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PUSAT PENGAJIAN SAINS FIZIK 

UNIVERSITI SAINS MALAYSIA 
 

First Semester, 2016/17 Academic Session  
 
 
 
COURSE DETAILS 
 
Course name:  Calculus 
 
Course code:   ZCA 110 
 
Credit hours:   4 (i.e. 4 lectures per week for 14 weeks, plus tutorial  

sessions) 
 
 

LECTURERS 
 
 Three separate classes for ZCA 110 (Groups: A, B, and C) handled concurrently by 

three lecturers:  
 

A group: Dr. Norhaslinda Mohamed Tahrin (NMT)  
B group: Dr. Yoon Tiem Leong (YTL) 
C group: Dr. Wong Khai Ming (WKM)   

 
 

COURSE DESCRIPTIONS 
 
 A core course offered by School of Physics 
 Course conducted in English, but the students can answer the final exam either in  

Bahasa Malaysia or English 
 
Duration:   5th September 2016 – 16th December 2016  
 
Semester Break:  24th – 30th October 2016 
 
Meeting times:  Mon 12.00 noon – 12.50 pm  
    Wed 9.00 – 9.50 am  
    Thurs 11.00 – 11.50 am  
    Fri     11.00 – 11.50 am  
 
Pre-requisite: None, BUT will assume that students are familiar with basic 

mathematics at STPM or Matrikulasi level (i.e. arithmetic of 
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addition, subtraction, division and multiplication; basic 
algebra, geometry, trigonometry, simple differentiation, and 
integration) 

 
E-learn:  For updates, announcements, assignments, etc. 
 
 

CONTENTS 
 
Preliminaries: Sets, real numbers, rational and complex numbers (read the 

Appendix section of Thomas’ calculus) 
 
The Calculus course offered by School of Physics covers the following topics: 
 
 Functions, limits, and continuity   
 Differentiation and its applications 
 Integration, techniques of integration, and its applications 
 Transcendental functions 
 Sequences and series 
 
 

OBJECTIVES 
 
1. Differentiation: learn the different rules of differentiation, and its applications 
 
2. Integration: learn the different techniques of integration, and its applications 
 
3. To learn the calculus of transcendental functions, and the basic concepts on 

series  
 
 
COURSE EXPECTATIONS 
 
After completing this course, students should be: 
 
 Well-versed in the so-called foundation mathematics that will be needed for 

numerous applications in physics 
 
 Well-prepared for more advanced mathematics courses as well (e.g. ZCT 112/3, 

ZCT 210/4, ZCT 219/4, etc.) 
 
 

CONSULTATION HOURS 
 
Consult your respective lecturers for details. 
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ASSESSMENT 
 

 
COMPONENTS 
 

DESCRIPTION 
 

WEIGHTAGE  

 
Course work 

 
Three (3) tests – 15% (at 5% each) 
Quizzes – 5% 
Assignments – 20% 
 

40% 

 
Final examination 
 

Will cover all topics 
 

60% 

 
Attendance 
 

 
 will be recorded 
 students missing tests without 

valid reasons/M.C. will get zero 
 students with attendance less 

than 70% will be barred from 
sitting for the final examination 

 

 

 
Total  

 

 
100% 

 
 
 
 
TESTS 
 
  

Dates 
 

 
Time 

 
Venue 

 
Test 1  
 

 
21st October 2016 (F) 

 
11.00 – 12.00 noon 

 
E41* 

 
Test 2  
 

 
28th November 2016 (M) 

 
12.00 – 1.00 pm 

 
E41* 

 
Test 3  
 

 
9th December 2016 (F) 

 
11.00 – 12.00 noon 

 
E41* 

* Basement of PHS II (Adjacent to Eureka building) 
 

Note:  All students (A, B, C groups) will sit for the same tests and final examination. 
Topics covered will be announced later. 
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ASSIGNMENTS and TUTORIALS 
 
 About eight (8) assignments to be completed by students throughout the course 

duration 
 Students are required to submit them to the respective lecturers 
 All assignments will be graded by the tutors 
 Assignments received after the respective due date will not be graded (which means 

that you will get zero for that particular assignment)  
 Tutorial sessions – each session is to be held during one of the usual lecture hours.  

Details of which will be announced later by your respective lecturers 
 
 

REFERENCES 
 
Main textbook 
  
Thomas' Calculus Early Transcendentals, 11th Edition, G.B. Thomas, as revised by 
MD Weir, J Hass and F.R. Giordano, Pearson International Edition, 2008 
 
Additional references 
 
1.  S.L. Salas, E. Hille, and G.J. Etgen, Calculus, John Wiley & Sons, New York, 9th 

Edition, 2003, John Wiley & Sons. 
 
2.  Edwards and Penny, Calculus, 6th Edition, 2002, Prentice Hall. 
 
3.  Gerald L. Bradley and Karl J. Smith, Calculus, 2nd Edition, 1999, Prentice Hall. 
 
 

Enjoy!  
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Chapter 1

Preliminaries

2

1.3

Functions and Their Graphs

3

Function

 y = f(x)

 f  represents function (a rule that tell us how 

to calculate the value of y from the variable x

 x : independent variable (input of f )

 y : dependent variable (the correspoinding 

output value of f at x)

4

Definition     Domain of the function

The set of D of all possible input values

Definition     Range of the function

The set of all values of f(x) as x varies throughout D
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7

Natural Domain

 When a function y = f(x)is defined and the 

domain is not stated explicitly, the domain is 

assumed to be the largest set of real x-values 

for the formula gives real y-values.

 e.g. compare “y = x2” c.f. “y = x2, x≥0”
 Domain may be open, closed, half open, 

finite, infinite.

8

Verify the domains and ranges of these 

functions
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Graphs of functions

 Graphs provide another way to visualise a 

function

 In set notation, a graph is 

{(x,f(x)) | x D}

 The graph of a function is a useful picture of 

its behaviour.

10

11 12

Example 2 Sketching a graph

 Graph the function y = x2 over the interval 

[-2,2]
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The vertical line test

 Since a function must be single valued over 

its domain, no vertical line can intersect the 

graph of a function more than once.

 If a is a point in the domain of a function f, the 

vertical line x=a can intersect the graph of f in 

a single point (a, f(a)).

14

15

Piecewise-defined functions

 The absolute value function

0

0

x x
x

x x


 

 

16



17

Graphing piecewise-defined functions

 Note: this is just one function with a domain 

covering all real number

  2

0

0 1

1 1

x x

f x x x

x

 


  
 

18

19

The greatest integer function

 Also called integer floor function

 f = [x], defined as greatest integer less than 

or equal to x.

 e.g. 

 [2.4] = 2

 [2]=2

 [-2] = -2, etc.

20

Note: the graph is the blue colour lines, 

not the one in red 



21

Writing formulas for piecewise-defined 

functions

 Write a formula for the function y=f(x) in 

Figure 1.33         

22

23

1.4

Identifying Functions; 

Mathematical Models

24

Linear functions

 Linear function takes the form of 

 y=mx + b

 m, b constants

 m slope of the graph

 b intersection with the y-axis

 The linear function reduces to a constant 

function f = c when m = 0,  
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27

Power functions

 f(x) = xa

 a constant

 Case (a): a = n, a positive integer

28

go back
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Power functions

 Case (b): 

 a = -1 (hyperbola)

 or a=-2

30

go back

31

Power functions

 Case (c): 

 a = ½, 1/3, 3/2, and 2/3

 f(x) = x½ = x (square root) , domain = [0 ≤ x < ∞)
 g(x) = x1/3 = 3x(cube root),  domain = (-∞ < x < ∞)

 p(x) = x2/3= (x1/3)2, domain = ? 

 q(x) = x3/2= (x3)1/2  domain = ?

32
go back
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Polynomials

 p(x)= anx
n + an-1x

n-1 + an-2x
n-2 + a1x + a0

 n nonnegative integer (1,2,3…)

 a’s coefficients (real constants)

 If an  0, n is called the degree of the 

polynomial

34

35

Rational functions

 A rational function is a quotient of two 

polynomials:

 f(x) = p(x) / q(x)

 p,q are polynomials.

 Domain of f(x) is the set of all real number x

for which q(x)  0.

36
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Algebraic functions

 Functions constructed from polynomials 

using algebraic operations (addition, 

subtraction, multiplication, division, and 

taking roots)

38

39

Trigonometric functions

 More details in later chapter

40
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Exponential functions

 f(x) = ax

 Where a > 0 and a  0. a is called the ‘base’.
 Domain (-∞, ∞)

 Range (0, ∞)
 Hence, f(x) > 0

 More in later chapter

42

Note: graphs in (a) are reflections of the 

corresponding curves in (b) about the y-axis. This 

amount to the symmetry operation of x ↔ -x.

43

Logarithmic functions

 f(x) = loga x

 a is the base

 a 1, a >0

 Domain (0, ∞)

 Range (-∞, ∞)
 They are the inverse functions of the 

exponential functions (more in later chapter)

44
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Transcendental functions

 Functions that are not algebraic

 Include: trigonometric, inverse trigonometric, 

exponential, logarithmic, hyperbolic and 

many other functions

46

Example 1

 Recognizing Functions

 (a) f(x) = 1 + x – ½x5

 (b) g(x) = 7x

 (c) h(z) = z7

 (d) y(t) = sin(t–p/4)

47

Increasing versus decreasing functions

 A function is said to be increasing if it rises as 

you move from left to right

 A function is said to be decreasing if it falls as 

you move from left to right

48

y=x2, y=x3; y=1/x, y=1/x2; y=x1/2, y=x2/3
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51

Recognising even and odd functions

 f(x) = x2 Even function as (-x)2 = x2 for all x, 

symmetric about the all x, symmetric about 

the y-axis.

 f(x) = x2 + 1 Even function as (-x)2 + 1 = x2+ 1 

for all x, symmetric about the all x, symmetric 

about the y-axis.

52

Recognising even and odd functions

 f(x) = x. Odd function as (-x) = -x for all x, 

symmetric about origin.

 f(x) = x+1. Odd function ?
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1.5

Combining Functions; 

Shifting and Scaling Graphs

55

Sums, differences, products and quotients

 f, g are functions

 For x D(f )∩D(g), we can define the functions of 

 (f +g) (x) = f(x) + g(x)

 (f - g) (x) = f(x) - g(x)

 (fg)(x) = f(x)g(x),

 (cf)(x) = cf(x), c a real number 



 
 
 

 ,   0
f xf

x g x
g g x

 
  

 

56

Example 1

 f(x) = x, g(x) = (1-x),

 The domain common to both f,g is

 D(f )∩D(g) = [0,1] (work it out)
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59 60

Composite functions

 Another way of combining functions
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63 64

Example 2

 Viewing a function as a composite

 y(x) = (1 – x2) is a composite of 

 g(x) = 1 – x2 and f(x) = x

 i.e. y(x) = f [g(x)] = (1 – x2)

 Domain of the composite function is |x|≤ 1, or 

[-1,1]

 Is f [g(x)] = g [f(x)]?
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Example 3

 Read it yourself

 Make sure that you know how to work out the 

domains and ranges of each composite 

functions listed

66

Shifting a graph of a function

67

Example 4

 (a) y = x2, y = x2 +1 

 (b) y = x2, y = x2 -2 

68
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Example 4

 (c) y = x2, y = (x + 3)2,  y = (x - 3)2

70

71

Example 4

 (d) y = |x|, y = |x - 2| - 1

72
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Scaling and reflecting a graph of a function

 To scale a graph of a function is to stretch or 

compress it, vertically or horizontally.

 This is done by multiplying a constant c to the 

function or the independent variable

74

75

Example 5(a)

 Vertical stretching and compression of the 

graph y = x by a factor or 3

76
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Example 5(b)

 Horizontal stretching and compression of the 

graph y = x by a factor of 3

78

79

Example 5(c)

 Reflection across the x- and y- axes

 c = -1

80
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EXAMPLE 6 

Combining Scalings and Reflections
 Given the function  ƒ(x)=x4-4x3+10  (Figure 

1.60a), find formulas to 

 (a) compress the graph horizontally by a 

factor of 2 followed by a reflection across the 

y-axis (Figure 1.60b).

 (b) compress the graph vertically by a factor 

of 2 followed by a reflection across the x-axis 

(Figure 1.60c).

82

83

1.6

Trigonometric Functions 

84

Radian measure
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87 88

Angle convention

 Be noted that angle will be expressed in 

terms of radian unless otherwise specified.

 Get used to the change of the unit
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The six basic trigonometric 

functions

90

 sine: sinq = y/r

 cosine: cosq = x/r

 tangent: tanq = 

y/x

 cosecant: cscq = r/y

 secant: secq = r/x

 cotangent: cotq = x/y

 Define the trigo 

functions in terms of 

the coordinates of the 

point P(x,y) on a circle 

of radius r

Generalised definition of the six trigo 

functions

91 92

Mnemonic to remember when the basic trigo 

functions are positive or negative
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95

Periodicity and graphs of the trigo 

functions

Trigo functions are also periodic.

96
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Parity of the trigo functions

The parity is easily deduced 

from the graphs.

98

Identities

Applying  

Pythagorean theorem 

to the right triangle 

leads to the identity

99

Dividing identity (1) by cos2q and sin2q in 

turn gives the next two identities

There are also similar formulas for cos (A-B) and sin 

(A-B). Do you know how to deduce them? 100

Identity (3) is derived by setting A = B in (2)

Identities (4,5) are derived by combining (1) and (3(i))
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Law of cosines

c2= (b-acosq )2 + (asinq)2

= a2+b2 -2abcosq
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Chapter 2

Limits and Continuity

2

2.1

Rates of Change and Limits

3

Average Rates of change and Secant Lines

 Given an arbitrary function y=f(x), we 

calculate the average rate of change of y

with respect to x over the interval [x1, x2] 

by dividing the change in the value of y, y, 

by the length x

4
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Example 4

 Figure 2.2 shows how a population of fruit 

flies grew in a 50-day experiment. 

 (a) Find the average growth rate from day 23 

to day 45.

 (b) How fast was the number of the flies 

growing on day 23?

6

7

The grow rate at day 23 is calculated by examining the 

average rates of change over increasingly short time 

intervals starting at day 23. Geometrically, this is 

equivalent to evaluating the slopes of secants from P to Q

with Q approaching P.

Slop at P ≈ (250 - 0)/(35-14) 

= 16.7 flies/day

8

Limits of function values

 Informal definition of limit:

 Let f be a function defined on an open 

interval about x0, except possibly at x0

itself. 

 If f gets arbitrarily close to L for all x

sufficiently close to x0, we say that f

approaches the limit L as x approaches x0

 “Arbitrarily close” is not yet defined here 

(hence the definition is informal).

0

lim ( )
x x

f x L



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Example 5

 How does the function behave near x=1?

 Solution:

2
1

( )
1

x
f x

x






   1 1
( ) 1   fo r  1

1

x x
f x x x

x

 
   


10

We say that f(x) approaches the limit 2 as x

approaches 1,
2

1 1

1
lim ( ) 2    o r    lim 2

1x x

x
f x

x 


  



11 12

Example 6
 The limit value does not depend on how the 

function is defined at x0.
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Example 7

 In some special cases         f(x) can be evaluated by 
calculating f (x0). For example, constant function, 
rational function and identity function for which x=x0 is 
defined

 (a) limx→2 (4) = 4 (constant function)

 (b) limx→-13 (4) = 4 (constant function)

 (c) limx→3 x = 3 (identity function)

 (d) limx→2 (5x-3) = 10 – 3 =7 (polynomial function of 
degree 1)

 (e) limx→ -2 (3x+4)/(x+5) = (-6+4)/(-2+5) =-2/3 (rational 
function)

0

l im
x x

14

15

Jump
Grow to 

infinities
Oscillate

Example 9

 A function may fail to have a limit exist at a 

point in its domain.

16

2.2

Calculating limits using 

the limits laws
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The limit laws

 Theorem 1 tells how to calculate limits of 

functions that are arithmetic combinations of 

functions whose limit are already known.

18

19

Example 1 Using the limit laws

 (a) limx→ c (x3+4x2-3) 

= limx→ c x
3 + limx→ c 4x2- limx→ c 3 

(sum and difference rule)

=  c3 + 4c2- 3 

(product and multiple rules)

20

Example 1

 (b) limx→ c (x4+x2-1)/(x2+5)

= limx→ c (x4+x2-1) /limx→ c (x
2+5)

=(limx→c x
4 + limx→cx

2-limx→ c1)/(limx→ cx
2 + limx→ c5)

= (c4 +c2 - 1)/(c2 + 5)
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Example 1

 (c) limx→ -2 (4x2-3) =  limx→ -2 (4x2-3)     

Power rule with r/s = ½

=  [limx→ -2 4x2 - limx→ -2 3]

=  [4(-2)2 - 3] = 13

22

23 24

Example 2

 Limit of a rational function

3 2 3 2

2 2
1

4 3 ( 1) 4 ( 1) 3 0
lim 0

5 ( 1) 5 6x

x x

x 

     
  

  
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Eliminating zero denominators 

algebraically

26

Example 3 Canceling a common 

factor
 Evaluate

 Solution: We can’t substitute x=1 since

f (x = 1) is not defined. Since x1, we can 

cancel the common factor of x-1:

2

2
1

2
lim
x

x x

x x

 



   
 

 2

2
1 1 1

1 2 22
lim lim lim 3

1x x x

x x xx x

x x x x x  

   
  

 

27 28

The Sandwich theorem
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Example 6

 (a) 

 The function y =sin q is sandwiched between 
y = |q | and y= -|q | for all values of q . Since 
limq→0 (-|q |) = limq→0 (|q |) = 0, we have  
limq→0 sin q  0.

 (b) 

 From the definition of cos q, 

0 ≤ 1 - cos q ≤ |q | for all q, and we have the 
limit limx→0 cos q = 1

31 32

Example 6(c)

 For any function f (x), if  limx→0 (|f (x) |) = 0, 

then limx→0 f (x) = 0 due to the sandwich 

theorem.

 Proof: 

 -|f (x)| ≤ f (x) ≤ |f (x)|

 Since limx→0 (|f (x) |) = limx→0 (-|f (x) |) = 0 

  limx→0 f (x) = 0 
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2.3

The Precise Definition of a Limit

34

Example 1 A linear function

 Consider the linear function y = 2x – 1 near x0

= 4. Intuitively it is close to 7 when x is close 

to 4, so limx0 (2x-1)=7. How close does x

have to be so that y = 2x -1 differs from 7 by 

less than 2 units?

35

Solution

 For what value of x

is |y-7|< 2? 

 First, find |y-7|<2 in terms

of x: 

|y-7|<2 ≡ |2x-8|<2

≡ -2< 2x-8 < 2

≡ 3 < x < 5

≡ -1 < x - 4 < 1

Keeping x within 1 unit 

of x0 = 4 will keep y within 

2 units of y0=7.

36

Definition of  limit
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Definition of  limit

38

• The problem of proving L as the 
limit of f (x) as x approaches x0 is a 
problem of proving the existence of 
d, such that whenever  

• x0 – d < x< x0+d, 

• L+ < f (x) < L- for any arbitrarily 
small value of .

• As an example in Figure 2.13, given 
 = 1/10, can we find a 
corresponding value of d ?

• How about if  = 1/100?  = 1/1234? 

• If for any arbitrarily small value of 
we can always find a corresponding 
value of d, then we has successfully 
proven that L is the limit of f as x 
approaches x0

39 40

Example 2 Testing the 

definition

 Show that 

 
1

lim 5 3 2
x

x


 
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Solution

 Set x0=1, f(x)=5x-3, L=2.

 For any given , we have to

find a suitable d > 0 so that

whenever 

0<| x – 1|< d, x1,

f(x) is within a distance  
from L=2, i.e. 

|f (x) – 2 |< . 

42

 First, obtain an open interval (a,b) in which 

|f(x) - 2|<  ≡ |5x - 5|<  ≡ 
- /5< x - 1<  /5 ≡ - /5< x – x0<  /5

x0x0- /5 x0+  /5
( )

x

a
b

 choose d <  / 5. This choice will guarantee that 

|f(x) – L| <  whenever x0–d < x < x0 + d.

We have shown that for any value of  given, we can

always find a corresponding value of d that meets the 

“challenge” posed by an ever diminishing . This is a  

proof of existence. 

Thus we have proven that the limit for f(x)=5x-3 is L=2 

when x  x0=1.

43

Example 3(a)

 Limits of the identity 

functions

 Prove 

0

0
lim
x x

x x




44

Solution

 Let  > 0. We must 

find d > 0 such that for 

all x, 0 < |x-x0|< d
implies |f(x)-x0|< ., 

here, f(x)=x, the 

identity function.

 Choose d <  will do 

the job.

 The proof of the 

existence of d proves

0

0
lim
x x

x x



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Example 3(b)

 Limits constant functions

 Prove 

0

lim   (  c o n s ta n t)
x x

k k k




46

Solution

 Let  > 0. We must 
find d > 0 such that for 
all x, 0 < |x-x0|< d
implies |f(x)- k|< ., 
here, f(x)=k, the 
constant function.

 Choose any d will do 
the job. 

 The proof of the 
existence of d proves

0

lim
x x

k k




47

Finding delta algebraically for given 

epsilons

 Example 4: Finding delta algebraically

 For the limit

find a d > 0 that works for  = 1. That is, find a 

d > 0 such that for all x,

5

lim 1 2
x

x


 

0 5 0 1 2 1x xd       

48
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Solution

 d is found by working backward:

50

Solution

 Step one: Solve the inequality |f(x)-L|<

 Step two: Find a value of d > 0 that places the open 

interval (x0-d, x0+d ) centered at x0 inside the open 

interval found in step one. Hence, we choose d = 3 

or a smaller number

0 1 2 1 2 1 0x x      

Interval found in 

step 1

x0=5
d 3 d 3By doing so, the 

inequality 0<|x - 5| < d
will automatically place 

x between 2 and 10 to 

make 0 ( ) 2 1f x  

51

Example 5

 Prove that 

 

 

2

2

lim 4  if  

2

1 2

x

f x

x x
f x

x




 
 



52

Solution

 Step one: Solve the 
inequality |f(x)-L|< :

 Step two: Choose 

 d  min [2-(4-), (4+) –
2] 

For all x that obey

 0 < |x - 2| < d
  |f(x)-4|<
 This completes the proof.

2
0 2 4 4 , 2x x x          
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2.4

One-Sided Limits and                          

Limits at Infinity

54

Two sided limit 

does not exist for y;

But 

y does has two one-

sided limits

 
0

lim 1
x

f x




 
0

lim 1
x

f x


 

55

One-sided limits

Right-hand limit Left-hand limit

56

Example 1

 One sided limits of a semicircle

No left hand 

limit at x= -2;

No two sided 

limit at x= -2;

No right hand 

limit at x=2;

No two sided 

limit at x= 2;
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Example 2
 Limits of the 

function graphed 

in Figure 2.24

 Can you write 

down all the limits 

at x=0, x=1, x=2, 

x=3, x=4?

 What is the limit at 

other values of x?

59

Precise definition of  one-sided 

limits

60
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Limits involving (sinq)/q

63

Proof

Area OAP = ½ sinq

Area sector OAP = q /2

Area OAT = ½ tanq

½ sinq <q /2 < ½ tanq

1 <q /sinq < 1/cosq

1 > sinq /q > cosq

Taking limit q 0, 

00

s in s in
lim 1 lim

qq

q q

q q 
  64

Example 5(a)

 Using theorem 7, show that 

0

c o s 1
lim 0
h

h

h



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Example 5(b)

 Using theorem 7, show that 

0

s in 2 2
lim

5 5x

x

x


66

Finite limits as x→∞

67

Precise definition

68



69

Example 6

 Limit at infinity for 

 (a) Show that

 (b) Show that  

1
( )f x

x


1
lim 0
x x 



1
lim 0

x x  


70

71

Example 7(a)

 Using Theorem 8

1 1
lim 5 lim 5 lim 5 0 5
x x xx x     

 
      

 

72

Example 7(b)

2 2

3 1
lim 3 lim

1 1
3 lim lim

3 0 0 0

x x

x x

x x

x x








   

   



 

   
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Limits at infinity of rational functions

 Example 8

   
 

   
 

2
2

2 2

2

2

5 8 / 3 /5 8 3
lim lim

3 2 3 2 /

5 lim 8 / lim 3 / 5 0 0 5

3 0 33 lim 2 /

x x

x x

x

x xx x

x x

x x

x

   

   

 

  
 

 

   
  



74

go back

75

Example 9

 Degree of numerator  less than degree of 

denominator

3

1 1 2
lim lim ... 0

2 1x x

x

x   


 



76
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1
lim 0
x x 



1
lim 0

x x  


Horizontal asymptote

 x-axis is a horizontal 

asymptote

78

Figure 2.33 has the line y=5/3 as a horizontal 

asymptote on both the right and left because 

5
lim ( )

3x

f x
 


5

lim ( )
3x

f x
  



79

Oblique asymptote

 Happen when the degree of the numerator 

polynomial is one greater than the degree of 

the denominator

 By long division, recast f (x) into a linear 

function plus a remainder. The remainder 

shall → 0 as x → ∞. The linear function is 
the asymptote of the graph.

