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Chapter 1

Preliminaries

‘ Function

“ y = f(x)
= f represents function (a rule that tell us how
to calculate the value of y from the variable x

= X : independent variable (input of f)

= y : dependent variable (the correspoinding
output value of f at x)

1.3

Functions and Their Graphs

DEFINITION Function

A function from a set D to a set Y is a rule that assigns a unigue (single) element
f(x) e Y to each element x e D.

Definition Domain of the function

The set of D of all possible input values

Definition = Range of the function

The set of all values of f(x) as x varies throughout D




d

f——— [  — @ —
Input Output - fla) o £(%)
(domain) (range)
FIGURE 1.22 A diagram showing a D = domain set V=t ‘;g:g“i“g

function as a kind of machine.

FIGURE 1.23 A function from a set D to
a set Y assigns a unique element of ¥ to
each element in D.

Natural Domain Verify the domains and ranges of these

functions
When a function y = f(x)is defined and the
domain is not stated explicitly, the domain is Function Domain (x) Range ()
assumed to be the largest set of real x-values y=x (=00, 00) [0, o0)
for the formula gives real y-values. y = 1\/} (=00,0)U (0, &) (=00, 0)U (0, )
y=Vx [0, o0) [0, c0)
e.g. compare “y = x2” c.f. “y = x?, x=0” y=V4—x (—00, 4] [0, 00)
Domain may be open, closed, half open, y=VI1-x’ [=1,1] [0, 1]

finite, infinite.



Graphs of functions

Graphs provide another way to visualise a
function

In set notation, a graph is
{(x,f(x)) | x eD}

The graph of a function is a useful picture of
its behaviour.

NF—-—————

Pk o o

FIGURE 1.25 If(x, y) lies on the graph of
f, then the value y = f(x) is the height of
the graph above the point x (or below x if
f(x) is negative).
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y=x+2

200

FIGURE 1.24 The graph of
f(x) = x + 2 is the set of points (x, y) for
which y has the value x + 2.

Example 2 Sketching a graph

Graph the function y = x2 over the interval
[-2,2]



The vertical line test

Since a function must be single valued over

its domain, no vertical line can intersect the ,,,\ TN

graph of a function more than once. A S S S WD S T—

If a is a point in the domain of a function f, the N \*,.,,,.ﬁ/

vertical line x=a can intersect the graph of fin

a single point (a, f(a)). By Vi- 2 @7 VI=E
FIGURE 1.28 fa) Ths i ned the piaph of @ fueetion; I faile the veart’eal live tagl. b} The upger samigirele is the gragh of 2 Sucticn
Ay = W1 lower seniriele i the graph of 8 Sumction £() = — V1 — &*,

Piecewise-defined functions

y
The absolute value function ;L y=Hh
y=-x B
of 7T
1_
( X x=20 | L L | L L 5y
-3 -2 -1 0 1 2 3

FIGURE 1.29 The absolute value
function has domain (—00, 00)
and range [0, 00).
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Graphing piecewise-defined functions

A
. . . : =_ y =f)
Note: this is just one function with a domain YT LL
covering all real number y=1
1+
y=x’
] ] | | x
[_x x< 0 -2 -1 0 1 2
f(x)zl x7 0<x<1 FIGURE 1.30 To graph the
function y = f(x) shown here,
[ 1 x > 1 we apply different formulas to

different parts of its domain
(Example 5).

The greatest integer function

FIGURE 1.31 The graph of the
greatest integer function y = | x |
lies on or below the line y = x, so

it provides an integer floor for x
(Example 6).

Also called integer floor function

f = [x], defined as greatest integer less than
or equal to x.

e.g.

[2.4] =2
[2]=2

[-2] = -2, etc.

Note: the graph is the blue colour lines,
not the one in red
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Writing formulas for piecewise-defined
functions

Write a formula for the function y=f(x) in
Figure 1.33

21

1.4

|ldentifying Functions;
Mathematical Models

23

y=fx)
(1, 1) 2,1

FIGURE 1.33 The segment on the
left contains (0, 0) but not (1, 1).
The segment on the right contains
both of its endpoints (Example 8).
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I inear functions

Linear function takes the form of
y=mx +b

m, b constants

m slope of the graph

b intersection with the y-axis

The linear function reduces to a constant
function f= c when m =0,

24



FIGURE 1.34 The collection of lines
y = mx has slope m and all lines pass
through the origin.

25

‘ Power functions

m f(x) = x@
= a constant
= Case (a): a = n, a positive integer

_3
2_ y 2
1_
| 1 | 1 | | X
0 1 2

FIGURE 1.35 A constant function
has slope m = 0.

26
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FIGURE 1.36 Graphs of f(x) = x",n = 1,2, 3, 4, 5 defined for —00 < x < 00,

0 back

28



‘ Power functions

= Case (b):
= a = -1 (hyperbola)
= Or g=-2

29

‘ Power functions

Case (c):
a="%,1/3,3/2, and 2/3

f(x) = x* = \x (square root) , domain = [0 < x < «)
g(x) = x'3 = 3\x(cube root), domain = (- < x < )

p(x) = x?B3= (x13)2. domain = ?
q(x) = x32= (x3)'2 domain = ?

31

Domain: x # 0
Range: y # 0

(a)

L
>

Domain: x # 0
Range: y>0

(b)

FIGURE 1.37 Graphs of the power functions f(x) = x“ for part

(a)a = —1 and for part (b)a = —2.

go back
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y=Vi

Domain: 0 =x <
Range: O0=y<w

y

y =32

1
0 1

Domain: 0 =x <
Range: 0=y<>

go back

0 1

X

X

FIGURE 1.38 Graphs of the power functions f(x) = x“ fora =

Domain: —° < x <
Range: - <y<w®

y=x2?

1+

L x

0 1

Domain: — <x <o
Range: 0=y<o®

N W
[FS3] )

and <.

W=

)

N —
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‘ Polynomials

22l
= p(X)= a X" +a,_x" +a X2+ ax+a, 7

| o=tz SRR E

n nonnegative integer (1,2,3...)
a’s coefficients (real constants)

If a,= 0, nis called the degree of the
polynomial

o ] (e

FIGURE 1.82  Ciaphs of these polynomial fumstions,

33 34

‘ Rational functions ‘

= A rational function is a quotient of two J
polynomials: } -
= f(x) = p(x) / q(x) |

R T 2 FEn ©
= p,q are polynomials. /[ \

= Domain of f(x) is the set of all real number x
for which q(x) = 0.

FIGURE 1.0  Graphs of thyes mtional fuecifons.
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‘ Algebraic functions

= Functions constructed from polynomials
using algebraic operations (addition,
subtraction, multiplication, division, and
taking roots)

37

‘ Trigonometric functions

= More details in later chapter

39

y y=x(1 —x)?»

B _3,2_ {23
y=362 -1

10 o] 0 51 *
1k

) Sk

_3_

(@) (b) (©)

NIV

FIGURE 1.41 Graphs of three algebraic functions.
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A A e N e,
VI Vo WV F VARV

(a) f(x) =sinx (b) f(x) = cos x

FIGURE 1.42 Graphs of the sine and cosine functions.

40



Exponential functions

" y
f(x) = a* 1w e 1
Where a > 0 and a# 0. ais called the ‘base’. or 0}
8- g
Domain (-e, «) | - i
y=3
Range (0. =) Al x\
2k ~ . = Sl
Hence’ f(X) > O = I IY—Zx 2 L | T —— X
H -1 -0.5 0 0.5 1 —1 -05 0 0.5 1
More in later chapter @ 32y = 3y 107 A

FIGURE 1.43 Graphs of exponential functions.
Note: graphs in (a) are reflections of the

corresponding curves in (b) about the y-axis. This
amount to the symmetry operation of x < -x.

41 42

Logarithmic functions

2 y = logyx
f(x) = log, x
a is the base 'r
a=z1,a>0 - ; >
Domain (0, «) y = logsx
Range (-, «) 0 y = logjpx
They are the inverse functions of the

exponential functions (more in later chapter) FIGURE 1.44  Graphs of four

logarithmic functions.
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Transcendental functions

Functions that are not algebraic

Include: trigonometric, inverse trigonometric,
exponential, logarithmic, hyperbolic and
many other functions

45

Increasing versus decreasing functions

A function is said to be increasing if it rises as
you move from left to right

A function is said to be decreasing if it falls as
you move from left to right

47

Example 1

Recognizing Functions
(@) f(x)=1+x-"%x°
(b) g(x) = 7

(c) h(z) =2z

(d) y(t) = sin(t—n/4)

46

Function Where increasing Where decreasing

y=x2 0=x< —co<x=0

y=x> —00 < x < 0 Nowhere

y=1/x Nowhere —00 <x<0and0 < x < 00
y = 1/x* —00 <x <0 0<x<o0

y= Vix 0=x< o Nowhere

y =x¥3 0=x< o -0 <x=0

2 2/3

v=x2, v=x3; y=1/x, y=1/x%; y=x'2, y=x

48



DEFINITIONS  Even Function, 0dd Function
A function y = f(x)is an

even function of x if f(—x) = f(x),
odd function of x if f(—x) = —f(x),

for every x in the function’s domain.

49

Recognising even and odd functions

f(x) = x2 Even function as (-x)? = x2 for all x,
symmetric about the all x, symmetric about
the y-axis.

f(x) = x> + 1 Even function as (-x)? + 1 = x2+ 1
for all x, symmetric about the all x, symmetric
about the y-axis.

51

(x,»

x FIGURE 1.46 In part (a) the graph of

y = x? (an even function) is symmetric
about the y-axis. The graph of y = x* (an
=5 -y) odd function) in part (b) is symmetric
about the origin.

®

50

Recognising even and odd functions

f(x) = x. Odd function as (-x) = -x for all x,
symmetric about origin.

f(x) = x+1. Odd function ?

52



y=x*+1

1.5

Combining Functions;
Shifting and Scaling Graphs

(a) (b)
FIGURE 1.47 (a) When we add the constant term 1 to the function
y = x2, the resulting function y = x? + 1 is still even and its graph is
still symmetric about the y-axis. (b) When we add the constant term 1 to
the function y = x, the resulting function y = x + 1 is no longer odd.

The symmetry about the origin is lost (Example 2).
53

Sums, differences, products and quotients Example 1
f, g are functions f(x) = \x, g(x) = V(1-x),
For x eD(f )ND(g), we can define the functions of The domain common to both f,g is
(f+g) (x) = f(x) + g(x) D(f)ND(g) = [0,1] (work it out)

(f-g) (x) = f(x) - 9(x)
(fg)(x) = f(x)g(x),
(chH(x) = cf(x), c a real number

(
L

j g(i) g (x)%0

A
g

55



Function Formula Domain

fre (f+8)) = Va+V1—x [0, 1] = D(f) N D(g)

f-¢g (f =& = Vi-Vi-x [0, 1]

g—f (g— N =V1-x—-Vx [0, 1]

fg (f-g)x) = flx)glx) = Vx(1 —x) [0, 1]

flg é(x) = % =7 f < [0, 1) (x = 1 excluded)
(x) f1—

g/f %(x) = % = lx_x (0, 1] (x = 0 excluded)

57

FIGURE 1.51 The domain of the function f + g is
the intersection of the domains of f and g, the
interval [0, 1] on the x-axis where these domains
overlap. This interval is also the domain of the
function f - g (Example 1).

59

3
>

8_
| y=(f+9W)

6
4 —
L —
5 Ffla) + gla)
m fa) g(a)
0 a > X

FIGURE 1.50 Graphical addition of two
functions.

58

| Composite functions

= Another way of combining functions

60



DEFINITION  Composition of Functions

If f and g are functions, the composite function f o g (“f composed with g”) is
defined by

(f ° g)x) = f(g(x)).

The domain of f ¢ g consists of the numbers x in the domain of g for which g(x)
lies in the domain of f.

61

- f(g(x)

{€9)

FIGURE 1.53  Arrow diagram for f o g.

63

X g gx) [ — f(g(x)

FIGURE 1.52 Two functions can be composed at
x whenever the value of one function at x lies in the
domain of the other. The composite is denoted by

feg.

Example 2

Viewing a function as a composite
y(x) = V(1 - x2) is a composite of
g(x) =1 - x2 and f(x) = Vx

.e. y(x) = flg0)] = V(1 -x?)

62

Domain of the composite function is |x|< 1, or

[-1.1]
Is Flg(x)] = g [f(x)]?

64



‘ Example 3 ‘ Shifting a graph of a function

= Read it yourself it Formuias

= Make sure that you know how to work out the Vertical Shifts
domains and ranges of each composite y=f&) +k
functions listed

Shifts the graph of fup k units if £ > 0
Shifts it down | k| units if £ < 0
Horizontal Shifts

y=flx+h) Shifts the graph of fleft A units if A > 0
Shifts it right| A | units if & < 0

65 66

| Example 4

1 y=x>+2
y=x2+l
w(@)y=x%y=x+1 y=x2
= (b)y=x2 y=x2-2
y:x2—2

1 unit

| FIGURE 1.54 To shift the graph
) i 2 > X of f(x) = x? up (or down), we add
1k \L\z nits positive (or negative) constants to
the formula for f (Example 4a
B and b).
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| Example 4

Add a positive Add a negative
constant to x. constant to x.
—v2 = 2 = 2 « X >
= (C)y=x5y=(x+3), y=(x-3)
y=(x+3)° y=x [y=@x-2)
1+
| | L | >
-3 o 1 2 >

FIGURE 1.55 To shift the graph of y = x? to the
left, we add a positive constant to x. To shift the
graph to the right, we add a negative constant to x

(Example 4c).

69 70

| Example 4

= (dy=Ix,y=I|x-2/-1

FIGURE 1.56 Shifting the graph of
¥ = |x| 2 units to the right and 1 unit
down (Example 4d).
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Scaling and reflecting a graph of a function

To scale a graph of a function is to stretch or
compress it, vertically or horizontally.

This is done by multiplying a constant c to the
function or the independent variable

73

Example 5(a)

Vertical stretching and compression of the
graph y = \x by a factor or 3

75

Vertical and Horizontal Scaling and Reflecting Formulas

Forc > 1,

y = cf(x) Stretches the graph of f vertically by a factor of c.

y= % f(x) Compresses the graph of f vertically by a factor of c.

y = f(ex) Compresses the graph of f horizontally by a factor of c.
y = f(x/c) Stretches the graph of f horizontally by a factor of c.
Forc = —1,

y = —f(x) Reflects the graph of f across the x-axis.

y = f(—x) Reflects the graph of f across the y-axis.

