1. **Definition:** *n*-vector

An vector *a* with *n*-component is an *n*-tuple of real numbers, $a = \{a_1, a_2, ..., a_n\}$. We call this an *n*-vector. a_i , i=1, 2, ..., n are the components of *a*. It has *n* components.

- As an special example, for n=3, a={a1, a2, a3}. a can be imagined as a point in 3-space, the 3-dimensional space we human resides in. For example, the 3-vector a={0,0,0} represents a point with spatial coordinates {0, 0, 0}.
- 3. Imagine the collection of all possible 3-vectors into a set V containing all points in the 3-space. We call the set of all 3-vectors, (or in other words, all points in the 3-D space), R^3 . Each vector in R^3 is equivalent to a point in the 3-space.
- 4. Similarly, R^2 is the set of all 2-vectors. R^2 is the set of all points in 2-space.
- 5. *R*, the set of all real number, is the set of all '1-vector' ('1-vector' is just the real scalar we all familiar with). The collection of all 'points' in the 1-space is equivalent to the set of all points in a 1-dimensional 'real-number line'.
- 6. For the 2-vectors and 3-vectors, we know that we can add and do scalar multiplication on them according to well-defined rules of vector addition and scalar multiplication. As an illustration, consider this: Given two 3-vectors in R^3 , $a = \{a_1, a_2, a_3\}$ and $b = \{b_1, b_2, b_3\}$, the vector addition a + b is defined as a new 3-vector, c = $\{a_1+b_1, a_2+b_2, a_3+b_3\}$. Similarly, the scalar multiplication between a scalar *k* and a vector *a* is defined as a new vector $d = \{ka_1, ka_2, ka_3\}$.
- Definition: Consider a set V containing some elements on which operations of vector addition and scalar multiplication are defined. The set V is called a vector space if the following ten properties are satisfied:

DEFINITION 7.5 Vector Space Let V be a set of elements on which two operations called vector addition and scalar multiplication are defined. Then V is said to be a vector space if the following ten properties are satisfied. **Axioms for Vector Addition** (i) If x and y are in V, then x + y is in V. (commutative law) (*ii*) For all \mathbf{x} , \mathbf{y} in V, $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$. (iii) For all \mathbf{x} , \mathbf{y} , \mathbf{z} in V, $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$. (associative law) (iv) There is a unique vector **0** in V such that (zero vector) 0 + x = x + 0 = 0.(v) For each x in V, there exists a vector -x such that (negative of a vector) x + (-x) = (-x) + x = 0.Axioms for Scalar Multiplication (vi) If k is any scalar and x is in V, then kx is in V. (vii) $k(\mathbf{x} + \mathbf{y}) = k\mathbf{x} + k\mathbf{y}$ (distributive laws) (viii) $(k_1 + k_2)\mathbf{x} = k_1\mathbf{x} + k_2\mathbf{x}$ (*ix*) $k_1(k_2\mathbf{x}) = (k_1k_2)\mathbf{x}$ $(x) \quad \mathbf{1}\mathbf{x} = \mathbf{x}$

8. Consider the 3-space, R^3 . As mentioned, this a vector space. Can you justify this claim by referring to the definition as given?

Ans:

This is a vector space because (*i*) vector addition and scalar multiplication are well defined on all of the 3-vectors, the elements in R^3 , (*ii*) all of the 3-vectors, the elements in R^3 , fulfill the 10 axioms. In particular, all 3-vectors are closed under vector addition and closed under scalar multiplication.

9. Explain what do you understand by (*i*) 'closure under vector addition'. (*ii*) 'closure under scalar multiplication'.

Ans:

- (i) Closure under vector addition means: any two vectors in R³, when added vectorially, will result in a vector which is also an element of R³.
 (ii) Similarly, closure under scalar multiplication means: Any vector in R³, when multiply by a scalar k will
- 10. Consider R^2 . Is it also a vector space? How about the set of all real number, the 1-space, R? How do you convince yourself that they are indeed also vector space?

result in a vector which is also an element of R^3 .

Ans:

Both are also vector spaces, since both of these set fulfill all criteria of being a vector space as defined.

11. **Definition:** A set of vectors V_s from a vector space V is a **subspace** of V if V_s is closed under addition and scalar multiplication.

Example: The set containing only the element 0, $V_s = \{0\}$, is a subspace of the vector space *R*, since the $\{0\}$ is

- (*i*) a element vector from R,
- (*ii*) closed under scalar multiplication: $k \cdot 0 = 0 \in V_s$,
- (*iii*) closed under vector addition: $0 + 0 = 0 \in V_s$.