80

 Find the oblique asymptote for

 Solution

2
2 3

( )
7 4

x
f x

x






 

 

lin e a r  fu n c tio n

2
2 3 2 8 1 1 5

( )
7 4 7 4 9 4 9 7 4

2 8 1 1 5
lim ( ) lim lim

7 4 9 4 9 7 4

2 8 2 8
               lim 0 lim

7 4 9 7 4 9

x x x

x x

x
f x x

x x

f x x
x

x x

        

     

  
    

  

 
   

 

   
       

   

Example 12
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2.5

Infinite Limits and Vertical Asymptotes

82

Infinite limit

83

Example 1
 Find 

1 1

1 1
lim  an d  lim

1 1x xx x
   

84

Example 2 Two-sided infinite limit

 Discuss the behavior of 

 

2

2

1
( )       ( )  n e a r  0

1
( )       ( )  n e a r  3

3

a f x x
x

b g x x

x

 

  

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Example 3

 Rational functions can behave in various 

ways near zeros of their denominators

   
   

 
 

     

   

   

2 2

2
2 2 2

2
2 2 2

2
2 2

2
2 2

2 2 2
( ) lim =  lim lim 0

4 2 2 2

2 2 1 1
( ) lim =  lim lim

4 2 2 2 4

3 3
( ) lim =  lim    (n o te : > 2 )

4 2 2

3 3
( ) lim =  lim   (n o te : < 2 )

4 2 2

x x x

x x x

x x

x x

x x x
a

x x x x

x x
b

x x x x

x x
c x

x x x

x x
d x

x x x

 

 

  

  

 

 

  
 

   

 
 

   

 
  

  

 
  

  

87

Example 3

   

       

2
2 2

3 2 2
2 2 2

3 3
( ) lim =  lim     lim it  d o e s  n o t e x is t

4 2 2

2 2 1
( ) lim lim lim

2 2 2 2

x x

x x x

x x
e

x x x

x x
f

x x x x

 

  

 

  

 
      

   

88

Precise definition of infinite limits
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91

Example 4

 Using definition of infinit limit

 Prove that 

2
0

1
lim
x x

 

2

G iv e n  > 0 , w e  w a n t to  f in d  > 0  s u c h  th a t  

1
0 | 0 |       im p lie s        

B

x B
x

d

d   

92

Example 4

2

2

2 2

N o w  

1
 if  a n d  o n ly  if  1 / | | 1 /

B y  c h o o s in g  =1 /    

(o r  a n y  s m a lle r  p o s it iv e  n u m b e r) , w e  s e e  th a t  

1 1
| |   im p lie s  

B x B x B
x

B

x B
x

d

d
d

   

  
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Vertical asymptotes

0

0

1
lim

1
lim

x

x

x

x









 

  

94

95

Example 5 Looking for asymptote

 Find the horizontal and vertical asymptotes of 

the curve

 Solution:

3

2

x
y

x






1
1

2
y

x
 



96
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Asymptotes need not be two-sided

 Example 6

 Solution:

2

8
( )

2
f x

x
 



2

8 8
( )

2 ( 2 )( 2 )
f x

x x x
   

  

98

99

Example 8

 A rational function with degree of 

numerator greater than degree of 

denominator

 Solution:

2
3

( )
2 4

x
f x

x






2
3 1

( ) 1
2 4 2 2 4

x x
f x

x x


   

 

remainderlinear

100
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2.6

Continuity

102

Continuity at a point

 Example 1

 Find the points at which the function f in 

Figure 2.50 is continuous and the points at 

which f is discontinuous. 

103 104

 f continuous:

 At x = 0

 At x = 3

 At 0 < c < 4, c  1,2

 f discontinuous:

 At x = 1

 At x = 2

 At x = 4

 0 > c, c > 4

 Why?
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 To define the continuity at any point in a 

function’s domain, we need to define 

continuity at an interior point and continuity at 

an endpoint

106

107 108

Example 2

 A function continuous throughout its domain

2
( ) 4f x x 
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Example 3
 The unit step function has a jump 

discontinuity

111

Summarize continuity at a point in the 

form of a test

For one-sided continuity and continuity at an 

endpoint, the limits in part 2 and part 3 of the 

test should be replaced by the appropriate 

one-sided limits.
112

Example 4

 The greatest integer function, 

 y=int x

 The function is 

not continuous at the 

integer points since limit

does not exist there (left

and right limits not agree)
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Discontinuity types

 (b), (c) removable discontinuity

 (d) jump discontinuity

 (e) infinite discontinuity

 (f) oscillating discontinuity

115

Continuous functions

 A function is continuous on an interval if and 

only if it is continuous at every point of the 

interval.

 Example: Figure 2.56

 1/x not continuous on [-1,1] but continuous 

over (-∞,0)     (0, ∞) 

116
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Example 5

 Identifying continuous function

 (a) f(x)=1/x

 (b) f(x)= x

 Ask: is 1/x continuous over its domain? 

118

119

Example 6

 Polynomial and rational functions are 
continuous

 (a) Every polynomial is continuous by 

 (i)

 (ii) Theorem 9 

 (b) If P(x) and Q(x) are polynomial, the 
rational function P(x)/Q(x) is continuous 
whenever it is defined. 

lim ( ) ( )
x c

P x P c




120

Example 7

 Continuity of the absolute function

 f(x) = |x| is everywhere continuous

 Continuity of the sinus and cosinus function

 f(x) = cos x and sin x is everywhere 

continuous
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Composites

 All composites of continuous functions are 

continuous

122

123

Example 8

 Applying Theorems 9 and 10

 Show that the following functions are 

continuous everywhere on their respective 

domains.

2 / 3

2

4
( ) 2 5       ( )

1

x
a y x x b y

x
   



124

1 / 2

2

( ) ;

( ) ;

( ) 2 5

y x f g

f t t t

g x x x



 

  

g(x) is continuous in all x since it is a polynomial, 

according to Example 6.

f(t) is continuous in all t due to Part 6 in Theorem 9.

Hence, f [g(x)] = is continuous, according to Theorem 

10.  



125

This is the application of theorem 9.

126

127 128

Consequence of root finding

 A solution of the equation f(x)=0 is called a root.

 For example, f(x)= x2 + x - 6, the roots are x=2, x=-3 
since  f(-3)=f(2)=0.

 Say f is continuous over some interval.

 Say a, b (with a < b) are in the domain of f, such that 
f(a) and f(b) have opposite signs. 

 This means either f(a) < 0 < f(b) or f(b) < 0 < f(a)

 Then, as a consequence of theorem 11, there must 
exist at least a point c between a and b, i.e. a < c < 
b such that f(c)= 0. x=c is the root.
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x

y

f(a)<0 a

f(b)>0

b

f(c)=0

c

130

Example

 Consider the function f(x) = x - cos x

 Prove that there is at least one root for  f(x) in the interval [0, 
/2].

 Solution

 f(x) is continuous on (-∞, ∞).

 Say a = 0, b = /2. 
 f(x=0) = -1; f(x = /2) = /2
 f(a) and f(b) have opposite signs

 Then, as a consequence of theorem 11, there must exist at 
least a point c between a and b, i.e. a=0 < c < b= /2 such 
that f(c)= 0. x=c is the root.

131

2.7

Tangents and Derivatives

132

What is a tangent to a curve?

See Mathematica simulation, 2.7_tangent.nb
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135

Example 1: Tangent to a parabola

 Find the slope of the parabola y=x2 at the 

point P(2,4). Write an equation for the 

tangent to the parabola at this point.

136
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y = 4x - 4

138

Example 3

 Slope and tangent to y=1/x, x0

 (a) Find the slope of y=1/x at x = a 0

 (b) Where does the slope equal -1/4?

 (c) What happens to the tangent of the curve 

at the point (a, 1/a) as a changes?

 (see Mathematica simulation, 2.7_tangent.nb)

139 140



 If the limit h 0 of the quotient exists, it is 

called  

141



1

Chapter 3

Differentiation

2

3.1

The Derivative as a Function

3

� The limit 

� when it existed, is called the Derivative of f at x0.
� View derivative as a function derived from f

0 0

0

( ) ( )
lim
h

f x h f x

h→

+ −

4

� If f ' exists at x, f is said to be differentiable 
(has a derivative) at x

� If f ' exists at every point in the domain of f, f 
is said to be differentiable.



5

If write z = x + h, then h = z - x

6

7

Calculating derivatives from the definition

� Differentiation: an operation performed on a 
function y = f (x)

� d/dx operates on f (x)
� Write as

� f ' is taken as a shorthand notation for 

( )
d

f x
dx

( )
d

f x
dx

8

Example 1: Applying the definition

� Differentiate 

� Solution:
( )

1

x
f x

x
=

−

0

0

20

( ) ( )
( ) lim

1 1
lim

1 1
lim

( 1)( 1) ( 1)

h

h

h

f x h f x
f x

h
x h x

x h x
h

x h x x

→

→

→

+ −
′ =

+   −   + − −   =

− −
= =

+ − − −



9

Example 2: Derivative of the square root 

function

� (a) Find the derivative of                   for x>0
� (b) Find the tangent line to the curve         

at x = 4

y x=
y x=

10

11

Notations

( ) ( ) ( ) ( )x

dy df d
f x y f x Df x D f x

dx dx dx
′ ′= = = = = =

( ) ( )
x a x a x a

dy df d
f a f x

dx dx dx= = =

′ = = =

12

Differentiable on an interval; One 
sided derivatives
� A function y = f (x) is differentiable on an 

open interval (finite or infinite) if it has a 
derivative at each point of the interval. 

� It is differentiable on a closed interval [a,b] 
if it is differentiable on the interior (a,b) and 
if the limits 

exist at the endpoints

0

0

( ) ( )
lim

( ) ( )
lim

h

h

f a h f a

h
f b h f b

h

+

−

→

→

+ −

+ −
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� A function has a derivative at a point if an 
only if it has left-hand and right-hand 
derivatives there, and these one-sided 
derivatives are equal.

15

Example 5

� y = |x| is not differentiable at x = 0.
� Solution:
� For x > 0,

� For x < 0,

� At x = 0, the right hand derivative and left hand 
derivative differ there. Hence f(x) not differentiable at 
x = 0 but else where.

| |
( ) 1

d x d
x

dx dx
= =

| |
( ) 1

d x d
x

dx dx
= − = −

16
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Example 6

� is not differentiable at x = 0

� The graph has a vertical tangent at x = 0

y x=

18

When Does a function not have a 

derivative at a point?

19 20

Differentiable functions are 

continuous 

The converse is false: continuity 

does not necessarily implies 

differentiability



21

Example

� y = |x| is continuous everywhere, including x 
= 0, but it is not differentiable there.

22

The equivalent form of Theorem 1

� If f is not continuous at 
x = c, then f is not 
differentiable at x = c.

� Example: the step 
function is 
discontinuous at x = 0, 
hence not differentiable 
at x = 0.

23

The intermediate value property of  

derivatives

� See section 4.4

24

3.2

Differentiation Rules
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Powers, multiples, sums and 

differences

26

Example 1 

27

1In particular, if , ( )n n nd
u x cx cx

dx
−= =

28

Example 3

2 2 1(3 ) 3 2 6
d

x x x
dx

−= ⋅ =

2 2 1( ) 2 2
d

x x x
dx

−= =



29 30

Example 5

3 2

3 2

2

4
5 1

3
4

( ) ( ) (5 ) (1)
3

8
       =3 5

3

y x x x

dy d d d d
x x x

dx dx dx dx dx

x x

= + − +

= + − +

+ −

31

Example 6

� Does the curve y = x4 - 2x2 + 2 have any 
horizontal tangents? If so, where?

32
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Products and quotients

� Note that 
( ) ( )

( ) ( ) ( )

2 2

1

d d
x x x x

dx dx
d d d

x x x x
dx dx dx

⋅ = =

⋅ ≠ ⋅ =

34

Example 7

� Find the derivative of 
21 1

y x
x x
 

= + 
 

35

Example 8: Derivative from numerical 

values

� Let y = uv. Find y '(2) if u(2) =3, u'(2)=-4,  
v(2) = 1, v '(2) = 2

36

Example 9

� Find the derivative of 
( )( )2 31 3y x x= + +
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Negative integer powers of x

� The power rule for negative integers is the 
same as the rule for positive integers

39

Example 11

( ) ( )

( ) ( )

1 1 1 2

3 3 1 4
3

1
1

4
4 4 3 12

d d
x x x

dx x dx

d d
x x x

dx x dx

− − − −

− − − −

  = = − = − 
 

  = = ⋅ − = 
 

40

Example 12: Tangent to a curve

� Find the tangent to the curve
at the point (1,3)

2
y x

x
= +
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Example 13

� Find the derivative of
( )( )2

4

1 2x x x
y

x

− −
=

43

Second- and higher-order derivative

� Second derivative

� nth derivative

( )
2

2

2 2

''( ) '

         '' ( )( ) ( )x

d y d dy d
f x y

dx dx dx dx

y D f x D f x

 
= = = 

 

= = =

( ) ( 1)
n

n n n
n

d d y
y y D y

dx dx
−= = =

44

Example 14

3 2

2

(4)

3 2

3 6

6 6

6

0

y x x

y x x

y x

y

y

= − +

′ = −

′′ = −

′′′ =

=



45

3.3

The Derivative as a Rate of Change

46

Instantaneous Rates of  Change

47

Example 1: How a circle’s area changes 
with its diameter

� A = πD2/4
� How fast does the area change with respect 

to the diameter when the diameter is 10 m?

48

Motion along a line

� Position s = f(t)
� Displacement, ∆s = f(t+ ∆t) - f(t)
� Average velocity 
� vav = ∆s/∆t = [f(t+ ∆t) - f(t)] /∆t
� The instantaneous velocity is the limit of 

vav when ∆t → 0
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51 52
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Example 3

� Horizontal motion

55 56
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Example 4

� Modeling free fall
� Consider the free fall of a heavy ball released 

from rest at t = 0 sec.
� (a) How many meters does the ball fall in the 

first 2 sec?
� (b) What is the velocity, speed and 

acceleration then?

21

2
s gt=

58

59

Modeling vertical motion

� A dynamite blast blows a heavy rock straight up with 
a launch velocity of 160 m/sec. It reaches a height 
of s = 160t – 16t2 ft after t sec.

� (a) How high does the rock go?
� (b) What are the velocity and speed of the rock 

when it is 256 ft above the ground on the way up? 
On the way down?

� (c) What is the acceleration of the rock at any time t 
during its flight?

� (d) When does the rock hit the ground again?

60
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3.4

Derivatives of Trigonometric Functions

62

Derivative of the sine function

0

sin( ) sin
sin lim

h

d x h x
x

dx h→

+ −
= =L

63

Derivative of  the cosine function

0

cos( ) cos
cos lim

h

d x h x
x

dx h→

+ −
= =L

64
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Example 2

( ) 5 cos

( ) sin cos

cos
( )

1 sin

a y x x

b y x x

x
c y

x

= +

=

=
−

66

Derivative of  the other basic 

trigonometric functions

67

Example 5

� Find d(tan x)/dx

68

Example 6

� Find y'' if y = sec x
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Example 7: Finding a trigonometric limit

� Trigonometric functions are differentiable, 
hence are continuous throughout their 
domains. 

� So we can calculate limits of algebraic 
combinations and composites of 
trigonometric functions by direct substitution.

0

2 sec 2 sec0
lim

cos( tan ) cos( tan 0)

2 1 3
     3

cos( 0) 1

x

x

xπ π

π

→

+ +
=

− −

+
= = = −

− −

� Note that you can only evaluate the limit of 
the form

by direct substitution, i.e., 

only when P(x) and Q(x) are both continuous at 
x0 70

0

( )
lim

( )x x

P x

Q x→

0

0

0

( )( )
lim

( ) ( )x x

P xP x

Q x Q x→
=
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3.5

The Chain Rule and                       
Parametric Equations

72

Differentiating composite functions

� Example: 
� y = f(u) = sin u
� u = g(x) = x2 – 4
� How to differentiate F(x) = f ◦ g = f [g(x)]?
� Use chain rule
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Derivative of a composite function

� Example 1: Relating derivatives
� y = (3/2)x = (1/2)(3x) 
� = y[u(x)]
� y(u) = u/2; u(x) = 3x
� dy/dx = 3/2;
� dy/du = ½; du/dx = 3;

� dy/dx = (dy/du)⋅(du/dx) (Not an accident)

74

Example 2

4 2 2 29 6 1 (3 1)y x x x= + + = +
2 2; 3 1y u u x= = +

( )

2 3

4 2 3

2 6

            2(3 1) 6 36 12

c.f.

9 6 1 36 12

dy du
u

du dx

x x x x

dy d
x x x x

dx dx

⋅ = ⋅

= + ⋅ = +

= + + = +

75 76
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Example 3

� Applying the chain rule
� x(t)= cos(t2 + 1). Find dx/dt.
� Solution:
� x(u)= cos(u); u(t)= t2 + 1; 
� dx/dt = (dx/du)⋅(du/dt) = …

78

Alternative form of chain rule

� If y = f [g(x)], then 
� dy/dx = f ' [g(x)]⋅ g' (x)

� Think of f as ‘outside function’,  g as ‘inside-
function’, then 

� dy/dx = differentiate the outside function and 
evaluate it at the inside function let alone; then 
multiply by the derivative of the inside function.

79

Example 4

� Differentiating from the outside in:

2

inside function derivative of 
left alone the inside function

cos ( ) (2 1)
dy

x x x
dx

= + ⋅ +
14243 123

2

2

outside function inside function

sin( ) ( ) [ ( )]

( ) sin ; ( )

'[ ( )] '( )

y x x f u f g x

f u u g x x x

dy
f g x g x

dx

= + = =

= = +

= ⋅

14243 1442443

80

Example 5

� A three-link ‘chain’

� Find the derivative of ( ) tan(5 sin 2 )g t t= −



81

Example 6

� Applying the power chain rule

( )

3 4 7

1

( ) (5 )

1
( ) 3 2

3 2

d
a x x

dx
d d

b x
dx x dx

−

−

 
= − − 
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Example 7

� (a) Find the slope of tangent to the curve 
y= sin5x at the point where x = π/3

� (b) Show that the slope of every line tangent 
to the curve y = 1/(1-2x)3 is positive

83

Parametric equations

� A way of expressing both the coordinates of a 
point on a curve, (x,y) as a function of a third 
variable, t. 

� The path or locus traced by a point particle 
on a curve is then well described by a set of 
two equations:

� x = f(t), y = g(t)

84

The variable t is a parameter for the curve
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Example 9

� Moving 
counterclockwise on a 
circle

� Graph the parametric 
curves

� x=cos t, y = sin t, 
0 ≤ t ≤ 2π

87

Example 10
� Moving along a 

parabola
� x= √ t, y = t,  0 ≤ t
� Determine the relation 

between x and y by 
eliminating t.

� y = t = (t)2 = x2

� The path traced out 
by P (the locus) is 
only half the parabola, 
x ≥ 0

88

Slopes of parametrized curves

� A parametrized curved x = f(t), y = g(t) is 
differentiable at t if f and g are differentiable 
at t.

� At a point on a differentiable parametrised 
curve where y is also a differentiable function 
of x, i.e. y = y(x) = y[x(t)], 

� chain rule relates dx/dt, dy/dt, dy/dx via 

dy dy dx

dt dx dt
= ⋅
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Example 12

� Differentiating with a parameter
� If x = 2t + 3 and  y = t2 – 1, find the value of 

dy/dx at t = 6.

91

(3) is just the parametric formula (2) by 

y → y’=dy/dx

92

Example 14 Finding d2y/dx2 for a 

parametrised curve

� Find d2y/dx2 as a function of t if x = t - t2, 
y = t - t3. 
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3.6

Implicit Differentiation

94

95

Example 1:

Differentiating 

implicitly

� Find dy/dx if y2 = x

96

Example 2

� Slope of a circle at a point
� Find the slope of circle x2 + y2 = 25 at 

(3, -4)
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Example 3

� Differentiating 
implicitly

� Find dy/dx if 
y2 = x2 + sin xy

98

Lenses, tangents, and normal lines

If slop of 
tangent is mt, the 
slope of normal, 
mn, is given by 
the relation 

mnmt= - 1, or 

mn = - 1/ mt

99

� Show that the point (2,4) lies on the curve 
x2 + y3 - 9xy = 0. Then find the tangent and 
normal to the curve there.

Example 4: Tangent and normal to the 

folium of Descartes

100
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� Example 5
� Finding a second derivative implicitly
� Find d2y/dx2 if 2x3 - 3y2 = 8. 

Derivative of higher order

102

Rational powers of differentiable functions

Theorem 4 is proved based on  d/dx(xn) = nxn-1

(where n is an integer) using implicit differentiation

103

� Theorem 4 provide a extension of the power 
chain rule to rational power:

� u≠ 0 if (p/q) < 1, (p/q) rational number,  u a 
differential function of x

/ ( / ) 1p q p qd p du
u u

dx q dx
−=

104

Example 6

� Using the rational power rule
� (a) d/dx (x1/2) = 1/2x-1/2 for x > 0
� (b) d/dx (x2/3) = 2/3 x-1/3 for x ≠ 0
� (c) d/dx (x-4/3) = -4/3 x-7/3 for x ≠ 0
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Proof of Theorem 4

� Let p and q be integers with q > 0 and 

� Explicitly differentiating both sides with 
respect to x…

/p q q py x y x= ≡ =

106

Example 7

� Using the rational power and chain rules
� (a) Differentiate (1-x2)1/4

� (b) Differentiate (cos x)-1/5

107

3.7

Related Rates

108

How rapidly will the fluid level 
inside a vertical cylindrical tank 
drop if we pump the fluid out at 
the rate of 3000 L / min?
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Geometrically, Volume V, is a function of height h, V=V(h)
Height, h, is a function of time, h=h(t). r, radius, is fixed. 

Combining both, V=V[r(t)]

By chain rule, the derivative of V with respect to t is

dV

dt
=
dV

dh

dh

dt

dh

dt
=
dV

dt
/
dV

dh

We are asked to find       , given 
dV

dt
=−3000 L/min

110

In this example, conversion of unit must be taken care of properly

If r = 1 m, 

2

3000 1dh L
=

dt min πr

−
⋅

V=π r
2
h⇒

dV

dh
=π r

2

dh

dt
=
dV

dt
/
dV

dh

dV

dt
=−3000 L/min

1m
3
=1000 L

( )
( )

3 3

2

3000 10 1 3

1

mdh m
= =

dt min π minπ m

−−
⋅ −

If r = 10 m, 
( )

( )

3 3

2

3000 10 1 3

10010

mdh m
= =

dt min π minπ m

−−
⋅ −

111

Draw the scenario and label the relevant 
variables (and name them)

112

y=x tanθ

Geometrically, y is a function of 
angle θ.

θ is a function of time, θ =θ (t). 

x, the horizontal distance,is fixed. 

Combining both, y = y [θ (t)]

By chain rule, the derivative of y
with respect to t is

dy

dt
=
dy

dθ

dθ

dt
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y=x tanθ
dy

dθ
=x sec

2
θ

dy

dt
=x sec

2
θ⋅
dθ

dt

( )Given 0.14 rad/min
dθ

=
dt

( )

( ) ( )

2

2

at / 4,

500ft sec
4

0.14 rad/min

500 ft 2 0.14 rad/min 140ft/min

θ = π

π

dy
=

dt

= =

⋅

⋅ ⋅
Note: radian is dimensionless (hence unit-less) 114

3.8

Linearization and differentials

115

Linearization

� Say you have a very complicated function, 
f(x)=sin (cot 2 x), and you want to calculate 
the value of f(x) at x = π /2 + δ, where δ is a 
very tiny number. The value sought can be 
estimated within some accuracy using 
linearization.

116

Refer to graph Figure 3.47.

� The point-slope equation of the tangent line 
passing through the point (a, f(a)) on a 
differentiable function f at x=a is 

� y = mx + c, where c is c = f(a) - f′ (a) a
� Hence the tangent line is the graph of the 

linear function 
� L(x) =  m     x + c

= f′ (a) x +  [f(a) – a f′ (a)]
= f(a) + f′ (a) (x - a)
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Definitions

� The tangent line L(x) = f(a) + f′ (a) (x - a) 
gives a good approximation to f(x) as long as 
x is not to be too far away from x=a. 

� Or in other words, we say that L(x) is the 
linearization of f at a.

� The approximation f(x) ≈ L(x) of f by L is the 
standard linear approximation of f at a.

� The point x = a is the center of the 
approximation.

118

119

Example 1 Finding Linearization

� Find the linearization of 

� at x = 0.