74

—_— N W B Lh

-1 0

FIGURE 1.57 Vertically stretching and
compressing the graph y = Vxbya
factor of 3 (Example 5a).
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| Example 5(b)

= Horizontal stretching and compression of the
graph y = Vx by a factor of 3

-1

FIGURE 1.58 Horizontally stretching and
compressing the graph y = Vx by a factor of

3 (Example 5b).
‘ Example 5(c)
y=V=x A
= Reflection across the x- and y- axes L y="Vx
wC=-1
| | |
-3 -2 -1

FIGURE 1.59 Reflections of the graph
¥ = Vx across the coordinate axes
(Example 5c¢).
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EXAMPLE 6

Combining Scalings and Reflections

Given the function f(x)=x*-4x3+10 (Figure
1.60a), find formulas to

(a) compress the graph horizontally by a
factor of 2 followed by a reflection across the
y-axis (Figure 1.60b).

(b) compress the graph vertically by a factor
of 2 followed by a reflection across the x-axis
(Figure 1.60c).

81

1.6

Trigonometric Functions

83

y y=16x*+32x+ 10 Y y

(a) (b) (©)

FIGURE 1.60 (a) The original graph of . (b) The horizontal compression of y = f(x) in part (a) by a factor of 2, followed
by a reflection across the y-axis. (c) The vertical compression of y = f(x) in part (a) by a factor of 2, followed by a reflection
across the x-axis (Example 6).

82

Radian measure
Bl’

FIGURE 1.63 The radian measure of
angle ACB is the length 6 of arc AB on the
unit circle centered at C. The value of 8
can be found from any other circle,
however, as the ratio s/r. Thus s = r is
the length of arc on a circle of radius r
when @ is measured in radians,

84



>

>
>
>

Conversion Formulas Terminal ray
1 degree = % (%0.02) radians Initial ray
’/ > X
fang- : T Positi Initial i
Degrees to radians: multiply by 130 m(f:;gu"rz m:? ray ) rT;;minal ﬁiﬁ?ﬂfﬁ
1 radian = 12.—0 (=57) degrees
. N 180
Radians to degrees: multiply by —7— FIGURE 1.65 Angles in standard position in the xy-plane.
85 86
y y Angle convention
37
N | |
() * \D * Be noted that angle will be expressed in
o terms of radian unless otherwise specified.

Get used to the change of the unit

Sm
_7
J C) i
p - 37 (j

FIGURE 1.66 Nonzero radian measures can be positive or

negative and can go beyond 2.
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The six basic trigono
functions

hypotenuse

~tr1C

opposite

.
adjacent

h
sin 8 = opp csc @ = P
hyp opp
_ adj _hyp
cos B = m sec 8 = a_dj
&
tan 6 = % cotf = ']
adj opp

FIGURE 1.67 Trigonometric

ratios of an acute angle.

y
A
hypotenuse ¥ P(x, y)

r

Y\ opposite
o PP
> X
0 X
adjacent

FIGURE 1.69 The new and old
definitions agree for acute angles.

89
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Generalised definition of the six trigo

functions

Define the trigo
functions in terms of

the coordinates of the
point P(x,y) on a circle

of radius r
sine: sind=ylr
cosine: cosé@= x/r

tangent: tanéd=
yIx

y
A

P(x, y)
,
0
N x
FIGURE 1.68 The trigonometric

functions of a general angle 6 are
defined in terms of x, y, and r.

cosecant: cscld=rly
secant: secd = r/x
cotangent: coté=xly

90

Mnemonic to remember when the basic trigo
functions are positive or negative

FIGURE 1.70 The CAST rule,
remembered by the statement “All

y
A
S A
sin pos all pos
T C
tan pos COs pos

> X Students Take Calculus,” tells
which trigonometric functions are
positive in each quadrant.
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(cos 2%7 sin 2—17) = (—l, \@]

3 2’72
y
h
P
1
V3 2
2 \3
> X
1
2

FIGURE 1.71 The triangle for
calculating the sine and cosine of 27r/3
radians. The side lengths come from the

TABLE 1.4 VYaly

i & i 1 -1 8 LT 1 W3

geometry of right triangles.
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Periodicity and graphs of the trigo
functions

Trigo functions are also periodic.

94

DEFINITION  Periodic Function

A function f(x) is periodic if there is a positive number p such that
f(x + p) = f(x) for every value of x. The smallest such value of p is the period
of f.

95

Y =cosx y=sinx

U
T

[}
——
(g
[N}
B)
|
i
— o]
N ———
~ofg
3

Domain: — < x < ® Domain: —c0 < x < 0 Domain: x ;&tg, +

Range: -1=y=1 Range: -1=y=1 X
Period: 27 Period: 27 Eaﬂgzz —o <y <
(a) (b) eriod: ©
y y y

y =secx y=cscx y =cotx
L X I

X

I I I
-7 _# 0 T 3 70| w 3 - _m w 3w !
A ANA AN
Domain: x *ig’ + 37'”, . Domain: x # 0, =7, £2m, ... Domain: x # 0, =, =27, ...
) Range: y=-landy=1 Range: -0 <y <o
Range: y=-landy=1 Period: 277 Period: o
Period: 2m
@ © ®

FIGURE 1.73  Graphs of the (a) cosine, (b) sine, (c) tangent, (d) secant, () cosecant, and (f) cotangent

functions using radian measure. The shading for each trigonometric function indicates its periodicity.
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Parity of the trigo functions

Even Odd

cos(—x) = cosx sin(—x) = —sinx

sec(—x) = secx tan(—x) = —tanx
csc(—x) = —cscx
cot(—x) = —cotx

The parity 1s easily deduced
from the graphs.

97

Dividing identity (1) by cos?# and sin?6in
turn gives the next two identities

Identities
y
P(cos 6, sin 6) 2yi=1
ML Y
e ' Applying
Pythagorean theorem
to the right triangle

FIGURE 1.74 The reference
triangle for a general angle .

leads to the identity

cos? @ + sin? 6 = 1. (1)

Double-Angle Formulas

cos 26 = cos? @ — sin? 6 3)
sin26 = 2sin @ cos O

1 + tan* 0 = sec? 0.
1 + cot? @ = csc? 6.

Identity (3) is derived by setting 4 = B in (2)

Addition Formulas

cos(4 + B) = cosAcosB — sindsin B @
sin(4 + B) = sindcosB + cosA4sinB

Half-Angle Formulas

cos2f = 1 + cos 26

> (4)
sin’ @ = 1= cos20 (2:05 26 (5)

There are also similar formulas for cos (4-B) and sin
(4-B). Do you know how to deduce them?

99

Identities (4,5) are derived by combining (1) and (3(1))

100




I.aw of cosines

c¢? =a® + b> — 2abcosh. (6)

y

A

B(a cos 0, a sin 6)

c¢*= (b-acosB)? + (asinb)?

a = a?>+b? -2abcos b
7]

N

C b Ab,0)

FIGURE 1.75 The square of the distance

between A and B gives the law of cosines.
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Chapter 2

Limits and Continuity

Average Rates of change and Secant Lines

Given an arbitrary function y=f(x), we
calculate the average rate of change of y
with respect to x over the interval [x,, X,]

by dividing the change in the value of y, Ay,
by the length Ax

DEFINITION  Average Rate of Change over an Interval
The average rate of change of y = f(x) with respect to x over the interval [x;, x] is

Ay _ fla) = fGa) _ fla + k) — f(x1)

A= H ; h#0.

2.1

Rates of Change and Limits

y
y=f®
O(xy, f(x7))

I
|
|
I

"
P(xy, f(x))) :
__________ ¥
Ax=nh }

| .
0 X X2 *

FIGURE 2.1 A secant to the graph
v = f(x).Its slope is Ay/Ax, the
average rate of change of f over the
interval [x, x3].



Example 4

Figure 2.2 shows how a population of fruit
flies grew in a 50-day experiment.

(a) Find the average growth rate from day 23
to day 45.

(b) How fast was the number of the flies
growing on day 23?

Slop at P = (250 - 0)/(35-14)
p  =16.7 flies/day

Slope of PQ = Ap /At 350 B@% 00 7 5’
(flies /day) T T /LA 045, 340)
300 A
(45, 340) 30 = 10 g6 & 250 1
45 — 23 5 200 _ /
330 — 150 2" P3, 150) f
(40, 330) =55 ™ 06 £ 150 e
Z 100
310 — 150 _
(35,310) 35— = 133 it
265 — 150 — s
~ 0 16 7'\ 20 30 40 50
(30, 265) =23 ~ 164 \

A(14,0) Time (days)

FIGURE 2.3 The positions and slopes of four secants through the point P on the fruit fly graph (Example 4).
The grow rate at day 23 is calculated by examining the
average rates of change over increasingly short time
intervals starting at day 23. Geometrically, this is
equivalent to evaluating the slopes of secants from P to QO
with Q approaching P. ]

3
>

350
300
250 Ap-= 190

A
A—[; =~ 8.6 fliesfday

Ar=22

(45, 340)

200
150
100

50

P(23, 150)

Number of flies

0 10 20 30 40 50
Time (days)

FIGURE 2.2 Growth of a fruit fly population in a controlled
experiment. The average rate of change over 22 days is the slope
Ap/ At of the secant line.

I imits of function values

Informal definition of limit:

Let f be a function defined on an open
interval about x,, except possibly at x,
itself.

If f gets arbitrarily close to L for all x

sufficiently close to x,;,, we say that f

approaches the limit L as x approaches x,
lim f(x)=1L

xﬁxo

“Arbitrarily close” is not yet defined here
(hence the definition is informal).



‘ Example 5

TABLE 2.2 The closer x gets to 1, the closer f(x) = (x> — 1)/(x — 1)
seems to get to 2
: _xr=1_
= How does the function behave near x=1? Values of x below and above 1 ==y =xtl x#1
5 0.9 1.9
x -1 1.1 2.1
f(x)=—"" 0.99 1.99
x—1 1.01 2.01
S 0.999 1.999
= Solution: L oot 5 001
0.999999 1.999999
1.000001 2.000001
(x-—l)(x-+1 —
f(x) = =x+1 forx=1 We say that f(x) approaches the limit 2 as x
x —1 . 3 X - 1 B
’ x—>1 x—1 X — 1
9 10

‘ Example 6
= The limit value does not depend on how the
function is defined at x,.
y y y
2+ 2+ 2

X X
.k A 0 1 P 0 1 A 0 1
yex+1 FIGURE 2.4 The graph of f is ) e DR
| identical with the line y = x + 1 @ f0) == (b) gt =4 ¥~ 1 © h@=x+1
/ except at x = 1, where f is not 1, x=1
— A1 0 1 ¥ defined (Example 5). - FIGURE 2.5 The limits of f(x), g(x), and /(x) all equal 2 as x approaches 1. However,

" only /(x) has the same function value as its limit at x = 1 (Example 6).



Example 7 -

Xo—————

In some special cases }LH}O f(x) can be evaluated by
calculating f (x;). For example, constant function,
rational function and identity function for which x=x, is
defined

(a) lim,_,, (4) = 4 (constant function)

(b) lim,_,_45 (4) = 4 (constant function)

(c) lim,_ 5 x = 3 (identity function)

(d) lim,_,, (5x-3) = 10 — 3 =7 (polynomial function of
degree 1)

(e) lim,_, , (3x+4)/(x+5) = (-6+4)/(-2+5) =-2/3 (rational 5
function)

X0

(a) Identity function

y

~
<
Il

=

e

o
(=]

(b) Constant function

FIGURE 2.6 The functions in Example 8.

Example 9

A function may fail to have a limit exist at a
point in its domain. 29

Calculating limits using
the limits laws

(o3 Tindt sieps enetion £/} {bY g{x)

FIEURE 2.7 None of thess (ungtions bas a Hmit as x approackes O (Example %),
3y i el

Jump Grow FO Oscillate
infinities

15



The limit laws

Theorem 1 tells how to calculate limits of
functions that are arithmetic combinations of
functions whose limit are already known.

Example 1 Using the limit laws

(@) lim,_, . (x3+4x2-3)
=lim,_, . x3+lim, . 4x%-lim,_, .

(sum and difference rule)

X— C

3

X— C

= ¢3+ 4c¢%-3
(product and multiple rules)

19

(b) lim
= lim,_ , (x+x2-1) /lim,_, _ (x2+5)

x4+ lim,_ x2-lim,_ 1)/(lim,_, x>+ lim
= (c*+c?- 1)/(c?+ 5)

THEOREM 1 Limit Laws
I L, 4, ¢ and & are real numbers and

lim f{x) = L and lim g{x) = M, then
X X

1. Sum Rule: ]lln‘{ fr+elx)) =L+ M

The limit of the sum of two 'Ehnm.icmsés :h:: sum of their limits,

2. Difference Rule: lim{ fy—glx) =L - M

The limit of the difference of two ﬁmgm:ns is the difference of their limits.
3. Product Rule: JE( flx)glay =L-M

The limit of a product of two functions is the product of their limits.
4, Constant Multiple Rute: Iiin(k fx)y =k-1L
Eandd
The limit of a constant times a function is the constant times the limit of the
funetion.
L5 N T

5. jent Rule: LS = MF
5. Quuotient Rule }1_12 ot M M#0
The limit of & quotient of two functions is the gquotient of their limits, provided
the limit of the denominator is net zero.
6. Power Rule: If r and s are integors with no common factor and s # 0, then

lim (f(x)y = L

x>
provided that 7 is a real number, (If 5 is even, we assume that L > 0.}

The limit of a rational power of a function is that power of the limit of the fune-
tion, provided the latter is a real number,

Example 1

(x*+x2-1)/(x%+5)

X— C

5)

X—C

20



 Example 1

= (c) lim,_, , V(4x2-3) = lim,_, , (4x2-3)

Power rule with ris = % THEOREM 2  Limits of Polynomials Can Be Found by Substitution
If P(x) = apx" + ap_1x" ' + -+ + ay, then

lim P(x) = P(c) = a,c" + a1+ o+ 0.
X—>C

= [lim,_, ,4x2-lim,_, ,3]

= [4(-2)2 - 3] =13

21 22

‘ Example 2

= Limit of a rational function

THEOREM 3 Limits of Rational Functions Can Be Found by Substitution
If the Limit of the Denominator Is Not Zero

If P(x) and Q(x) are polynomials and Q(c) # 0, then - x3 " 4x2 _3 (_ 1)3 n 4(_ 1)2 _3 0
li P(x) _ P(C) llm 5 = 5 = — = O
e 0(x)  0le) x>-1 xT 45 (- +5 6

23 24



Eliminating zero denominators
algebraically

Identifying Common Factors

It can be shown that if O(x) is a
polynomial and Q(c¢) = 0, then

(x — ¢) is a factor of Q(x). Thus, if
the numerator and denominator of a
rational function of x are both zero at

x = c, they have (x — ¢) as a common
factor.