Note that the subspace $\{0\}$ has only a single element. The criteria of being closed under addition are fulfilled: "if *x* and *y* are element is V_s , then x + y is also an element in V_s ". Here, x=0, y=0, because there is no any other element in V_s other than 0. In other words, 'any element' in $\{0\}$ (the *x*), when vectorially added to 'any element' in $\{0\}$ (the *y*) will result in x+y=0, an element of V_s .

12. Every vector space V has at least two subspaces. One of if is the zero subspace, {0}, which is illustrated above. Can you think of what's the other one?

Ans: The vector space V itself.

- 13. **Definition:** Consider a set *S* containing vectors \mathbf{x}_1 , $\mathbf{x}_2, \dots \mathbf{x}_m$ in a vector space *V*. (To help you visualize better, think of *V* as the vector space of \mathbb{R}^3 that contains an infinite number of 3-vectors. Think of *S* as a set containing, say, m=3 vectors selected from \mathbb{R}^3 .) We form linear combinations of these *m* vectors in the form of $k_1\mathbf{x}_1 + k_2\mathbf{x}_2 + \dots k_m\mathbf{x}_m$, where k_i are scalars. The set of all linear combinations of the vectors $\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_m$ is called the **span** of the vectors, and is written as **Span**(*S*).
- 14. Span(S) is a subspace of V. Span(S) is said to be a subspace spanned by the vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$.
- 15. If every vector in the vector space *V* can be written as a linear combination of the vectors in *S*, then *S* is called a **spanning set** for *V*.

Example: Let V be the vector space containing all 3-vectors, R^3 . Consider the set $S = \{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$ containing the three rectangular unit vectors. The set of all linear combination $a\mathbf{i}+b\mathbf{j}+c\mathbf{k}$, where a, b, c are scalar, is the span of the vectors $\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$, Span(S). Span(S) is a subspace in R^3 spanned by $\mathbf{i}, \mathbf{j}, \mathbf{k}$. point at the tip of the 3-vector $a\mathbf{i}+b\mathbf{j}+c\mathbf{k}$. Imagine the pervasive cloud form by the tip of $a\mathbf{i}+b\mathbf{j}+c\mathbf{k}$ when a, b, c vary continuously.

Ans: Span(*S*) represents all the spatial points in R^3 . As is well known, all the vectors in the vector space R^3 can be expressed as linear combination $a\mathbf{i}+b\mathbf{j}+c\mathbf{k}$.

17. Can you think of any other spanning set for R^3 ? Ans: e.g. { $\mathbf{r}, \boldsymbol{\theta}, \boldsymbol{\phi}$ }.

18. Is the set {i, j, k, i+j, k+i, i + k} also spanning set for R³?
Ans: Both answers are yes

19. Is $\{\mathbf{i}, \mathbf{j}\}$ a spanning set for R^3 ? Explain your answer.

Ans: No, since not all vectors in R^3 can be expressed as linear combination of $a\mathbf{i} + b\mathbf{j}$.

20. Consider the set *S* containing the following 4 3-vectors: $K_1=[1,1,1]^T$, $K_2=[1,3,5]^T$, $K_3=[1,5,3]^T$, $K_4=[5,3,1]^T$; $S=\{K_1, K_1, K_3, K_4\}$. How would you prove that the *S* is the spanning set of R^3 (or in other words, *S* span R^3)? *Hint:* To prove that the set of vectors in *S* span R^3 , one needs to prove the existence of the solution

 $X = [x_1, x_2, x_3, x_4]^T$ for the non-homogeneous equation

system $A = x_1 K_1 + x_2 K_2 + x_3 K_3 + x_4 K_4$, given an

arbitrary 3-vector $A = (a, b, c)^{T}$ from R^{3} . If the solution X

exists, then *S* spans R^3 , otherwise it doesn't. The reasoning is: If the solution *X* exists, this means that any arbitrary vector *A* from R^3 can always be expressed as a unique linear combination in the form

of $x_1K_1 + x_2K_2 + x_3K_3 + x_4K_4$. Hence, by definition, if the set of vectors in *S* is a spanning set of R^3 .

