, xxxx ]
T
 for the non-homogeneous equation 

system 44332211 KxKxKxKxA  , given an 

arbitrary 3-vector A=  T,, cba from R
3
. If the solution X 

exists, then S spans R
3
, otherwise it doesn’t. The 

reasoning is: If the solution X exists, this means that any 

arbitrary vector A from R
3
 can always be expressed as a 

unique linear combination in the form 

of 44332211 KxKxKxKx  . Hence, by definition, if 

the set of vectors in S is a spanning set of R
3
. 

 

 

 

Ans: 
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Hence, rank of K, r = 3. The rank of [K | A] is also 3 

irrespective of what the values of a, b, c are. By the 

fundamental theorem in page 76, Ayers, the system KX = A is 

consistent. Hence, it is always possible to express any 3-vector 

A in R
3
 as linear combination in 4321 ,,, KKKK  in the form 

44332211 KxKxKxKxA  , 

with the solution of 4321 ,,, xxxx  guaranteed to exist. This 

prove S= {K1, K2, K3, K4} spans R
3
. 

 

 

21. In general, given a set of m n-vectors, Ki=(k1, k2,…, kn)
T
 , 

i=1,2,…m, we can determines whether they span a 

vector space R
n
, the vector space containing the set of all 

n-vector by looking for the existence proof of solution X 

to the non-homogeneous system. The procedure is as 

followed: 

 

 

22. Let K=  mKKK ,...,, 21 , an n by m matrix, 

X=  mxxx ,...,, 21

T
, an m by 1 column vector, 

A=  naaa ,...,, 21

T
, an arbitrary n-vector in R

n
. Consider 

the NH system KXKxKxKxA mm  2211 . If 

the solution for the NH systems does not exist, i.e.  

rank[K]  rank [K | A], then the set of vectors Ki does not 

span R
n
. Otherwise, they do.  

 

 

23. In (20), we see that the set {K1, K2, K3, K4} comprises of 

4 3-vector spans R
3
. Can we span R

3
 with less than 4 

3-vectors (e.g., say, 3 or even 2 3-vectors)? In general, 

for a vector space V containing elements made up of 

n-vectors, we want to know what is the smallest number 

of linearly independent n-vector that spans the vector 

space V. 

 

 

24. In fact, out of the four 3-vectors in the set S in (20), only 

three are linearly independent (refer DQ 13, Chapter 9), 

namely K1, K2, K3, whereas K4 can be expressed as a 

linear combination of the other three vectors.  

 

(i) Prove the linearly independence of the vector set K1, 

K2, K3. (Hint: Refer to DQ 12, 13, 14 in Chapter 9.)  

 

(ii) Prove, using the procedure mentioned in (22) above, 

that this set of vectors K1, K2, K3 spans R
3
. 

 

 

Ans: 

(i)  Consider the homogeneous problem 0KX , where 

K=  321 ,, KKK , a 3 by 3 matrix, and X=  321 ,, xxx T
.  

K=

















351

531

311

~ , hence rank [K] = 3; so is 

the number of unknown = 3. The HE system also has the 

same number of unknowns. Hence, the HE system, 0KX , 

admits only trivial solution, X=0. By definition, this proves 

the linearly independence of the vector set { 321 ,, KKK }. 

(ii) KX=A, A=(a1, a2, a3)
T
, an arbitrary 3-vector in R

3
.  

Rank [K|A] = Rank[K] =3, hence, solution X exists. This 

means that an arbitrary 3-vector in R
3
 can always be 

expressed as a linear combination in 321 ,, KKK . According 

to definition, { 321 ,, KKK } spans R
3
. 

 

 

25. Now, we ask: can any of the 2 vectors (which are 

necessarily linearly independent) form the set 

{ 321 ,, KKK } span R
3
? The answer can be proven to be 

negative. (Prove this). So, it appears that the minimum 

number of linearly independent 3-vectors to span R
3
 is 3, 

not 2.  
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26. Definition: The minimum number of linearly 

independent vectors that is required to span a vector 

space is called the dimension of the vector space. In the 

above example, the dimension of the vector space R
3
 is 3 

since the minimum number of linearly independent 

vectors in R
3
 is 3.  