25

FIGURE 2.8 The graph of

flx) = (x* + x — 2)/(x*> — x)in
part (a) is the same as the graph of
g(x) = (x + 2)/x in part (b) except
atx = 1, where f is undefined. The

functions have the same limit as x — 1
(Example 3).

‘ Example 3 Canceling a common
factor e x—2

= Evaluate 1x1inl xl - x

= Solution: We can’t substitute x=1 since

f(x=1)is not defined. Since x=1, we can
cancel the common factor of x-1:

26

‘ The Sandwich theorem

THEOREM 4 The Sandwich Theorem
Suppose that g(x) = f(x) = Ah(x) for all x in some open interval containing c,
except possibly at x = ¢ itself. Suppose also that

lim g(x) = lim A(x) = L.
X—>C X—>C

Then lim,—. f(x) = L.

27
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y
A
h
I
Le————\-—4F/—
I
I
I
I
I
| g
I
I
o > X
0 C

FIGURE 2.9 The graph of f is
sandwiched between the graphs of g and 4.

29

y =16l 2
1 y=sin@ \
y=1-—cosf
- r Y B — - 0
-1} y=-l8l b)

(@

FIGURE 2.11 The Sandwich Theorem confirms that (a) limg—o sin # = 0 and
(b) limg—q (1 — cos @) = 0 (Example 6).

31

Example 6

(a)

The function y =sin #is sandwiched between
y =8| and y= -| 8| for all values of 4. Since
lim,_, (-]8]) =lim,_, (|8]) = 0, we have
lim,_, sin 8=0.

(b)

From the definition of cos 6,

0<1-cos @ <|@|forall 6, and we have the
limit lim,_,, cos 6= 1

30

Example 6(c)

For any function f (x), if lim,_, (|f(x)|) =0,
then lim,_,, f (x) = 0 due to the sandwich
theorem.

Proof:

-If ()] < £ (x) < If ()

Since lim,_ (If (x) ) = lim,_ (-If (x) |) = 0
=lim, ,f(x)=0

32



Example 1 A linear function

23 Consider the linear function y = 2x — 1 near x,
= 4. Intuitively it is close to 7 when x is close
to 4, so lim, 5, (2x-1)=7. How close does x
have to be so that y = 2x -1 differs from 7 by
less than 2 units?

The Precise Definition of a Limit

33 34

Solution ,
y=2e1 Definition of limit
Upper bound:

For v?vh<a; ;/alue of x . y=9 DEFINITION  Limit of a Function

is .|y- | <2 . To satify LA Let f(x) be defined on an open interval about x,, except possibly at x itself. We

I:clrst, find |y-7|<2 in terms this 7¢ (£ say that the limit of f(x) as x approaches x; is the number L, and write

of x: /o

1 i =

|Y'7|<2 = |2X-8|<2 ’ : : Lower bound: xh—r’I;O Jix) = L.
= . - = 5
= 2<2x-8<2 - if, for every number € > 0, there exists a corresponding number § > 0 such that
=3<x<5 i*i for all x,
= 1<x-4<1 7 4 >
Keeping x within 1 unit ? ;e:riit e N e
of x, = 4 will keep y within to this

2 units of y,=7.
FIGURE 2.12 Keeping x within 1 unit

of xp = 4 will keep y within 2 units of
yo = 7 (Example 1).
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Definition of limit

L+e
f(x) lies
L 0_f(x) in here
L—ed
for all x # x;
in here
L0 8
X
5 —» — x
XO 8 JCO JCO + 6

v=1lxh| = fix)| [ = fix|
e o / |
L+1p A gk i Fipls
/ ) P 1t 7
! e I A - - £ | —— N
A 7 L T L - = 2
b i - Lo .
- =t L—Lil /B 1 | 100 / |
; I i | / | |
| ¥
/ ! /1 1 d
n| 0 Ty 5 i 0 |
xp— Bire xg+ By 5
The chalienge: Response. Hew challenge: Res
Make | fiz)- L] <= l_ll" ¥ — 3| < Syyp (0 mumber) Make | fix)-L| < €= %I x
v
, .-;.l'.-l}; . =]
£+ fnn L+ Toga i
L 7 .' -5 Z
2 ] — —
. T //—0—:
L el 7 L . X
& 000 | ] |
i 4
= N I =i 1
1 %o 0|
New challenge: Response:
. .
= — x| < By
¥
y=rn| ‘ v =fln) »=fix]
1 / 1 / /
b oaam / L+ fi o / /
A =i === A==
/ ] W - .I: /,/ |
1 "] ) =
R | L= ’ | |
100,000 100,000 il
7 | | / :I | / !
! V b / |
/ S /] il A |
[ E 0] xy 0 )
New cl\:lll:u]gl:. Response: Mew challenge: —
£ = 00,000 x = -\’..| = By -

the definition of limit.
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FIGURE 2.14 Therelationof and e in

y
Lol
¢ f(x)
J(x) lies
Le in here
L — %\/
for all x # x,
in here
e
— x
0 xO — 6 XO xg —+ 8

FIGURE 2.13 How should we define
0 > 0 so that keeping x within the
interval (xg — 8, xp + &) will keep f(x)
1

. . 1
- = — 19
within the interval (L 10° L+ 1 0).

The problem of proving L as the
limit of f (x) as x approaches x, is a
problem of proving the existence of
0, such that whenever

Xg— 0 < X< Xy+o,

L+e < f(x) < L-¢ for any arbitrarily
small value of &.

As an example in Figure 2.13, given
£=1/10, can we find a
corresponding value of 67

How about if £=1/1007? = 1/12347?

If for any arbitrarily small value of ¢

we can always find a corresponding
value of ¢, then we has successfully
proven that L is the limit of fas x

approaches X,

38

‘ Example 2 Testing the

definition
= Show that

lim (5x —3) =2

x—>1

y:5x~7

2+ €

1+

Lilm

-3
/ NOT TO SCALE

FIGURE 2.15 If f(x) = 5x — 3, then
0 < |x — 1| < €/5 guarantees that

|f(x) — 2| < e (Example 2).

40



Solution

Set x,=1, (x)=5x-3, L=2.

For any given &, we have to

find a suitable 6> 0 so that
whenever

0<| x —1]< &, x=1,

f(x) is within a distance ¢
from L=2, i.e.

IF(x)-2|<e

Example 3(a)

Limits of the identity
functions
Prove

lim x = X,

X —> )CO

y:5x—7
2+€

o]
|
m
N I .
=

1+

W
wim

-3
/ NOT TO SCALE

FIGURE 2.15 If f(x) = 5x — 3, then
0 < |x — 1] < €/5 guarantees that
|f(x) — 2| < e (Example 2).

41

First, obtainan openinterval (a,b) in which
|f(x)-2|< e =|95x-5|< ¢ =
-e15< x-1<el5 = -£/5< x— xy< ¢/5

( LX)
\ A J
Ag /5 X, xﬁ%b

a
choose 6< ¢/ 5. This choice will guarantee that

|f(x) — L| < ewhenever x,—6 < x <Xy + 0.
We have shown that for any value of ¢ given, we can

always find a corresponding value of ¢ that meets the
“challenge” posed by an ever diminishing ¢. This is a
proof of existence.

Thus we have proven that the limit for f(x)=5x-3 is L=2
when x 2 x,=1.

42

y
h
y=x
x0+e—
X0+8
Yor-—="-==- 74
X0—3 Tt
P!
P!
Xg— € o
o
o
ol
P!
I L1 > X
0 Xo—ﬁxUXU+8

FIGURE 2.16 For the function f(x) = x,

we find that 0 < |x — xp| < & will

guarantee | f(x) — xo| < e whenever

6 = e (Example 3a).

Solution

Let ¢> 0. We must
find 6> 0 such that for
all x, 0 < |x-xp|< o
implies |f(x)-x,|< &.,
here, f(x)=x, the
identity function.
Choose o< ¢ will do
the job.

The proof of the
existence of § proves

lim x = X,

X‘)XO

y
y=Xx
X0+E_
X0+3
Yor=======— 74
X0—6 T t
[
[
Xg— € o |
|
o |
!
[
1 1 > X
0 XU—5x0x0+5

FIGURE 2.16 For the function f(x) = x,
we find that 0 < |x — xo| < & will
guarantee | f(x) — xo| < € whenever

8 = e (Example 3a).
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Example 3(b)

X
=k
k+e€ Y
ke [
. . . — € 1 1
Limits constant functidiis B
|
Prove i | i
I
lim k = k£ (k constant) L > x
X=X, 0 Xog — 8 Xo Xp + 6

FIGURE 2.17 For the function f(x) = &,
we find that | f(x) — k| < e for any
positive 6 (Example 3b).

45

Finding delta algebraically for given
epsilons

Example 4: Finding delta algebraically
For the limit limVx-1=2

x—>5

find a 6> 0 that works for ¢ = 1. That is, find a
0 > 0 such that for all x,

NVx—-1-2

<1

O<‘x—5‘<5:> 0 <

47

Solution
1
Let £> 0. We must y=k
find > 0 such that for ¥+ ¢
all x, 0 < |x-xp|< & b T
implies |f(x)- k|< ¢., Lo
here, f(x)=k, the | : |
constant function. | I i
|
Choose any o will do L1 > x
the job. 0 =8 xo Xo+2
The proof of the FIGURE 2.17 For the function f(x) = k,

existence of J proves we find that | f(x) — k| < e for any

lim k =k positive 6 (Example 3b).

X=X,

46

>

|
|
|
|
|
|
|
|
:
[
:
|
8

0] 1 2 5
NOT TO SCALE

FIGURE 2.19 The function and intervals
in Example 4.
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Solution

o is found by working backward:

How to Find Algebraically a 6 for a Given f, L, xo, and e > 0
The process of finding a 6 > 0 such that for all x

0<|x—xp| <6 = |f(x) —L| <€
can be accomplished in two steps.

1. Solve the inequality |f(x) — L| < € to find an open interval (a, b) contain-
ing xp on which the inequality holds for all x # xq.

2. Find a value of 8 > 0 that places the open interval (xo — 8, xo + 8) centered
at xg inside the interval (a, b). The inequality | f(x) — L| < € will hold for all
X # Xg in this é-interval.

49

Example 5

Prove that

lim f(x) =4 if

x—> 2

(xz x # 2

|

|

|

|

|

L

|

x=2 l?
[

[

0 )

4 —¢€

FIGURE 2.20 An interval containing
x = 2 so that the function in Example 5
satisfies | f(x) — 4| < e.

Solution

Step one: Solve the inequality |f(x)-L|<e

0<

x—l—2‘<l:> 2<x<10

Step two: Find a value of 6> 0 that places the open
interval (x,-0, X,+0) centered at x, inside the open

interval found in step one. Hence, we choose 6= 3

or a smaller number

By doing so, the
inequality 0<|x - 5| < &
will automatically place
x between 2 and 10 to
make 0 <|r(x)-2]<1

Solution

> X
10[nterval found in
: step 1

FIGURE 2.18 An open interval of

radius 3 about x, = 5 will lie inside the
open interval (2, 10).

50

Step one: Solve the

inequality |[f(x)-L|<e:
d—c<x<Nd+e,x#244¢

Step two: Choose
S< min [2-V(4-¢), V(4+¢) — :

2
0<‘x —2‘<g:>

2]

For all x that obey

O<|x-2|<¢
= |f(x)-4|<e

This completes the proof.

FIGURE 2.20 An interval containing
x = 2 so that the function in Example 5
satisfies | f(x) — 4| < e.



Two sided limit ,_x
7 4 does not exist fory, i
) lim f(x)=1
But -
0 X
vy does has two one-
_ — sided limits |
Qng—Slded |._I.ml’[S and lim /(%)= 1 [
Limits at Infinity o0
FIGURE 2.21 Different right-hand and
left-hand limits at the origin.
One-sided limits
Example 1
y y
— , . X ..
One sided limits of 4 semicircle _ No right hand
L fx) f(x) M Y= dox llmlt at x:2,
0 ol b . 0 X o * NO left hand NO tWO Sided
@ lim, f0) =L (b) Jim_f() = M limit at x= -2; limit at x= 2;
> X
No two sided -2 0 2

FIGURE 2.22 (a) Right-hand limit as x approaches c.
approaches c.

Right-hand limit

(b) Left-hand limit as x

Left-hand limit

limit at x=-2; preire 223

lim V4 — x> = 0 and

x—2"

lim V4 — x* = 0 (Example 1).

x— =27

56



THEOREM 6
A function f(x) has a limit as x approaches c if and only if it has left-hand and
right-hand limits there and these one-sided limits are equal:

lim f(x) = L = lim fx) =1L and lim, fix) = L.

xX—>c

57

Precise definition of one-sided
limits

DEFINITIONS Right-Hand, Left-Hand Limits
We say that f(x) has right-hand limit L at x,, and write

IE)I)I%+ fx)=1L (See Figure 2.25)
if for every number € > 0 there exists a corresponding number 6 > 0 such that
forall x

Xo<x<x9+ 8 = [f(x) — L| <e.

We say that f has left-hand limit L at x, and write

xgr%_ fx) =1L (See Figure 2.26)
if for every number € > 0 there exists a corresponding number 6 > 0 such that
for all x

X — 0 <x<uxp = |f(x) — L| <e.

Example 2

Limits of the
function graphed
in Figure 2.24
Can you write y = f)
down all the limits

at x=0, x=1, x=2, 1
x=3, x=47 \ °

What is the limit at 0 1 2 3 4
other values of x?

>

FIGURE 2.24  Graph of the function

in Example 2.
58

y
L+e
o [0
| f(x) lies
L in here
L—el
for all x # x
in here
-6
X
5 o = - x
JCO XO + 6

FIGURE 2.25 Intervals associated with
the definition of right-hand limit.