16. We say 'the set S={i, j, k} is a spanning set for R³'. Think of Span(S) in terms of the set of all possible linear combination in terms of i, j, k, ai+bj+ck. Can you imagine what does Span(S) represent? *Hint*: Imagine the

Ans:

$$A = \begin{pmatrix} K_1 & K_2 & K_3 & K \\ 1 & x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 5 \\ 1 & 3 & 5 & 3 \\ 1 & 5 & 3 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 & 5 & 3 & 1 \end{pmatrix} = KX$$
$$K = \begin{pmatrix} 1 & 1 & 1 & 5 \\ 1 & 3 & 5 & 3 \\ 1 & 5 & 3 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Hence, rank of K, r = 3. The rank of [K | A] is also 3 irrespective of what the values of a, b, c are. By the fundamental theorem in page 76, Ayers, the system KX = A is consistent. Hence, it is always possible to express any 3-vector A in \mathbb{R}^3 as linear combination in K_1, K_2, K_3, K_4 in the form

$$A = x_1 K_1 + x_2 K_2 + x_3 K_3 + x_4 K_4,$$

with the solution of x_1, x_2, x_3, x_4 guaranteed to exist. This prove $S = \{K_1, K_2, K_3, K_4\}$ spans R^3 .

- 21. In general, given a set of *m n*-vectors, $K_i = (k_1, k_2, ..., k_n)^T$, $i=1,2,\ldots m$, we can determine whether they span a vector space R^n , the vector space containing the set of all *n*-vector by looking for the existence proof of solution X to the non-homogeneous system. The procedure is as followed:
- 22. Let $K = (K_1, K_2, ..., K_m)$, an *n* by *m* matrix,

 $X = (x_1, x_2, \dots, x_m)^T$, an *m* by 1 column vector,

 $A = (a_1, a_2, ..., a_n)^T$, an arbitrary *n*-vector in \mathbb{R}^n . Consider

the NH system $A = x_1K_1 + x_2K_2 + \dots + x_mK_m = KX$. If

the solution for the NH systems does not exist, i.e. rank $[K] \neq$ rank $[K \mid A]$, then the set of vectors K_i does not 25. Now, we ask: can any of the 2 vectors (which are span \mathbb{R}^n . Otherwise, they do.

23. In (20), we see that the set $\{K_1, K_2, K_3, K_4\}$ comprises of 4 3-vector spans R^3 . Can we span R^3 with less than 4 3-vectors (e.g., say, 3 or even 2 3-vectors)? In general, for a vector space V containing elements made up of *n*-vectors, we want to know what is the smallest number

of linearly independent *n*-vector that spans the vector space V.

24. In fact, out of the four 3-vectors in the set S in (20), only three are linearly independent (refer DQ 13, Chapter 9), namely K_1 , K_2 , K_3 , whereas K_4 can be expressed as a linear combination of the other three vectors.

(*i*) Prove the linearly independence of the vector set K_1 , K_2, K_3 . (*Hint:* Refer to DQ 12, 13, 14 in Chapter 9.)

(*ii*) Prove, using the procedure mentioned in (22) above, that this set of vectors K_1 , K_2 , K_3 spans R^3 .

Ans:

(i) Consider the homogeneous problem KX = 0, where $K = (K_1, K_2, K_3)$ a 3 by 3 matrix and $X = (x_1, x_2, x_3)^T$

$$K = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & 5 \\ 1 & 5 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \text{ hence rank } [K] = 3; \text{ so is}$$

the number of unknown = 3. The HE system also has the same number of unknowns. Hence, the HE system, KX = 0, admits only trivial solution, X=0. By definition, this proves

the linearly independence of the vector set { K_1, K_2, K_3 }.

(*ii*) $KX=A, A=(a_1, a_2, a_3)^T$, an arbitrary 3-vector in R^3 . Rank [K|A] = Rank[K] = 3, hence, solution X exists. This means that an arbitrary 3-vector in R^3 can always be

expressed as a linear combination in K_1, K_2, K_3 . According

to definition, { K_1, K_2, K_3 } spans R^3 .

necessarily linearly independent) form the set

{ K_1, K_2, K_3 } span R^3 ? The answer can be proven to be

negative. (Prove this). So, it appears that the minimum number of linearly independent 3-vectors to span R^3 is 3, not 2.

- 26. **Definition:** The minimum number of linearly independent vectors that is required to span a vector space is called the **dimension** of the vector space. In the above example, the dimension of the vector space R^3 is 3 since the minimum number of linearly independent vectors in R^3 is 3.
- 27. Definition: Consider a vector space V with dimension r. A set of r linearly independent vectors in V is called the basis (or basis set) of the vector space. It happens that given any set of r vectors, which are linearly independent, from V, they (i) will form a basis set for V, and (ii) any vector in V can be expressed as a unique linear combination in this set of r vectors.
- 28. Let's consider the vector space R³. We know that the dimension of it is r=3. (i) If I simply pick any three vectors in R³, say X₁ = (a, b, c), X₂ = (d, e, f), X₃ = (g, h, i), in general, will the set {X₁, X₂, X₃} form a basis for R³? (*ii*) Is the basis set of R³ unique? (*iii*) How many basis set can R³ possibly has?

