## Linearly independence

Definition: Consider a set of *n*-vectors,  $\{K_1^{\square}, K_2^{\square}, ..., K_n^{\square}\}$ .

If there exist a set of coefficient  $\{x_1^{\square}, x_2^{\square}, ..., x_n^{\square}\} \neq \{0, 0, ..., 0\}$  such that  $x_1^{\square} K_1^{\square} + x_2^{\square} K_2^{\square} + ... + x_n^{\square} K_n^{\square} = 0$ , the set of vector  $\{K_1^{\square}, K_2^{\square}, ..., K_n^{\square}\}$  is not linearly independent.

In other words, if the only solution for  $x_1^{\square} K_1^{\square} + x_2^{\square} K_2^{\square} + ... + x_n^{\square} K_n^{\square} = 0$  is  $\{x_1^{\square}, x_2^{\square}, ..., x_n^{\square}\} = \{0, 0, ..., 0\}$ , then the set of vector  $\{K_1^{\square}, K_2^{\square}, ..., K_n^{\square}\}$  is linearly independent.

#### Example:

Consider the 3-vectors pair,  $X_1^T = [1,2,3], X_2^T = [-1,-2,-3].$ 

Find any possible values of  $k_1^{\square}$  and  $k_2^{\square}$ , with  $\{k_1^{\square}, k_2^{\square}\} \neq \{0,0\}$ , such that

Ans: (i) Any arbitrary value of  $k_1^{\Box} = k_2^{\Box} \neq 0$  will do. (ii).

They are linearly dependent, since there exist values of  $\{k_1^{\Box}, k_2^{\Box}\} \neq \{0,0\}$  such that  $X_1^T = -(k_2^{\Box}/k_1^{\Box})X_2^T$ . Any pairs of vectors that are parallel or antiparallel is not linearly independent.

Note that when, say for example, the set of 3 vectors  $\{K_1^{\square}, K_2^{\square}, K_3^{\square}\}$  are not lienarly independent, any of the vector in the set can be expressed as linear combination of the rest, e.g.,

$$x_1^{\Box} K_1^{\Box} + x_2^{\Box} K_2^{\Box} + x_3^{\Box} K_3^{\Box} = 0$$
  
 $\Rightarrow K_3^{\Box} = -(x_1^{\Box} K_1^{\Box} + x_2^{\Box} K_2^{\Box})/x_3^{\Box}.$ 

In other words,  $K_3^{\square}$  is not a vector independent from the rest,  $K_2^{\square}$  and  $K_1^{\square}$  (because  $K_3^{\square}$  can be expressed in terms of  $K_1^{\square}$  and  $K_2^{\square}$ )

### Example of linearly independent set of vectors

$$X_1^T = [1, 2, 3], X_2^T = [4, 5, 6].$$

The set of two vectors  $\{X_1^{\square}, X_2^{\square}\}$  is linearly independent.

For  $k_1^{\Box} X_1^{\Box} + k_2^{\Box} X_2^{\Box} = [0, 0, 0]_{\Box}^T$ , we need  $k_1^{\Box} + 4k_2^{\Box} = 0$ ,  $2k_1^{\Box} + 5k_2^{\Box} = 0$ ,  $3k_1^{\Box} + 6k_2^{\Box} = 0$ . The only possible solution is  $k_1^{\Box}$ ,  $k_2^{\Box}$  both being zero. This means that for  $k_1^{\Box} X_1^{\Box} + k_2^{\Box} X_2^{\Box} = [0, 0, 0]_{\Box}^T$ , the coefficients  $\{k_1^{\Box}, k_2^{\Box}\}$  must be all zero. This proves the linearly independence of  $X_1^{\Box}$  and  $X_1^{\Box}$ .

Refer (9.5) in page 69, Ayres. Given a set of m vectors, we want to know whether they are linearly independent or otherwise. What is the easiest way (or one of the easier ways) to determine the linear independence of such a set of vectors?

Ans: Use row elementary operations to reduce the matrix A formed by these vectors to RREF. The number of non-zero row in the RREF of A is the rank of the matrix A, r. The rank, r, also tells us how many linearly independent vectors are there in the set of m vectors.

If r = m, then the set of this m vectors is linearly independent. If r < m, then the set of m vectors is linearly dependent. See theorem V, page 69, Ayers.

# Example 2.3, Prof. Rosy Teh's note on Linear Algebra, page 33.

Consider the set S containing the following 4 3-vectors:  $K_1^{\square} = [1, 1, 1]^T$ ,  $K_2^{\square} = [1, 3, 5]^T$ ,

 $S=\{K_1^{-}, K_2^{-}, K_3^{-}, K_4^{-}\}$ . (i) Form the matrix K whose rows are made up of the vectors  $K_i^{-}$ , i=1, 2, 3, 4. (ii) Reduce K into RREF. (iii) What is the rank of K? (iv) How many linearly independent vectors are there in the set S? (v) Are the vectors in set S linearly independent?