3

L+em
o f(x)

L_

L —el

Jf(x) lies

in here

for all x # x,
in here

o=

4
\

0

FIGURE 2.26

the definition of left-hand limit.

x0—5 R

Intervals associated with

Limits involving (sin6)/ @

h

1 .
/Y % (radians)
e [ ——

=3 2r~—Zx ™~—"27 37

NOT TO SCALE

FIGURE 2.29 The graph of f(#) = (sin6)/6.
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THEOREM 7

lim 120

6 in radi
Jim (6 in radians)

(1)

‘ Proof

Area AOAP =" sinf
Area sector OAP = 0/2
Area AOAT = '> tan6
72 8sin0<0/2 <> tan@
1 <@/sinf< 1/cos@

1 >sin@/6 > cosf

Taking limit 8 2 0%,

y

N
T

1

\P

tan @
1
sin 6
0 cosh = 1
> X
o Q

A1, 0)

1

FIGURE 2.30 The figure for the proof of

. Sinéd .
lim =1=1lim
60" @ 050 @

sin ¢

so T4 = tan 6.

0>

Theorem 7. TA/OA = tanf,but 04 = 1, .

‘ Example 5(a)

= Using theorem 7, show that

~cosh—1
lim ———=0
h— 0 h

64




| Example 5(b)

= Using theorem 7, show that

~sin2x 2
lim ——— = —
x—>0 Sx 5

65

‘ Precise definition

Finite limits as x—+0

!

FIGURE 2.31 The graphof y = 1/x.
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DEFINITIONS  Limit as x approaches ¢ or — o
1. We say that f(x) has the limit L as x approaches infinity and write

lim f(x) = L

if, for every number € > 0, there exists a corresponding number M such that
for all x

x>M = |f(x) — L| <e.
2. We say that f(x) has the limit L as x approaches minus infinity and write
im fx) =L

if, for every number € > 0, there exists a corresponding number N such that
for all x

x <N = |f(x) — L| <e.

No matter what
» . positive number € is,
the graph enters
1 this band atx = ¢
Y=x and stays.

AN
DN

No matter what
positive number e is,
the graph enters

this band at x = —é
and stays.

FIGURE 2.32 The geometry behind the

argument in Example 6.
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‘ Example 6

= Limit at infinity for

1
f(x)=—
X
= (a) Show that 1
Iim — =0
X —> 0 x
= (b) Show that |
lim —=0

THEOREM 8 Limit Laws as x — + co
If L, M, and k, are real numbers and

lim f(x) =L and lim g(x) = M, then

x—>100 X—>£00
Sum Rule: lim (f(x) + glx)) =L+ M
x—>+00
Difference Rule: liToo( fx) —gx)=L—-M
x—

Product Rule: liToo( fx)gx)=L-M
Constant Multiple Rule: liT (k- f(x)) = k-L
xX—>1CO

/@ 1

1 _ =
cotog(x) M’

6. Power Rule: If r and s are integers with no common factors, s # 0, then
lim (f(x))* = L"*
x—>x00

provided that L'”* is a real number. (If s is even, we assume that L > 0.)

Eol o o

5. Quotient Rule: M#0

69

‘ Example 7(a)

= Using Theorem 8

X —> 0 X —> 0 x—)OOx

(1Y o1
limL5+—J:11m5+11m—:5+0:5
X

71

70

 Example 7(b)

lim ﬂ\{;: 7z\/3_1im 1—2
X

o8] o0
X —> X —> X

1 1
— 23 lim — - lim —

o0 0
X —> X X —> X

=7N3-0-0=0

72



Limits at infinity of rational functions

= Example 8

5x° +8x -3 S+ (8/x)=(3/x")
o 3xte2 e 34 (2/x0)

5+ 1lim (8/x)—1im (3/x7) 5, 0_p

X —> 0 X —> 0

5
3+lim(2/x2) 3+ 0 3

X —> ©

73

| Example 9

= Degree of numerator less than degree of
denominator

o 1Ix+2 _
lim — = lim...=0
X —> © 2x _1 X —> ©

75

y _5x?2+8x-3
1 3x2 + 2
2 _/‘\
ey D
\ 1 Line y = 3
I 1 1 1 1 1 L 1 I 1 1 1 1 I x
-5 0 l 5 10
1
T—2  NOTTOSCALE

FIGURE 2.33 The graph of the function
in Example 8. The graph approaches the
line y = 5/3 as|x|increases.

go back

74

FIGURE 2.34 The graph of the
function in Example 9. The graph

approaches the x-axis as | x| increases.
76



Horizontal asymptote

= X-axis is a horizontal
asymptote

DEFINITION  Horizontal Asymptote

A line y = b is a horizontal asymptote of the graph of a function y = f(x) if

either

lim f(x) =b or

x—>00

lim f(x) = b.

x——00

FIGURE 2.31 The graph of y = 1/x.

| Oblique asymptote

= Happen when the degree of the numerator
polynomial is one greater than the degree of

the denominator
= By long division, recast f (x) into a linear

function plus a remainder. The remainder
shall - 0 as x — +. The linear function is

the asymptote of the graph.

Figure 2.33 has the line y=5/3 as a horizontal
asymptote on both the right and left because

5 5
lim f(x)=— lim f(x)=—
X —> © 3 X— —© 3
’ Example 12
1
. . 4_
= Find the oblique asymptote )
2 2x%2 -3
f(x)=27x _43 2L I 7§+4
= Solution rr j
| | /x
s fnaiion 2 4
257 -3 (2 8 ) —115

S(x) =

x - —

=| — B —
Tx+4 L7 49J 49(7x +4)

3\ ) -115
J+11m

2
lim f(x)= lim | —x —
- to x—»iwL x> tm 49(7x+

4)

FIGURE 2.36 The function in Example
12 has an oblique asymptote.



| )
You can get as high

Inﬁnlte hmlt as you want by

taking x close enough
2.5 5

to 0. No matter how

high B is, the graph
? | goes higher.

> X

e ——
-
Il
e

¥0
\ No matter how
- .. . low —B is, the
Infinite Limits and Vertical Asymptotes \ graph goes lower.
as) ¢

You can get as low » —B
you want by taking
x close enough to 0.

FIGURE 2.37 One-sided infinite limits:
1 .1

lim - = o0 and lim —- = —o0
x—0t % x—0~ ¥
81

:  Example 2 Two-sided infinite limit
Example 1
. 1 -
» Find |im and lim = Discuss the behavior of
x=>1" x —1 o1 x —1 1+

N 1 |

(a) f(x):—znearsz

= X

1
(b) g(x) =——— nearx = -3
FIGURE 2.38 Near x = 1, the function (x +3 )
¥ = 1/(x — 1) behaves the way the
function y = 1/x behaves near x = 0. Its
graph is the graph of y = 1/x shifted 1

unit to the right (Example 1).
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No matter how
B high B is, the graph
goes higher.

IR
5 —
4 —
3r FIGURE 2.39 The graphs of the
2 functions in Example 2. (a) f(x)
1+ approaches infinity as x — 0. (b) g(x)
e e e e x approaches infinity as x — —3.

(b) 85

‘ Example 3

- -3
(e)lim ; = lim al limit does not exist
=2xt -4 o2 (x=2)(x+2)
- x—=2 1
(f)lim = —lim = —lim = -—®©
x~>2(x_2) x—2 (x_z)(x_z) x—2 (x_z)

87

‘ Example 3

= Rational functions can behave in various

ways near zeros of their denominators
(x-2)

(a)lim — = lim
=2 oxT -4 Xﬁz(x—2)(x+2)

2
x—2 x—2
( ) =1im(—=0
2 (x+ 2

~ | ~—

oo x=2 ) x -2 ) 1 1
(b)lim . = lim =lim ————=—
=2xt -4 o2 (x=-2)(x+2) 2(x+2) 4
x-3 x -3
(c¢) lim . = lim = - (note: x>2)
=2yt -4 o2 (x=2)(x+2)
x -3 x -3
(d) lim ; = lim =+ (note: x<2)

=2 xt =4 o2 (x=2)(x+2)

86

‘ Precise definition of infinite limits

DEFINITIONS Infinity, Negative Infinity as Limits

1. We say that f(x) approaches infinity as x approaches x;, and write

lim f(x) = oo,
XX

if for every positive real number B there exists a corresponding & > 0 such
that for all x

0<|x—x| <é = f(x) > B.

2. We say that f(x) approaches negative infinity as x approaches x;, and write

lim f(x) = —o0,

xX—>X
if for every negative real number —B there exists a corresponding & > 0 such
that for all x

0<|x—x| <8 = f(x) < —B.




y=fx)

4 K \
0 XO—S x() 10+6

FIGURE 2.40 Forxy — 6 <x < xg + 6,
the graph of f(x) lies above the line y = B.

89

| Example 4

= Using definition of infinit limit
= Prove that {

lim — =
0 2
X —> x

Given B>0, we want to find 6>0 such that

1
—>B
2
X

0<|x-01]<o implies

91

y=fx)

\!

FIGURE 2.41 Forxy — 6 < x <xp + 8,
the graph of f(x) lies below the line

y = —B.

90

| Example 4

Now

1
— > B ifand only ifx’ <1/B =|x|<1//B
X

By choosing 6=1/+B

(or any smaller positive number), we see that

1 1
|x|< 6 implies —> —2> B
2 2
X o

92



y

Ver th al asymp t()1:€§«3rtic::11 asymptote

1 Horizontal ) DEFINITION Vertical Asymptote
lim — = o asymptote B A line x = q is a vertical asymptote of the graph of a function y = f(x) if either
x> 0" x 0] 1  Horizontal lim f(x) = 400  or  lim f(x) = +00.
asymptote, x—a x—a
1 y=0
lim —= -
x>0 x Vertical asymptote,

x=0

FIGURE 2.42 The coordinate axes are
asymptotes of both branches of the

hyperbola y = 1/x.

> 94

| Example 5 Looking for asymptote y

Vertical
asymptote, 6
x=-2 5+ y=X +3
= Find the horizontal and vertical asymptotes of abs FET
the curve Horizontal s =1+
asymptote, .
y=1 T
x+3 i
V= 5 SN2 -0 2 *
. X + 1k
= Solution: N
3+
1 4k
y=1+
X+ 2

FIGURE 2.43 The lines y = 1 and
x = —2 are asymptotes of the curve
y = (x + 3)/(x + 2) (Example 5).

95 96




| Asymptotes need not be two-sided | 1

8
y=-
x2—4
Vertical
= Exam ple 6 Vertical asymptote, x = 2
asymptote, Horizontal

asymptote, y = 0

8 i
f‘(x):_2 i‘,3llll X
x =2 i
= Solution: I
8 FIGURE 2.44 Graph of
f(x)=- 5 - = y = —8/(x> — 4). Notice that the curve
x =2 (x -2 ) ( x+ 2 ) approaches the x-axis from only one side.
Asymptotes do not have to be two-sided
(Example 6).
97 98
‘ Example 8 P 1
y=2x—4=§+1+2x—4
. . . %i The vertical distance
= A rational function with degree of 6l between curve and
line goes to zero as x — o
numerator greater than degree of 5+
denominator o Oblique
3 asymptote
? 3 2 241 |
x© - I y=%+1]
. 2x -4 1//_1\ L1 | > x
= Solution: SN R BRI FIGURE 2.47 The graph of
. . -1 ) f(x) = (x* — 3)/(2x — 4) has a vertical
linear ___remainder | Verica asymptote and an cblique asymptote
2 i HE ' asymptote,
-3 ' X | 1 5 3k =2 (Example 8).
fx) = — |
2x—4—2 e 2x —4
= 3

99 100



2.6

Continuity

101

>

0 1 2 3 4
FIGURE 2.50 The function is continuous

on [0, 4] exceptatx = 1,x = 2, and
x = 4 (Example 1).

103

Continuity at a point

Example 1

Find the points at which the function fin
Figure 2.50 is continuous and the points at

which fis discontinuous.

f continuous:
Atx=0

Atx=3
AtO<c<4,c#1,2

f discontinuous:
At x=1

At x=2
Atx=4
0>c,c>4
Why?

102
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To define the continuity at any pointin a
function’s domain, we need to define
continuity at an interior point and continuity at
an endpoint

105

DEFINITION Continuous at a Point

Interior point: A function y = f(x) is continuous at an interior point ¢ of its
domain if

lim f(x) = f(c).
X—>¢C
Endpoint: A function y = f(x) is continuous at a left endpoint a or is

continuous at a right endpoint b of its domain if

l_i)m+ f(x) = f(a) or ll)ng_ f(x) = f(b), respectively.

107

Continuity Two-sided

from the right  continuity Continuity
= from the left
m
| I
| |y =fx) |
| I
: | |
| | I > x
a c b

FIGURE 2.51 Continuity at points a, b,
and c.

106

Example 2

A function continuous throughout its domain

f(x)z\/4—x2

108



Y
A
y=V4-x?
2
4k
-2 0 2

FIGURE 2.52 A function
that is continuous at every
domain point (Example 2).

109

Summarize continuity at a point in the
form of a test

Continuity Test

A function f(x) is continuous at x = ¢ if and only if it meets the following three
conditions.

1. f(c) exists (c lies in the domain of f)

2, limy—. f(x) exists (f has a limit as x — ¢)

3. lim. f(x) = f(c) (the limit equals the function value)

For one-sided continuity and continuity at an
endpoint, the limits in part 2 and part 3 of the
test should be replaced by the appropriate
one-sided limaits:

111

Example 3

The unit step function has a jump |

discontinuity "
y=Ux

or

FIGURE 2.53 A function
that is right-continuous,
but not left-continuous, at
the origin. It has a jump
discontinuity there

(Example 3).

y
EXample 4‘ i y=intx

T y= T
The greatest integer function, * o
y=int x T 1 :
The function is -1 ro2 3 o4 7
not continuous at the T

integer points since limit
does not exist there (|eft FIGURE 2.54 The greatest integer

. L function is continuous at every
and r|ght I|m|tS nOt ag ree) noninteger point. It is right-continuous,
but not left-continuous, at every integer
point (Example 4).
112



o y y y | Discontinuity types

20-
y=f(x) ¥y =fx) y=fx)
y y=f)

/ / / T = (b), (c) removable discontinuity
Ve e e T ' = (d) jump discontinuity
@ (b) © @ = (e) infinite discontinuity
My (ARG « (f) oscillating discontinuity

=]

(©) ®

FIGURE 2.55 The function in (a) is continuous at x = 0; the functions in (b) through (f)

are not.
113 114

‘ Continuous functions y

3
>

= A function is continuous on an interval if and
only if it is continuous at every point of the
interval. 5

= Example: Figure 2.56

= 1/x not continuous on [-1,1] but continuous
over (-«,0) U (0, «)

FIGURE 2.56 The function y = 1/xis
continuous at every value of x except

x = 0. It has a point of discontinuity at
x = 0 (Example 5).
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Example 5

L . . THEOREM 9 Properties of Continuous Functions
Ident|fy| ng continuous function If the functions f and g are continuous at x = ¢, then the following combinations
_ are continuous at x = c.
(a) f(x)=1/x
1. Sums: fte
(b) f(X)= X 2. Differences: f—g
Ask: is 1/x continuous over its domain? 3. Products /g
4, Constant multiples: k- f, for any number &
5. Quotients: f/g provided g(c) # 0
6. Powers: 7%, provided it is defined on an open interval
containing ¢, where 7 and s are integers

117 118

Example 6 Example 7
Polynomial and rational functions are Continuity of the absolute function
continuous

o _ f(x) = |x| is everywhere continuous
(a) Every polynomial is continuous by

(i) lim P(x)=P(c)

(i) Theorem 9

(b) If P(x) and Q(x) are polynomial, the _
rational function P(x)/Q(x) is continuous continuous
whenever it is defined.