Ans:

- (*i*) Not in general. Only a set of 3 linearly independent vectors in R^3 is the basis of R^3 . Those that are not linearly independent cannot form a basis for R^3 .
- (ii) No, not unique.
- (*iii*) There can be infinitely many basis set in R^3 .
- 29. Consider the set of three vectors in R^3 , $S = \{E_1, E_2, E_3\}$, where $E_1 = [1, 0, 0]^T$, $E_2 = [0, 1, 0]^T$, $E_3 = [0, 0, 1]^T$.
- (i) Are the vectors in S linearly independent (you should be able to answer this simply question by visual inspection)?
- (*ii*) Do the vectors in the set S form a basis set for R^3 ?
- (*iii*) Do the vectors in the set S span R^3 ?
- (*iv*) Can every vector in \mathbb{R}^3 be expressed as linear combination of E_1, E_2, E_3 ?
- (v) What's the name of these *E*-vectors? (*Hint: see page 88 of Ayers*). (Note: we will refer this basis set by the name 'the *E*-basis').

Ans:

- (i iv) Yes. (v) Elementary or unit vector over R^3 .
- 30. You may like to refer to Ayers page 88. Say I have an arbitrary vector in R^3 , $X=(a, b, c)^T$.
- (*i*) Write X as a linear combination of the unit vectors, E_i , defined in (30).
- (*ii*) What are the components (or referred to as 'coordinates') of *X* relative to the *E*-basis? Write these components in the form of a column vector and call it 'the component vector of *X* relative to the *E*-basis', denoted by X_E .

Ans:

- (*i*) $X = (a, b, c)^{\mathrm{T}} = aE_1 + bE_2 + cE_3$. (*ii*) $X_F = (a, b, c)^{\mathrm{T}}$.
- 31. In the previous question, we have an arbitrary vector in R^3 , *X*. Let's say that the vector *X* when expressed in the *E*-basis is represented by the component vectors X_E =(1, 2, 3)^T. Normally, a vector is by default expressed in the *E*-basis. In general, other than the *E*-basis, we can also represent a vector in other basis set. To illustrate this point, let's consider another basis set $Z = \{Z_1, Z_2, Z_3\}$ ('the *Z*-basis'), where Z_1 = [2, -1, 3]^T, Z_2 = [1, 2, -1]^T, Z_3 = [1, -1, -1]^T. What is the component vector of *X* relative to the *Z*-basis, X_Z ? [*Hint:* In order to obtain X_Z , you need to express *X* as a linear combination of $\{Z_1, Z_2, Z_3\}$: $X_E = a_1Z_1 + a_2Z_2 + a_3Z_3$. Then the component vector of *X* in the *Z*-basis is simply $X_Z = (a_1, a_2, a_3)^T$.]

Ans:

$$X_{E} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = a_{1} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + a_{2} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + a_{1} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$

Writing the above compactly in matrix form,

$$X_{E} = \begin{pmatrix} Z_{1} & Z_{2} & Z_{3} \end{pmatrix} \begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \end{pmatrix} = Z \begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \end{pmatrix} = Z \cdot X_{Z}, \text{ where}$$
$$Z = \begin{pmatrix} Z_{1} & Z_{2} & Z_{3} \end{pmatrix}, X_{Z} = \begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \end{pmatrix}.$$

 $\left(a_{3}\right)$

The solution is then $X_Z = Z^1 X_E$

$$X_{Z} = \begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 \\ -1 & 2 & -1 \\ 3 & -1 & -1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} \frac{1}{5} & 0 & \frac{1}{5} \\ \frac{4}{15} & \frac{1}{3} & -\frac{1}{15} \\ \frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} \frac{4}{5} \\ \frac{11}{15} \\ -\frac{4}{3} \end{pmatrix}_{-1}$$

32. Refer to Example 5, page 88 Ayers. Now, see if you can do things another way round: If the component vector of *X* is given in the *Z* representation, i.e. $X_Z = (1,2,3)^T$ is known. What is component vector of *X* in the *E*-basis? In other words, what is X_E ? *Hint*: Follow the procedure as described in (32), then try to find a similar relation that relates X_E to X_Z in the form of

 $X_E = [\text{some matrix}] \cdot X_Z$

Ans:

From the previous procedure, we have $X_E = Z \cdot X_Z$. Hence, it

is straight forward to obtain $X_{\scriptscriptstyle E}$:

$$X_{E} = Z \cdot X_{Z} = \begin{pmatrix} 2 & 1 & 1 \\ -1 & 2 & -1 \\ 3 & -1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 0 \\ -2 \end{pmatrix}.$$