( ) 1f x x= +

120

( )

( ) ( )
( )

( )

1/ 2

1/ 2

1/ 2

1
( )

2 1

The linearization of ( ) at  is 

1
( ) ( ) ( ) 1

2 1

f x
x

f x x a

f x f a f a x a a x a
a

′ =
+

=

′= + − = + + −
+

0,

1
(0) ; (0) 1;

2
The linearization of ( ) at 0 is ( ) 1 / 2

We write ( ) ( ) 1 / 2

a

f f

f x x a L x x

f x L x x

=

′ = =

= = = +

≈ = +

( ) 1f x x= +
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Accuracy of the linearized approximation

� We find that the approximation of f(x) by 
L(x) gets worsened as |x – a| increases 
(or in other words, x gets further away 
from a).

123

What        is not

� Note that the derivative notation
is not a ratio

� i.e. the derivative of the function y = y(x) with 
respect to x, is not to be understood as the 
ratio of two values, namely, dy and dx. 

� dy/dx here denotes the a new quantity 
derived from y when the operation D = d/dx
is performed on the function y, 
(d/dx)[y] = D [y] 

d

d

y

x

d

d

y

x

124

Differential

� Definition:
� Let y = f(x) be a differentiable function. The 

differential dy is 
� dy = f ′(x)dx

� dy is an dependent variable, i.e., the value of 
dy depends on f ′(x) and dx where dx is 
viewed as an independent variable.

� Once f ′(x) and dx is fixed, then the value of 
differential dy can be calculated. 
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Example 4  Finding the differential dy

� (a) Find dy if y=x5 + 37x.
� (b) Find the value of dy when x=1 and dx =    

0.2

126

dy÷ dx = f ′(x)

� Referring to the definition of the differentials 
dy and dx, if we take the ratio of dy and dx, 
i.e. dy÷ dx, we get
dy÷ dx = f ′(x) dx / dx = f ′(x)  ≡

� In other words, the ratio of the differential dy 
and dx is equal to the derivative by definition.

d

d

y

x

127

Differential of f, df

� We sometimes use the notation df in place of 
dy, so that 

dy = f ′(x) dx 
is now written in terms of 

� df = f ′(x) dx 
� df is called the differential of f

128

Example of  differential of f

� If y = f(x) = 3x2-6, then the differential of f is 
df = f ′(x) dx = 6x dx

� Note that in the above expression, if we take 
the ratio df / dx, we obtain 

� df / dx = f ′(x) = 6x
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The differential form of a function

� For every differentiable function y=f(x), we 
can obtain its derivative,

� Corresponds to every derivative
there is a differential df such that 

d

d

y

x

d

d

y
df dx

x
 

= ⋅ 
 

d d
In addition, if ,  then 

d d

u v
f u v df dx dx

x x
   

= + = ⋅ + ⋅   
   

d

d

y

x
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Example 5

� If y = f(x) = tan 2x, the derivative is 

� Correspond to the derivative, the differential 
of the function, df, is given by the product of 
the derivative dy/dx and the independent 
differential dx:

2d
2sec 2

d

y
x

x
=

( )2d
  (tan  2 )  2sec 2

d

y
df d x dx x dx

x
 

= = ⋅ = ⋅ 
 
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Example 5
� If y = f(x) = x/(x+1), then the differential form 

of the function, 

( ) ( ) ( )

( )

( ) ( ) ( )

( )
( )[ ] ( )

( )

( ) ( )
( )

( ) ( )

( )
( ) [ ]

( ) ( )

2

2 2

2 2 2 2

( )
1

d d
1 1d d d    

1 d 1

d d
1 1 1 1d d

= 
1 1

d
1 1

1 11 1 d

1 1 1 1

x
y f x

x

x x x xx y x xdf d dx dx
x x x

x x dx x x dx x dx x d xx x

x x

x dx x x dx
x dx x dxx dx xd x dxx

x x x x

 
= =  + 

+ − +
   

= = ⋅ = ⋅   +    +

   + ⋅ − + ⋅    + − +      =
+ +

 + − + ⋅  + − ⋅+ − +  = = = =
+ + + +
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dy, df : any difference?

� Sometimes for a given function, y = f(x), 
the notation dy is used in place of the 
notation df. 

� Operationally speaking, it does not matter 
whether one uses dy or df. 
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The derivative dy/dx is not dy divided by 

dx

� Due to the definition of the differentials dy, dx that 
their ratio, dy / dx equals to the derivative of the 
differentiable function  y = f(x), i.e.

� we can then move the differential dy or dx around, 
such as 

� When we do so, we need to be reminded that dy
and dx are differentials, a pair of variables, instead 
of thinking that the derivative          is made up of a 
numerator “dy ” and a denominator “dx ” that are 
separable

d
( ) '( )

d

dy
y f x

dx x
= ≡

( )dy f x dx′=

d
 
d

y
x
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Estimation with differential

� Referring to figure 3.51, geometrically, one can 
sees that if x, originally at x=a, changes by dx
(where dx is an independent variable, the 
differential of x), f(a) will change by 

∆y = f(a+dx) - f(a)
� ∆y can be approximated by the change of the 

linearization of f at x=a, L(x)=f(a)+f ′(a)(x-a),
∆y ≈ ∆L = L(a+dx)-L(a)= f ′(a)dx = df(a)

135 136

∆y ≈ dy allows estimation of f(a+dx) 

� In other words, ∆y centered around x=a is 
approximated by df(a) (≡ dy, where the 
differential is evaluated at x=a):

∆y ≈ dy
� or equivalently,

∆y = f(a+dx) - f(a) ≈ dy = f ′(a)dx
� This also allows us to estimate the value of 

f(a+dx) if f ′(a), f(a) are known, and dx is not 
too large, via 

f(a+dx) ≈ f(a)+ f ′(a)dx
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Example 6

� Figure 3.52
� The radius r of a circle 

increases from a=10 
m to 10.1 m. Use dA
to estimate the 
increase in circle’s 
area A. Estimate the 
area of the enlarged 
circle and compare 
your estimate to your 
true value.

138

r

A(r)

r=a r=a+dr0

A(a+dr)

A(a)

A(a)+A′ (a)dr

A= π r 2

L(x)=A(a)+ A′ (a)(r-a)

∆A=A(a+dr)-A(a) ∆L= A′ (a)dr

dr

139

Solution to example 6

� Let a = 10 m, a+dr = 10.1 m  ⇒ dr = 0.1m
� A(r) = πr2 ⇒ A(a) = π(10 m)2 = 100π cm2

� ∆A ≈ A′(a)dr = 2π (a)dr = 2π (10 m)(0.1 m) = 
=  2π  m2.

� A(a+dr) = A(a) + ∆A ≈ A(a) + A′(a)dr
= 102π  m2 (this is an estimation)

� c.f the true area is π(a+dr)2 = π(10.1)2 = 
102.01π  m2
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Chapter 4

Applications of Derivatives

2

4.1

Extreme Values of Functions

3 4
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Example 1

 Exploring absolute extrema

 The absolute extrema of the following 

functions on their domains can be seen in 

Figure 4.2

6

7 8
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Local (relative) extreme values

11 12

Finding Extrema…with a not-
always-effective method.

Be careful not to misinterpret theorem 2 because 

its converse is false. A differentiable function may 

have a critical point at x = c without having a local 

extreme value there. E.g. at point x = 0 of function 

y = x3.
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How to find the absolute extrema of a continuous 

function f on a finite closed interval

1. Evaluate f at all critical point and endpoints

2. Take the largest and smallest of these values.

15

Example 2: Finding absolute extrema

 Find the absolute maximum and minimum of 

f(x) = x2 on [-2,1].

16

Example 3: 

Absolute extrema at endpoints

 Find the absolute 

extrema values of 

g(t) = 8t - t4 on 

[-2,1].
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Example 4: Finding absolute extrema on a 

closed interval

 Find the absolute maximum and minimum 

values of f (x) = x2/3 on the interval [-2,3].

The point (0,f(0)) is a critical point by definition

18

19

 Not every critical point 

or endpoints signals the 

presence of an extreme 

value.

20

4.2

The Mean Value Theorem
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23 24

Example 1

3

( ) 3
3

x
f x x 

 Horizontal tangents of a 

cubic polynomial
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Example 2 Solution of an equation f(x)=0

 Show that the equation 

has exactly one real solution.

Solution

1. Apply Intermediate value theorem to show that 
there exist at least one root

2. Apply Rolle’s theotem to prove the uniqueness of 
the root.

3
3 1 0x x  

26

27

The mean value theorem

28
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Example 3

 The function 

is continuous for 0 ≤ x≤2 and differentiable for 
0 < x < 2.

At some point c in the interval 0 < x < 2 the 

derivative f ’(x)=2x must have the value (4-

0)/(2-0)=2. 

In this case, f ’(c)=2c = 2. 

That is, at x=c=1, f ’(c) = the slope of the 

chord AB (see Figure 4.18)

2
( )f x x

31 32

Mathematical consequences
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Corollary 1 can be proven using the Mean 

Value Theorem

 Say x1, x2(a,b) such that x1 <  x2

 By the MVT on [x1,x2] there exist some point c
between x1 and x2 such that 

f '(c)= [f (x2) –f (x1)] / (x2 - x1)

 Since  f '(c) = 0 for all c lying in (a,b), 

f (x2) – f (x1) = 0, hence f (x2) = f (x1) for x1, 
x2(a,b). 

 This is equivalent to f(x) = a constant for x(a,b). 

34

Proof of Corollary 2

 At each point x(a,b) the derivative of the 

difference between function h=f – g is 

h'(x) = f '(x) –g'(x) = 0 (because f '(x) = g'(x))

 Thus h(x) = C on (a,b) by Corollary 1. That 

is f (x) –g(x) = C on (a,b), so              

f (x) = C + g(x). 

35 36

Example 5

 Find the function f(x) whose derivative is sin x 

and whose graph passes through the point 

(0,2).
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4.3

Monotonic Functions and                        

The First Derivative Test

38

Increasing functions and decreasing 

functions

39 40

Mean value theorem is used to prove Corollary 3



41

Example 1

 Using the first derivative test for monotonic 

functions 

 Find the critical point of 

and identify the intervals on which f is 

increasing and decreasing.

Solution

3
( ) 1 2 5f x x x  

   ( ) 3 2 2f x x x   

   fo r  2

1 2    fo r  2 2

   fo r  2

f x

f x

f x

      

    

    

3
( ) 1 2 5f x x x  

42

43

First derivative test for local extrema

44
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Example 2: Using the first derivative test 

for local extrema 

 Find the critical point of 

 Identify the intervals on which f is 

increasing and decreasing. Find the 

function’s local and absolute extreme 

values.

 1 / 3 4 / 3 1 / 3
( ) 4 4f x x x x x   

2 /3

4 ( 1)
; v e    fo r  0 ;

3

v e    fo r  0 1; v e    fo r  1

x
f f x

x

f x f x


   

     

46

47

4.4

Concavity and Curve Sketching

48

Concavity

go back



49 50

51

Example 1(a): Applying the concavity test

 Check the concavity of the curve y = x3

 Solution: y'' = 6x

 y'' < 0 for x < 0; y'' > 0 for x > 0;

Link to Figure 4.25

52

Example 1(b): Applying the 

concavity test
 Check the concavity of 

the curve y = x2

 Solution: y'' = 2 > 0
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Example 2

 Determining concavity

 Determine the 

concavity of 

y = 3 + sin x on

[0, 2].

54

Point of inflection

55

Example 3: y'' = 0 not necessarily 
means existence of inflection point

 An inflection point
may not exist where
y'' = 0

 The curve y = x4 has 
no inflection point at 
x=0. Even though y'' = 
12x2 is zero there, it 
does not change sign. 

56

Example 4: Existence of  inflection

does not necessarily needs y'' = 0 

means

 An inflection point 

may occur where y'' =

0 does not exist

 The curve y = x1/3 has 

a point of inflection at 

x=0 but y''  does not 

exist there. 

 y'' = -(2/9)x-5/3
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Second derivative test for local 

extrema

58

Example 6: Using f ' and f '' to graph f

 Sketch a graph of the function                               
f (x) = x4 - 4x3 + 10

using the following steps.

(a) Identify where the extrema of f occur

(b) Find the intervals on which f is increasing and 
the intervals on which f is decreasing

(c) Find where the graph of f is concave up and 
where it is concave down.

(d) Identify the slanted/vertical/horizontal asymtots, 
if there is any

(e) Sketch the general shape of the graph for f.

(f) Plot the specific points. Then sketch the graph.

59 60

Example 

 Using the graphing strategy

 Sketch the graph of

 f (x) = (x + 1)2 / (x2 + 1). 
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Learning about functions from derivatives

63

4.5

Applied Optimization Problems

64

Example 1

 An open-top box is to be cutting small 

congruent squares from the corners of a 12-

in.-by-12-in. sheet of tin and bending up the 

sides. How large should the squares cut from 

the corners be to make the box hold as much 

as possible?



65 66

67

Example 2

 Designing an efficient 

cylindrical can

 Design a 1-liter can 

shaped like a right 

circular cylinder. What 

dimensions will use 

the least material?

68



69

Example 3

 Inscribing rectangles

 A rectangle is to be 

inscribed in a semicircle 

of radius 2. What is the 

largest area the 

rectangle can have, and 

what is its dimension?

70

Solution

 Form the function of the area A as a function 

of x: A=A(x)=x(4-x2)1/2; x > 0.

 Seek the maximum of A:

71

4.6

Indeterminate Forms and                               

L’ Hopital’s Rule

72

Indeterminate forms 0/0
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Example 1

 Using L’ Hopital’s Rule

 (a)

 (b) 

0
0

3 s in 3 c o s
lim 2

1x
x

x x x

x


 
 

0

0

1

1 1 12 1
lim

1 2x

x

x x

x



  
 

74

75

Example 2(a)

 Applying the stronger form of L’ Hopital’s rule

 (a) 

1 / 2

2
0 0

3 / 2

0

1 1 / 2 (1 / 2 )(1 ) 1 / 2
lim lim

2

(1 / 4 )(1 ) 1
lim

2 8

x x

x

x x x

x x

x



 





    


  
 

76

Example 2(b)

 Applying the stronger form of L’ Hopital’s rule

 (b) 

3
0

s in
lim
x

x x

x


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79

Example 3

 Incorrect application of the stronger form of   

L’ Hopital’s 

2
0

1 c o s
lim
x

x

x x





80

Example 4

 Using L’ Hopital’s rule with one-sided limits

2
0 0

2
0 0

s in c o s
( ) lim lim ...

2

s in c o s
( ) lim lim ...

2

x x

x x

x x
a

x x

x x
b

x x

 

 

 

 

 

 
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 If f∞ and g∞ as xa, then

 a may be finite or infinite

( ) ( )
lim lim

( ) ( )x a x a

f x f x

g x g x 






Indeterminate forms ∞/∞, ∞0, ∞- ∞

82

/ 2

2
( / 2 ) ( / 2 ) ( / 2 )

( / 2 )

s e c
( ) lim

1 ta n

s e c s e c ta n
lim lim lim s in 1

1 ta n s e c

s e c
lim . .. .

1 ta n

x

x x x

x

x
a

x

x x x
x

x x

x

x



  



  





  





  





Example 5

Working with the indeterminate form 
∞/∞

83

Example 5(b)

2

2

2
( ) lim ...

3 5x

x x
b

x x 






84

Example 6

 Working with the indeterminate form ∞0

1
lim s in
x

x
x 

 
 
 
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Example 7

 Working with the indeterminate form ∞ - ∞

0 0

1 1 s in
lim lim ...

s in s inx x

x x

x x x x 

   
     

   

86

4.8

Antiderivatives

87

Finding antiderivatives

88

Example 1

 Finding antiderivatives

 Find an antiderivative for each of the 

following functions

 (a) f(x) = 2x

 (b) f(x) = cos x

 (c) h(x) = 2x + cos x
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The most general 

antiderivative

90

Example 2 Finding a particular 

antiderivative

 Find an antiderivative of f (x) = sin x that satisfies 

F(0) = 3

 Solution: F(x)=cos x + C is the most general form of 

the antiderivative of f(x). 

 We require F(x) to fulfill the condition that when x=3 

(in unit of radian), F(x)=0. This will fix the value of C, 

as per

 F(3)= 3 = cos 3 + C  3 - cos 3

 Hence, F(x)= cos x + (3 - cos 3) is the antiderivative 

sought

91 92

Example 3 Finding antiderivatives using 

table 4.2

 Find the general antiderivative of each of the 

following functions.

 (a) f (x) = x5

 (b) g (x) = 1/x1/2

 (c) h (x) =  sin 2x

 (d) i (x) =  cos (x/2)
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Example 4 Using the linearity rules for 

antiderivatives

 Find the general antiderivative of 

 f (x) = 3/x1/2 + sin 2x

94

 In other words, given a function f(x), the most 

general form of its antiderivative, previously 

represented by the symbol F(x) + C, where C

denotes an arbitrary constant, is now being 

represented in the form of an indefinite 

integral, namely,

  CxFdxxf )()(

95

Operationally, the indefinite integral of f(x) 

means …

The indefinite integral of  f(x) is the inverse 

of  the operation of  derivative taking of  
f(x)

( )F x  f x

 
d

d x

Antiderivative of f(x) Derivative of F(x)

( ) ( )

( ) ( )

( ) ( )

F x f x

d
F x f x

d x

f x d x F x C

 

 

  
  d x

96

Example of indefinite integral notation 

2

2

2  

c o s  s in

( 2 c o s )  s in

x d x x C

x d x x C

x x d x x x C

 

 

   






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Example 7 Indefinite integration done 

term-by term and rewriting the constant of 
integration

 Evaluate

 2 2
2 5 2 5 ...x x d x x d x xd x d x        



1

Chapter 5

Integration

2

5.1

Estimating with Finite Sums

3

Riemann Sums
Approximating area bounded by the graph 

between [a,b]

4

 Partition of [a,b] is the set of 

 P = {x0, x1, x2, … xn-1, xn}

 a = x0< x1< x2 …< xn-1 < xn=b

 cn[xn-1, xn]

 ||P|| = norm of P = the largest 

of all subinterval width

Area is approximately given by

f(c1)x1 + f(c2)x2+ f(c3)x3+ … + f(cn)xn



5

Riemann sum for f on [a,b]

Rn = f(c1)x1 + f(c2)x2+ 

f(c3)x3+ … +f(cn)xn

6

 Let the true value of the 

area is R

 Two approximations to R:

 cn= xn corresponds to case 

(a). This under estimates 

the true value of the area 

R if n is finite.

 cn= xn-1 corresponds to 

case (b). This over 

estimates the true value of 

the area S if n is finite.

go back

Figure 5.4

7

Limits of finite sums

 Example 5 The limit of finite approximation to 

an area

 Find the limiting value of lower sum 

approximation to the area of the region R

below the graphs f(x) = 1 - x2 on the interval 

[0,1] based on Figure 5.4(a)

8

Solution

 xk = (1 - 0)/n= 1/n ≡x; k = 1,2,…n

 Partition on the x-axis: [0,1/n], [1/n, 2/n],…, [(n-1)/n,1].

 ck = xk = kx = k/n

 The sum of the stripes is 

Rn = x1 f(c1) + x2 f(c2) + x3 f(c3) + …+ xn f(cn) 

 x f(1/n) + x f(2/n) + x f(3/n) + …+ xn f(1) 

= ∑k=1
n x f(kx) = x ∑k=1

n f (k/n)

= (1/ n) ∑k=1
n [1 - (k/n2

= ∑k=1
n  1/ n - k2/n3  = 1 – (∑k=1

n k2/ n3

= 1 – [n n+1 2n+1/6]/ n3 = 1 – [2 n3  3 n2+n]/(6n3

∑k=1
n k2  n n+1 2n+1/6



9

 Taking the limit of n → ∞

 The same limit is also obtained if cn = xn-1 is chosen 

instead.

 For all choice of cn  [xn-1,xn] and partition of P, the 

same limit for S is obtained when n ∞

3 2

3

2 3
lim 1 1 2 / 6 2 / 3

6
n

n

n n n
R R

n 

  
      

 

10

5.3

The Definite Integral

11 12

“The integral from a to b of f of x with 

respect to x”
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 The limit of the Riemann sums of f on [a,b] 
converges to the finite integral I

 We say f is integrable over [a,b]

 Can also write the definite integral as 

 The variable of integration is what we call a 
‘dummy variable’

| | | | 0
1

lim ( ) ( )

n
b

k k
aP

k

f c x I f x d x




   

( ) ( ) ( )

( w h a t e v e r )    ( w h a t e v e r )

b b b

a a a

b

a

I f x d x f t d t f u d u

f d

  



  



14

Question: is a non continuous 

function integrable?

15

Integral and nonintegrable functions

 Example 1

 A nonintegrable function on [0,1]

 Not integrable

1, if   is  ra tio n a l
( )

0 , if   is  irra tio n a l

x
f x

x


 



16

Properties of definite integrals



17 18

19

Example 3 Finding bounds for an integral

 Show that the value of 

is less than 3/2

 Solution

 Use rule 6 Max-Min Inequality

1

0

1 co s x d x

20

Area under the graphs of a nonnegative 

function
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Example 4 Area under the line y = x

 Compute             (the 

Riemann sum)

and find the area A

under y = x over the 

interval [0,b], b>0

0

b

xd x

22

Solution

 

   

1 1

1 1

2

2

1 1

2 2

2 2

R ie m a n n  s u m :

lim ( ) lim ( )

lim lim

lim lim

1 1
lim lim

2 2

1
lim 1

2 2

n n

k k
n n

k k

n n

k
n n

k k

n n

n n
k k

n n

n

x f c x f x

x x x k x

b
x k k

n

n n n nb b

n n

b b

n

   
 

   
 

   
 

   

 

  

    

 
    

 

    
    

   

 
   

 

 

 

 

By geometrical consideration:

A=(1/2)highwidth= (1/2)bb= 

b2/2 

 0 1 2 1

C h o o se  p a rti t io n  o f   su b in te rv a l w ith  e q u a l w id th :

0 , , , , /
n k k k

n

x x x x b x x x x b n       

23

Using geometry, the area 

is the area of a trapezium 

A= (1/2)(b-a)(b+a)

= b2/2 - a2/2

Using the additivity rule 

for definite integration:

0 0

2 2

0 0

,
2 2

b a b

a

b b a

a

x d x x d x x d x

b a
x d x x d x x d x a b

 

     

  

  

Both approaches to 

evaluate the area agree
24

 One can prove the following Riemannian sum 

of the functions f(x)=c and f(x)= x2:
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Average value of a continuous function 

revisited

 Average value of nonnegative continuous 

function f over an interval [a,b] is

 In the limit of n ∞, the average =

1
( )

b

a

f x d x
b a 

1 2

1

1 1

( ) ( ) ( ) 1
( )

1
( ) ( )

n

n

k

k

n n

k k

k k

f c f c f c
f c

n n

x
f c x f c

b a b a



 

 



  

 



 

26

27 28

Example 5 Finding average value

 Find the average value 

of

over [-2,2]

2
( ) 4f x x 
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5.4

The Fundamental Theorem of Calculus

30

Mean value theorem for definite integrals

31 32
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Example 1 Applying the mean value 

theorem for integrals
 Find the average value of 

f(x)=4-x on [0,3] and where 

f actually takes on this value 

as some point in the given 

domain.

 Solution

 Average = 5/2

 Happens at x=3/2

34

Fundamental theorem Part 1

  ( )

x

a

F x f t d t  Define a function F(x): 

 x,a  I, an interval over which f(t) > 0 is 

integrable.

 The function F(x) is the area under the 

graph of f(t) over [a,x], x > a  

35 36

Fundamental theorem Part 1 (cont.)

The above result holds true 

even if f is not positive 

definite over [a,b]

     

   
   

   
m e a n  v a lu e  th e o re m

0

1
;

lim ( ) ( )

x h

x

x h

x

h

F x h F x f t d t

F x h F x
f t d t f c x c x h

h h

F x h F x
F x f x

h







  

 
    

 
 




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Note: Convince yourself that 

(i) F(x) is an antiderivative of f(x)

(ii)f(x) is a derivative of F(x)
38

F(x) is an antiderivative 

of f(x) because

f(x) = F'(x)

d/dx

f(x) is a derivative 

of F(x) because

( ) d x

( ) ( )
x

a

F x f t d t 

F'(x)= f(x) 

( ) ( )
x

a

F x f t d t 

The main use of theorem 4 is …

 It tells us that 

 In pragmatic terms, if a function is expressed 

in terms of an integral of the form

then the derivative of F(x),       , is simply 

f(x)

 ( ) ( )
x

a

d
f t d t f x

d x


( ) ( )
x

a

F x f t d t 

( )
d

F x
d x

40

Example 3 Applying the fundamental 

theorem

 Use the fundamental theorem to find

2

2

5

1

1
( ) c o s                     ( )

1

( )  if  3 s in         ( )  if  c o s

x x

a a

x

x

d d
a td t b d t

d x d x t

d y d y
c y t td t d y td t

d x d x



 

 

 
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Solution for (d): you have to invoke chain 

rule

 Chain rule says if F(x)= (f◦u)(x)= f [u(x)],

 ( ) ( ) [ ( ) ] ( ) ( )
d d d d d

F x f u x f u x f u u x
d x d x d x d u d x

   

2

1

( ) , w h e re ( ) c o s  

x

d
F x F x td t

d x
 

42

Solution for (d): you have to invoke chain 

rule

 

2

1

2

1

( ) ( ) ( ) c o s ( )

c o s 2 c o s 2 2 c o s

u

u

d d d d d
F x f u u x t d t x

d x d u d x d u d x

d
t d t x u x x x

d u

 
    

 

 
     

 





2

1

( ) c o s

x

F x t d t  is a composite function of the form F(x)=f [u(x)]

2

1

( ) [ ( ) ] , w h e re

( ) c o s , ( )

u

F x f u x

f u t d t u x x



 
so that

Example 4 Constructing a function with a 

given derivative and value

 Find a function y = f(x) on the domain (- /2, /2) with 

derivative dy/dx = tan x that satisfies f(3)=5.