Continuity of the sinus and cosinus function
f(x) = cos x and sin x is everywhere

119 120



Composites

= All composites of continuous functions are
continuous

THEOREM 10 Composite of Continuous Functions

If f is continuous at ¢ and g is continuous at f(c), then the composite g © f is
continuous at c.

121

‘ Example 8

= Applying Theorems 9 and 10

= Show that the following functions are
continuous everywhere on their respective
domains.

(a)y=\/x2—2x—5

X
(b)y = "

123

8
Continuous m
o atc o at f(¢) Y
¢ fle) g(fe)

FIGURE 2.57 Composites of continuous functions are continuous.

122

[
@ y=Vxt-2x-5

(a) The square root function is continuous on [0, ) because it is a rational power of the
continuous identity function f(x) = x (Part 6, Theorem 9). The given function is then
the composite of the polynomial f(x) = x> — 2x — 5 with the square root function
gl = V.

y(x)=f"g;
Fo = ="
g(x)=x2+2x—5

g(x) is continuous in all x since it is a polynomial,
according to Example 6.

f(t) is continuous in all t due to Part 6 in Theorem 9.

Hence, f[g(x)] = is continuous, according to Theorem
10.

124



28

b) y=——
) ¥ 1+ x*

The numerator 1s a rational power of the identity function;

the denominator is an everywhere-positive polynomial.

Therefore, the quotient is continuous.

This is the application of theorem 9.

125

y
A
3+ —»
2=
1_
4 | | | x
0 1 2 3 4

FIGURE 2.61 The function
2x—2, 1=x<2
f(x)_{3, 2=x=4
does not take on all values between
f(1) = 0and f(4) = 3; it misses all the

values between 2 and 3.
127

THEOREM 11  The Intermediate Value Theorem for Continuous Functions

A function y = f(x) that is continuous on a closed interval [a, b] takes on every
value between f(a) and f(b). In other words, if y, is any value between f(a) and
f(b), then yo = f(c) for some ¢ in [q, b].

y=Js®

()

Yop—-——7—————————

fl@)p——--

cF——_—_—_—_—— e ——_——

126

Consequence of root finding

A solution of the equation f(x)=0 is called a root.

For example, f(x)= x? + x - 6, the roots are x=2, x=-3
since f(-3)=f(2)=0.

Say fis continuous over some interval.

Say a, b (with a < b) are in the domain of f, such that
f(a) and f(b) have opposite signs.

This means either f(a) < 0 < f(b) or f(b) < 0 < f(a)
Then, as a consequence of theorem 11, there must

exist at least a point ¢ between aand b, i.e.a<c <
b such that f(c)= 0. x=c is the root.
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flay<o ¢4

129

2.7

Tangents and Derivatives

131

| Example

= Consider the function f(x) = x - cos x

= Prove that there is at least one root for f(x) in the interval [0,
72].

Solution

f(x) is continuous on (-, ).

Saya=0,b=72.

f(x=0) =-1; f(x = 7/2) = /2

f(a) and f(b) have opposite signs

Then, as a consequence of theorem 11, there must exist at

least a point ¢ between a and b, i.e. a=0 < ¢ < b= /2 such
that f(c)= 0. x=c is the root.

130

‘ What 1s a tangent to a curve?

— Secants

0

Secants

FIGURE 2.65 The dynamic approach to tangency. The tangent to the curve at P is the line
through P whose slope is the limit of the secant slopes as Q — P from either side.

See Mathematica simulation, 2.7_tangent.nb

132



DEFINITIONS Slope, Tangent Line

The slope of the curve y = f(x) at the point P(xy, f(xo)) is the number
. flxo + h) — f(xo0)
lim

m = 11
h—0 h

(provided the limit exists).

The tangent line to the curve at P is the line through P with this slope.

133

L
>

y =/
Q(xo + h, f(xo + h))

:f(xo + h) — f(xq)

0 XO xO

FIGURE 2.67 The slope of the tangent
+ h) —
line at Pis lim flxo 2 fo).
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‘ Example 1: Tangent to a parabola

= Find the slope of the parabola y=x? at the
point P(2,4). Write an equation for the
tangent to the parabola at this point.

Finding the Tangent to the Curve y = f(x) at (xq, Vo)
1. Calculate f(xo) and f(xo + #).

2. Calculate the slope
. fleo + 1) — f(xo)
m = lim .
h—0 h

3. If the limit exists, find the tangent line as

y =y + mlx — xp).

135
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Example 3

Q+h2-4

Secant slope is =h+4.
' Slope and tangent to y=1/x, x=0
Tangent slope = 4 (a) Find the slope of y=1/x at x = a #0
Ay = Ok 1 — 4 (b) Where does the slope equal -1/4?

(c) What happens to the tangent of the curve

P(2,4)
| at the point (a, 1/a) as a changes?
/ + ) " I "
: /2 o y =\4x _4 (see Mathematica simulation, 2.7_tangent.nb)

FIGURE 2.66 Finding the slope of the parabola y = x? at the point P(2, 4) (Example 1).

137 138

FIGURE 2.69 The tangent slopes, steep
FIGURE 2.68 The two tangent lines to near the origin, become more gradual as
y = 1/x having slope —1/4 (Example 3). the point of tangency moves away.
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difference quotient of f at x; with increment /.

flxo + h) — f(xo)
h

= If the limit h-> 0 of the quotient exists, it is
called

- derivative of f at xy.
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Chapter 3

Differentiation

DEFINITION  Derivative Function
The derivative of the function f(x) with respect to the variable x is the function
f' whose value at x is
fx+ ) = fx)
h b

f'(x) = ;}l—rfb

provided the limit exists.

The limit

h—0 h

when it existed, is called the Derivative of f at X,,.
View derivative as a function derived from f

3.1

The Derivative as a Function

If f ' exists at x, f is said to be differentiable
(has a derivative) at x

If f' exists at every point in the domain of f, f
Is said to be differentiable.



If write g =x + h, then h = - x

Alternative Formula for the Derivative

f@) — f&x)

'(x) = lim 25—,
f'x) lm ———%

Calculating derivatives from the definition

Differentiation: an operation performed on a
functiony =f (x)
d/dx operates on f (x)

Write as
d
— f(X)
. dx .
f'is taken as a shorthand notation for
d
— f(x
o (x)

y=f)

Secant slope is

J@ -1
I—X

P(x, f(x)) - fx)

RN

-4

|l<—h=zfx—>|
|

Derivative of fat x is

von pi SO+ R) = flx)
f(x)filfim—h

i f@ 1)

= 2T X

FIGURE 3.1 The way we write the
difference quotient for the derivative of a
function f depends on how we label the
points involved.

Example 1: Applying the definition

Differentiate

M=

Solution:

f (x)=L|£r3

e 1o

X

f(x+h)—f(x)

=i
h

&3

h
=1 -1

h—

3

o

(x+h-12)(x-1) (x-=1)°



Example 2: Derivative of the square root
function

(a) Find the derivative of y=+v/x  for x>0
(b) Find the tangent line to the curve ¥=X

atx=4
Notations
, , dy df d
f'(X)=y="=—=—1FfX)=Df (X)=D_f (X
()yOIX o dX() (X)=D,f(X)
, dy df d
f'la)=— =— =—7"F(X
() dX X=a dX X=a dX ()x=a

—H

0 4

FIGURE 3.2 The curve y = Vx and its
tangent at (4, 2). The tangent’s slope is
found by evaluating the derivative at x = 4
(Example 2).

Differentiable on an interval; One

sided derivatives
A function y = f (X) is differentiable on an

open interval (finite or infinite) if it has a
derivative at each point of the interval.

It is differentiable on a closed interval [a,b]
if it is differentiable on the interior (a,b) and
if the limits im f@+h) - (@)

h—0*

im f(b+hr)]— f (b)

exist at the endpoints

10



Slope =
im L&t — f)

- h
Slope = =0
i et = f@
h—0" h

|
|
|
|
|
|
|
|
|
|
|

I
!
I
I
|
I
I
| \
| I
| I
| \
| I
I | I I
a a+th b+h b
h>0 h<0

FIGURE 3.5 Derivatives at endpoints are
one-sided limits.

Example 5

y = |X] is not differentiable at x = 0.
Solution:
For x >0,

dixi_d oy
Forx<o0, @& &

dixi_d -

dx dx( x)=-1

At x = 0, the right hand derivative and left hand
derivative differ there. Hence f(x) not differentiable at
X = 0 but else where.

A function has a derivative at a point if an
only if it has left-hand and right-hand
derivatives there, and these one-sided
derivatives are equal.

y'not defined at x = O:
right-hand derivative
# left-hand derivative

FIGURE 3.6 The function y = |x|is
not differentiable at the origin where
the graph has a “corner.”



’ Example 6

m y= \/; is not differentiable at x = 0

= The graph has a vertical tangent at x = 0

% < fepm balk aldes o

When Does a function not have a
derivative at a point?

1. a corner, where the one-sided
derivatives differ.

2. a cusp, where the slope of PO
approaches 00 from one side and — o0
from the other.

18

‘ Differentiable functions are
continuous

THEOREM 1 Differentiability Implies Continuity
If f has a derivative at x = ¢, then f is continuous at x = c¢.

The converse is false: continuity
does not necessarily implies

differentiability

20




‘ Example ‘ The equivalent form of Theorem 1

y
= y = || is continuous everywhere, including x = If fis not continuous at
= 0, but it is not differentiable there. X =c, then fis not y = U
differentiable at x = c. 1
= Example: the step
function is
discontinuous at x = 0, o[ >
hence not differentiable
atx =0. FIGURE 3.7 The unit step

function does not have the
Intermediate Value Property and
cannot be the derivative of a
function on the real line.

21 22

The intermediate value property of
dertvatives

3.2

THEOREM 2 Darboux’s Theorem
If a and b are any two points in an interval on which f is differentiable, then f'
takes on every value between f'(a) and f'(b).

= See section 4.4 Differentiation Rules

23 24



Powers, multiples, sums and
differences

RULE 1 Derivative of a Constant Function
If f has the constant value f(x) = c, then

af _ d
EZE(C)ZO'

25

Example 1

h

(x, ¢)

(x+ h,0)

h

|
|
|
|
I
|
|
I
X

I
I
I
I
I
I
I
I
x +

FIGURE 3.8 The rule (d/dx)(c) = 01is
another way to say that the values of
constant functions never change and that

the slope of a horizontal line is zero at
every point.

26

RULE 2 Power Rule for Positive Integers
If » is a positive integer, then

n—1

B[

RULE 3 Constant Multiple Rule
If u is a differentiable function of x, and ¢ is a constant, then

i(cu) Y.
dx dx

27

d
In particular, if u= x",d—(cx”) =cx"
X

Example 3

di(?)xz) =3.-2x*1 =6X
X

di(xz) =2x"=2x
X

0

FIGURE 3.9 The graphs of y = x” and
y = 3x2. Tripling the y-coordinates triples—
the slope (Example 3).

28



RULE 4 Derivative Sum Rule

If u and v are differentiable functions of x, then their sum u + v is differentiable
at every point where u and v are both differentiable. At such points,

dv
dx(u+) dx dx’

29

| Example 6

= Does the curve y = x* - 2x2 + 2 have any
horizontal tangents? If so, where?

31

| Example 5

y:x3+gx2—5x+1

dyd
dx

d42

o %)+ )——(5X) —(1)
dx

:3x2+§x—5

30

31 y=x*-2x>+2

0,2)

FIGURE 3.10 The curve
y = x* — 2x? + 2 and its horizontal
tangents (Example 6).

32



| Products and quotients

= Note that d q
—(x-X)= x?) = 2x
dx( ) dx( )
d d d
dx(x X) dx(x) dx(x)

RULE 5 Derivative Product Rule

If u and v are differentiable at x, then so is their product zv, and

A, dv,  du
ﬁ(uv)_”dx-’_vdx'

33

‘ Example 8: Derivative from numerical
values

= Lety =uv. Findy '(2) if u(2) =3, u'(2)=-4,
v(2)=1,v'(2) =2

| Example 7

= Find the derivative of

34

| Example 9

= Find the derivative of

y=(x"+1)(x*+3)

36



RULE 6

Derivative Quotient Rule

If u and v are differentiable at x and if v(x) # 0, then the quotient u/v is differ-
entiable at x, and

pdu _ dv
i@)_ dc "ax
dx \v /) 2 .

v

| Negative integer powers of x

= The power rule for negative integers is the
same as the rule for positive integers

37

‘ Example 11

39

RULE 7 Power Rule for Negative Integers
If n is a negative integer and x # 0, then

i ny — n—1
dx(x)—nx .

38

‘ Example 12: Tangent to a curve

2
= Find the tangent to the curve Y=X+;
at the point (1,3)

40




Example 13

(x-1)(x* - 2x)
Find the derivative of Y= o
o 1 2 3 ¢
FIGURE 3.11 The tangent to the curve
y =x + (2/x) at(1, 3) in Example 12.
The curve has a third-quadrant portion
not shown here. We see how to graph
functions like this one in Chapter 4. u
Second- and higher-order derivative Example 14
Second derivative Y= =3 +2
f"(x)_dZy_i ﬂ _i( |) y,:3X2—6X
dx* dx\dx/) dx y’=6Xx-6
= y"=D2(f)(x) = D?f (x) y”=6
y(4) — O

nth derivative

n d n- dn n
y® = &y _9Y _p y

dx dx"

43



3.3

The Derivative as a Rate of Change

45

Instantaneous Rates of Change

DEFINITION Instantaneous Rate of Change
The instantaneous rate of change of f with respect to x at x, is the derivative

flxo + h) — f(xo)

r = l'
f (JC()) hir}) A

provided the limit exists.