 

27. Definition: Consider a vector space V with dimension r. 

A set of r linearly independent vectors in V is called the 

basis (or basis set) of the vector space. It happens that 

given any set of r vectors, which are linearly 

independent, from V, they (i) will form a basis set for V, 

and (ii) any vector in V can be expressed as a unique 

linear combination in this set of r vectors.  

 

 

28. Let’s consider the vector space R3
. We know that the 

dimension of it is r=3. (i) If I simply pick any three 

vectors in R
3
, say X1 = (a, b, c), X2 = (d, e, f), X3 = (g, h, 

i), in general, will the set {X1, X2, X3} form a basis for R
3
? 

(ii) Is the basis set of R
3
 unique? (iii) How many basis 

set can R
3
 possibly has?   

Ans: 

(i) Not in general. Only a set of 3 linearly independent 

vectors in R
3
 is the basis of R

3
. Those that are not 

linearly independent cannot form a basis for R
3
. 

(ii) No, not unique. 

(iii) There can be infinitely many basis set in R
3
. 

 

 

29. Consider the set of three vectors in R
3
, S={E1, E2, E3}, 

where E1= [1, 0, 0]
T
, E2= [0, 1, 0]

T
, E3= [0, 0, 1]

T
.  

 

(i) Are the vectors in S linearly independent (you should be 

able to answer this simply question by visual 

inspection)?  

 

(ii) Do the vectors in the set S form a basis set for R
3
?  

 

(iii) Do the vectors in the set S span R
3
?  

 

(iv) Can every vector in R
3
 be expressed as linear 

combination of E1, E2, E3?  

 

(v) What’s the name of these E-vectors? (Hint: see page 88 

of Ayers). (Note: we will refer this basis set by the name 

‘the E-basis’).  

 

Ans: 

(i - iv) Yes. (v) Elementary or unit vector over R
3
. 

 

 

30. You may like to refer to Ayers page 88. Say I have an 

arbitrary vector in R
3
, X=(a, b, c)

T
.  

 

(i) Write X as a linear combination of the unit vectors, Ei, 

defined in (30).  

 

(ii) What are the components (or referred to as ‘coordinates’) 
of X relative to the E-basis? Write these components in 

the form of a column vector and call it ‘the component 
vector of X relative to the E-basis’, denoted by XE. 

 

Ans: 

(i) X = (a, b, c)
T
 = aE1 +bE2 + cE3 .  

(ii) XE = (a, b, c)
T
.  

 

 

31. In the previous question, we have an arbitrary vector in 

R
3
, X. Let’s say that the vector X when expressed in the 

E-basis is represented by the component vectors XE=(1, 

2, 3)
T
. Normally, a vector is by default expressed in the 

E-basis. In general, other than the E-basis, we can also 

represent a vector in other basis set. To illustrate this 

point, let’s consider another basis set Z = {Z1, Z2, Z3} 

(‘the Z-basis’), where Z1= [2, -1, 3]
T
, Z2= [1, 2, -1]

T
, Z3= 

[1, -1, -1]
T
. What is the component vector of X relative 

to the Z-basis, XZ? [Hint: In order to obtain XZ, you need 

to express X as a linear combination of {Z1, Z2, Z3}: XE = 

a1Z1+ a2Z2+ a3Z3. Then the component vector of X in the 

Z-basis is simply XZ = (a1, a2, a3)
T
.] 

 

Ans: 
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Writing the above compactly in matrix form,  
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The solution is then XZ =Z
-1

EX  

 

XZ =
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32. Refer to Example 5, page 88 Ayers. Now, see if you can 

do things another way round: If the component vector of 

X is given in the Z representation, i.e. XZ= (1,2,3)
T
 is 

known. What is component vector of X in the E-basis? In 

other words, what is XE? Hint: Follow the procedure as 

described in (32), then try to find a similar relation that 

relates XE to XZ in the form of  

XE = [some matrix]XZ 

 

Ans: 

From the previous procedure, we have EX Z XZ. Hence, it 

is straight forward to obtain EX : 

EX Z XZ = 
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