 The strategy: 

 Use the fundamental theorem of calculus. 

 Think along this line: find a function F(x) of the form 

such that 

( ) ( )

x

a

F x q t d t 

( ) ( ) , w ith  ( ) ta n
d

F x q x q x x
d x

 

44

Example 4 (Cont. 1)

Solution

 Stage 1: 

 Stage 2: construct the function f(x) using F(x), 

and then try to make f(x) so constructed 

fulfills the condition of f(3)=5.

 The way to construct f(x) from F(x) is 

obviously

If ( ) ta n , th e n ta n .

x

a

d F
F x td t x

d x
 

ta n c o n s ta n t

x

a

td t 

( ) ( ) c o n s ta n t (so  th a t ta n )
d y

y f x F x x
d x

   
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Example 4 (Cont. 2)

( ) ta n c o n s ta n t

x

a

f x td t 
 Find the values of a and constant so that f(3)=5

 This can be done by choosing a = 3, constant =5.

 Verify this:

 So, finally, the function we are seeking is   

3

3

( 3) ta n 5 = 0 + 5 = 5

x

a

f td t





 

3

( ) ta n 5

x

f x td t 

46

Fundamental theorem, part 2 (The 

evaluation theorem)

47

To calculate the definite integral of f over 

[a,b], do the following

 1. Find an antiderivative F of f, and 

 2. Calculate the number 

( ) ( ) ( )

b

a

f x d x F b F a  =

48

To summarise

( )
( ) ( )

( )
( ) ( ) ( )

x

a

x x

a a

d d F x
f t d t f x

d x d x

d F t
d t f t d t F x F a

d t

 

 
   

 



 
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Example 5 Evaluating integrals

0

0

/ 4

4

2

1

( ) c o s

( ) s e c ta n

3 4
( )

2

a x d x

b x x d x

c x d x
x





 
 

 







50

Example 7 Canceling areas

 Compute

 (a) the definite integral 

of f(x) over [0,2]

 (b) the area between 

the graph of f(x) and 

the x-axis over [0,2]

51

Example 8 Finding area using 

antiderivative

 Find the area of the region between the x-

axis and the graph of f(x) = x3 - x2 – 2x, 

-1 ≤ x ≤ 2.

 Solution

 First find the zeros of f. 

 f(x) = x(x+1) (x-2)

52



53

5.5

Indefinite Integrals and the Substitution 

Rule

54

Note

 The indefinite integral of f with respect to x, 

is a function plus an arbitrary constant

 A definite integral             is a number.

( )f x d x

( )

b

a

f x d x

55

Antiderivative and indefinite integral in 

terms of variable x

 If F(x) is an antiderivative of f(x), 

 the indefinite integral of f(x) is

   
d

F x f x
d x



   f x d x F x C 



A useful mnemonic

56

 c o n s ta n t

c o n s ta n t

d

d x

d x

 

 
2

2

( ta n c o n s ta n t ) s e c

s e c ta n c o n s ta n t

d
x x

d x

x d x x

 

 

Example:
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Antiderivative and indefinite integral with 

chain rule

   

   

 

 
   

     

   

,  i .e .,  ( )  a n tid e r iv a tiv e  o f  ( ) ,

[ ] ,  w h e re .

A p p ly in g  c h a in  ru le  to  :

In  o th e r  w o rd s , is  a n  a n tid e r iv a tiv e  o f  ,  s o  th a t w e  c a n

d
F x f x F x f x

d x

d
F u f u u u x

d u

d
F u

d x

d u x d F ud d u d d u
F u f u F u f u

d x d x d u d x d x d x

d u
F u f u

d x



  

      

  w r ite

   d  
d u

f u x F u C
d x

 
   

 


58

The power rule in integral form

1 1

1 1

n n

n n

n n n

d u d u d u u
u u d x C

d x n d x d x n

d u d u
u d x u d x u d u

d x d x

     
       

     

   
    

   



  

d iffe re n tia l o f  ( ) ,  is  
d u

u x d u d u d x
d x



59

Example 1 Using the power rule

2

2

2

1 2  ?

L e t 1 , 2 .

1 2  .. .

y y d y

d u
u y d u d y y d y

d y

y y d y u d u

  

   

    



 

The strategy is to convert the integral into 

the form

60

Example 2 Adjusting the integrand by a 

constant

4 1  ?

L e t 4 1, 4 ,

1 1
4 1  4  .. .

4 4

t d t

u t d u d t

t d t u d t u d t u d u

 

  

    



   
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Substitution: Running the chain rule 

backwards

Used to find the integration with the integrand in the 

form of the product of 

le t   ( ) ; [ ( )] ( ) ( ) ( )
d u

u g x f g x g x d x f u d x f u d u
d x

      

( )

[ ( )] '( ) ( )

f u d u

f g x g x d x f u d u  

[ ( )] '( )f g x g x

62

Example 3 Using substitution

 
1

7

1 1
c o s (7 5 )   c o s s in s in 7 5

7 7 7
u d u

d u
x d x u u C x C        

63

Example 4 Using substitution

2 3

3 2

3 2

1

3

3

s in  ?

; 3

1 1
s in  s in c o s

3 3

1
c o s

3

u
d u

x x d x

u x d u x d x

x x d x u d u u C

x C



 

    

 



 

64

Example 5 Using Identities and 

substitution

2 2

2

1

2

2

ta n

1
 s e c 2  s e c 2  

c o s 2

1 1 1
s e c ta n ta n 2

2 2 2

u
d u

d
u

d u

d x x d x x d x
x

u d u u C x C

  

   

  


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Example 6 Using different 

substitutions

 
1 / 3

1 / 3
2 1 / 3

3
2

2
 1  2 ...

1 d u

u

z
d z z zd z u d u

z



   


  

66

The integrals of sin2x and cos2x

 Example 7

2

1

2

1
     s in  1 c o s 2  

2

1
                      = c o s 2

2 2

1
                      = c o s .. .

2 4

u
d u

x d x x d x

x
x d x

x
u d u

 



 

 





67

The integrals of sin2x and cos2x

 Example 7(b)

2 1
     c o s  c o s 2 1 ...

2
x d x x d x   

68

Example 8 Area beneath the curve 

y=sin2 x
 For Figure 5.24, find 

 (a) the definite integral 

of y(x) over [0,2].

 (b) the area between 

the graph and the x-

axis over [0,2].
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5.6

Substitution and                                     

Area Between Curves

70

Substitution formula

( )

( )

le t   ( ) ; [ ( ) ] ( ) [ ] ( )

u g bx b x b

x a x a u g a

d u
u g x f g x g x d x f u d x f u d u

d x

 

  

      

71

Example 1 Substitution

 Evaluate 1

2 3

1

3 1  x x d x





1 / 2

( 1 )1

3 2 1 / 2

1 ( 1 )

1 3 ...

u xx

d ux u xu

x x d x u d u



   

     

72

Example 2 Using the substitution formula

   

/ 2

2

/ 4

2

2 2

2

/ 2 / 4
/ 2 2 2

2 2 2

/ 4 / 4 / 2
1 0

c o t c s c ?

c o t c s c c o t c s c
2

c o t

2

c o t c o t 1 1
c o t c s c c o t / 4 c o t / 2

2 2 2 2

x

x

u d u

x x d x

u
x x d x x x d x u d u c

x
c

x x
x x d x





 

  

 









      

  

 
      
 
 



  


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Definite integrals of symmetric 

functions

74

75

Example 3 Integral of an even 

function

 

   

2

4 2

2

4 2

4 2 4 2

E v a lu a te  4 6

S o lu tio n :

( ) 4 6 ;

( ) 4 6 4 6 ( )

e v e n  fu n c tio n

x x d x

f x x x

f x x x x x f x



 

  

         



How about integration of the same 

function from x=-1 to x=2
76

Area between curves
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 

   

1 1

|| || 0
1

( ) (

lim ( ) ( ( ) ( )

n n

k k k k

k k

n
b

k k k
aP

k

A A x f c g c

A x f c g c f x g x d x

 




      

      

 

 
78

79

 Find the area of the region 

enclosed by the parabola 

y = 2 – x2 and the line y = -x.

Example 4 Area between intersecting 

curves

 

2

0
1

2

1

2

2
2

1

lim ;

[ ( ) ( ) ]

   2 .. .

n
A

k
n

k

b

a

xx

A A d A

A f x g x d x

x x d x

 




 





  

 

   

 





 ( ) ( )A f x g x x    

80

 Find the area of the 

shaded region

Example 5 Changing the integral to 
match a boundary change

2

0

4

2

;

( 2 )

A r e a A B

A x d x

B x x d x

 



  




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 

   

1 1

|| || 0
1

( ) (

lim ( ) ( ( ) ( )

n n

k k k k

k k

n
d

k k k
cP

k

A A y f c g c

A y f c g c f y g y d y

 




      

      

 

 

k
A

82

Example 6 Find the area of the region in 

Example 5 by integrating with respect to y

( ( ) ( ))A f y g y y    

   

4

0
1

2
2

0

lim [ ( ) ( ) ]

   2 .. .

n
y

k
yn

k

A A f y g y d y

y y d y



 


   

   

 


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6.3

Lengths of Plane Curves

2

Length of  a parametrically defined 

curve

| | | | 0

lim

n

k
P

k

L L


 

Lk the line segment 

between Pk and Pk-1

3

1
( ) ( )

k k
f t f t  

1
( ) ( )

k k
g t g t  

4

   

   

| | | | 0

2 2
* **

|| || 0

2 2

2 2

lim lim

lim '( ) '( )

'( ) '( )

n n

k k
n P

k k

n

k k
P

k

b b

a a

L L L

t g t f t

d y d x
g t f t d t d t

d t d t

  



 

  

   
      

   

 



 

 

 

* *

1 1

** **

1 1

( ) ( ) '( ) '( ) ;

( ) ( ) '( ) '( )

d u e  to  m e a n  v a lu e  th e o re m

k k k k k k k

k k k k k k k

y g t g t g t t t g t t

x f t f t f t t t f t t

 

 

        

        

       
2 22 2 * **

'( ) '( )
k k k k k

L y x t g t f t      

 is  p a ra m e tr ie d  b y   v ia  ( ) ;

 is  p a ra m e tr ie d  b y   v ia  ( ) .

y t y g t

x t x f t




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Example 1 The circumference of  a 

circle
 Find the length of the circle of radius r

defined parametrically by

 x=r cos t    and y=r sin t, 0 ≤ t ≤ 2

   
2 2 2

2 2

0

2

0

c o s s in

2

b

a

d y d x
L d t r t r t d t

d t d t

r d t r







   
      

   

 

 



7

Length of  a curve y = f(x)

2 2

2 2 2

A s s ig n  th e  p a ra m e te r  , th e  le n g th  o f  th e  c u rv e  

( )  is  th e n  g iv e n  b y  

[ ( ) ]       1

b

a

b

a

x t

y f x

d y d x
L d t

d t d t

d y d y d x d y d x
y y x t

d t d x d t d x d t

d y d x d x d y
L d t d x

d x d t d t d x





   
    

   

 
      

 

     
        

     





 
2

1

'( ) 1

b

a

b

a

d x f x



 





8



9

Example 3 Applying the arc length 

formula for a graph

 Find the length of the curve

3 / 24 2
1,    0 1

3
y x x   

10

Dealing with discontinuity in dy/dx

 At a point on a curve where dy/dx fails to 

exist and we may be able to find the curve’s 

length by expressing x as a function of y and 

applying the following

11

Example 4 Length of  a graph which has a 

discontinuity in dy/dx

 Find the length of the curve y = (x/2)2/3 from x 

= 0 to x = 2.

 Solution

 dy/dx = (1/3) (2/x)1/3 is not defined at x=0.

 dx/dy = 3y1/2 is continuous on [0,1].

12
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Chapter 7

Transcendental Functions

2

7.1

Inverse Functions and                          

Their Derivatives

3 4

Example 1 Domains of one-to-one 

functions

 (a) f(x) = x1/2 is one-to-one on any domain of 

nonnegative numbers

 (b) g(x) = sin x is NOT one-to-one on [0,] but 

one-to-one on [0,/2].
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7 8



9

 1. Solve the equation y =f(x) for x. This gives 

a formula x = f -1(y) where x is expressed as 

a function of y.

2. Interchange x and y, obtaining a formula y = 

f -1(x) where f -1(x) is expressed in the 

conventional format with x as the 

independent variable and y as the dependent 

variables.

Finding inverses

10

Example 2 Finding an inverse 

function
 Find the inverse of y = x/2 + 1, expressed as a 

function of x.

 Solution

 1. solve for x in terms of y: x = 2(y – 1)

 2. interchange x and y: y = 2(x – 1)

 The inverse function f -1(x) = 2(x – 1)

 Check: 

 f -1[f(x)] = 2[f(x) – 1] = 2[(x/2 + 1) – 1] = x = f [f -1 (x)]

11 12

Example 3 Finding an inverse 

function
 Find the inverse of y = x2, x ≥ 0, expressed 

as a function of x. 

 Solution

 1. solve for x in terms of y: x = y

 2. interchange x and y: y = x

 The inverse function f -1(x) = x
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Derivatives of inverses of differentiable 

functions

 From example 2 (a linear function)

 f(x) = x/2 + 1; f -1(x) = 2(x + 1);

 df(x)/dx = 1/2; df -1(x)/dx = 2,

 i.e. df(x)/dx = 1/df -1(x)/dx

 Such a result is obvious because their graphs are 

obtained by reflecting on the y = x line.

 Does the reciprocal relationship between the slopes 

of f and f -1 holds for other functions as well?

15 16

s lo p e  a t  

x a

d f
x a

d x 

 

1

1
s lo p e  a t  ( )

x b

d f
x b f a

d x






  
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Example 4 Applying theorem 1

 The function f(x) = x2, x ≥ 0 and its inverse
f -1(x) = x have derivatives f '(x) = 2x, and 

(f -1)'(x) = 1/(2x). 

 Theorem 1 predicts that the derivative of 

f -1(x) is 

(f -1)'(x) =  1/ f '[f -1(x)] = 1/ f '[x] 

= 1/(2x)

19 20

Example 5 Finding a value of the inverse 

derivative

 Let f(x) = x3 – 2. Find the value of df -1/dx at x
= 6 = f(2) without a formula for f -1.

 The point for f is (2,6); The corresponding 
point for f -1 is (6,2).

 Solution

 df /dx =3x2

 df -1/dx|x=6 = 1/(df /dx|x=2)

= 1/3x2|x=2 = 1/12
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7.2

Natural Logarithms

23

Definition of natural logarithmic 

fuction

24
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Domain of ln x = (0,∞)
Range of ln x = (-∞,∞)
ln x is an increasing function since          

dy/dx = 1/x > 0

26

e lies between 2 

and 3

ln x = 1

27 28

By definition, the antiderivative of ln x is just 1/x

Let u = u (x). By chain rule, 

d/dx [ln u(x)] = d/du(ln u)du(x)/dx 

=(1/u)du(x)/dx 
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Example 1 Derivatives of natural 

logarithms

2

( ) ln 2

1
( )    3; ln

d
a x

d x

d d u
b u x u

d x d x u



   

30

Properties of logarithms

31

Example 2 Interpreting the properties of 

logarithms

 

 
3

( ) ln 6 ln 2 3 ln 2 ln 3;

( ) ln 4 ln 5 ln 4 / 5 ln 0 .8

( ) ln (1 / 8 ) ln 1 ln 2 3 ln 2

a

b

c

   

  

   

32

Example 3 Applying the properties to 

function formulas

 

 

3
1 / 3

( ) ln 4 ln s in ln 4 s in ;

1
( ) ln ln 1 ln ( 2 3 )

2 3

1
( ) ln (s e c ) ln ln c o s

c o s

( ) ln 1 ln ( 1) (1 / 3 ) ln ( 1)

a x x

x
b x x

x

c x x
x

d x x x

 


   



  

    
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Proof of ln ax = ln a + ln x 

 ln ax and  ln x have the same derivative:

 Hence, by the corollary 2 of the mean 

value theorem, they differs by a constant C

 We will prove that C = ln a by applying the 

definition ln x at x = 1.

( ) 1 1 1
ln ln

d d a x d
a x a x

d x d x a x a x x d x
   

ln lna x x C 

34

Estimate the value of ln 2

2

1

1
ln 2 d x

x
 

2

1

1 1
( 2 1) 1 ( 2 1) 1

2

1
ln 2 1

2

d x
x

      

 



35

The integral (1/u) du
1

F ro m  ln

F o r  0

T a k in g  th e  in te g ra t io n  o n  b o th  s id e s  g iv e s

1
ln .

L e t  ln ln ln ln

ln ln ' ;

F o r  0 :

0 ,

1 ( )
ln ( )

( )

d d u
u

d x u d x

u

d d u
u d x d x

d x u d x

d d y d
y u u d x d x d y u d x d y d u

d x d x d x

d u d u
d u u C

u u

u

u

d d u
u d x d x

d x u d x

d







      

   



 


 



 

  

  

 

ln ( ) ln ( ) ''

C o m b in in g  b o th  c a s e s  o f  0 , 0 ,

ln | |

d u d u
u u C

u u

u u

d u
u C

u

     

 

 

  


36

1

re c a ll: ,  ra tio n a l, 1
1

n

n u
u d u C n

n



   


1

1

F ro m  ln | | .

le t  ( ) .

( )

( )

( ) ( )

'( )
ln | ( ) |

( )

u d u u C

u f x

d f x
d x

d u d f x d x
u d u

u f x f x

f x
d x f x C

f x





 



  

  



   


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Example 4 Applying equation (5)

2

2

2 2

2 ( 5 )
(a ) ln | 5 |

5 5

x d x d x
x C

x x


   

  

/ 2

/ 2

4 c o s
(b ) ...

3 2 s in

x
d x

x








38

The integrals of tan x and cot x

39

Example 5

1
c o s 2

s in 2 2
ta n 2

c o s 2 c o s 2

1 c o s 2 1 1
ln | |

2 c o s 2 2 2

1
ln | c o s 2 |

2

1
ln | s e c 2 |

2

d
x

x d x
x d x d x d x

x x

d x d u
u C

x u

x C

x C



 

      

  

 

  

 

40

Example 6 Using logarithmic 

differentiation

 Find dy/dx if    
1 / 22

1 3
, 1

1

x x
y x

x

 
 



   

     

2

2

ln ln 1 (1 / 2 ) ln 3 ln ( 1)

1
ln ln 1 ln 3 ln 1

2

1
...

y x x x

d d d d
y x x x

d x d x d x d x

d y

y d x

     

     


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7.3

The Exponential Function

42

The inverse of ln x and the number e

 ln x is one-to-one, hence it has an inverse. 

We name the inverse of ln x, ln-1 x as exp (x)

1 1
lim ln , lim ln 0
x x

x x
 

    
  

43

Definition of e as ln e = 1. 

So, e = ln-1(1) = exp (1)

e = 2.718281828459045…
(an irrational number)

The approximate value for e is 
obtained numerically (later).

The graph of the inverse of ln x

44

The function y = ex in terms of the 

exponential function exp 
 We can raise the number e to a rational power r, er

 er is positive since e is positive, hence er has a 

logarithm (recall that logarithm is defied only for 

positive number).

 From the power rule of theorem 2 on the properties 

of natural logarithm, ln xr = r ln x, where r is rational, 

we have 

ln er = r

 We take the inverse to obtain 

ln-1 (ln er) = ln-1 (r) 

er = ln-1 (r)  exp r, for r rational.



45

The number e to a real (possibly irrational) 

power x

 How do we define ex where x is irrational? 

 This can be defined by assigning ex as exp x 

since ln-1 (x) is defined (because the inverse 

function of ln x is defined for all real x).

46

Note: please do make a distinction between ex and exp x. They have 

different definitions.

ex is the number e raised to the power of real number x.

exp x is defined as the inverse of the logarithmic function, exp x = ln-1 x

47 48

 (2) follows from the definition of the 

exponent function:

 From ex = exp x, let x → ln x

 eln x = exp[ln x] = x (by definition). 

 For (3): From ex = exp x, take logarithm 

both sides, → ln ex = ln [exp x] = x (by 

definition)
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Example 1 Using inverse equations

 

 

2

3

2

1

1 / 2

s in

ln 2

ln 1

3 ln 2 ln 2

3
3 ln 2 3 ln 2 ln 2

( ) ln .. .

( ) ln .. .

( ) ln ln .. .

( ) ln .. .

( ) . . .

( ) . . .

( ) . . .

( ) . . .

x

x

a e

b e

c e e

d e

f e

g e

h e e

i e e e











 







 

  

50

Example 2 Solving for an exponent

 Find k if e2k=10.

51

The general exponential function ax

 Since a = elna for any positive number a

 ax = (elna)x = exlna

For the first time we have a precise 

meaning for an irrational exponent. 

(previously ax is defined for only rational x 

and a)
52

Example 3 Evaluating exponential 

functions

 

 

3
3 ln 2 3 ln 2 1 .2 0

ln 2 ln 2 2 .1 8

( ) 2 3 .3 2

( ) 2 8 .8

a e e e

b e e e


 

   

   
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Laws of exponents

Theorem 3 also valid for ax

54

Proof of law 1

1 2

1 2 1

1 2

1 1 2 2

1 2 1 2 1 2

1 2 1 2

2

1 2

,

ln , ln

ln ln ln

e x p ( ) e x p (ln )

x x

x x x x

y e y e

x y x y

x x y y y y

x x y y

e y y e e


 

  

    

  

 

55

Example 4 Applying the exponent 

laws

 

ln 2

ln

2

3

( )

( )

( )

( )

x

x

x

x

a e

b e

e
c

e

d e













56

The derivative and integral of ex

1

1

1 1

1

( )

( )

( ) ln , ln ( )

1
( )

( )

1 1

(1 / ) (1 / )

x

x

x f x

x

x f x x y

f x x y e x f x

d y d d
e f x

d f xd x d x d x

d x

y e
x x





 





 

   

  

   



57

Example 5 Differentiating an exponential

 5
xd

e
d x



58

By the virtue of the chain rule, we 

obtain

 ( )

( ) ; ( ) ;

( ) ( )
( )

u

u x u

f u e u u x

d d d f u d u x d u
e f u e

d x d x d u d x d x

 

  

This is the integral equivalent of (6)

59

Example 7 Integrating exponentials

ln 2

3

0

/ 2 / 2

s in s in

0 0

( / 2 )

( 0 )

( / 2 )
( / 2 ) ( 0 ) s in ( / 2 ) s in ( 0 )

( 0 )

( )

( ) c o s  c o s

1

u

x

x x

d ue

u

u

u

u
u u u

u

a e d x

b e x d x e x d x

e d u

e e e e e e

 



  







      



 



60

The number e expressed as a limit
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Proof

 If f(x) = ln x, then f '(x) = 1/x, so f '(1) = 1. 

But by definition of derivative, 



 

0

0 0

0 0

11

0 0

1

0

( ) ( )
( ) lim

(1 ) (1) (1 ) ( )
(1) lim lim

ln (1 ) ln (1) ln (1 )
lim lim

lim ln (1 ) ln lim (1 ) 1   (s in c e  (1) 1)

1
lim (1 ) lim (1 )

h

h x

x x

xx

x x

yx

x y

f y h f y
f y

h

f h f f x f x
f

h x

x x

x x

x x f

x e
y



 

 

 

  

 
 

   
  

  
 

 
      

 

   

62

 

ln

ln

D e fin e   fo r  a n y  re a l 0  a s   = .

H e re   n e e d  n o t  b e  ra t io n a l b u t  c a n  b e  a n y  re a l n u m b e r 

a s  lo n g  a s   is  p o s i t iv e .

T h e n  w e  c a n  ta k e  th e  lo g a ri th m  o f  :

ln ln ln .

: .  th e  p o w e r ru le  i

n n n x

n

n n x

x x x e

n

x

x

x e n x

N o te c f



 

n  th e o re m  2 . 

                 C a n  yo u  te ll th e  d iffe r e n c e ?  

63

( )

ln

ln ln 1

1

O n c e   is  d e f in e d  v ia   = , w e  c a n  ta k e  i ts  d iffe re n ti a t io n :

u x

n n n x

u

n n x n x n n

n n

x x e

d d d u d e n n
x e e x n x

d x d x d x d u x x

d
x n x

d x





 
      

 

 

: C a n  y o u  te ll  th e  d if fe re n c e  b e tw e e n  th i s  fo rm u la

a n d  th e  o n e  w e  d is c u s se d  in  e a r lie r  c h a p te r s  (T h e o re m  4 , C h a p te r  3 )?  