Example 1: How a circle’s area changes
with its diameter
m A= 7Z?D2/4

= How fast does the area change with respect
to the diameter when the diameter is 10 m?

47
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Motion along a line

Position s = f(t)

Displacement, As = f(t+ At) - (1)
Average velocity

V,, = AS/At = [f(t+ At) - f(t)] /At

= The instantaneous velocity is the limit of
V,, When At — 0

48



Position at time 7 ... and at time ¢ + At
| As |
—_— > §
s = f(1) s+ As=f(t+ A

FIGURE 3.12 The positions of a body
moving along a coordinate line at time ¢
and shortly later at time # + Af.

DEFINITION Velocity
Velocity (instantaneous velocity) is the derivative of position with respect to
time. If a body’s position at time 7is s = f(¢), then the body’s velocity at time ¢ is

+ Ar) —
o = % = i FEES0 T,

49

RS

600
500 Secant slope is
400 average velocity

for interval from Q
300 t=2tot=35. //(l'an vent slope

Distance (ft)

\ / is speedometer
‘A reading at ¢t = 2

% (instantaneous

velocity).

200

100 ~
P~
/
1 2 3 4 5 6 7 8
Elapsed time (sec)

FIGURE 3.13 The time-to-distance graph for
Example 2. The slope of the tangent line at P is the

instantaneous velocity at ¢ = 2 sec.
51

50

t t
0 0
s increasing: s decreasing:
positive slope so negative slope so
moving forward moving backward

FIGURE 3.14 For motion s = f(¢) along a straight line, v = ds/dt is
positive when s increases and negative when s decreases.
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DEFINITION Speed
Speed is the absolute value of velocity.

Greatest
speed

ds
Speed = |v(s)| = dr
53
v
I | |
MOVES FORWARD : : FORWARD :
©=0 ) ' (ASQNO) ]
] v =110 : :
I | | ( 1
I |
. Speeds Steady_),(_ glows_): :(_ Speeds_):
P :(v = const): ool : | up |
| | | : i
! I |
: (_Stands_)l |
| still | :
: w=0) | :
| I 1 t
0 1 2 3 4 6 7 e
I
I
I
I
I
I
I
I
I
I
I

Speeds | Slows

up | down
|

|
MOVES BACKWARD
(< 0)

l—

FIGURE 3.15 The velocity graph for Example 3.
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‘ Example 3

= Horizontal motion

54

DEFINITIONS Acceleration, Jerk

Acceleration is the derivative of velocity with respect to time. If a body’s posi-
tion at time ¢is s = f(¢), then the body’s acceleration at time 7 is

_dv _d’s
a(t) = g
Jerk is the derivative of acceleration with respect to time:
N _da _ d
](t) - dl - dt3-

56



EXample 4 t (seconds) s (meters)

t=0 @ o0

1 ., t=1 ) |5

Modeling free fall S=7 9t 10
Consider the free fall of a heavy ball released [P
from rest at t = 0 sec. =2 o
(a) How many meters does the ball fall in the :zz
first 2 sec? .
(b) What is the velocity, speed and L 40
acceleration then? 1=3 ) Fas

FIGURE 3.16 A ball bearing
falling from rest (Example 4).

Modeling vertical motion Ao

A dynamite blast blows a heavy rock straight up with
a launch velocity of 160 m/sec. It reaches a height
of s = 160t — 16t2 ft after t sec.

(a) How high does the rock go?

(b) What are the velocity and speed of the rock i
when it is 256 ft above the ground on the way up? o= CoflE——
On the way down?

(c) What is the acceleration of the rock at any time t
during its flight?

(d) When does the rock hit the ground again?

FIGURE 3.17 (a) The rock in Example 5.
(b) The graphs of s and v as functions of
time; s is largest when v = ds/dt = 0. The
graph of s is not the path of the rock: Itis a
plot of height versus time. The slope of the
plot is the rock’s velocity, graphed here as
a straight line.




3.4

Derivatives of Trigonometric Functions

61

Derivative of the cosine function

Derivative of the sine function

The derivative of the sine function is the cosine function:

4 (sinx) = cosx
dx ’

The derivative of the cosine function is the negative of the sine function:

4 (cosx) = —sinx
dx

d . CoS(X+ h) —cosx
—cosx=Ilim =
dX h—0

63

d . .
—snx=Ilim
dX h—0

y
11 y = cos x
L/ N 1/ -
—ar | 0 o
~ A L
| | |
Ly
| | \ |y =-sinx
| |
|

> X

JT/\

FIGURE 3.23 The curve y' = —sinx as
the graph of the slopes of the tangents to
the curve y = cos x.

sin(x+h)-sinx _

62
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’ Example 2

(a)y =5x+ cosx
(b)y =sin xcosx
COSX

C)y=———
©)y 1-sinx

Derivative of the other basic
trigonometric functions

Derivatives of the Other Trigonometric Functions

d = 2
e (tanx) = sec*x

4 (secx) = secxtanx
dx
2

d = —
dx(cotx) = —cscox

4 (cscx) = —cscxcotx
dx

65

| Example 5

= Find d(tan x)/dx

67

66

| Example 6

= Find y" ify = sec x

68




Example 7: Finding a trigonometric limit

Trigonometric functions are differentiable,
hence are continuous throughout their
domains.

So we can calculate limits of algebraic
combinations and composites of
trigonometric functions by direct substitution.

lim V2+seex | /2+secO

x-0 cos(7r — tan X) - cos(z —tan0)

~eos(r—0) -1

69

3.5

The Chain Rule and
Parametric Equations

71

Note that you can only evaluate the limit of
the form

by direct substitution, i.e.,

PO _ POY)
=0 Q00 Q)

only when P(x) and Q(x) are both continuous at
Xo

70

Differentiating composite functions

Example:

y =f(u) =sinu

u=gXx)=x?-4

How to differentiate F(x) =f - g = f[g(X)]?
Use chain rule



Derivative of a composite function Example 2

Example 1: Relating derivatives y= Ox* +6X2 +1= (3X2 +1)2
y = (3/2)x = (1/2)(3x) 2. 5
= VU] y=u";u=3x"+1
y(u) = u/2; u(x) = 3x dy du_, . 6
dy/dx = 3/2; du dx
dy/du = ¥4 du/dx = 3; =2(3x* +1) - 6x=36x> +12x
dy/dx = (dy/du)-(du/dx) (Not an accident) c.f.
dy d

(9x4 +6X%+ 1) = 36x% +12X
dx dx

73 74

Composite f- g

THEOREM 3 The Chain Rule

If f(u) is differentiable at the point # = g(x) and g(x) is differentiable at x, then
the composite function (f o g)(x) = f(g(x)) is differentiable at x, and

Rate of change at
xis f(g(x) - g'x).

(f ° £/ = [e)-g'(x). . f
In Leibniz’s notation, if y = f(u) and u = g(x), then Rate of change m
at x is g'(x). at g(x) is f'(g(x)). ———
b du x e
where dy/du is evaluated at u = g(x). FIGURE 3.27 Rates of change multiply: The derivative of f o g at x is the

derivative of f at g(x) times the derivative of g at x.




Example 3 Alternative form of chain rule

Applying the chain rule If y = f [g(X)], then
X(t)= cos(t? + 1). Find dx/dt. dy/dx = f' [g(¥)]- ' (X)
Solution: _ _ _ o
_ ) " _ Think of f as ‘outside function’, g as ‘inside-
X(u)= cos(u); u(t)=t= + 1; function’, then
dx/dt = (dx/du)-(du/dt) = ... dy/dx = differentiate the outside function and

evaluate it at the inside function let alone; then
multiply by the derivative of the inside function.

Example 4 Example 5

A three-link ‘chain’

Differentiating from the outside in: _
Find the derivative of g(t) =tan(5-sin2t)

y=sin(x*+x) = f (u) = f[g(X)]
\f (U)=Sian; Q(X):X2+)f g () = %(tan (S — sin2r))

- v . . - v -
outside function inside function

: d :
Q: F19(0]- 9'0%) = sec’(5 — sin 2t)--dl; (5 — sin 21‘)

dx J

d = sec’(5 — sin2¢) - (0 — cos?.t-a(m))
Y~ cos (X*+X) - (2x+1) , .

dx — = sec’(5 — sin2¢)* (—cos 2t) + 2

inside function—derivative of
left alone theinside function . %0



Example 6

Applying the power chain rule

d 3 aNT
() (5 =X

(b) d ( 1 j_ d (3x—2)"

dx\ 3x—2) dx
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Parametric equations

A way of expressing both the coordinates of a
point on a curve, (X,y) as a function of a third
variable, t.

The path or locus traced by a point particle
on a curve is then well described by a set of
two equations:

x =1(t), y = 9(t)

83

Example 7

(a) Find the slope of tangent to the curve
y= sin®x at the point where x = 773

(b) Show that the slope of every line tangent
to the curve y = 1/(1-2x)3 is positive

82

DEFINITION  Parametric Curve
If x and y are given as functions
x=flt), y=g@)
over an interval of #-values, then the set of points (x, y) = (f(¢), g(¢)) defined by

these equations is a parametric curve. The equations are parametric equations
for the curve.

The variablet is a parameter for the curve

84




\

Position of particle
at time ¢

T\ (), 5

FIGURE 3.29 The path traced by a
particle moving in the xy-plane is not
always the graph of a function of x or a

function of y.

Example 10

Moving along a
parabola

Xx=Vty=t 0<t
Determine the relation
between x and y by
eliminating t.

y= t= (t)2 = x2

The path traced out
by P (the locus) is
only half the parabola,
x=0

85

1, 1)

0| Starts at
t=0

FIGURE 3.31 The equations x = V¢
and y = ¢ and the interval ¢ = 0 describe
the motion of a particle that traces the
right-hand half of the parabola y = x?
(Example 10).

87

Example 9 X

- 4y =1
=3

/— P(cost, sint)
Moving
counterclockwise on a
circle f— oo )

. 0 1,0

Graph the parametric @0
curves
X=cost,y =sint,
0<t<2rx =2

FIGURE 3.30 The equations x = cos
and y = sin ¢ describe motion on the circle
x? + y? = 1. The arrow shows the

direction of increasing ¢ (Example 9).
86

Slopes of parametrized curves

A parametrized curved x = f(t), y = g(t) is
differentiable at t if f and g are differentiable
at t.

At a point on a differentiable parametrised
curve where y is also a differentiable function

of X, i.e. y = y(x) = y[x(t)],
chain rule relates dx/dt, dy/dt, dy/dx via

dy _dy dx
dt dx dt .




Parametric Formula for dy /dx
If all three derivatives exist and dx/dt # 0,

dy _ dy/dt
dx ~ dejdi @

89

Parametric Formula for d’y /dx?
If the equations x = f(¢), y = g(¢) define y as a twice-differentiable function of
x, then at any point where dx/dt # 0,

d’y  dy'/dt

&l djdi 3

(3) isjust the parametric formula (2) by
y — y'=dy/dx

91

Example 12

Differentiating with a parameter

If x=2t+ 3 and y =t?-1, find the value of
dy/dx att = 6.

Example 14 Finding 4&y/dx? for a
parametrised curve

Find d?y/dx? as a function of t if x =t - 2,
y=t-t.

90
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3.6

Implicit Differentiation

93

2 _
y ¥ TF
. U
EXample 1 . - S]opew = e ylz v
Difterentiating P V)
implicitl :
plicitly i x
: . : Q(x, —Vx)
= Find dy/dx if y? = x | ¥y = —Va
S 1
Slope = 2y 2V

FIGURE 3.37 The equation y> — x = 0,
or y* = x as it is usually written, defines
two differentiable functions of x on the
interval x = 0. Example 1 shows how to
find the derivatives of these functions

without solving the equation y? = x for y.
95

Implicit Differentiation

1. Differentiate both sides of the equation with respect to x, treating y as a differ-
entiable function of x.

2. Collect the terms with dy/dx on one side of the equation.
3. Solve for dy/dx.

94

‘ Example 2

= Slope of a circle at a point
= Find the slope of circle x? + y? = 25 at
(3! _4)

96



y Lenses, tangents, and normal lines

Tangent

2 — x4 si Light ray
Example 3 g TTERE Curve of lens
If Slop Of Normal line surface
Differentiating 2r tangent IS rn[’ the
implicitly | | | | g ope of normal - Point of entry
. . X
Find dy/dx if -4 2 2 4 . b ’
the relation
_4
mm=-1, or
FIGURE 3.39 The graph of FIGURE 3.40 The profile of a lens,
y2 = x? + sinxy in Example 3. The rnn =-1 rn[ showing the bending (refraction) of a ray
example shows how to find slopes on this of light as it passes through the lens
implicitly defined curve. N surface. N

Example 4: Tangent and normal to the

folium of Descartes
Show that the point (2,4) lies on the curve 4
x? +y3 - 9xy = 0. Then find the tangent and Py Oy =0

normal to the curve there. \/
0 \ 2
FIGURE 3.41 Example 4 shows how to

find equations for the tangent and normal
to the folium of Descartes at (2, 4).
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Derivative of higher order

Example 5
Finding a second derivative implicitly
Find d2y/dx? if 2x3 - 3y? = 8.

101

Theorem 4 provide a extension of the power
chain rule to rational power:

d pa_ P g2 du
dx q dx
uz0 if (p/q) < 1, (p/q) rational number, ua

differential function of x

103

Rational powers of differentiable functions

THEOREM 4 Power Rule for Rational Powers

If p/q is a rational number, then xP/4 is differentiable at every interior point of the
domain of x4~ and

d e = P w1
dx q '

Theorem 4 is proved based on d/dx(x") = nx™!
(where nis an integer) using implicit differentiation

102

Example 6

Using the rational power rule

(@) d/dx (x2) = 1/2x 12 for x > 0
(b) d/dx (x%3) = 2/3 x 1B for x #0
(c) d/dx (x43) = -4/3 x 3 for x # 0

104




Proof of Theorem 4

Let p and g be integers with g > 0 and

Explicitly differentiating both sides with

y:Xp/q =yi=x"

respect to x...

3.7

Related Rates

105

107

dt

@ﬁl \\T
h

Example 7

Using the rational power and chain rules
(a) Differentiate (1-x?)14
(b) Differentiate (cos x)1/5

~ 7~ EXAMPLE1 Pumping Out a Tank

N

A

4V _ _3000 L/min

dt

How rapidly will the fluid level
inside a vertical cylindrical tank
drop if we pump the fluid out at
the rate of 3000 L / min?

FIGURE 3.42 The rate of change of fluid
volume in a cylindrical tank is related to

the rate of change of fluid level in the tank
(Example 1).