Answer:

$$K = (K_1^{\square} K_2^{\square} K_3^{\square} K_4^{\square}) = \begin{pmatrix} 1 & 1 & 1 & 5 \\ 1 & 3 & 5 & 3 \\ 1 & 5 & 3 & 1 \end{pmatrix}.$$

RREF(K)=
$$\begin{pmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
. Obviously, the rank of matrix K is  $r=3$ .

Since the number of vectors in S, m = 4 is larger than the number of linearly independent vectors, r = 3, the set of vectors in S is **NOT linearly independent** by the virtue of theorem V, page 69, Ayers.

In the above example, the set of vectors  $S=\{K_1^{\square}, K_2^{\square}, K_3^{\square}, K_4^{\square}\}$  is proven to be not linearly independent. Now we ask another different question: is the set of vector  $R = \{K_1^{\square}, K_2^{\square}, K_3^{\square}\}$  linearly independent? To answer the question, we perform the following calculation:

$$K1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad K2 = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}, \quad K3 = \begin{pmatrix} 1 \\ 5 \\ 3 \end{pmatrix}$$
$$K = (K1 \quad K2 \quad K3) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 5 \\ 1 & 5 & 3 \end{pmatrix}$$

$$K = (K1 \ K2 \ K3) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 5 \\ 1 & 5 & 3 \end{pmatrix}$$

m = number of vectors forming the matrix K = 3

$$RREF[K] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Hence Rank  $\lceil K \rceil$  is r = 3

Since r = m = 3 the set of vectors  $\{K1, K2, K3\}$  is linearly independent, by the virtue of theorem V, page 69, Ayers.

Is the set of vector  $R = \{K_1^{\square}, K_2^{\square}, K_4^{\square}\}$  linearly independent? To answer the question:

$$K1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad K2 = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}, \quad K4 = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix}$$
$$K = \begin{pmatrix} K1 & K2 & K4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 5 \\ 1 & 3 & 3 \\ 1 & 5 & 1 \end{pmatrix}$$

$$K = (K1 \ K2 \ K4) = \begin{pmatrix} 1 & 1 & 5 \\ 1 & 3 & 3 \\ 1 & 5 & 1 \end{pmatrix}$$

m = number of vectors forming the matrix K = 3

RREF 
$$[K] = \begin{pmatrix} 1 & 0 & 6 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

Rank  $\lceil K \rceil$  is  $r = 2 \neq m = 3$ 

Hence the set of vector K is not linearly independent.

Is the set of vector  $R = \{K_1^{\square}, K_2^{\square}\}$  linearly independent?

$$K1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad K2 = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}$$

$$K = (K1 \ K2) = \begin{pmatrix} 1 & 1 \\ 1 & 3 \\ 1 & 5 \end{pmatrix}$$

$$m = number of vectors forming the matrix  $K = 2$ 

$$RREF[K] = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$Hence Rank [K] is  $r = 2$$$$$

Since r = m = 2, the set of vectors in K is linearly independent

The span of the vector space  $V_3(R)$  by a set of 4 3-vectors (Refer to example 2.2, page 33, Prof. Rosy Teh's lecture note on Linear Algebra)

Consider the same set containing 4 3-vectors:  $K_1^{\Box} = [1, 1, 1]^T$ ,  $K_2^{\Box} = [1, 3, 5]^T$ ,  $K_3^{\Box} = [1, 5, 3]^T$ ,  $K_4^{\Box} = [5, 3, 1]^T$ . Does the vectors  $\{K_1^{\Box}, K_2^{\Box}, K_3^{\Box}, K_4^{\Box}\}$  span the vector space  $V_3(R)$ ?

In other words, can any arbitrary vector living in  $V_3(R)$  be expressed as a linear combination of  $\{K_1^{\square}, K_2^{\square}, K_3^{\square}, K_4^{\square}\}$ ? If yes,  $\{K_1^{\square}, K_2^{\square}, K_3^{\square}, K_4^{\square}\}$  is said to span  $V_3(R)$ , else, it does not.