N o te

64

 By virtue of chain rule, 

1

( ) ;

( ) ( )
n

n n

u u x

d d u x d u d u x
u n u

d x d x d u d x





 
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Example 9 using the power rule with 

irrational powers

2 1

1 2 1 2 1

1

1 1 1

( )

2 2

( ) ( 2 s in 3 )

( 2 s in 3 )
3 ( 2 s in 3 ) c o s 3

n

n

n

n

n

n

d d u d u
a x n u

d x d x d x

d u d x
n u x x

d x d x

d d u d u
b x n u

d x d x d x

d u d x
n u u x x

d x d x



  



  



  

 

 

  


  

66

7.4

ax and loga x

67

The derivative of ax

   

ln

ln

ln

 =

ln

ln ln ln

u

x x a

x x a u

u x a x

a e

d d d d
a e x a e

d x d x d x d u

e a e a a a

 
  

 

  

By virtue of the chain rule, 

 ( )
ln

u x u ud d u d d u
a a a a

d x d x d u d x
 

68

Example 1: Differentiating general 

exponential functions

   

 
 

ln 3

ln 3

( )

s in s in

( ) 3 ln 3

ln 3 3 ln 3

( ) 3 3 3 3

3 ln 3 3 ln 3 ln 3 / 3

(s in )
( ) 3 3 3 ln 3 3 ln 3 c o s

u

u

u

x x u

x x

xx u u

u x x

x u u x

d d d d
a e x e

d x d x d x d u

e

d d d d
b

d x d x d u d u

d d u d d x
c x

d x d x d u d x





 
  

 

  

     


     

   
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Other power functions

 Example 2 Differentiating a general power 

function

 Find dy/dx if y = xx, x > 0.

 Solution: Write  xx as a power of e

 xx =  exlnx

   ln
( ln ) ...

u

x x u ud d u d d
e e x x e

d x d x d u d x

 
    

 

70

Integral of au

( )

( )

( )

F ro m  ln ,  d e v id e  b y  ln :

1
 

ln

 ln ,  in te g ra te  b o th  s id e s  w rp  to  :

 ln :

 ln

1
 

ln ln

u x u

u x u

u x u

u u

u u

u

u u

d d u
a a a a

d x d x

d d u
a a

a d x d x

d d u
a a a d x

d x d x

d d u
a d x a a d x

d x d x

d a a a d u C

a
a d u d a

a a



 

 

   
    

   

  

  

 

 

 

71

Example 3 Integrating general exponential 

functions

s in

2
(a ) 2  

ln 2

( ) 2 c o s  2 ...

u

x

x

d u

x u

d x C

b d x d u

 

 



 

72

Logarithm with base a
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Example 4 Applying the inverse equations

2

1 0

5

2

lo g 3

( 7 )

1 0

lo g 4

( ) lo g 2 5

( ) 2 3

( ) lo g 1 0 7

( )1 0 4

a

b

c

d







 



75

Evaluation of loga x

lo g

lo g

lo g

T a k in g  ln  o n  b o th  s id e s  o f    g iv e s

ln ( ) ln

L H S , ln ( ) lo g ln .

E q u a tin g  L H S  to  R H S  y ie ld s

lo g ln ln

a

a

a

x

x

x

a

a

a x

a x

a x a

x a x









 Example: log102= ln 2/ ln10 

76

 Proof of rule 1:

 

 

ln ln ln  

d iv id e  b o th  s id e s  b y  ln

ln ln ln

ln ln ln

lo g lo g lo g
a a a

x y x y

a

x y x y

a a a

x y x y

 

 

 
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Derivatives and integrals involving loga x

 
 

   

 

lo g
lo g

ln 1 1 1
lo g ln

ln ln ln

1 1 1 1
lo g

ln ln

a

a

a

a

d ud d u
u

d x d x d u

d d u d
u u

d u d u a a d u a u

d d u d u
u

d x d x a u a u d x



 
   

 

   
      

   

78

Example 5

 
 

 
 

1 0

1 0

2

(ln )

lo g
( ) lo g 3 1

ln1 3 1
3 1

ln 1 0 ln 1 0 (3 1)

lo g 1 1
( ) ln .. .

ln 2 ln 2

u

u

d x d u

d ud d u
a x

d x d x d u

d ud
x

d x d u x

x d x
b d x x u d u

x x



 
  
 
 

  


    
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7.5

Exponential Growth and Decay

80

The law of exponential change

 For a quantity y increases or decreases at a 

rate proportional to it size at a give time t

follows the law of exponential change, as per 

( ) ( ) .
d y d y

y t ky t
d t d t

  

0

 is  th e  p ro p o r t io n a l c o n s ta n t . 

V e ry  o f te n  w e  h a v e  to  s p e c ify  th e  v a lu e  o f   a t  

s o m e  s p e c if ie d  t im e , fo r  e x a m p le  th e  in i t ia l c o n d it io n

( 0 )

k

y

y t y 
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R e a rra n g e  th e  e q u a tio n  :

1 1

1
ln | | ln

, .
k t k t

d y
k y

d t

d y d y
k d t k d t

y d t y d t

d y k d t k t y k t C
y

y C e A e A C



  

     

     

 

 

0

0

0 0

P u t in  th e  in it ia l v a lu e  o f   a t  0  is  :

(0 )
k k t

y t y

y y A e A y y e




     
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Example 1 Reducing the cases of 

infectious disease

 Suppose that in the course of any given year 

the number of cases of a disease is reduced 

by 20%. If there are 10,000 cases today, how 

many years will it take to reduce the number 

to 1000? Assume the law of exponential 

change applies.

83

Example 3 Half-life of a radioactive 

element

 The effective radioactive lifetime of polonium-

210 is very short (in days). The number of 

radioactive atoms remaining after t days in a 

sample that starts with y0 radioactive atoms is 

y= y0 exp(-510-3t). Find the element’s half 

life. 

84

Solution

 Radioactive elements decay according to the 
exponential law of change. The half life of a given 
radioactive element can be expressed in term of the 
rate constant k that is specific to a given radioactive 
species. Here k=-510-3.

 At the half-life, t= t1/2, 

y(t1/2)= y0/2 = y0 exp(-510-3 t1/2)

exp(-510-3 t1/2)  = 1/2

 ln(1/2) = -510-3 t1/2 

 t1/2 =  - ln(1/2)/510-3 = ln(2)/510-3 = …
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7.7

Inverse Trigonometric Functions

86

Defining the inverses

 Trigo functions are periodic, hence not one-

to-one in the their domains.

 If we restrict the trigonometric functions to 

intervals on which they are one-to-one, then 

we can define their inverses.

87

Domain 
restriction that 

makes the 
trigonometric 
functions one-

to-one

88

Domain 
restriction that 

makes the 
trigonometric 
functions one-

to-one
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Inverses for the restricted trigo 

functions

1

1

1

1

1

1

s in a rc s in

c o s a rc c o s

ta n a rc ta n

c o t a rc c o t

s e c a rc s e c

c s c a rc c s c

y x x

y x x

y x x

y x x

y x x

y x x













 

 

 

 

 

 

90

 The graphs of the 

inverse trigonometric 

functions can be 

obtained by reflecting 

the graphs of the 

restricted trigo 

functions through the 

line y = x.

91 92
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Some specific values of sin-1 x and cos-1 x

95

=q

f   q 

q
q  cos-1x; 

cosf  cos (  q   cosq

f  cos-1( cosq ) = cos-1(x)

Add up q and f:

q +f = cos-1x + cos-1(-x)

  cos-1x + cos-1(-x)
96

 q 

 /2 q

1 1

1 1

c o s ; s in ;
2

c o s s in =     
2 2

x x

x x


q q

 
q q

 

 

 
   

 

 
     

 

link to slide derivatives of 

the other three
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Some specific values of tan-1 x

104

Example 4

 Find cos a, tan a, sec a, 

csc a if a = sin-1 (2/3).
 sin a  2/3
 ...
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The derivative of y = sin-1 x

 

1 1

1

( )

( )

1 2

2

1

2

( ) s in ( ) s in ;

( ) 1 1 1

c o s c o s ( )( )

L e t  ( ) s in s in c o s 1

1 1 1

c o s ( ( ) ) c o s 1

1
s in

1

x f x

x f x

f x x f x x

d f x

d x x f xd f x

d x

y f x x x y y x

f x y x

d
x

d x x

 











  

  

      

 


 


107

 1

2

1
s in

1

d
x

d x x

 


Note that the graph is not 

differentiable at the end 

points of x=1 because 

the tangents at these 

points are vertical.

108

The derivative of y = sin-1 u

 

1

1

1 1

2

If  ( )  is  a n  d iffre n tia b le  fu n c tio n  o f  ,

s in ?  

U s e  c h a in  ru le : L e t  s in

1
s in s in

1

u u x x

d
u

d x

y u

d d u d d u
u u

d x d x d u d x u





 







 


Note that |u |<1 for the formula to apply



109

Example 7 Applying the derivative 

formula

1 2
s in = ...

d
x

d x



110

The derivative of y = tan-1 u

1

2

2 2

ta n ta n

1 (ta n ) s e c

c o s 1 /(1 )

y x x y

d d y
y y

d x d x

d y
y x

d x

  

 

   x

1

(1-x2)

y

2 2
c o s 1 /(1 )y x 

By virtue of chain rule, we obtain

111

Example 8

1

1 6

( ) ta n .

?

t

x t t

d x

d t









112

The derivative of y = sec-1 x

1

2 2

1

2

2

s e c s e c

1 (s e c ) s e c ta n

ta n s e c 1 1

1 1
s e c c o s c o t

( 1)

0  ( f ro m  F ig u re  7 .3 0 ) ,

1 1

| | ( 1)

y x x y

d d y
y y y

d x d x

y y x

d
x y y

d x x x

d y

d x

d y

d x x x





  

 

     

  






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The derivative of y = sec-1 u

By virtue of chain rule, we obtain

114

Example 5 Using the formula

 1 4
se c 5 ...

d
x

d x

 

115

Derivatives of the other three

 The derivative of cos-1x, cot-1x, csc-1x can be 

easily obtained thanks to the following 

identities:

Link to fig. 7.21
116
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Example 10 A tangent line to the 

arccotangent curve

 Find an equation for the tangent to the graph 

of y = cot-1 x at x = -1.

 Use either

 Or  

Ans = 

1

1

( )

( ) 1

( )

x f x

d f x

d f xd x

d x 







y

x

1

118

Integration formula

 By integrating both sides of the derivative 

formulas in Table 7.3, we obtain three 

useful integration formulas in Table 7.4.

119

Example 11 Using the integral 

formulas

3 / 2

22 / 2

1

2
0

2

22 / 3

( )

1

( )
1

( )

1

d x
a

x

d x
b

x

d x
c

x x
















120

Example 13 Completing the square

2 2 2

2 2 2

4 ( 4 ) [( 2 ) 4 ]

.. .

4 ( 2 ) 2

d x d x d x

x x x x x

d x d u

x u

 
     

  
  

  

 
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Example 15 Using substitution

   

     

2 22

2 22
2

6
6

1 1
...

6 6

x
x

x

x

x

d x d x

e
e

d e d u

e u
e u

 
 

 

 

 

 

122

7.8

Hyperbolic Functions

123

Even and odd parts of the exponential 

function

 In general:

 f (x) = ½ [f (x) + f (-x)] + ½ [f (x) - f (-x)]

 ½ [f (x) + f (-x)] is the even part

 ½ [f (x) - f (-x)] is the odd part

 Specifically:

 f (x) = ex = ½ (ex + e-x) + ½ (ex – e-x)

 The odd part ½ (ex - e-x) ≡ cosh x (hyperbolic cosine 
of x)

 The even part ½ (ex + e-x) ≡ sinh x (hyperbolic sine 
of x)

124
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Proof of 
s in h 2 2 c o sh s in hx x x

4

2 2

2

2 2

1 1 ( 1)
s in h 2 ( )

2 2

1 ( 1) ( 1) 2 1
( )( )

2 2 2

1 1
2 ( ) ( ) 2 s in h c o s h

2 2

x

x x

x

x x

x x x x

x x

x x x x

e
x e e

e

e e
e e e e

e e

e e e e x x



 

 


  

 
    

     

126

127 128

Derivatives and integrals



129

s in h s in h

1 1
s in h ( ) ( ) c o s h

2 2

s in h c o s h

x x x x

d d u d
u x

d x d x d x

d d
x e e e e x

d x d x

d d u
u x

d x d x

 



    

 

130

Example 1 Finding derivatives and 

integrals

 

2

2

1

( ) ta n h 1 ta n h

1 1 c o s h  
( ) c o th 5 c o th

5 5 s in h

s in h1 1 1 1
ln | | ln | s in h 5 |

5 s in h 5 5 5

1
( ) s in h  (c o s h 2 1)  . . .

2

( ) 4 s in h  4  2  
2

u

u

d v

v

u

x x

x x

d d u d
a t u

d x d x d u

u d u
b x d x u d u

u

d u d v
v C x C

u v

c x d x x d x

e e
d e x d x d e u u d




 

 

     

  


  

  

 

 

 
2

2 2 2
2 ln | | ( ) ln 2

2

x x x

u

u
u C e e C e x C

 
         

 



131

Inverse hyperbolic functions

The inverse is useful in integration.

132
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Useful Identities

134

Proof

1 1

1

1

1

1

1

1 1 1 1 1

1
s e c h c o s h . 

1
T a k e  s e c h  o f  c o s h .

1 1 1
s e c h c o s h

11
c o s h c o s h

1
s e c h c o s h

T a k e  s e c h  o n  b o th  s id e s :

1 1
s e c h s e c h c o s h s e c h c o s h s e c h

x
x

x

x
x

xx

x
x

x x
x x

 











    



 
   

  
 
 

 
 

 

    
      

    

135

Integrating these formulas 

will allows us to obtain a list 

of useful integration formula 

involving hyperbolic 

functions

1

2

1

2

1

2

. .

1
s in h

1

1
s in h  

1

1
s in h

1

e g

d
x

d xx

d
d x x d x

d xx

d x x C

x










 


 


 



136

Proof

1

2

1

2 2

1

2

1
s in h . 

1

le t   s in h

s in h s in h c o s h

1 1 1
s e c h  

c o s h 1 s in h 1

B y  v ir tu e  o f  c h a in  ru le ,

1
s in h

1

d
x

d x x

y x

d d d y
x y x y y

d x d x d x

d y
y

d x y y x

d d u
u

d x d x u












   

    
 





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Example 2 Derivative of the inverse 

hyperbolic cosine

 Show that 

1

2

1

1
c o s h . 

1

L e t  c o s h ...

d
u

d x u

y x










138

Example 3 Using table 7.11

1

2

0

1 2

2 2

0 0

2 2 / 3 2 / 3

2 2 2

0 0 0

2 / 3
1 1 1 1

0

1

2
 

3 4

L e t   2

2

3 4 3

S c a le  i t  a g a in  to  n o rm a lis e  th e  c o n s ta n t  3  to  1

3
L e t   

3 3 3 3 1

s in h s in h ( 2 / 3 ) s in h ( 0 ) s in h ( 2 / 3 ) 0

s in h ( 2 / 3 )

d x

x

y x

d x d y

x y

y d y d z d z
z

y z z

z
   








 

   
  

    





 

  
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 

1

1

2

2

1

s in h ( 2 / 3 ) ?

L e t   s in h ( 2 / 3 )

1 2
s in h 2 / 3

2 3

4
1 0

3

4 4 4 2 9 6
4 ( 1)

3 3 93
2 .6 8 2

2 2

s in h ( 2 / 3 ) ln 2 .6 8 2 0 .9 8 6 6

q q

q q

q

q

q e e

e e

e

q













   

  

 
     

 
  

  

140
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Chapter 8

Techniques of Integration

2

8.1

Basic Integration Formulas

3 4

Example 1 Making a simplifying 

substitution

2

2 9

9 1

x
d x

x x




 


 

2

2

1 / 2

1 / 2
1 / 2 2

( 9 )

9 1

( 1)
2

1 1

2 ( 1) 2 9 1

u

d x x

x x

d u d u d v
v C

u u v

u C x x C



 


    

 

      



  
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Example 2 Completing the square

2
8

d x

x x





2

2 2 2

1 1

1 6 ( 4 )

( 4 )

1 6 ( 4 ) 4

4
s in s in

4 4

d x

x

d x d u

x u

u x
C C

 


 




  

 
    

 



 

6

Example 3 Expanding a power and using a 

trigonometric identity

2

2 2

2 2 2

2

(s e c ta n )

(s e c ta n 2 s e c ta n ) .

R a c a ll:ta n s e c 1; ta n s e c ; s e c ta n s e c ;

( 2 s e c 1 2 s e c ta n )

2 ta n 2 s e c

x x d x

x x x x d x

d d
x x x x x x x

d x d x

x x x d x

x x x C



  

   

  

    







7

Example 4 Eliminating a square root

/ 4

0

1 c o s 4 x d x



 

2

/ 4 / 4 / 4

2

0 0 0

/ 4

0

c o s 4 c o s 2 ( 2 ) 2 c o s ( 2 ) 1

1 c o s 4 2 c o s 2 2 | c o s 2 |

2 c o s 2 ...

x x x

x d x x d x x x

x d x

  



  

  

 

  



8

Example 5 Reducing an improper fraction

2
3 7

3 2

x x
d x

x





2

2
3

2 / 3

1 2
3 2 ln | |

2 3

x d x
x

x x x C

  


    



6
3

3 2
x d x

x
  


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Example 6 Separating a fraction

2

3 2

1

x
d x

x






2 2

2
3

1 1

x
d x d x

x x

 
 

 
2

2 2

1
( )

12
3 2

1 1

d x

d x

x x

 
 

 
13

2 s in
2 1

d u
x C

u

  



1 / 2 1

2 1

3
[ 2 (1 ) ] 2 s in ''

2

3 (1 ) 2 s in ''

u x C

x x C





    

    

1 / 2

1 / 2
2 (1 ) '

(1 )

d u
u C

u
   



10

Example 7 Integral of y = sec x

se c ?x d x 
2

s e c s e c ta n

ta n s e c s e c s e c

(s e c ta n ) s e c (s e c ta n )

(s e c ta n )
s e c

s e c ta n

d x x x d x

d x x d x x x d x

d x x x x x d x

d x x
x d x

x x



 

  






(s e c ta n )
se c ln | s e c ta n |

s e c ta n

d x x
x d x x x C

x x


   

 

11 12
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8.2

Integration by Parts

14

Product rule in integral form

[ ( ) ( )] ( ) [ ( )] ( ) [ ( )]

[ ( ) ( )] ( ) [ ( )] ( ) [ ( )]

( ) ( ) ( ) '( ) ( ) '( )

d d d
f x g x g x f x f x g x

d x d x d x

d d d
f x g x d x g x f x d x f x g x d x

d x d x d x

f x g x g x f x d x f x g x d x

 

 

 

  

 

Integration by parts formula

15

Alternative form of Eq. (1)

 We write 

 
 

       dxxhdxxgxh
dx

xdg
xg

           

            

f x g x d x f x g x f x g x d x

f x h x d x f x h x d x f x h x d x d x

  

     
   

 

   

16

Alternative form of the integration by 

parts formula
[ ( ) ( ) ] ( ) [ ( ) ] ( ) [ ( ) ]

[ ( ) ( ) ] ( ) [ ( ) ] ( ) [ ( ) ]

( ) ( ) ( ) ( ) ( ) ( )

L e t  ( ) ; ( ) .T h e  a b o v e  fo rm u la r  is  re c a s t  i n to  th e  fo r m

d d d
f x g x g x f x f x g x

d x d x d x

d d d
f x g x d x g x f x d x f x g x d x

d x d x d x

f x g x g x d f x f x d g x

u f x v g x

u v v d u u d v

 

 

 

 

 

  

 

 
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Example 4 Repeated use of integration 

by parts

2
?

x
x e d x 

18

Example 5 Solving for the unknown 

integral

c o s ?
x

e x d x 

19

Evaluating by parts for definite 

integrals

            
b b

b

a

a a

f x h x d x f x h x f x h x d x d x       

or, equivalently

20

Example 6 Finding area

 Find the area of the region in Figure 8.1



21

Solution

4

0

. . .
x

x e d x
 

22

Example 9 Using a reduction formula

 Evaluate

 Use 

3
co s xd x

1

1

2

c o s c o s c o s

c o s s in 1
c o s

u d v

n n

n

n

x d x x x d x

x x n
x d x

n n






 


 

 



23

8.3

Integration of Rational Functions by 

Partial Fractions

24

General description of the method

 A rational function f(x)/g(x) can be written as a sum 
of partial fractions. To do so:

 (a) The degree of f(x) must be less than the degree 
of g(x). That is, the fraction must be proper. If it isn’t, 
divide f(x) by g(x) and work with the remainder term. 

 We must know the factors of g(x). In theory, any 
polynomial with real coefficients can be written as a 
product of real linear factors and real quadratic 
factors.
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Reducibility of a polynomial

 A polynomial is said to be reducible if it is the product 
of two polynomials of lower degree.

 A polynomial is irreducible if it is not the product of 
two polynomials of lower degree.

 THEOREM (Ayers, Schaum’s series, pg. 305)

 Consider a polynomial g(x) of order n ≥ 2 (with leading 
coefficient 1). Two possibilities:

1. g(x) = (x-r) h1(x), where h1(x) is a polynomial of degree   
n-1, or

2. g(x) = (x2+px+q) h2(x), where h2(x) is a polynomial of 
degree n-2, and (x2+px+q) is the irreducible quadratic 
factor.

26

Example

3

lin e a r  fa c to r p o ly . o f  d e g re e  2

3 2

p o ly . o f  d e g re e  1
ir re d u c ib le  q u a d ra t ic  fa c to r

4 2

ir re d u c ib le  q u a d ra t ic  fa c to r p o ly . o r  d

( ) 4 ( 2 ) ( 2 )

( ) 4 ( 4 )

( ) 9 ( 3 ) ( 3 )( 3 )

g x x x x x x

g x x x x x

g x x x x x

     

    

      

e g re e  2

3 2 2

lin e a r  fa c to r p o ly . o r  d e g re e  2

( ) 3 3 ( 1) ( 2 )g x x x x x x      

27

Quadratic polynomial

 A quadratic polynomial (polynomial or order n 

= 2) is either reducible or not reducible.

 Consider: g(x)= x2+px+q. 

 If (p2-4q) ≥ 0, g(x) is reducible, i.e.             g(x) 

= (x+r1)(x+r2).

 If (p2-4q) < 0, g(x) is irreducible.

28

 In general, a polynomial of degree n can 

always be expressed as the product of  

linear factors and irreducible quadratic 

factors:

1 2

1 2

1 2

2 2 2

1 1 2 2

( ) ( ) ( ) .. .( )

            ( ) ( ) . . .( )

l

k

nn n

n l

mm m

k k

P x x r x r x r

x p x q x p x q x p x q

    

     

1 2 1 2
( ... ) 2 ( ... )

l l
n n n n m m m       
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Integration of  rational functions by 

partial fractions

30

Example 1 Distinct linear factors

2
4 1

...
( 1)( 1)( 3 )

x x
d x

x x x

 


  

2
4 1

...
( 1)( 1)( 3 ) ( 1) ( 1) ( 3 )

x x A B C

x x x x x x

 
   

     

31

Example 2 A repeated linear factor

2

6 7
...

( 2 )

x
d x

x






2 2

6 7

( 2 ) ( 2 ) ( 2 )

x A B

x x x


 

  

32

Example 3 Integrating an improper 

fraction

3 2

2

2 4 3
...

2 3

x x x
d x

x x

  


 

3 2

2 2

2 4 3 5 3
2

2 3 2 3

x x x x
x

x x x x

   
 

   

2

5 3 5 3
...

2 3 ( 3 )( 1) ( 3 ) ( 1)

x x A B

x x x x x x

 
   

     
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Example 4 Integrating with an irreducible 

quadratic factor in the denominator

2 2

2 4
...

( 1)( 1)

x
d x

x x

 


 

2 2 2 2

2 4
...

( 1)( 1) ( 1) ( 1) ( 1)

x A x B C D

x x x x x

  
   

    

34

Example 5 A repeated irreducible 

quadratic factor

2 2 2 2 2

1
...

( 1) ( 1) ( 1)

A B x C D x E

x x x x x

 
   

  

2 2

1
?