108
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Solution

Geometrically, Volume V, is a function of height h, V=V(h)
Height, h, is a function of time, h=h(t). r, radius, is fixed.

Combining both, V=V[r(t)]

By chain rule, the derivative of V with respect to tis

dv _dv dh , dh_dv dv
9 dh dt dc — dt ' dh

dv .
We are asked to find % . given EZ—S‘OOOL/mm
ar

109

’7 EXAMPLE 2 A Rising Balloon

A hot air balloon rising straight up from a level field is tracked by a range finder 500 ft
from the liftoff point. At the moment the range finder’s elevation angle is 7/4, the angle is
increasing at the rate of (.14 rad/min. How fast is the balloon rising at that moment?

@ Draw the scenario and label the relevant
Balloon variables (and name them)

dt ¥ = ihe height {n fleat of the balloon.
when 6 = /4 & _,
y dt ’
when 6 = /4
Range
finder 500 ft

FIGURE 3.43 The rate of change of the
balloon’s height is related to the rate of
change of the angle the range finder makes

& = the angle in radians fae range finder makes with the ground,

Range . . . .
finder 500 ft X, the horizontal distance,is fixed.

with the ground (Example 2).
111

Solution

dv
V=nr*th="=nr> 9V __3000L/min

dh dt
dh_dv  dv . dh_ —3000L 1
dc — dr ' dh —c

In this example, conversion of unit must be taken care of properly

1m>=1000L
—3000(107°m?
|fr:1m’ @: ( ) 1 2:_§_r.n
dt min n(lm) 7 min
—3000(10°m?
Ifrlem,ﬁz ( ) 1 = — 3 m
dt min 7r(10m) 1007 min

110

’7 EXAMPLE 2 A Rising Balloon

Balloon@ Geometrically, y is a function of
4 angle é.

de _ .
y7ie 0.14 rad/min
when 6 = 7/4

y=xtan0

"lweno= a4 @ is a function of time, =6 (t).

FIGURE 3.43 The rate of change of the ..
balloon’s height is related to the rate of Combmmg bOth’ y=y [0 (t)]

change of the angle the range finder makes

with the ground (Example 2). By chain rule, the derivative of y

with respectto tis
ﬂy - rfy do

112 E_ded—t



do _ .
i 0.14 rad/min
when 6 = /4

EXAMPLE 2 A Rising Balloon

Bauoon@ y=xtan® d—y:xsecze

do
Y _ \sect- 39
G _, dt =xsec 0 i
\illlhene = 7l4
. do .
Given — = 0.14(rad/min)
500 ft dt
FIGURE 3.43 The rate of change of the afd=xl4

balloon’s height is related to the rate of
change of the angle the range finder makes
with the ground (Example 2). dy

500ft - seczg
dt~ (0.14 rad/min)

= 500 ft-(v/2) -(0.14 rad/min) = 140ft/min

113 Note: radian is dimensionless (hence unit-less)

Iinearization

Say you have a very complicated function,
f(x)=sin (cot?x), and you want to calculate
the value of f(x) at x = 7#/2 + 6, where dis a
very tiny number. The value sought can be
estimated within some accuracy using
linearization.

3.8

Linearization and differentials

Refer to graph Figure 3.47.

The point-slope equation of the tangent line
passing through the point (a, f(a)) on a
differentiable function f at x=a is
y=mx+c,wherecisc="f(a)-f"(a)a
Hence the tangent line is the graph of the
linear function
Lx)= m x+c

=f’(a) x + [f(a) —af’(a)]

=f(a) +f’(a) (x - a)

114

116



Definitions

The tangent line L(x) = f(a) + f"(a) (x - a)
gives a good approximation to f(x) as long as
X is not to be too far away from x=a.

Or in other words, we say that L(x) is the
linearization of f at a.

The approximation f(x) = L(x) of f by L is the
standard linear approximation of f at a.

The point x = a is the center of the
approximation.

Example 1 Finding Linearization

Find the linearization of

f(X)=+v1+X

atx =0.

119

> =

y=fx

Slope = f'(a)

(a, f(a))

FIGURE 3.47 The tangent to the
curve y = f(x) atx = a is the line

L(x) = f(a) + f'(a)(x — a).

f(X)=+v1+X
1
fF(X)= ——
) 2(1+x)"?
Thelinearization of f (X) at x=a is
f(x)=f(a)+ f’(a)(x—a):(1+a)1/2+2(Tla)1,2(

a=0,
£(0)=2:f(0) =1
-L10-

Thelinearization of f (x) at x=a=0isL(x) =1+ x/2
Wewritef (X) = L(X)=1+x/2

118

X—a)
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FIGURE 3.48 The graphof y. = V1 + x and its

linearizations at x = 0 and x = 3 Figure 3.49 shows a
magnified view of the small window about 1 on the y-axis.
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What ﬂ 1s not
ax dy
Note that the derivative notation &
IS not a ratio
I.e. the derivative of the function y = y(x) with

respect to x, is not to be understood as the
ratio of two values, namely, dy and dx.

dy/dx here denotes the a new quantity
derived from y when the operation D = d/dx
Is performed on the function vy,

(d/dx)ly] =D [y]

123

Accuracy of the linearized approximation

We find that the approximation of f(x) by
L(x) gets worsened as |x — a| increases
(or in other words, x gets further away
from a).

Approximation True value | True value — approximation |
V12=1+ 02—2 =1.10 1.095445 <107?
V105 =1+ % = 1.025 1.024695 <1073
V005 ~ 1+ 2905 = o050 1002497 <1078
Differential
Definition:

Let y = f(x) be a differentiable function. The
differential dy is

dy = f’(x)dx
dy is an dependent variable, i.e., the value of

dy depends on f ’(x) and dx where dx is
viewed as an independent variable.

Once f’(x) and dx is fixed, then the value of
differential dy can be calculated.
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Example 4 Finding the differential gy

(@) Find dy if y=x> + 37x.
(b) Find the value of dy when x=1 and dx =
0.2

Ditterential of £, df

We sometimes use the notation df in place of
dy, so that

dy = f’(x) dx
IS now written in terms of
df = f’(x) dx
df is called the differential of f
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dy =+ dx = f()

Referring to the definition of the differentials
dy and dx, if we take the ratio of dy and dx,
l.e. dy — dx, we get g

dy = dx =f’(x) dx /dx = f/(x) = d—i

In other words, the ratio of the differential dy
and dx is equal to the derivative by definition.
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Example of differential of /

If y = f(x) = 3x2-6, then the differential of f is
df = f’(x) dx = 6x dx

Note that in the above expression, if we take
the ratio df / dx, we obtain

df / dx =1 ’(x) = 6X
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The differential form of a function

For every differentiable function y=f(x), we

can obtain its derivative, %
X

dy

Corresponds to every derivative 4,
there is a differential df such that

df = (gj.dx
dx

In addition, if f =u+vV, then df :(%j-dx+(gj-dx
dx dx

129

Example 5

If y = f(x) = x/(x+1), then the differential form
of the function,

v=109=()
1)£(x)—x£(x+1)

(x+
o - d(Lj - (ﬂj.dxz T d g
x+1 dx (x+1)

(03] g 00| G| (oo

(x+1)° (x+1)°

d
(x+1)dx—xd (x+1) _ (x+1) dx—x{dx(x+1)~dx} (x+1)dx—x[1-dx] _ dx

(x+1)2 (x+1)2 (x+1)2 (x+1)2
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Example 5

If y = f(X) = tan 2x, the derivative is
d
Y _ osec? 2x
dx

Correspond to the derivative, the differential
of the function, df, is given by the product of
the derivative dy/dx and the independent
differential dx:

df = d(tan 2x) = (%j-dx:(ZSe&zx)-dx
X
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dy, df - any ditference?

Sometimes for a given function, y = f(x),
the notation dy is used in place of the
notation df.

Operationally speaking, it does not matter
whether one uses dy or df.
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The derivative dy/dx is not dy divided by Estimation with differential

dx

Due to the definition of the differentials dy, dx that

their ratio, dy / dx equals to the derivative of the

differentiable function y = f(x), i.e.ﬂ:ﬂ(y) = f (X)
dx dx

we can then move the differential dy or dx around,
such as dy= f’(x)dx

When we do so, we need to be reminded that dy
and dx are differentials, a pair of variables, instead
of thinking that the derivative %y is made up of a
numerator “dy ” and a denominator “dx ” that are
separable
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" ¥y = f(x)

| / Ay = f(a I dx) — f(a)
T

AL = f(a)dx
(a, fla)

| dx = Ax |

} } When dx is a small change in x,
Tangent 1 1 the c'orres'pon‘dmg change in
. the linearization is precisely dy.
line } }

| | X

0 a a+ dx

FIGURE 3.51 Geometrically, the differential dy is the change
AL in the linearization of f when x = a changes by an amount
dx = Ax.

Referring to figure 3.51, geometrically, one can
sees that if x, originally at x=a, changes by dx
(where dx is an independent variable, the
differential of x), f(a) will change by
Ay = f(a+dx) - f(a)

Ay can be approximated by the change of the
linearization of f at x=a, L(x)=f(a)+f ’(a)(x-a),

Ay = AL = L(a+dx)-L(a)=f "(a)dx = df(a)
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Ay = dy allows estimation of fla+dx)

In other words, Ay centered around x=a is
approximated by df(a) (= dy, where the
differential is evaluated at x=a):

Ay ~dy
or equivalently,
Ay = f(a+dx) - f(a) = dy = f "(a)dx
This also allows us to estimate the value of
f(a+dx) if f '(a), f(a) are known, and dx is not
too large, via

fla+dx) ~ f(a)+ f “(a)dx
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Example 6 o

Figure 3.52

The radius r of a circle
increases from a=10
m to 10.1 m. Use dA
to estimate the

increase in circle’s AA =dA = 2madr
area A. Estimate the FIGURE 3.52 Whendris
area of the enlarged small compared with q, as it is
circle and compare whendr = 0.1 anda = 10, the
your estimate to your differential d4 = 2ma dr gives
a way to estimate the area of the
true value. circle with radius » = a + dr
(Example 6).

Solution to example 6

Leta=10m, a+tdr=10.1m = dr=0.1m
A(r) = r2 = A(a) = 7(10 m)? = 10077 cm?
AA = A'(@)dr =2z (a)dr =2x2(10 m)(0.1 m) =
= 27 m2
A(a+dr) = A(a) + AA=A(a) + A'(a)dr
= 1027z m? (this is an estimation)

c.fthe true area is m(a+dr)? = 2(10.1)? =
102.017 m?
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A(r)

A(a+dr)

AA=A(a+dr)-A(a)

L(x)=A(a)+ A’ (a)(r-a)

A= 7r?2 |

AL= A’ (a)dr

L A(@)+A(a)dr
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Chapter 4 4.1

Applications of Derivatives

Extreme Values of Functions

DEFINITIONS  Absolute Maximum, Absolute Minimum
Let f be a function with domain D. Then f has an absolute maximum value on
D at a point ¢ if

f(x) = f(c) for all x in D
and an absolute minimum value on D at ¢ if
f(x) = f(c) forallxin D.

y = Cos X

y=sinx

S

FIGURE 4.1 Absolute extrema for
the sine and cosine functions on
[—m/2, 7/2]. These values can depend
on the domain of a function.




‘ Example 1

= Exploring absolute extrema

= The absolute extrema of the following
functions on their domains can be seen in
Figure 4.2

y y
D = (-, ) D =1[0,2]
L x L x
2 2
(a) abs min only (b) abs max and min
y y
D = (0, 2] D =(0,2)
1 1
[ 2 I 2
(c) abs max only (d) no max or min

FIGURE 4.2  Graphs for Example 1.

THEOREM 1 The Extreme Value Theorem

If f is continuous on a closed interval [a, b], then f attains both an absolute max-
imum value M and an absolute minimum value m in [a, b]. That is, there are
numbers x; and x; in [a, b] with f(x|) = m, f(xz) = M,and m = f(x) < M for
every other x in [a, b] (Figure 4.3).

(xp, M)
L\ =f® !
M | y=fx)
I M
| |
| |
X m
1 I |1 I x I 1 x
a Xy | b a b
1|m| R -
| Maximum and minimum
at endpoints
(x1, m)
Maximum and minimum
at interior points
I
L\ = !
| |
| |
| |
I M
| |
| I
I I
I | |
I m I
L m . ! x ] ! 1
a X b a Xy b
Maximum at interior point, Minimum at interior point,
minimum at endpoint maximum at endpoint

FIGURE 4.3 Some possibilities for a continuous function’s maximum and
minimum on a closed interval [a, b].



y

A

No largest value

FIGURE 4.4 Even a single point of
discontinuity can keep a function from
having either a maximum or minimum

> X value on a closed interval. The function
Smallest value {x, 0=x<l1
y = _
0, x=1

is continuous at every point of [0, 1]
except x = 1, yet its graph over [0, 1]

does not have a highest point.

Local (relative) extreme values

Absolute maximum
No greater value of fanywhere.

Local maximum Also a local maximum.

No greater value of
f nearby.

I
| | of f nearby.
Absolute minimum : :
No smaller value of | | Local minimum |
f anywhere. Also a | I I No smaller value of |
local minimum. : : : f nearby. : :
| I 1 I |
a c e d b

Local minimum
No smaller value

FIGURE 4.5 How to classify maxima and minima.

Finding Extrema...with a not-
always-effective method.

DEFINITIONS
A function f has a local maximum value at an interior point ¢ of its domain if

flx) = f(e)

A function f has a local minimum value at an interior point c of its domain if

fx) = f(e)

Local Maximum, Local Minimum

for all x in some open interval containing c.

for all x in some open interval containing c.

THEOREM 2 The First Derivative Theorem for Local Extreme Values

If f has a local maximum or minimum value at an interior point ¢ of its domain,
and if f' is defined at c, then

f'(c) =0.

11

Be careful not to misinterpret theorem 2 because

its converse is false. A differentiable function may
have a critical point at x = ¢ without having a local
extreme value there. E.g. at point x = 0 of function

y =X




Local maximum value

y=fx

~ / |
e |

|

|

|

I

Secant slopes < 0
(never positive)
I

(never negative)

I
I
I
I
I
I
I
I
I
I
I
Secant slopes = 0 I
I
I
I
I
I
I
1
¢

|
| |
I I
X X
FIGURE 4.6 A curve with a local
maximum value. The slope at c,

simultaneously the limit of nonpositive

numbers and nonnegative numbers, is zero.

| Example 2: Finding absolute extrema

= Find the absolute maximum and minimum of
f(x) = x? on [-2,1].
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DEFINITION Critical Point

An interior point of the domain of a function f where f’ is zero or undefined is a
critical point of f.