Let an arbitrary vectors in  $V_3(R)$  is denoted by a column vector with components a, b, c which are not all zero,  $H = [a, b, c]^T$ . Then we form a linear combination of  $\{K_1^{\square}, K_2^{\square}, K_3^{\square}, K_4^{\square}\}$  and equate them to H,

$$x_1 K_1^{\Box} + x_2 K_2^{\Box} + x_3 K_3^{\Box} + x_4 K_4^{\Box} = H.$$

If putting the column vectors  $K_i^{\Box}$  into a matrix K,

$$K = (K_1^{\square} K_2^{\square} K_3^{\square} K_4^{\square}) = \begin{pmatrix} 1 & 1 & 1 & 5 \\ 1 & 3 & 5 & 3 \\ 1 & 5 & 3 & 1 \end{pmatrix},$$

then  $x_1 K_1^{\square} + x_2 K_2^{\square} + x_3 K_3^{\square} + x_4 K_4 = H$  can be compactly expressed as a non-homogeneous equation in matrix form,

$$KX = H$$

where 
$$X$$
 is  $\begin{pmatrix} x1 \\ x2 \\ x3 \\ x4 \end{pmatrix}$ .

The rank of the matrix K can be deduced from it RREF,

**RREF** [ K ] = 
$$\begin{pmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
, which tells us that Rank[K]=3.

So is the rank of the augmented matrix  $[K \mid H]$  can be deduced from it RREF  $[K \mid H]$ ,

RREF 
$$[K \mid H] = \begin{pmatrix} 1 & 0 & 0 & 6 & \frac{4a}{3} - \frac{b}{6} - \frac{c}{6} \\ 0 & 1 & 0 & -1 & -\frac{a}{6} - \frac{b}{6} + \frac{c}{3} \\ 0 & 0 & 1 & 0 & \frac{1}{6} & (-a + 2b - c) \end{pmatrix}$$
, which tells us that Rank $[K \mid H] = 3$ .

Hence the non-homogeneous equation KX = H is consitent (i.e., non-trivial solutions X exist). This means the set of vectors spans  $V_3(R)$ . In other words, given any arbitrary vector  $H = [a, b, c]^T$ , it can always be expressed as a linear combanation based on the vectors  $\{K_1^{\square}, K_2^{\square}, K_3^{\square}, K_4^{\square}\}$ .

Note: The exact values of  $x_1$ ,  $x_2$ ,  $x_3$ ,  $x_4$  are not important here. What is important is that the non-trivial solution, X, exist.

Note: In the discussion of whether the set of vector  $\{K_1^{\square}, K_2^{\square}, K_3^{\square}, K_4^{\square}\}$  span  $V_3^{\square}(R)$  we do not care whether the vectors  $\{K_1^{\square}, K_2^{\square}, K_3^{\square}, K_4^{\square}\}$  are linearly independent. This is a different question at all, and has to be considered separately.

In the example above, the set of vectors  $S=\{K_1^{\square}, K_2^{\square}, K_3^{\square}, K_4^{\square}\}$  is proven to span  $V_3^{\square}(R)$ . We ask another different question: does the set of vector  $R=\{K_1^{\square}, K_2^{\square}, K_3^{\square}\}$  span  $V_3^{\square}(R)$ ? To answer the question:

$$K1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad K2 = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}, \quad K3 = \begin{pmatrix} 1 \\ 5 \\ 3 \end{pmatrix}$$

$$K = (K1 \quad K2 \quad K3) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 5 \\ 1 & 5 & 3 \end{pmatrix}$$

$$H \quad is \quad \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \quad X \quad is \quad \begin{pmatrix} x1 \\ x2 \\ x3 \end{pmatrix}.$$

$$KX = H = \begin{pmatrix} 1 & 1 & 5 \\ 1 & 3 & 3 \\ 1 & 5 & 1 \end{pmatrix} \begin{pmatrix} x1 \\ x2 \\ x3 \end{pmatrix} = \begin{pmatrix} x1 + x2 + 5 & x3 \\ x1 + 3 & x2 + 3 & x3 \\ x1 + 5 & x2 + x3 \end{pmatrix} = \Box \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$$

**RREF** [ 
$$K$$
 ] =  $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$   $\Rightarrow$  Rank[ $K$ ]=3.

RREF 
$$[K \mid H] = \begin{pmatrix} 1 & 0 & 0 & \frac{4a}{3} - \frac{b}{6} - \frac{c}{6} \\ 0 & 1 & 0 & -\frac{a}{6} - \frac{b}{6} + \frac{c}{3} \\ 0 & 0 & 1 & \frac{1}{6} & (-a + 2b - c) \end{pmatrix}$$
  $\Rightarrow$  Rank $[K|H] = 3$ .

Hence the non-homegeneous system K X = H is consistent. There is non-trivial solution X=[x1,x2,x3] T such that any arbitray vector H can be expressed as a linear combination of K1, K2 and K3,  $H = K \cdot X \cdot By$  definition, the set of vectors  $\{K1, K2, K3\}$  spans  $S=V_{-}3(R)$ .