( 1)
d x

x x




35

Other ways to determine the 

coefficients
 Example 8 Using 

differentiation

 Find A, B and C in the 

equation

2

3 3

2

2

( 1) ( 1) 1

( 1) ( 1)

( 1) ( 1) 1

1 2

( 1) ( 1) 1

( 1) 1

[ ( 1) ] (1) 0

0

1

A x B x C x

x x

A x B x C x

x C

A x B x x

A x B

d d
A x B

d x d x

A

B

    


 

      

    

     

   

   





3 2 3

1

( 1) ( 1) ( 1) ( 1)

x A B C

x x x x


  

   

36

Example 9 Assigning numerical values to 

x

 Find A, B and C in

2

2

2

2

( 2 )( 3 ) ( 1)( 3 ) ( 1)( 2 ) ( )

1

(1) 2 1 1 2 1

( 2 ) 2 1 5; 5

(3 ) 2 3 1 1 0 ; 5

A x x B x x C x x f x

x

f A A

f B B

f C C

        

 

      

       

     

2
1

( 1)( 2 )( 3 )

( 1) ( 2 ) ( 3 )

x

x x x

A B C

x x x



  

  
  
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8.4

Trigonometric Integrals

38

39

Example 1 m is odd

3 2
s in co s   ?x x d x 

 

 

3 2 2 2

2 2

2 2

s in c o s   s in c o s   c o s

(c o s 1) c o s   c o s

( 1) .. .

x x d x x x d x

x x d x

u u d u

 

 

  

 





40

Example 2 m is even and n is odd

5
c o s   ?x d x 

   
2

5 4 2

2 2

2 2 4 2

c o s  c o s c o s  c o s  s in

(1 -s in )  s in

(1 - )  1 + 2  .. .

u

x d x x x d x x d x

x d x

u d u u u d u

  



   

  



 
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Example 3 m and n are both even

2 4
co s s in   ?x x d x 

   

 

2 4

2

2

2 3

c o s s in  

1 -c o s 2 1 + c o s 2
 

2 2

1
1 -c o s 2 1 + c o s 2  

4

1
1 c o s 2 c o s 2 c o s 2  .. .

4

x x d x

x x
d x

x x d x

x x x d x



   
   
   



    








42

Example 6 Integrals of powers of tan x 

and sec x 3
sec ?xd x 

3 2

2 2

2

2

2

U s e  in te g ra t io n  b y  p a r ts .

s e c s e c s e c ;

s e c s e c ta n

s e c s e c ta n

s e c s e c

s e c ta n ta n s e c ta n

s e c ta n ta n s e c

s e c ta n (s e c 1) s e c

u d v

u d v

d u

xd x x x d x

d v x d x v x d x x

u x d u x x d x

x x d x

x x x x x d x

x x x x d x

x x x

 

   

  



  

 

  

 









3 3
s e c s e c ta n s e c s e c ...

x d x

xd x x x x d x x d x  



  

2

( ta n s e c )
s e c s e c

ta n s e c

(s e c ta n s e c )

ta n s e c

(s e c ta n )

ta n s e c

ln | s e c ta n |

x x
x d x x d x

x x

x x x
d x

x x

d x x

x x

x x C
















  

 





43

Example 7 Products of sines and 

cosines

co s 5 s in 3 ?x xd x 
 

 

 

1
s in s in c o s ( ) c o s ( ) ;

2

1
s in c o s s in ( ) s in ( ) ;

2

1
c o s c o s c o s ( ) c o s ( )

2

m x n x m n x m n x

m x n x m n x m n x

m x n x m n x m n x

   

   

   

c o s 5 s in 3

1
[s in ( 2 ) s in 8 ]

2

.. .

x xd x

x x d x  







44

8.5

Trigonometric Substitutions
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Three basic substitutions

2 2 2 2 2 2
, ,a x a x x a  Useful for integrals involving

in the denominator of the integrand. 46

Example 1 Using the substitution x=atanq

2

2 2

2

2

2

2 (ta n 1)

4 4 ta n 4 4 ta n

( ta n 1)
s e c | s e c |

1 ta n

ln | s e c ta n |

d x y
d y

y y

y
d y y d y y d y

y

y y C




 


  



  

 

  

2

?

4

d x

x






2 2
2 ta n 2 se c 2 (ta n 1)x y d x y d y y d y    

47

Example 2 Using the substitution x = 

asinq

2 2

2 2

2

2

2

9 s in 3 c o s  

9 9 9 s in

s in c o s  
9

1 s in

9 s in .. .

x d x y y d y

x y

y y d y

y

y d y


 

 






 

 





2

2

?

9

x d x

x






3 sin 3 cos  x y dx y dy  

48

Example 3 Using the substitution x = 

asecq

2 2 2

2

2 s e c ta n  1 s e c ta n  

5 52 5 4 4 s e c 4 s e c 1

1 s e c ta n  1
s e c  

5 5s e c 1

1
ln | s e c ta n | . . .

5

d x y y d y y y d y

x y y

y y d y
y d y

y

y y C

 
  

 


   

  

 

2

?

2 5 4

d x

x






2 2
sec sec tan  

5 5
x y d x y y d y  
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Example 4 Finding the volume of  a 

solid of  revolution

 

2

2
2

0

1 6 ?

4

d x
V

x

 




50

Solution

 

2

2
2

0

1 6 ?

4

d x
V

x

 




   

/ 4 / 42 2

2 2
2 2

0 0

/ 4

2

0

2 s e c 2 s e c

ta n 1 s e c

2 c o s .. .

y d y y d y
V

y y

y d y

 



 



 


 

 



2
L e t 2 ta n 2 se cx y d x y d y  

51

8.6

Integral Tables

52

Integral tables is provided at the back of 

Thomas’
 T-4 A brief tables of integrals

 Integration can be evaluated using the tables 

of integral.



53 54

55 56



57 58

8.8

Improper Integrals

59 60

Infinite limits of integration

/ 2 / 2

0

( ) ... 2 2

b

x b
A b e d x e

    

/ 2
( ) lim ( ) lim 2 2 2

b

b b

A a A b e


   
   



61 62

Example 1 Evaluating an improper 

integral on [1,∞]

 Is the area under the curve y=(ln x)/x2 from 

1 to ∞ finite? If so, what is it?

2

1

ln
lim ?

b

b

x
d x

x 


63

ln

1 1 ln 1

ln
ln ln

0 0
0

ln
0 0 ln

ln ln 0

0

ln ln

ln ln
( ln )         ; ln ,

( ) ( )

1 1
ln ( 1) ln 1

b b b

u

u

b
b b

u u u

d w
w w

b
b

u u u u

b b

b b

x d x x u
d x d u u x x e

x x x e

u e d u u e e d u

u e e d u u e e

b e e b
b b

  

   

 

   

   

   

        

  

 



Solution

2

1

ln 1 1
lim lim ln 1 1

b

b b

x
d x b

x b b   

 
     

 


64

Example 2 Evaluating an integral on     
[-∞,∞]

2
?

1

d x

x



 




0

2 2 2

0

2

0

lim lim
1 1 1

2 lim
1

b

b b

b

b

b

d x d x d x

x x x

d x

x



   
  

 

 
  




  


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   1 1 1 1

2 0

0

1

2

ta n ta n ta n 0 ta n .
1

2 lim ta n 2
1 2

b
b

b

d x
x b b

x

d x
b

x




   





 
 

     

   






Using the integral table (Eq. 16)

1

2 2

1
ta n

d x x
C

a x a a

 


Solution

1

1

ta n ta n

lim ta n
2b

y b b y

b






 

  



y

b

1

66

67

Example 3 Integrands with 

vertical asymptotes

68

Example 4 A divergent improper 

integral
 Investigate the 

convergence of 
1

0
1

d x

x
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Solution

 

 

 

1

0
1 1

0 0

1

1

1 1

0

lim lim ln | 1 |
1 1

lim ln | 1 | ln | 0 1 |

lim ln | 1 | ln | 0 1 | lim ln | 1 |

1
lim ln

b

b

b b

b

b b

d x d x
x

x x

b

b b

 

 



 

 





 



   
 

    

        

 
   

 

 

70

Example 5 Vertical asymptote at an 

interior point
3

2 / 3

0

?
( 1)

d x

x




71

Example 5 Vertical asymptote at an 

interior point

 

3 1 3

2 / 3 2 / 3 2 / 3

0 0 1

1

1 / 3

2 / 3 2 / 3 01 1
0 0

1 / 3 1 / 3

1 1

3 3
3

1 / 3

2 / 3 2 / 3
1 1

1

( 1) ( 1) ( 1)

lim lim 3 ( 1)
( 1) ( 1)

lim 3 ( 1) 3 ( 1) lim 0 3 3;

lim lim 3 ( 1)
( 1) ( 1)

b
b

b b

b b

cc c
c

d x d x d x

x x x

d x d x
x

x x

b

d x d x
x

x x

 

 



 

 

  

 
  

      

       

     



  

 

 

1 / 3 1 / 3 2 / 3

1

3

2 / 3

2 / 3

0

lim 3 (3 1) 3 ( 1) 3 2

3 (1 2 )
( 1)

c

c

d x

x



      

  


72

Example 7 Finding the volume of an 

infinite solid

 The cross section of 
the solid in Figure 
8.24 perpendicular to 
the x-axis are circular 
disks with diameters 
reaching from the x-
axis to the curve y = 
ex, -∞ < x < ln 2. Find 
the volume of the 
horn.
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Example 7 Finding the volume of an 

infinite solid

ln 2

2

0

ln 2

2

ln 2
2

2

2

1
lim ( )

4

1
lim

4

1
lim

8

1
lim 4

8

1
lim ( 4 )

8 2

V

b

b

x

b

b

x

bb

b

b

b

b

V d V y x d x

e d x

e

e

e







 




  

  

  

  

  

 



   

   

  

 


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Chapter 11

Infinite Sequences and Series

2

11.1

Sequences

3

What is a sequence

 A sequence is a list of numbers

in a given order.

 Each a is a term of the sequence.

 Example of a sequence:

 2,4,6,8,10,12,…,2n,…
 n is called the index of an

1 2 3
, , , , ,

n
a a a a

4

 In the previous example, a general term an

of index n in the sequence is described by 
the formula

an= 2n.

 We denote the sequence in the previous 
example by {an} = {2, 4,6,8,…}

 In a sequence the order is important:

 2,4,6,8,… and …,8,6,4,2 are not the same
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Other example of sequences

 

     

 

     

1 1

1 1

{ 1 , 2 , 3 , 4 , 5 , , , } , ;

1 1 1 1 1
{1, , , , , 1 , } ; 1 ;

2 3 4

1 2 3 4 1 1
{0 , , , , , , , } ; ;

2 3 4 5

{1, 1,1, 1,1, , 1 , } ; 1 ;

n n

n n

n n

n n

n n

n n

a n a n

b b
n n

n n
c c

n n

d d

 

 

 

     

 
 

     

6

7 8



9 10

11 12



13 14

 Example 6: Applying theorem 3 to show that the 
sequence {21/n} converges to 0.

 Taking an= 1/n, limn∞ an= 0 ≡ L
 Define f(x)=2x. Note that f(x) is continuous on x=L, and 

is defined for all x= an = 1/n

 According to Theorem 3, 

 limn∞ f(an) = f(L)

 LHS: limn∞ f(an) = limn∞ f(1/n) = limn∞ 21/n

 RHS = f(L) = 2L = 20 = 1

 Equating LHS = RHS, we have limn∞ 21/n = 1

  the sequence {21/n} converges to 1

15 16
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 Example 7: Applying l’Hopital rule

 Show that 

 Solution: The function                 is defined 

for x ≥ 1 and agrees with the sequence    
{an= (ln n)/n} for n ≥ 1.

 Applying l’Hopital rule on f(x):

 By virtue of Theorem 4,

ln
lim 0
n

n

n 


ln
( )

x
f x

x


ln 1 / 1
lim lim lim 0

1x x x

x x

x x     
  

ln
lim 0 lim 0

n
x n

x
a

x   
  
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Example 9 Applying l’Hopital rule to 
determine convergence

1
D o e s  th e  s e q u e n c e  w h o s e  th  te rm  is  c o n v e rg e ?

1

If  s o , f in d  lim .

n

n

n
n

n
n a

n

a
 

 
  

 

19

Solution: Use l’Hopital rule

22

2 2

1
L e t  ( )  s o  th a t   ( )  fo r  1 .

1

1
ln  ( ) ln  

1

1
ln

1 1
lim ln ( ) lim ln lim

1 1 /

2

21
lim lim 2

1 / 1

B y  v ir tu e  o f  T h e o re m  4 , lim

x

n

x x x

x x

x

x
f x f n a n

x

x
f x x

x

x

x x
f x x

x x

xx

x x

     

   

 
   

 

 
   

 

 
       

 

 
 

   
 

ln ( ) 2

lim ( ) e x p ( 2 ) lim e x p ( 2 )
n

x n

f x

f x a

 

   

 

  
20

All of the results in Theorem 5 

can be proven using Theorem 4. 

See if you can show some of 

them yourself.
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Example 10

 (a) (ln n2)/n = 2 (ln n) / n  20 = 0

 (b)

 (c)

 (d)  

 (e)

 (f)

   
2 22 2 / 1 /

1

n
n n

n n n  

1 / 1 /
3 3 3 1 1 1

n n n
n n

n n n      
1

0
2

n 
  

 

  2
22

1

nn

n
e

n n


  

    
   

1 0 0
0

!

n

n


22

 Example 12 Nondecreasing sequence

 (a) 1,2,3,4,…,n,…
 (b) ½, 2/3, ¾, 4/5 , …,n/(n+1),…

(nondecreasing because an+1-an ≥ 0)

 (c) {3} = {3,3,3,…}

 Two kinds of nondecreasing sequences: bounded 

and non-bounded.

23

 Example 13 Applying the definition for 
boundedness

 (a) 1,2,3,…,n,…has no upper bound

 (b) ½, 2/3, ¾, 4/5 , …,n/(n+1),…is bounded 
from above by M = 1.

 Since no number less than 1 is an upper 
bound for the sequence, so 1 is the least 
upper bound. 

24
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 If a non-decreasing sequence converges it is 

bounded from above.

 If a non-decreasing sequence is bounded 

from above it converges.

 In Example 13 (b) {½, 2/3, ¾, 4/5 , 

…,n/(n+1),…} is bounded by the least upper 

bound M = 1. Hence according to Theorem 6, 

the sequence converges, and the limit of 

convergence is the least upper bound 1.
26

11.2

Infinite Series

27 28

Example of a partial sum formed by a 

sequence {an=1/2n-1}
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Short hand notation for infinite series

1

,  o r  
n k n

n k

a a a

 



  
 The infinite series is either converge or 

diverge

31

Geometric series

 Geometric series are the series of the form

a + ar + ar2 + ar3 + …+ arn-1 +…=

 a and r = an+1/an are fixed numbers and a0. r

is called the ratio.

 Three cases can be classified: r < 1, r > 1,r =1. 

1

1

n

n

a r








32

Proof of                    for |r|<11

1 1

n

n

a
a r

r











 

 

   

 

1 2 1

1

2 1 2 3 1

A s s u m e  1 .

                                . . .

. . . . . .

1

1 / 1

1
If  | |< 1 : lim lim  (B y  th

1 1

k n

k n

n

k

n n n

n

n n

n n

n

n

n

n
n n

r

s a r a a r a r a r

r s r a a r a r a r a r a r a r a r a r

s r s a a r a r

s a r r

a r a
r s

r r


 



 

   



     

          

    

  


 

 



e o re m  5 .4 , lim = 1  fo r  | |< 1 )
n

n

r r
 
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For cases |r|≥1

 

1 2 1

1
If  | | 1 :  l im lim  (B e c a u s e | |  if  | |> 1

1

If  1 : .. .

l im lim lim

n

n

n
n n

n

n

n
n n n

a r
r s r r

r

r s a a r a r a r n a

s n a a n

   



     


     



      

   
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Example 2 Index starts with n=0

 The series

is a geometric series with a=5, r=-(1/4).

 It converges to s∞= a/(1-r) = 5/(1+1/4) = 4

 Note: Be reminded that no matter how complicated 

the expression of a geometric series is, the series is 

simply completely specified by r and a. In other 

words, if you know r and a of a geometric series, 

you know almost everything about the series.

 
0 1 2 3

0

1 5 5 5 5 5
 - ...

4 4 4 4 4

n

n

n






   
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Example 4

Express the above decimal as a ratio of 

two integers.

. .

5 .2 3 2 3 2 3   5 .2 3 5 . 2 3 

 

 

   

 

. .

. .

5 . 2 3 5

0 .2 3 0 .0 0 2 3 0 .0 0 0 0 2 3

2 3
      0 .2 3

1 0 0

1 1 1 1 0 0
1 0 .0 1 0 .0 0 0 1

1 9 91 1 0 .0 1 9 9
1

1 0 0 1 0 0

2 3 1 0 0 2 3
5 . 2 3

1 0 0 9 9 9 9

a

r

 

   

 

        
 



 
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Example 5 Telescopic series

 Find the sum of the series

 Solution
1

1

( 1)n n n



 


1 1

1

1 1 1
  

( 1) ( 1)

1 1 1

( 1) ( 1)

1 1 1 1 1 1 1 1 1 1
...

1 2 2 3 3 4 1 1

1
1

1

1
lim 1

( 1)

k k

k

n n

k
k

n

n n n n

s
n n n n

k k k k

k

s
n n

 



 


 
 

   
 

         
                 

          

 


 


 


38

Divergent series

 Example 6
2 2

1 2 4 1 6 ... . . . 

d iv e rg e s  b e c a u s e  th e  p a r t ia l s u m s   g ro w s  b e yo n d  e v e ry  n u m b e r  
n

n n

s L

     

1

1 2 3 4 1
... . . . 

1 2 3

d iv e rg e s  b e c a u s e  e a c h  te rm  is  g re a te r  th a n  1 , 

2 3 4 1
... . . . > 1

1 2 3 n

n n

n n

n

n





 
     


       




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Note

 In general, when we deal with a series, there are 

two questions we would like to answer:

 (1) the existence of the limit of the series

 (2) In the case where the limit of the series exists, 

what is the value of this limit?

 The tests that will be discussed in the following 

only provide the answer to question (1) but not 

necessarily question (2).






 
1k

k
as

40

Theorem 7 (not very useful to test the 

convergence of a series)

 Let S be the convergent limit of the series, i.e. 

limn∞ sn =      = S

 When n is large, sn and sn-1 are close to S

 This means an = sn – sn-1  an = S – S = 0 as 

n∞

1

n

n

a






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Comment: useful to spot almost instantly 

if a series is divergent.

42

Example 7 Applying the nth-term test

   

2 2

1

1

1 1

1

1

( )  d iv e rg e s  b e c a u s e  lim ,  i .e . lim  fa i l t o  e x is t .

1 1
( )  d iv e rg e s  b e c a u s e  lim = 1 0 .

( ) 1  d iv e rg e s  b e c a u s e  lim 1 fa i l to  e x is t .

( )  d iv e rg e s  b e c a u s e
2 5

n
n n

n

n
n

n n

n
n

n

a n n a

n n
b

n n

c

n
d

n



   




 



 

 






 

 


 












1

 lim = 0  ( l 'H o p ita l ru le )
2 5 2n

n

n 

 




A question

43

 Will the series converge if an0 as n∞?

44

Example 8 an0 but the series 
diverges

2  te rm s 4  te rm s 2 te rm s

1 1 1 1 1 1 1 1 1 1
1 ... . . . . . .

2 2 4 4 4 4 2 2 2 2

n

n n n n
          

 The terms are grouped into clusters that 

add up to 1, so the partial sum increases 

without bound the series diverges 

 Yet an=2-n  0
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 Corollary:

 Every nonzero constant multiple of a divergent 

series diverges

 If San converges and Sbn diverges, then 

San+bn) and San- bn) both diverges.

46

 Question:

 If San and Sbn both diverges, must Sanbn) 

diverge?

47 48

11.3

The Integral Test
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Nondecreasing partial sums

 Suppose {an} is a sequence with an > 0 for all n

 Then, the partial sum sn+1 = sn+an ≥ sn

  The partial sum form a nondecreasing sequence

 Theorem 6, the Nondecreasing Sequence Theorem 

tells us that the series           converges if and only if 

the partial sums are bounded from above. 

1 2 2

1

{ } { , , , . . . , , . . .}

n

n k n

k

s a s s s s



 

1

n

n

a







50

Comment: To test whether a non-decreasing 

sequence converges, check whether its partial sum in 

bounded from above. If it is, the sequence converges.

This is particular useful for sequence with 

for which neither the n-term test nor theorem 7 can be 

used to conclude the divergence / convergence.

0  a s  
n

a n  

51

Example 1 The harmonic series
 The series

diverges. 

 Consider the sequence of partial sum 

 The partial sum of the first 2k term in the series, sn > k/2, where 
k=0,1,2,3…

 This means the partial sum, sn, is not bounded from above. 

 Hence, by the virtue of Corollary 6, the harmonic series diverges

1

2 1 4 1 8 1

4 2 8 2 1 6 2

1 1 1 1 1 1 1 1 1 1 1 1
... .. .

1 2 3 4 5 6 7 8 9 1 0 1 6n n





     

     
                 

     


1 2 4 1 6 2
{ , , , , , , }ks s s s s

1

2 1

4 2

8 4

2

1

1 / 2 1 (1 / 2 )

(1 / 3 1 / 4 ) 2 (1 / 2 )

(1 / 5 1 / 6 1 / 7 1 / 8 ) 3 (1 / 2 )

.. .

(1 / 2 )k

s

s s

s s

s s

s k



   

    

      

 

52
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Example 4 A convergent series

2

1 1

2 2

1

2 11 1

1
 is  c o n v e rg e n t  b y  th e  in te g ra l te s t :

1

1 1
L e t ( ) , s o  th a t  ( ) . ( )  is  c o n tin u o s ,

1 1

p o s it iv e , d e c re a s in g  fo r  a ll 1 .

1
( ) .. . lim ta n

1 2 4 4

H e n c e , 

n

n n

n

b

b

a
n

f x f n a f x
x n

x

f x d x d x x
x

  

 

 

 


 




  
 



     

 

 

2

1

1
 c o n v e rg e s  b y  th e  in te g ra l te s t .

1n n



 

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Caution

 The integral test only tells us whether a given 

series converges or otherwise

 The test DOES NOT tell us what the 

convergent limit of the series is (in the case 

where the series converges), as the series 

and the integral need not have the same 

value in the convergent case.

59

11.4

Comparison Tests

60
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63

Caution

 The comparison test only tell us whether a 

given series converges or otherwise

 The test DOES NOT tell us what the 

convergent limit of the series is (in the case 

where the series converges), as the two 

series need not have the same value in the 

convergent case

64
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Example 2 continued

67

Caution

 The limit comparison test only tell us whether 

a given series converges or otherwise

 The test DOES NOT tell us what the 

convergent limit of the series is (in the case 

where the series converges)

68

11.5

The Ratio and Root Tests
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71 72
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Caution

 The ratio test only tell us whether a given 

series converges or otherwise

 The test DOES NOT tell us what the 

convergent limit of the series is (in the case 

where the series converges)

74

75 76

11.6

Alternating Series, Absolute and 

Conditional Convergence
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Alternating series

 A series in which the terms are alternately 

positive and negative

 

 

 

1

1

11 1 1 1
1

2 3 4 5

1 41 1 1
2 1

2 4 8 2

1 2 3 4 5 6 1

n

n

n

n

n

n






      


       

       

78

The alternating harmonic series                

converges because it satisfies the three 

requirements of Leibniz’s theorem.

 
1

1

1
n

n n









79 80
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1

1

1

1

E x a m p le : 

T h e  g e o m e tr ic  s e r ie s  

1 1 1 1
1 = 1 -  c o n v e rg e s  a b s o lu te ly  s in c e

2 2 4 8

th e  c o rre s p o in d in g  a b s o lu te  s e r ie s  

1 1 1 1
1  = 1 +    c o n v e rg e s

2 2 4 8

n

n

n

n









 
    

 

 
    

 




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 

 

1

1

1

1 1

E x a m p le : 

T h e  a lte rn a tiv e  h a rm o n ic  s e r ie s  

1 1 1 1
= 1 -  c o n v e rg e s  (b y  v ir tu re  o f  L e ib n iz  T h e o re m )

2 3 4

B u t th e  c o rre s p o in d in g  a b s o lu te  s e r ie s  

1 1 1 1 1
 = 1 +    d iv e rg e s  (a  h a rm o n

2 4 8

n

n

n

n n

n

n n







 

 


  


   



 

 
1

1

ic  s e r ie s )

1
H e n c e , b y  d e f in i t io n , th e  a lte rn a tin g  h a rm o n ic  s e r i e s  

c o n v e rg e s  c o n d it io n a lly .

n

n n








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In other words, if a series converges 

absolutely, it converges.
1

1

1

1

1
In  th e  p re v io u s  e x a m p le , w e  sh o w n  th a t  t h e  g e o m e tr i c  s e r ie s  1

2

c o n v e rg e s  a b so lu te ly . H e n c e , b y  v ir tu e  o f  th e  a b so l u te  c o n v e rg e n t te s t , th e  s e r i e s

1
1 c o n v e rg e s .

2

n

n

n

n









 
 

 

 
 

 




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Caution

 All series that are absolutely convergent 

converges.

 But the converse is not true, namely, not all 

convergent series are absolutely convergent.

 Think of series that is conditionally 

convergent. These are convergent series that 

are not absolutely convergent.
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11.7

Power Series

90

91

Mathematica simulation
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The radius of convergence of a power 

series

98

a a+R
x

a-R

RR

| x – a | < R

99

 R is called the radius of convergence of the 
power series

 The interval  of radius R centered at x = a is 
called the interval of convergence

 The interval of convergence may be open, closed, 
or half-open: [a-R, a+R], (a-R, a+R), [a-R, a+R) 
or (a-R, a+R]

 A power series converges for all x that lies within 
the interval of convergence.

100

See example 3 (previous slides, where we 

determined their interval of convergence)
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Caution

 Power series is term-by-term differentiable

 However, in general, not all series is term-by-

term differentiable, e.g. the trigonometric 

series                 is not (it’s not a power series) 
2

1

s in !

n

n x

n






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A power series can be integrated term by 

term throughout its interval of 

convergence
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11.8

Taylor and Maclaurin Series

110

Series Representation

 In the previous topic we see that an infinite series 
represents a function. The converse is also true, namely:

A function that is infinitely differentiable f(x) can be 

expressed as a power series 

 We say: The function f(x) generates the power series

 The power series generated by the infinitely differentiable 
function is called Taylor series. 

 The Taylor series provide useful polynomial 
approximations of the generating functions

1

( )
n

n

n

b x a







1

( )
n

n

n

b x a






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Finding the Taylor series 

representation
 In short, given an infinitely differentiable function f(x), 

we would like to find out what is the Taylor series 
representation of f(x), i.e. what is the coefficients of 
bn in 

 In addition, we would also need to work out the 
interval of x in which the Taylor series 
representation of f(x) converges.

 In generating the Taylor series representation of a 
generating function, we need to specify the point 
x=a at which the Taylor series is to be generated.

1

( )
n

n

n

b x a






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Note: Maclaurin series is effectively a special case of Taylor 

series with a = 0.
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Example 1 Finding a Taylor series

 Find the Taylor series generated by 

f(x)=1/x at a= 2. Where, if anywhere, does 

the series converge to 1/x?

 f(x) = x-1; f '(x) = -x-2; f (n)(x) = (-1)n n! x(n+1)

 The Taylor series is 

 

       

 

( 1 )( )

0 0
2

0 1 21 0 2 1 3 2 ( 1 )

2 ( 1 )

1 !( 2 )
( 2 ) ( 2 )

! !

1 2 ( 2 ) 1 2 ( 2 ) 1 2 ( 2 ) .. . 1 2 ( 2 ) .. .

1 / 2 ( 2 ) / 4 ( 2 ) / 8 ... 1 ( 2 ) / 2 ...

k kk

k k

k k
x

k k k

k k k

k xf
x x

k k

x x x x

x x x

  

 


    




   

            

       

 
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 
( )

2 ( 1 )

0

( )

( 2 )
( 2 ) 1 / 2 ( 2 ) / 4 ( 2 ) / 8 ... 1 ( 2 ) / 2 ...

!

T h is  is  a  g e o m e tr ic  s e r ie s  w ith  ( 2 ) / 2 ,

H e n c e , th e  T a y lo r  s e r ie s  c o n v e rg e s  fo r  | | | ( 2 ) / 2 |< 1 ,  

o r  e q u iv a le n tly ,0 4 .

( 2 )
( 2 )

!

k
kk k k

k

k

f
x x x x

k

r x

r x

x

f
x

k






         

  

 

 





 

0

2 ( 1 )

1 / 2 1

1 1 ( ( 2 ) / 2 )

th e  T a y lo r  s e r ie s  1 / 2 ( 2 ) / 4 ( 2 ) / 8 ... 1 ( 2 ) / 2 .. .

1
c o n v e rg e s  to    fo r  0 4 .

k

k

k k k

a

r x x

x x x

x
x







  
   

        

 



*Mathematica simulation
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Taylor polynomials
 Given an infinitely differentiable function f, we can approximate f(x) 

at values of x near a by the Taylor polynomial of f, i.e. f(x) can be 
approximated by f(x) ≈ Pn(x), where 

 Pn(x) = Taylor polynomial of degree n of f generated at x=a.

 Pn(x) is simply the first n terms in the Taylor series of f.

 The remainder, |Rn(x)| = | f(x) - Pn(x)| becomes smaller if higher 
order approximation is used 

 In other words, the higher the order n, the better is the 
approximation of f(x) by Pn(x)

 In addition, the Taylor polynomial gives a close fit to f near the point 
x = a, but the error in the approximation can be large at points that 
are far away.

 

       

( )

0

( 3 ) ( )
2 3

( )
( )

!

( ) ( ) ( ) ( ) ( )

0 ! 1! 2 ! 3 ! !

kk n
k

n

k

n
n

f a
P x x a

k

f a f a f a f a f a
x a x a x a x a

n





 

 
         


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Example 2 Finding Taylor polynomial 

for ex at x = 0
( )

( ) 0 0 0 0 0

0 1 2 3

0
0

2 3

( ) ( )

( )
( ) .. .

! 0 ! 1! 2 ! 3 ! !

1 ...    T h is  is  th e  T a y lo r  p o lyn o m ia l o f  o rd e r   fo r  
2 3 ! !

If  th e  lim it   is  ta k e n , ( ) T a y lo r  s e r ie s

x n x

kk n

k n

n

k
x

n

x

n

f x e f x e

f x e e e e e
P x x x x x x x

k n

x x x
x n e

n

n P x



 

  

     

    

  



2 3

0

.

T h e  T a y lo r  s e r ie s  fo r   is  1 .. . . . . ,  
2 3 ! ! !

In  th is  s p e c ia l c a s e , th e  T a y lo r  s e r ie s  fo r   c o n v e r g e s  to   fo r  a ll .

n n

x

n

x x

x x x x
e x

n n

e e x





      

(To be proven later)
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11.9

Convergence of Taylor Series;

Error Estimates

122

 When does a Taylor series converge to its 

generating function?

 ANS:

The Taylor series converge to its generating 

function if the |remainder| =

|Rn(x)| = |f(x)-Pn(x)|  0 as n∞

123

Rn(x) is called the remainder of order n

x
xa c

f(x)

y

0

f(a)

124

f(x) = Pn(x) + Rn(x) for each x in I.

If Rn(x) 0 as n ∞, Pn(x) converges to f(x), 

then we can write

 
( )

0

( )
( ) lim ( )

!

k
k

n
n

k

f a
f x P x x a

k



 


  
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Example 1 The Taylor series for ex

revisited

 Show that the Taylor series generated by 

f(x)=ex at x=0 converges to f(x) for every 

value of x.

 Note: This can be proven by showing that 

|Rn| 0 when n ∞

126

2 3

( 1 )

1

1

1 1

0 1

1

1 ... ( )
2 ! 3 ! !

( )
( )  fo r  s o m e   b e tw e e n  0  a n d  

( 1) !

| ( ) |  .
( 1) !

If  0 , 0

1
( 1) ! ( 1) ! ( 1) !

( )  fo r  0 .
( 1) !

If  0 ,

n

x

n

n

n

n

c

n

n

n c x n

c x n

n

x

n

x x x
e x R x

n

f c
R x x c x

n

e
R x x

n

x c x

x e e x
e e e x

n n n

x
R x e x

n

x x






 




     







  

      
  

  




0 1 1

0 1 1

1

0

1

( 1) ! ( 1) ! ( 1) ! ( 1) !

( ) fo r  0
( 1) !

c n n

x c n n

n

n

c

e e x x
e e e x x

n n n n

x
R x x

n

 
 



 

      
   

  


x0 c

0x c

y=ex

y=ex

ex

ec

e0

e0

ec

ex
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1

1

0

C o m b in in g  th e  re s u lt  o f  b o th  0  a n d  0 ,

| ( ) |  w h e n  0  ,
( 1) !

| ( ) |  w h e n  0
( 1) !

H e n c e , i r re s p e c tiv e  o f  th e  s ig n  o f  , lim | ( ) | 0  a n d  th e  s e r ie s

 c o n v e rg e  to  fo r  e v e ry  
!

n

x

n

n

n

n
n

n

x

n

x x

x
R x e x

n

x
R x x

n

x R x

x
e

n





 





 

 


 




 .x
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11.10

Applications of Power Series
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The binomial series for powers and 

roots
 Consider the Taylor series generated by 

f(x) = (1+x)m, where m is a constant:

1 2

3

( )

( )

0 0

2 3

( ) (1 )

( ) (1 ) , ( ) ( 1)(1 ) ,

( ) ( 1)( 2 )(1 ) ,

( ) ( 1)( 2 ) .. .( 1)(1 ) ;

( 0 ) ( 1)( 2 ) .. .( 1)

! !

(
1 ( 1) ( 1)( 2 ) .. .

m

m m

m

k m k

k

k k

k k

f x x

f x m x f x m m x

f x m m m x

f x m m m m k x

f m m m m k
x x

k k

m m
m x m m x m m m x

 





 

 

 

     

    

     

   



        

 

1)( 2 ) .. .( 1)
.. .

!

km m k
x

k

  

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The binomial series for powers and 

roots

2 3

( ) (1 )

( 1)( 2 ) .. .( 1)
1 ( 1) ( 1)( 2 ) .. . . . .

!

m

k

f x x

m m m m k
m x m m x m m m x x

k

 

   
         

 This series is called the binomial series, 

converges absolutely for |x| < 1. (The 

convergence can be determined by using 

Ratio test, 1

1

k

k

u m k
x x

u k

 
 



In short, the binomial series is the Taylor series 

for f(x) = (1+x)m, where m a constant
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Taylor series representation of ln x at x = 

1
 f(x)=ln x; f '(x) = x-1;

 f '' (x) = (-1) (1)x-2; f ''' (x) = (-1)2 (2)(1) x-3 …
 f (n)(x) = (-1) n-1(n-1)!x-n ;

     

   

     

         

( ) ( 0 ) ( )
0

0 11 1 1

( 1 ) ( 1 )

1 1
1

0 1 2
1 2 3

2 3

( ) ( ) ( )
1 1 1

! 0 ! !

ln 1 ( 1) ( 1) ! ( 1) (1)
1 0 1

0 ! !

( 1) ( 1) ( 1)
1 1 1 ...

1 2 3

1 1 1
1 1 1 ... 1 1 ...

2 3

n n
n n

n nx x x

n n n n
n n

n n
x

n n

f x f x f x
x x x

n n

n x
x x

n n

x x x

x x x x
n

 

   

    

 

    

  
     

  
      

          

 

 

*Mathematica simulation
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11.11

Fourier Series

142

‘Weakness’ of power series 
approximation

 In the previous lesson, we have learnt to approximate a given 
function using power series approximation, which give good fit if  
the approximated power series representation is evaluated near 
the point it is generated

 For point far away from the point the power series being 
generated, the approximation becomes poor

 In addition, the series approximation works only within the 
interval of convergence. Outside the interval of convergence, the 
series representation fails to represent the generating function

 Furthermore, power series approximation can not represent 
satisfactorily a function that has a jump discontinuity.

 Fourier series, our next topic, provide an alternative to overcome 
such shortage

143 144
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A function f(x) defined on [0, 2] can 
be represented by a Fourier series

x

y

0 2

y = f(x)

0 0

0

1

lim ( ) lim ( ) lim c o s s in

lim c o s s in ,

0 2 .

n n

n k k k
n n n

k k

n

k k
n

k

f x f x a k x b k x

a a k x b k x

x 

     
 

 


  

  

 

 

 Fourier series 

representation of f(x)
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x

y

0 2

0 0

If  - < ,  th e  F o u rie r  s e rie s  lim ( ) lim c o s s in

a c u ta lly  re p re se n ts  a  p e rio d ic  fu n c tio n  ( )  o f  a  p e rio d  o f  2 ,

n n

k k k
n n

k k

x f x a k x b k x

f x L 

   
 

    



 

…
4 6 8-2

0

lim c o s s in ,

n

k k
n

k

a k x b k x x
 



    
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Orthogonality of sinusoidal 

functions

 
2

2 2 2

0 0 0
0

2 2
2

0 0

2 2

0 0

 ,  n o n z e ro  in te g e r .

If  = ,

1 1 s in 2
c o s c o s c o s c o s 1 c o s 2 .

2 2 2

s in s in s in

If  ,

c o s c o s 0 , s in s in 0 .(c a n  b e  p ro v e n  u s in g ,

m k

m k

m x
m x k xd x m x m xd x m x d x x

m

m x k xd x m xd x

m k

m x k xd x m x k xd x


  

 

 





 
      

 

 



 

  

 

 

2 2

0 0

2

0

 s a y , in te g ra t io n  

b y  p a r ts  o r  fo rm u la  fo r  th e  p ro d u c t  o f  t w o  s in u s o id a l fu n c tio n s ) .

In  a d d tio n , s in c o s 0 .

A ls o , s in c o s 0  fo r  a ll , . W e  s a y  s in  a n d  c o s  fu n c tio n s  a re  o r th o g o n

m xd x m xd x

m x k xd x m k

 



 



 

 a l to  

e a c h  o th e r .
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Derivation of a0

 

 

 

0

1

2 2 2

0
0 0 0

1

2 2 2

0
0 0 0

1 1

0 0

0

c o s s in

In te g ra te  b o th  s id e s  w ith  re s p e c t  to   f r o m  0  to  2  

c o s s in

c o s s in

2 0 0 2

2

n

n k k

k

n

n k k

k

n n

k k

k k

n

f x a a k x b k x

x x x

f x d x a d x a k x d x b k xd x

a d x a k xd x b k xd x

a a

a f x

  

  



 







 

  

 

   

 

   

 



  

   

 

2

0

2

0
0

. 

F o r  la rg e  e n o u g h  ,  g iv e s  a  g o o d  re p re s e n ta t io n  o f  ,

h e n c e  w e  c a n  re p la c e   b y  :

1

2

n

n

d x

n f f

f f

a f x d x






 




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Derivation of ak, k ≥ 1
  0

1

2

0

c o s s in

M u ltip ly  b o th  s id e s  b y  c o s  (  n o n z e ro  in t e g e r ) ,  a n d  in te g ra te  w ith  re s p e c t  to   

f ro m  0  to  2 . B y  d o in g  s o , th e  in te g ra l c o s s in  g e t  ' k i lle d  o ff  ' 

d u e  to  th e  o

n

n k k

k

f x a a k x b k x

m x m x

x x m x k xd x






  

 





2

0
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Derivation of bk, k ≥ 1
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 Fourier series can represent some 

functions that cannot be represented by 

Taylor series, e.g. step function such as 

152
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Fourier series representation of a function 

defined on the general interval [a,b]

 For a function defined on the interval [0,2], 

the Fourier series representation of   f(x) is 

defined as

 How about a function defined on an general 

interval of [a,b] where the period is L=b-a

instead of 2? Can we still use

to represent f(x) on 

[a,b]?
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Fourier series representation of a function 

defined on the general interval [a,b]

 For a function defined on the interval of [a,b] the 
Fourier series representation on [a,b] is actually 

 L=b - a
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Derivation of a0
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Derivation of ak
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Example:

0
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y=mL

a=0, b=L
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CALCULUS  ASSIGNMENT 

QUESTIONS FOR ZCA 110 



Tutorial 1 (Chapter 1) 
Thomas' Calculus 11th edition 

 
Exercise 1.3 
 
Functions and Their Graphs 
 
 find the domain and range of each function. 

  
 
 
 
 
 
 

 
Finding Formulas for Functions 
 
13. Express the edge length of a cube as a function 
of the cube’s diagonal length d. Then express the 
surface area and volume of the cube as a function 
of the diagonal length. 
 
Functions and Graphs 
 
Find the domain and graph the functions 

 
 
 

 
 
22. Graph the following equations and explain why 
they are not graphs of functions of x. 

 
Piecewise-Defined Functions 
 
Graph the function 

 
 
 
 

 
 
 
 
 
 
 
 
 
Exercise 1.4 
 
Recognizing Functions 
 
In Exercises 3, identify each function as a constant 
function, linear function, power function, 
polynomial (state its degree), rational function, 
algebraic function, trigonometric function, 
exponential function, or logarithmic function. 
Remember that some functions can fall into 
more than one category. 

 
Increasing and Decreasing Functions 
 
Graph the functions. What symmetries, if any, do 
the graphs have? Specify the intervals over which 

the function is increasing and 
the intervals where it is 
decreasing. 
 

 
 
 
 
Even and Odd Functions 
 
Say whether the function is even, odd, or neither. 
Give reasons for your answer. 

 
 
 
 
 

 
 
 



 
 
EXERCISES 1.5 
Sums, Differences, Products, and Quotients 
 
Find the domains and ranges of ƒ, g, ƒ + g , and 

 . 
 

 
 

 
 
 
 
 
Composites of Functions 
 
6. If ƒ(x) = x - 1 and g(x) = 1/(x + 1), find 
a. ƒ(g (½))    
b. g (ƒ(1/2)) 
 

Shifting Graphs 

 
Graph the functions  
 

 
 
 

 
 

Vertical and Horizontal Scaling 
 
Exercises below tell by what factor and direction 
the graphs of the given functions are to be stretched 
or compressed. Give an equation 
for the stretched or compressed graph. 
 

 

 
 
EXERCISES 1.6 
 
Radians, Degrees, and Circular Arcs 
 
4. If you roll a 1-m-diameter wheel forward 30 cm 
over level ground, through what angle will the 
wheel turn? Answer in radians (to the nearest tenth) 
and degrees (to the nearest degree). 
 
Evaluating Trigonometric Functions 
 
5. Copy and complete the following table of 
function values. If the function is undefined at a 
given angle, enter “UND.” Do not use a 
calculator or tables. 

 
Find the other two if x lies in the specified interval. 

 
 
 
 

 
 



 
Graphing Trigonometric Functions 
 
Graph the functions the ts-plane (t-axis horizontal, 
s-axis vertical). What is the period of each  
function? What symmetries do the graphs have? 

 
 
 
 
 
 

 
Additional Trigonometric Identities 
 
Use the addition formulas to derive the identity. 

 
 
 
 

Using the Addition Formulas 
 
Express the given quantity in terms of sin x and 
cos x. 

 
 

 
Using the Double-Angle Formulas 
 
Find the function values 

 
 
 
 
 

 



Tutorial 2 (Chapter 2) 
Thomas' Calculus 11th edition 

 
Exercise 2.1 
 
Limits from Graphs 

 
Existence of Limits 
 

 
Limits by Substitution 
 
Find the limits by substitution. 

 
 
 

 
Average Rates of Change 
 
Find the average rate of change  of the function 
over the given interval or intervals. 

 
 

 

Exercise 2.2 
 
Limit Calculations 
 
Find the limits. 
 

 
 
 

 
 
 
 
 
 
 

Using Limit Rules 
 
 

 
 

Limits of Average Rates of Change 
 
Because of their connection with secant lines, tangents, 
and instantaneous rates, limits of the form 

 
 
 

 
occur frequently in calculus. Evaluate this limit 
for the given value of x and function ƒ. 

 
 
 

 
Using the Sandwich Theorem 

 
EXERCISES 2.3 
 
Centering Intervals About a Point 
 

  



Finding Deltas Graphically 
  
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Finding Deltas Algebraically 
 

 
 
 
More on Formal Limits 

 
 
 

Prove the limit statements 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
EXERCISES 2.4 
 
Finding Limits Graphically 

 
Finding One-Sided Limits Algebraically 
 

Find the limit 
 
 
 

 
 
 

Find the limits  
 
 
 

 
 

 
 
 
 

 
Limits of Rational Functions 

 
 
 

 
EXERCISES 2.5 
 
Infinite Limits 
 
Find the limits. 

 
 



 
 
Additional Calculations 
 
Find the limits. 

 
 
 
 
 
 

 

 
 
 
 
 
Inventing Functions 
 
Find a function that satisfies the given conditions and 
sketch its graph. (The answers here are not unique. Any 
function that satisfies the conditions is acceptable. Feel 
free to use formulas defined in pieces if that will help.) 
 

 
Graphing Terms 
The function is given as the sum or difference of two 
terms. First graph the terms (with the same set of axes). 
Then, using these graphs as guides, sketch in the graph 
of the function. 

 
 
 

EXERCISES 2.6 
 
Continuity from Graphs 
 
In the exercises below, say whether the function graphed 
is continuous on [ -1, 3] . If not, where does it fail to be 

continuous and why? 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Applying the Continuity Test 
 
At which points do the functions fail to be continuous? 
At which points, if any, are the discontinuities 
removable? Not removable? Give reasons for your  

 
 
 

 
 
Composite Functions 
 
Find the limits. Are the functions continuous at the 
point being approached? 

 
 
 

 
EXERCISES 2.7 
 
Slopes and Tangent Lines 
 
Find an equation for the tangent to the curve at the 

given point. Then 
sketch the curve and 
tangent together. 

 
 
 



Find the slope of the function’s graph at the given point. 
Then find an equation for the line tangent to the graph 
there. 

 
 

 
 
 

 
 
 
 
Tangent Lines with Specified Slopes 

 
 
Rates of Change 

 
 
 



Tutorial 3 (Chapter 3) 
Thomas' Calculus 11th edition 

 
EXERCISES 3.1 
 
Finding Derivative Functions and Values 
 
Using the definition, calculate the derivatives of the 
functions. Then find the values of the derivatives as 
specified. 

 
 

 
Find the indicated derivatives. 

 
 
 

 
 
 

 
Slopes and Tangent Lines 
Differentiate the functions. Then find an equation of the 
tangent line at the indicated point on the graph of the 
function. 

 
 
Find the values of the derivative. 

 
 
 
 

Differentiability and Continuity on an Interval 
 
The figure below shows the graph of a function over a 
closed interval D. At what domain points does the 
function appear to be  
a. differentiable? 
b. continuous but not differentiable? 
c. neither continuous nor differentiable? 

 
 
 
 
 
 
 

EXERCISES 3.2 
 
Derivative Calculations 
Find the derivatives of the functions  

 
 

 
 
 
 

 
Find the first and second derivatives. 

 
 
 

 
Using Numerical Values 

 
Slopes and Tangents 

 
EXERCISES 3.3 
 
Motion Along a Coordinate Line 
 

 
 
 
 



 
Free-Fall Applications 
 

 
Conclusions About Motion from Graphs 
 

 
 
 
 
 
 
 
 
 
 

 
EXERCISES 3.4 
 
Derivatives 

 
 

 
 

 
 

 
 
 
 

 
Tangent Lines 
 
Graph the curves over the given intervals, together with 
their tangents at the given values of x. Label each curve 
and tangent with its equation. 

 
 
 
 

 
Trigonometric Limits 
 
Find the limits 

 
 



 
 
 
 
 
 
 
 
 
 
EXERCISES 3.5 
 
Derivative Calculations 
 

 
 
 

 
 

 
 
 

Second Derivatives 
Find y'' 

 
 
 
 
 
 

 
Finding Numerical Values of Derivatives 
 

 
 
 
Tangents to Parametrized Curves 

 
 

 
EXERCISES 3.6  
 
Derivatives of Rational Powers 

 
 

 

 
 
 
Differentiating Implicitly 

 
 
 

 
 

 
 
Second Derivatives 

 
 

 
Slopes, Tangents, and Normals 
 
Verify that the given point is on the curve and find 
the lines that are (a) tangent and (b) normal to the curve 
at the given point. 

 
 
Implicitly Defined Parametrizations 
 

 
 
EXERCISES 3.7 

 
 
20. A growing raindrop Suppose that a drop of mist is a 
perfect sphere and that, through condensation, the drop 
picks up moisture at a rate proportional to its surface 
area. Show that under these circumstances the drop’s 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EXERCISES 3.8 
 
Finding Linearizations 
 

 
 
 

 
Linearization for Approximation 
 
You want linearizations that will replace the functions in 
the following over intervals that include the given points 
x0. To make your subsequent work as simple as possible, 
you want to center each linearization not at x0 but at a 
nearby integer x = a at which the given function and its 
derivative are easy to evaluate. What linearization do 
you use in each case? 

 
 
 

 

Linearizing Trigonometric Functions 
 
Find the linearization of ƒ at x = a.  

 

 

 
Derivatives in Differential Form 
 
Find dy. 

 
 
 

 
 
Approximation Error 
The  function ƒ(x) changes value when x changes 
from x0 to x0  + dx . Find 

 
 



 

Tutorial 4 (Chapter 4) 
Thomas' Calculus 11th edition 

 
EXERCISES 4.1 
 
Absolute Extrema on Finite Closed Intervals 
 
Find the absolute maximum and minimum values 
of the function on the given interval. Then graph the 
function. Identify the points on the graph where the 
absolute extrema occur, and include their coordinates. 

 
 

 
Finding Extreme Values 
 
Find the function’s absolute maximum and minimum 
values and say where they are assumed. 

 
 
 

 
Local Extrema and Critical Points 
 
Find the derivative at each critical point and determine 
the local extreme values. 

 
 

 
 
 
 
 
 
 
 
 

 
Optimization Applications 
 
Area of an athletic field 
62. An athletic field is to be built in the shape of a 
rectangle x units long capped by semicircular regions of 
radius r at the two ends. The field is to be bounded by a 
400-m racetrack.  
a. Express the area of the rectangular portion of the field 
as a function of x alone or r alone (your choice).  
b. What values of x and r give the rectangular portion 
the largest possible area? 