In the example above, the set of vectors  $S=\{K_1^{\square}, K_2^{\square}, K_3^{\square}\}$  is proven to span  $V_3^{\square}(R)$ . We ask another different question: does the set of vector  $R=\{K_1^{\square}, K_2^{\square}, K_4^{\square}\}$  spans  $V_3^{\square}(R)$ ? To answer the question:

$$K = (K1 \ K2 \ K4) = \begin{pmatrix} 1 & 1 & 5 \\ 1 & 3 & 3 \\ 1 & 5 & 1 \end{pmatrix}$$

H is 
$$\begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
, X is  $\begin{pmatrix} x1 \\ x2 \\ x3 \end{pmatrix}$ 

$$K X = H = KX = \begin{pmatrix} x1 + x2 + 5 & x3 \\ x1 + 3 & x2 + 3 & x3 \\ x1 + 5 & x2 + x3 \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

$$[K | H] = \begin{pmatrix} 1 & 1 & 5 & a \\ 1 & 3 & 3 & b \\ 1 & 5 & 1 & c \end{pmatrix},$$

**RREF** [ 
$$K$$
 ] =  $\begin{pmatrix} 1 & 0 & 6 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ , Rank[ $K$ ] = 2.

RREF 
$$[K \mid H] = \begin{pmatrix} 1 & 0 & 6 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
, Rank  $[K \mid H] = 3$ 

"Hence the non-homegeneous system K X = H is NOT consistent because  $Rank \lceil K \rceil H$  is not equal to  $Rank \lceil K \rceil$ .

There is NO solution X=[x1,x2,x3] ^T such that any arbitrary vector H can be expressed as linear combination of K1, K2 and K3, H = K.X. By definition, the set of vectors  $\{K1,\ K2,\ K4\}$  does not spans  $S=V\_3(R)$ ."

Does the set of vector  $R = \{K_1^{\square}, K_2^{\square}\}$  span  $V_3^{\square}(R)$ ? To answer this question:

$$K = \begin{pmatrix} 1 & 1 \\ 1 & 3 \\ 1 & 5 \end{pmatrix}, X = \begin{pmatrix} x1 \\ x2 \end{pmatrix}, H = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

$$[K | H] = \begin{pmatrix} 1 & 1 & a \\ 1 & 3 & b \\ 1 & 5 & c \end{pmatrix}$$

RREF 
$$[K] = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, Rank  $[K] = 2$ 

RREF 
$$[K \mid H] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, Rank  $[K \mid H] = 3$ .

Hence the non-homegeneous system K X = H is NOT consistent because Rank $[K \mid H]$  is not equal to Rank [K]. \nThere are no non-trivial solution for K X = H

It is not possible to expressed H in terms of linear combination of K1, K2 in  $S=V_3(R)$ . By definition, the set of vector  $\{K1, K2\}$  does not span  $V_3(R)$ .

#### **Conclusion:**

 $\{K_1^{\square}, K_2^{\square}, K_3^{\square}, K_4^{\square}\}$  span  $V_3^{\square}(R)$ , and is not linearly independent.

 $\{K_1^{\square}, K_2^{\square}, K_3^{\square}\}$  span  $V_3^{\square}(R)$ , and is linearly independent.

 $\{K_1^{\square}, K_2^{\square}, K_4^{\square}\}$  does not span  $V_3^{\square}(R)$ , and is not linearly independent.

 $\{K_1^{\square}, K_2^{\square}\}$  does not span  $V_3^{\square}(R)$ , and is linearly independent.

**Definition:** The minimum number of linearly independent vector to span a space is the dimension of the vector space. In the above example, the vector space  $V_3^{-}(R)$  has a dimension of 3, because that is the minimum of linearly independent vectors that is required to span it.

**Definition:** Consider a vector space V with dimension r. A set of r linearly independent vectors in V is called the basis (or basis set) of the vector space. It happens that given any set of r vectors, which are linearly independent, they (i) will form a basis set for V, and (ii) any vector in V can be expressed as a unique linear combination in this set of r vectors.

 $\{K_1^{\square}, K_2^{\square}, K_3^{\square}\}$  are basis vectors in  $V_3^{\square}(R)$ , as any abitrary vector H in  $V_3^{\square}(R)$  can be expressed as a linear combination of  $\{K_1^{\square}, K_2^{\square}, K_3^{\square}\}$ . There are many other sets of basis vector in  $V_3^{\square}(R)$ , other than  $\{K_1^{\square}, K_2^{\square}, K_3^{\square}\}$ , as long as the set of vectors is linearly independent and spans  $V_3^{\square}(R)$ . For example, the set of vectors  $\{[1, 0, 0]^T,$  $[0, 1, 0]^T$ ,  $[0, 0, 1]^T$ } is a good example of basis vectors.  $\{K_1^{\square}, K_2^{\square}, K_4^{\square}\}$ ,  $\{K_1^{\square}, K_2^{\square}, K_3^{\square}, K_4^{\square}\}$ , according to the definition, are not basis vectors in  $V_3^{\square}(R)$ .