 
 
 
EXERCISES 4.2 
 
Finding c in the Mean Value Theorem 
 
Find the value or values of ܿ that satisfy the equation �ሺܾሻ − �ሺ�ሻܾ − � = �′ሺܿሻ 

in the conclusion of the Mean Value Theorem for the 
functions and intervals. 
 

 
            
Checking and Using Hypotheses 
 
10. For what values of �, � and ܾ does the function 

 
 
 
 

satisfy the hypotheses of the Mean Value Theorem on 
the interval [0, 2]? 
 
Roots (Zeros) 
 
Show that the function has exactly one zero in the given 
interval. 

 
 

 
Finding Functions from Derivatives 
 

 
Finding Position from Acceleration 
 
Exercise 43 give the acceleration � = �ଶݏ/��ଶ, initial 
velocity and initial position of a body moving on a 
coordinate line. Find the body’s position at time �. 

 
 

 
 
 



 

EXERCISES 4.3 
 
Analyzing ƒ Given ƒ' 
 
Answer the following questions about the functions 
whose derivatives are given below: 
a. What are the critical points of ƒ? 
b. On what intervals is ƒ increasing or decreasing? 
c. At what points, if any, does ƒ assume local maximum 
and minimum values? 

 
 
 
 

Extremes of Given Functions 
 
a. Find the intervals on which the function is increasing 
and decreasing. 
b. Then identify the function’s local extreme values, if 
any, saying where they are taken on. 
c. Which, if any, of the extreme values are absolute? 

 
 
 

 
Extreme Values on Half-Open Intervals 
 
a. Identify the function’s local extreme values in the 
given domain, and say where they are assumed. 
b. Which of the extreme values, if any, are absolute? 

 
 

 
Theory and Examples 
 
47. As � moves from left to right through the point     ܿ = ʹ, is the graph of �ሺ�ሻ = �ଷ − ͵� + ʹ rising, or is 
it falling? Give reasons for your answer. 
 
EXERCISES 4.4 
 
Analyzing Graphed Functions 
 
Identify the inflection points and local maxima and 
minima of the functions graphed below. Identify the 
intervals on which the functions are concave up and 
concave down. 

 
 
 
 

 
Graph Equations 
 
Use the steps of the graphing procedure to graph the 
equations below. Include the coordinates of any local 
extreme points and inflection points. 
 

 
 
Sketching the General Shape Knowing �′ 
 
Each of Exercises below gives the first derivative of a 
continuous function = �ሺ�ሻ . Find ݕ′′ and sketch the 
general shape of the graph of ƒ. 
 

 
 
Theory and Examples 
 
67. The accompanying figure shows a portion if the 
graph of a twice-differentiable function ݕ = �ሺ�ሻ. At 
each of the five labelled points, classify ݕ′ and ݕ′′ as 
positive, negative, or zero. 

 
 

75. Suppose the derivative of the function ݕ = �ሺ�ሻ is  
′ݕ  = ሺ� − ͳሻଶሺ� − ʹሻ 
 

At what points, if any, does the graph of � have a local 
minimum, local maximum, or point of inflection?  
(Hint: Draw the sign pattern for ݕ′.) 



 

EXERCISES 4.5 
 
Applications in Geometry 
 
6. You are planning to close off a corner of the first 
quadrant with a line segment 20 units long running from 
(�,0) to (0, ܾ). Show that the area of the triangle 
enclosed by the segment is largest when � = ܾ. 
 
12. Find the volume of the largest right circular cone 
that can be inscribed in a sphere of radius 3. 

 
 
18. A rectangle is to be inscribed under the arch of the 
curve ݕ = Ͷcos ሺͲ.ͷ�ሻ from � = −� to � = �. What 
are the dimensions of the rectangle with largest area, and 
what is the largest area? 
 
22. A window is in the form if a rectangle surmounted 
by a semicircle. The rectangle is of clear glass, whereas 
the semicircle is of tinted glass that transmits only half 
as much light per area as clear glass does. The total 
perimeter is fixed. Find the proportions of the window 
that will admit the most light. Neglect the thickness of 
the frame. 

 
 
EXERCISES 4.6 
 
Finding Limits 
 
In Exercises 1 and 5, use l’Hôpital’s Rule to evaluate the 
limit. Then evaluate the limit using a method studied in 
Chapter 2.  

              
 
Applying l’Hôpital’s Rule 
 
Use l’Hôpital’s Rule to find the limits in Exercises 22 
and 25. 

       
 
Theory and Applications 
 
32. ∞/∞ Form 
Give an example of two differentiable functions � and � with lim�→∞ �ሺ�ሻ = lim�→∞ �ሺ�ሻ = ∞ that satisfy the 

following. 

 
 
EXERCISES 4.8 
 
Finding Antiderivatives 
 
In Exercises 8 and 14, find an antiderivative for each 
function. Do as many as you can mentally. Check your 
answers by differentiation. 

         

     
 
Finding Indefinite Integrals 
 
In Exercise 31 and 46, find the most general 
antiderivative or indefinite integral. Check your answer 
by differentiation. 

 

 
Checking Antiderivative Formulas 
 



 

Verify the formulas in Exercises 60 by differentiation. 

 
 
Theory and Examples 
 
101. Suppose that 

 
Find: 

 
 
 



 

Tutorial 5 (Chapter 5 and 6) 
Thomas' Calculus 11th edition 

 
EXERCISES 5.1 
 
Area 
 
In Exercise 1 use finite approximations to estimate the 
area under the graph of the function using 
a. a lower sum with two rectangles of equal width. 
b. a lower sim with four rectangles of equal width. 
c. an upper sum with two rectangles of equal width. 
d. an upper sum with four rectangles of equal width. 

 
 
Area of a Circle 
 
21. Inscribe a regular �-sided polygon inside a circle of 
radius 1 and compute the area of the polygon for the 
following values of �: 
 

a. 4 (square)     b. 8 (octagon)     c. 16 
d. Compare the areas in parts (a), (b) and (c) with the 
area of the circle. 
 
EXERCISES 5.2 
 
Sigma Notation 
 
Write the sums in Exercises 1 without sigma notation. 
Then evaluate them. 

 
 
Values of Finite Sums 
 
17. Suppose that ∑ ����=ଵ = −ͷ and ∑ ܾ���=ଵ = ͸. 
Find the values of 

 
 
Evaluate the sums in Exercise 24. 

 
 
 

 
 
 
Limits of Upper Sums 
 
For the functions in Exercise 36, find a formula for the 
upper sum obtained by dividing the interval [�,ܾ] into � 
equal subintervals. Then take a limit of this sum as  � → ∞ to calculate the area under the curve over [�,ܾ]. 

 
 
EXERCISES 5.3 
 
Expressing Limits as Integrals 
 
Express the limits in Exercise 1 as definite integrals. 

 
 
Using Properties and Known Values to Find Other 
Integrals 
 
12. Suppose that ∫ �ሺ�ሻ ��଴−ଷ = √ʹ. Find 

 
 
Using Area to Evaluate Definite Integrals 
 
In Exercise 15, graph the integrands and use areas to 
evaluate the integrals. 

 
 
Evaluations 
 
Use the results of Equations (1) and (3) to evaluate the 
integrals in Exercise 38. 

 
 



 

Average Value 
 
In Exercise 55, graph the function and find its average 
value over the given interval. 

 
 
EXERCISES 5.4 
 
Evaluating Integrals 
 
Evaluate the integrals in Exercises 23 and 25. 

 

 
 
Derivatives of Integrals 
 
Find �ݕ/�� in Exercise 36. 

 
 
Area 
 
Find the areas of the shaded regions in Exercise 45. 

 
 
Theory and Examples 
 
62. Find  

 

EXERCISES 5.5 
 
Evaluating Integrals 
 
Evaluate the indefinite integrals in Exercise 4 and 11 by 
using the given substitutions to reduce the integrals to 
standard form. 

 

 
 
Evaluate the integrals in Exercises 36 and 48. 

 

 
 
Simplifying Integrals Step by Step 
 
Evaluate the integrals in Exercise 51. 

 
 
EXERCISES 5.6 
 
Evaluating Definite Integrals 
 
Use the substitution formula in Theorem 6 to evaluate 
the integrals in Exercises 7 and 14. 

    

 

  
 



 

Area 
 
Find the total areas of the shaded regions in Exercise 32. 

 
 
73. Find the area of the region in the first quadrant 
bounded by the line ݕ = �, the line � = ʹ, the curve ݕ = ͳ/�ଶ, and the x-axis. 
 
EXERCISES 6.3 
 
Length of Parametrized Curves 
 
Find the lengths of the curves in Exercise 1. 

 
 
Finding Lengths of Curves 
 
Find the lengths of the curves in Exercises 7 and 16. If 
you have a grapher, you may want to graph these curves 
to see what they look like. 

 

 
 
Theory and Applications 
 
27. a. Find a curve through the point (1, 1) whose length 
integral is 

 
 
   b. How many such curves are there? 
     Give reasons for your answer. 

 



 

Tutorial 6 (Chapter 7) 
Thomas' Calculus 11th edition 

 
EXERCISES 7.1 
 
Graphing Inverse Functions 
 
Exercise 10 shows the graph of a function ݕ = ݂ሺݔሻ. 
Copy the graph and draw in the line ݕ =  Then use .ݔ
symmetry with respect to the line ݕ =  to add the ݔ
graph of ݂−ଵ to your sketch. (It is not necessary to find 
a formula for ݂−ଵ.) Identify the domain and range of ݂−ଵ. 

 
 
Formulas for Inverse Functions 
 
Exercise 15 gives a formula for a function ݕ = ݂ሺݔሻ 
and shows the graphs of ݂ and ݂−ଵ. Find a formula for ݂−ଵ in each case. 

 

 

 
 
 
Derivatives of Inverse Functions 
 
In Exercises 25 and 30: 
a. Find ݂−ଵሺݔሻ. 
b. Graph ݂ and ݂−ଵ together. 

c. Evaluate ݂݀/݀ݔ at ݔ = � and 
��−1��  at ݔ = ݂ሺ�ሻ to 

show that at these points 
��−1�� = ͳ/ሺ����ሻ. 

 
 

30.  
a. Show that ℎሺݔሻ = ሻݔଷ/Ͷ and �ሺݔ = ሺͶݔሻଵ/ଷ are 
inverses of one another. 
b. Graph ℎ and � over an ݔ-interval large enough to 
show the graphs intersecting at (2, 2) and (-2, -2). Be 
sure the picture shows the required symmetry about the 
line ݕ =  .ݔ
c. Find the slopes of the tangents to the graphs at ℎ and � at (2, 2) and (-2, -2). 
d. What lines are tangent to the curves at the origin? 
 
EXERCISES 7.2 
 
Using the Properties of Logarithms 
 
1. Express the following logarithms in terms of ln 2 and 
ln 3. 
 

a. ln 0.75  b. ln (4/9)  c. ln (1/2) 
d. ln √93   e. ln 3√ʹ     f. ln √ͳ͵.ͷ 
 
Derivatives of Logarithms 
 
In Exercise 22, find the derivative of ݕ with respect to ݐ ,ݔ, or �, as appropriate.  

 
 
Integration 
 
Evaluate the integrals in Exercise 39. 

 



 

Logarithmic Differentiation 
 
In Exercise 64, use logarithmic differentiation to find the 
derivative of ݕ with respect to the given independent 
variable. 

 
 
Theory and Applications 
 
69. Locate and identify the absolute extreme values of 
 

a. ln (cos ݔ) on [− �ସ , �ଷ], 
 

b. cos (ln ݔ) on [ଵଶ , ʹ]. 
 
EXERCISES 7.3 
 
Algebraic Calculations with the Exponential and 
Logarithm 
 
Find simpler expressions for the quantities in Exercise 2. 

 
 
Solving Equations with Logarithmic or Exponential 
Terms 
 
In Exercise 10, solve for ݕ in terms of ݐ or ݔ, as 
appropriate. 

 
 
In Exercise 16, solve for ݐ. 

 
 
Derivatives 
 
In Exercises 23 and 36, find the derivative of ݕ with 
respect to ݐ ,ݔ, or �, as appropriate. 

 
 

 
 
 

Integrals 
 
Evaluate the integrals in Exercises 49 and 56. 

 

 
 
Theory and Applications 
 
67. Find the absolute maximum and minimum values of ݂ሺݔሻ = ݁� −  .on [0, 1] ݔʹ
 
EXERCISES 7.4 
 
Algebraic Calculations With �� and ���� � 
 
Simplify the expressions in Exercise 4. 

  
 
Derivatives 
 
In Exercises 18 and 29, find the derivative of ݕ with 
respect to the given independent variable. 

 

 
 
Logarithmic Differentiation 
 
In Exercises 41 and 46, use logarithmic differentiation to 
find the derivative of ݕ with respect to the given 
independent variable. 

 

 
 
Integration 
 
Evaluate the integrals in Exercise 65. 

 



 

Evaluate the integrals in Exercise 72. 

 
 
Theory and Applications 
 
75. Find the area of the region between the curve    ݕ = ሺͳ/ݔʹ + ʹ− ଶሻ and the intervalݔ ≤ ݔ ≤ ʹ of the ݔ-axis. 
 
EXERCISES 7.5 
 
6. Voltage in a discharging capacitor 
Suppose that electricity is draining from a capacitor at a 
rate that is proportional to the voltage � across its 
terminals and that, if ݐ is measured in seconds, ݀�݀ݐ = − ͳͶͲ �. 
Solve this equation for �, using �଴ to denote the value 
of � when ݐ = Ͳ. How long will it take the voltage to 
drop to 10% of its original value? 
 
8. Growth of bacteria 
A colony of bacteria is grown under ideal conditions in a 
laboratory so that the population increases exponentially 
with time. At the end of 3 hours there are 10,000 
bacteria. At the end of 5 hours there are 40,000. How 
many bacteria were present initially? 
 
EXERCISES 7.7 
 
Common Values of Inverse Trigonometric Functions 
 
Use reference triangles to find the angles in Exercise 6. 

         

    
 
Trigonometric Function Values 
 
13. Given that � =  ,� ଵሺͷ/ͳ͵ሻ, find cos �, tan−��ݏ
sec �, csc �, and cot �. 
 
 

Evaluating Trigonometric and Inverse Trigonometric 
Terms 
 
Find the values in Exercise 26. 

 
 
Finding Derivatives 
 
In Exercise 51, find the derivative of ݕ with respect to 
the appropriate variable. 

 
 
Evaluating Integrals 
 
Evaluating the integrals in Exercise 72. 

 
 
Evaluate the integrals in Exercise 107. 

 
 
Integration Formulas 
 
Verify the integration formulas in Exercise 117. 

 
 
EXERCISES 7.8 
 
Hyperbolic Function Values and Identities 
 
Each of Exercise 1 gives a value of sinh ݔ or cosh ݔ. 
Use the definitions and the identity coshଶ ݔ −sinhଶ ݔ = ͳ to find the values of the remaining five 
hyperbolic functions. 

 
 
 
 



 

Derivatives 
 
In Exercise 16, find the derivative of ݕ with respect to 
the appropriate variable. 

 
 
Indefinite Integrals 
 
Evaluate the integrals in Exercise 43. 

 
 
Definite Integrals 
 
Evaluate the integrals in Exercise 60. 

 
 
Evaluating Inverse Hyperbolic Functions and 
Related Integrals 
 
When hyperbolic function keys are not available on a 
calculator, it is still possible to evaluate the inverse 
hyperbolic functions by expressing them as logarithms, 
as shown here. 

 
 
Use the formulas in the box here to express the numbers 
in Exercise 66 in terms of natural logarithms. 

 
 

Applications and Theory 
 
83. Arc length 
 
Find the length of the segment of the curve ݕ =ሺͳ/ʹሻ cosh ݔ from ݔʹ = Ͳ to ݔ = ln √ͷ. 
 



 

Tutorial 7 (Chapter 8) 
Thomas' Calculus 11th edition 

 
EXERCISES 8.1 
 
Basic Substitutions 
 
Evaluate each integral in Exercise 36 by using a 
substitution to reduce it to standard form. 

 
 
Completing the Square 
 
Evaluate each integral in Exercise 41 by completing the 
square and using a substitution to reduce it to standard 
form. 

 
 
Improper Fractions 
 
Evaluate each integral in Exercise 50 by reducing the 
improper fraction and using a substitution (if necessary) 
to reduce it to standard form. 

 
 
Separating Fractions 
 
Evaluate each integral in Exercise 56 by separating the 
fraction and using a substitution (if necessary) to reduce 
it to standard form. 

 
 
Multiplying by a Form of 1 
 
Evaluate each integral in Exercise 59 by multiplying by 
a form of 1 and using a substitution (if necessary) to 
reduce it to standard form. 

 

 
 
 
Eliminating Square Roots 
 
Evaluate each integral in Exercise 68 by eliminating the 
square root. 

 
 
Assorted Integrations 
 
Evaluate each integral in Exercise 82 by using any 
technique you think is appropriate. 

 
 
Trigonometric Powers 
 
83.  
a. Evaluate ∫ � ଶݏ݋ܿ :ଷ � ݀�. (Hintݏ݋ܿ = ͳ −  (.� ଶ��ݏ
b. Evaluate ∫  .�݀ � 5ݏ݋ܿ
c. Without actually evaluating the integral, explain how 
you would evaluate ∫  .�݀ � 9ݏ݋ܿ
 
EXERCISES 8.2 
 
Integration by Parts 
 
Evaluate the integrals in Exercise 1, 19 and 24. 

 

 

 
 
Substitution and Integration by Parts 
 
Evaluate the integrals in Exercise 30 by using a 
substitution prior to integration by parts. 

 



 

37. Average value  
A retarding force, symbolized by the dashpot in the 
figure, slows the motion of the weighted spring so that 
the mass’s position at time ݐ is ݕ = ʹ݁−� cos ݐ  ,ݐ ൒ Ͳ. 
Find the average value of ݕ over the interval Ͳ ≤ ݐ ≤ ʹ�. 

 
 
Reduction Formulas 
 
In Exercise 41, use integration by parts to establish the 
reduction formula. 

 
 
EXERCISES 8.3 
 
Expanding Quotients into Partial Fractions 
 
Expand the quotients in Exercise 6 by partial fractions. 

 
 
Nonrepeated Linear Factors 
 
In Exercise 12, express the integrands as a sum of partial 
fractions and evaluate the integrals. 

 

Repeated Linear Factors 
 
In Exercise 20, express the integrands as a sum of partial 
fractions and evaluate the integrals. 

 
 
Irreducible Quadratic Factors 
 
In Exercise 26, express the integrands as a sum of partial 
fractions and evaluate the integrals. 

 
 
Improper Fractions 
 
In Exercise 31, perform long division on the intergrand, 
write the proper fraction as a sum of partial fractions, 
and then evaluate the integral. 

 
 
Evaluating Integrals 
 
Evaluating the integrals in Exercise 38. 

 
 
EXERCISES 8.4 
 
Products of Powers of Sines and Cosines 
 
Evaluate the integrals in Exercise 6 and 14. 

 

 
 
 
 



 

Integrals with Square Roots 
 
Evaluate the integrals in Exercise 22. 

 
 
Powers of Tan � and Sec � 
 
Evaluate the integrals in Exercise 26. 

 
 
Products of Sines and Cosines 
 
Evaluate the integrals in Exercise 38. 

 
 
EXERCISES 8.5 
 
Basic Trigonometric Substitutions 
 
Evaluate the integrals in Exercise 1, 14 and 28. 

 

 

 
 
In Exercise 32, use an appropriate substitution and then 
a trigonometric substitution to evaluate the integrals. 

 
 
Applications 
41. Find the area of the region in the first quadrant that 
is enclosed by the coordinate axes and the curve  ݕ = √9 −  .͵/ଶݔ

EXERCISES 8.6 
 
Using Integral Tables 
 
Use the table of integrals to evaluate the integrals in 
Exercise 8 and 20. 

 

 
 
Substitution and Integral Tables 
 
In Exercise 45, use a substitution to change the integral 
into one you can find in the table. Then evaluate the 
integral.  

 
 
Using Reduction Formulas 
 
Use reduction formulas to evaluate the integrals in 
Exercise 60. 

 
 
Powers of � Times Exponentials 
  
Evaluate the integrals in Exercise 80 using table 
Formulas 103-106. These integrals can also be evaluated 
using integration (Section 8.2). 

 
 
Substitutions with Reduction Formulas 
 
Evaluate the integrals in Exercise 81 by making a 
substitution (possibly trigonometric) and then applying a 
reduction formula. 

 
 



 

Hyperbolic Functions 
 
Use the integral tables to evaluate the integrals in 
Exercise 90. 

 
 
EXERCISES 8.8 
 
Evaluating Improper Integrals 
 
Evaluate the integrals in Exercises 1 and 26 without 
using tables. 

 

 
 
Testing for Convergence 
 
In Exercises 35, 50 and 64, use integration, the Direct 
Comparison Test, or the Limit Comparison Test to test 
the integrals for convergence. If more than one method 
applies, use whatever method you prefer. 

 

 

 
 
Theory and Examples 
 
65. Find the values of ݌ for which each integral 
converges. 

 
 



 

Tutorial 8 (Chapter 11) 
Thomas' Calculus 11th edition 

 
EXERCISES 11.1 
 
Finding Terms of a Sequence 
 
Exercise 2 gives a formula for the �th term �� of a 
sequence {��}. Find the values of �ଵ, �ଶ, �ଷ, and �ସ. 

 
 
Finding a Sequence’s Formula 
 
In Exercise 16, find a formula for the �th term of the 
sequence. 

 

 
 
Finding Limits 
 
Which of the sequences {��} in Exercises 25, 49 and 
80 converge. and which diverge? Find the limit of each 
convergent sequence. 

 

 

 
 
EXERCISES 11.2 
 
Finding �th Partial Sums 
 
In Exercise 1, find a formula for the �th partial sum of 
each series and use it to find the series’ sum if the series 
converges. 

 

 
 
 
Series with Geometric Terms 
 
In Exercise 7, write out the first few terms of each series 
to show how the series starts. Then find the sum of the 
series. 

 
 
Telescoping Series 
 
Find the sum of each series in Exercise 15. 

 
 
Convergence or Divergence 
 
Is Exercise 23 converge or diverge? Give reasons for 
your answer. If a series converges, find its sum. 

 
 
Geometric Series 
 
In geometric series in Exercise 41, write out the first few 
terms of the series to find � and �, and find the sum of 
the series. Then express the inequality |�| < ͳ in terms 
of � and find the values of � for which the inequality 
holds and the series converges. 

 
 
Repeating Decimals 
 
Express each of the numbers in Exercise 51 as the ratio 
of two integers. 

 
 
 
 



 

EXERCISES 11.3 
 
Determining Convergence or Divergence 
 
Which of the series in Exercises 1, 9, 10 and 28 
converge, and which diverge? Give reasons for your 
answers. (When you check an answer, remember that 
there may be more than one way to determine the series’ 
convergence or divergence.) 

         

   
 
EXERCISES 11.4 
 
Determining Convergence and Divergence 
 
Which of the series in 1, 10 and 36 converge, and which 
diverge? Give reasons for your answers. 

       

 
 
EXERCISES 11.6 
 
Determining Convergence or Divergence 
 
Is Exercise 1 converge or diverge? Give reasons for your 
answers. 

 
 
Absolute Convergence 
 
Which of the series in Exercises 13 and 30 converge 
absolutely, which converge, and which diverge? Give 
reasons for your answers. 

       

EXERCISES 11.7 
 
Intervals of Convergence 
 
In Exercise 1, 11 and 22, (a) find the series’ radius and 
interval of convergence. For what values of � does the 
series converge (b) absolutely, (c) conditionally? 

         

 
 
In Exercise 36, find the series’ interval of convergence 
and, within this interval, the sum of the series as a 
function of �. 

 
 
EXERCISES 11.8 
 
Finding Taylor Polynomials 
 
In Exercises 1 and 4, find the Taylor polynomials of 
orders 0, 1, 2, and 3 generated by � at �. 

 

 
 
Finding Taylor Series at � = � (Maclaurin Series) 
 
Find the Maclaurin series for the functions in Exercise 9. 

 
 
Finding Taylor Series 
 
In Exercises 24 and 28, find the Taylor series generated 
by � at � = �. 

 

 

 



 

EXERCISES 11.9 
 
Taylor Series by Substitution 
 
Use substitution to find the Taylor series at � = Ͳ of 
the functions in Exercise 1. 

 
 
More Taylor Series 
 
Find Taylor series at � = Ͳ for the functions in 
Exercise 8. 

 
 
EXERCISES 11.10 
 
Binomial Series 
 
Find the first four terms of the binomial series for the 
functions in Exercises 1 and 9. 

  

 
 
Find the binomial series for the functions in Exercise 11. 

 
 
EXERCISES 11.11 
 
Finding Fourier Series 
 
In Exercises 1 and 8, find the Fourier series associated 
with the given functions. Sketch each function. 

 

 