How to find the absolute extrema of a continuous
function f on a finite closed interval

1. Evaluate fat all critical point and endpoints
2. Take the largest and smallest of these values.

y
‘Example 3: 7‘ W
Absolute extrema at endpointg ‘
2 ] >
= Find the absolute | y=8—1
extrema values of i
g(t) = 8t-t* on i
[-2,1]. i
V(2. -32) ol

FIGURE 4.7 The extreme values of
g(f) = 8¢t — t* on [—2, 1] (Example 3).
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Example 4: Finding absolute extrema on a
closed interval

Find the absolute maximum and minimum
values of f (x) = x?3 on the interval [-2,3].

2
flx) = s

has no zeros but 1s undefined at the interior point x = 0

The point (0,/0)) is a critical point by definition

y=x
1_
070 0t Not every critical point
or endpoints signals the
T presence of an extreme
@ value.
¥y
1+
y=x" FIGURE 4.9 Critical points without

extreme values. (a) ' = 3x?is 0 at
-1 0 ! x = 0, but y = x° has no extremum there.
/ (b) y' = (1/3)x%?3 is undefined at x = 0,
-r but y = x'7 has no extremum there.
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Absolute maximum;
Local also a local maximum
maximum 2 [~

-2 -1 O\l

Absolute minimum;
also a local minimum

FIGURE 4.8 The extreme values of
f(x) = x*3 on[-2, 3] occurat x = 0 and
x = 3 (Example 4).

4.2

The Mean Value Theorem

20



THEOREM 3 Rolle’s Theorem

Suppose that y = f(x) is continuous at every point of the closed interval [a, b]
and differentiable at every point of its interior (a, b). If

f(a) = f(b),
then there is at least one number c in (a, b) at which
f'(e) = 0.
21
y y y
y=fx y=fx y=fx
1 L x 1 L1 X 1 1 X
a b a Xy b a x b
(a) Discontinuous at an (b) Discontinuous at an (c) Continuous on [a, b] but not
endpoint of [a, b] interior point of [a, b] differentiable at an interior
point

FIGURE 4.11 There may be no horizontal tangent if the hypotheses of Rolle’s Theorem do not hold.
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f©)=0

[ Y T S,

FIGURE 4.10 Rolle’s Theorem says that
a differentiable curve has at least one
horizontal tangent between any two points
where it crosses a horizontal line. It may

have just one (a), or it may have more (b).
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Example 1

= Horizontal tangents of a

cubic polynomial

3

X
f(x)=—-3x
3

(-V3,2v3) } y=% — &

(V3,-2V73)

FIGURE 4.12 As predicted by Rolle’s
Theorem, this curve has horizontal
tangents between the points where it

crosses the x-axis (Example 1).
24



Example 2 Solution of an equation f{x)=0

= Show that the equation

3
x +3x+1=0
has exactly one real solution.

Solution

1. Apply Intermediate value theorem to show that
there exist at least one root

2. Apply Rolle’s theotem to prove the uniqueness of
the root.

f'(x) = 3x% + 3 is never zero

(-1,-3)

FIGURE 4.13 The only real zero of the
polynomial y = x* + 3x + 1 is the one
shown here where the curve crosses the

25

x-axis between —1 and 0 (Example 2).

26

‘ The mean value theorem

THEOREM 4 The Mean Value Theorem

Suppose y = f(x) is continuous on a closed interval [, b] and differentiable on
the interval’s interior (a, b). Then there is at least one point c in (a, ) at which

b —
IO =S _ pey. 1)

27

Tangent parallel to chord
X —
Slope f'(c)
' [
| _
- Slope L&) =@
| v b—a
| |
| |
| |
] 1
0 /\ a c b >t
y = fx)

FIGURE 4.14 Geometrically, the Mean
Value Theorem says that somewhere
between A and B the curve has at least
one tangent parallel to chord 4B.
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‘ Example 3

y
T . _ 2
VTl =x=1 = The fu.nctlon f(x)=x | |
1 is continuous for 0 < x<2 and differentiable for
O0<x<2
-1 0 L At some point ¢ in the interval 0 < x < 2 the

FIGURE 4.17 The function f(x) = derivative f (x)=2x must have the value (4-
V1 — x? satisfies the hypotheses (and O)/ (2'0)=2-
conclusion) of the Mean Value Theorem In this case, f ’(C)=20 =2

on [—1, 1] even though f is not

differentiable at —1 and 1. That is, at x=c=1., f (c) = the slope of the

—chord-AB(see Figure 4.18)—— — ————
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y Mathematical consequences
B(2,4)
4L
COROLLARY 1 Functions with Zero Derivatives Are Constant
3 If f'(x) = 0 at each point x of an open interval (@, b), then f(x) = C for all
x € (a, b), where C is a constant.
y=x
2 -
1~ 1,1
4. D COROLLARY 2 Functions with the Same Derivative Differ by a Constant
If f'(x) = g'(x) at each point x in an open interval (a, b), then there exists a con-
I L 5x stant C such that f(x) = g(x) + C forall xe (a, b). That is, f — g is a constant
A(0,0) 1 2 on (a, b).

FIGURE 4.18 As we find in Example 3,
¢ = 1 is where the tangent is parallel to

the chord.
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Corollary 1 can be proven using the Mean
Value Theorem

Say x4, X,€(a,b) such that x; < x,

By the MVT on [x,,X,] there exist some point ¢
between x,and x, such that

F(c)=1f (x2) =f (x4)] / (X2 - X7)

Since f'(c) =0 for all ¢ lying in (a,b),
f(x,)—f(xq) =0, hence f(x,) = f(x,) for x4,
x,e(a,b).

This is equivalent to f(x) = a constant for xe(a,b).
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y=x+C c=2

FIGURE 4.20 From a geometric point of
view, Corollary 2 of the Mean Value
Theorem says that the graphs of functions

x with identical derivatives on an interval
can differ only by a vertical shift there.
The graphs of the functions with derivative
2x are the parabolas y = x? + C, shown
here for selected values of C.
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Proot of Corollary 2

At each point xe(a,b) the derivative of the
difference between function h=f—- g is
h'(x) = f (x) —g'(x) = 0 (because f (x) = g'(x))
Thus h(x) = C on (a,b) by Corollary 1. That
is f(x) —g(x) = C on (a,b), so

f(x) =C +g(x).
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Example 5

Find the function f(x) whose derivative is sin x
and whose graph passes through the point
(0,2).

Solution  Since f(x) has the same derivative as g(x) = —cosx, we know that f(x) =
—cosx + C for some constant C. The value of C can be determined from the condition
that f(0) = 2 (the graph of f passes through (0, 2)):

f(0) = —cos (0) + C = 2, ) Ce=3;

The function is f(x) = —cosx + 3. [
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4.3

Monotonic Functions and
The First Derivative Test

37

Increasing functions and decreasing
functions

DEFINITIONS  Increasing, Decreasing Function

Let f be a function defined on an interval [ and let x; and x; be any two points in 1.

1. If f(x1) < f(x2) whenever x; < x,, then f is said to be increasing on /.
2. If f(x2) < f(x;) whenever x; < x;, then f is said to be decreasing on /.

A function that is increasing or decreasing on / is called monotonic on /.

y
h
2
=x
L7
. 3r .
Function Function
decreasing increasing
2 —
y'<0 >0
1 —
| I | I
2 1 o~ 1 2 *

FIGURE 4.21 The function f(x) = x?is
monotonic on the intervals (—o0, 0] and
[0, ©0), but it is not monotonic on
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COROLLARY 3 First Derivative Test for Monotonic Functions
Suppose that f is continuous on [a, b] and differentiable on (a, b).

If f'(x) > 0 at each point x € (a, b), then f is increasing on [a, b].
If f'(x) < 0 at each point x € (a, b), then f is decreasing on [a, b].

(—o0, co).

39

Mean value theorem is used to prove Corollary 3

40




Example 1

Using the first derivative test for monotonic
functions  r(x)=x"-12x-5

Find the critical point of  f(x)=x"-12x-5

and identify the intervals on which fis
increasing and decreasing.
Solution
S =3(x+2)(x-2)
f'+ for —oo < x< =2

f'=12 for —2<x<?2

f'+ for2<x<w
41

First derivative test for local extrema

Absolute max
f' undefined
Local max
f'=0

No extreme

No extreme
f=0

F>01 00

Local min

Absolute min

201
(-2, 11)
10
L >%
—4 13 -2 -1
-10
-20
(2,-21)

FIGURE 4.22 The function f(x) =
x* — 12x — 5 is monotonic on three
separate intervals (Example 1).
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|
|
|
|
|
|
|
|
|
|
|
|
|
|
C:

w
[ ) S

|
|
|
|
|
|
|
|
a C1 2

FIGURE 4.23 A function’s first derivative tells how the graph rises and falls.
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First Derivative Test for Local Extrema

Suppose that c is a critical point of a continuous function f, and that f is differen-
tiable at every point in some interval containing ¢ except possibly at c itself.
Moving across ¢ from left to right,

1. if f' changes from negative to positive at ¢, then f has a local minimum at c;
2. if f' changes from positive to negative at ¢, then f has a local maximum at c;

3. if f’ does not change sign at ¢ (that is, f’ is positive on both sides of ¢ or
negative on both sides), then f has no local extremum at c.
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Example 2: Using the first derivative test
for local extrema

= Find the critical point of
f(x) _ x1/3 (x B 4) _ x4/3 . 4x1/3
= ldentify the intervals on which fis
increasing and decreasing. Find the

function’s local and absolute extreme

values.

4(x-1)
f'=——;—:f"—ve forx<0;
3x

f'=ve for0<x<1;f"+ve forx>1

y= x“3(x —4)

2\~
1_
| | > X

L1
-1 0f 1 2 3 /4

(1’ _3)

FIGURE 4.24 The function f(x) =
x3(x — 4) decreases when x < 1 and
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4.4

Concavity and Curve Sketching

47

increases when x > 1 (Example 2).
46

go back

Concavity

> X

FIGURE 4.25 The graph of f(x) = x*is
concave down on (—00, 0) and concave up
on (0, o©) (Example 1a).
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DEFINITION Concave Up, Concave Down
The graph of a differentiable function y = f(x) is

(a) concave up on an open interval [ if f' is increasing on /
(b) concave down on an open interval / if f' is decreasing on 1.

The Second Derivative Test for Concavity

Let y = f(x) be twice-differentiable on an interval /.

1. If f” > 0on I, the graph of f over [ is concave up.

2. If f” < 0on /[, the graph of f over I is concave down.

49

Example 1(a): Applying the concavity test

= Check the concavity of the curve y = x3
= Solution: y" = 6x
m y"<0forx<0;y">0forx>0;

Link to Figure 4.25

51
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Example 1(b): Applying the

concavity test AL
= Check the Concavity of y=x2 N
the curve y = x2 \ 5L
= Solution: y"=2>0 W\ e
\ ) <,
W% 2
\\ :74.
\\ )
\&
1T
y'>0 \\\
N | A N
e N

FIGURE 4.26 The graph of f(x) = x?is
concave up on every interval (Example

1b).




y
EXample 2 N y — 3 + Sinx
4 -
3 /\/
= Determining concavity ,L
= Determine the 1k
concavity of L1 1 L1 1 >X
y =3 +sin xon _(1)_ . _W 2PN
[O, 27ﬂ. Ll ¥ —sinx
FIGURE 4.27 Using the graph of y" to
determine the concavity of y (Example 2).
| Example 3: "' = 0 not necessarily

means existence

= An inflection point
may not exist where

n

y =

= The curve y = x* has
no inflection point at
x=0. Even though y" =
12x2 is zero there, it
does not change sign.

ot inflegtion point

y=x

FIGURE 4.28 The graph of y = x* has
no inflection point at the origin, even
though y” = 0 there (Example 3).
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‘ Point of inflection

DEFINITION Point of Inflection
A point where the graph of a function has a tangent line and where the concavity

changes is a point of inflection.
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" Example 4: Existence of inflection

does not necessarily needs " =0

mecans

= An inflection point
may occur where y" =
0 does not exist

= The curve y = x'8 has
a point of inflection at
x=0 but y" does not
exist there.

. y" = -(2/9)x 5

y" does not ﬁ 3
exist.
\
/D
FIGURE 4.29 A point where y” fails

to exist can be a point of inflection
(Example 4).

X
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Second derivative test for local
extrema

THEOREM 5
Suppose f* is continuous on an open interval that contains x = c¢.

Second Derivative Test for Local Extrema

1. Iff'(c¢) = 0and f"(c) < 0, then f has a local maximum atx = c.
2. Iff'(¢c) = 0and f"(c) > 0, then f has a local minimum at x = c.

3. If f'(¢) = 0 and f"(c) = 0, then the test fails. The function f may have a
local maximum, a local minimum, or neither.

f'=0,f"<0
= local max

fl' — O, fn > 0
= local min

57

y:x4*4x3+10

Inflection 10
point sk

(3,-17)
Local
minimum

FIGURE 4.30 The graph of f(x) =
x* — 4x* + 10 (Example 6).

Example 6: Using /' and /" to graph f

Sketch a graph of the function
f(x)=x*-4x3+10

using the following steps.

|dentify where the extrema of f occur

Find the intervals on which fis increasing and
the intervals on which fis decreasing

Find where the graph of fis concave up and
where it is concave down.

|dentify the slanted/vertical/horizontal asymtots,
if there is any

Sketch the general shape of the graph for f.
Plot the specific points. Then sketch the graph.

Example

Using the graphing strategy
Sketch the graph of
f(x)=(x+1)2/(x2+1).
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%’ Point of inflection
where x = V3

2 —(1’2)/

1 y=1

Horizontal

asymptote

' x

-1 1
Point of inflection
where x = —V3
(x + 1)?

FIGURE 4.31 The graph of y = ﬁ

+ x
(Example 7).
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4.5

Applied Optimization Problems

63

‘ Learning about functions from derivatives

Differentiable = y' > 0 = rises from y' < 0 = falls from
smooth, connected; graph left to right; left to right;
may rise and fall may be wavy may be wavy
y" changes sign

"> 0 = concave up y" < 0 = concave down Inflection point
throughout; no waves; graph | throughout; no waves;
may rise or fall graph may rise or fall

oo \© 1
y' changes sign = graph y'=0and y"<0 y'=0 and y">0
has local maximum or local at a point; graph has at a point; graph has
minimum local maximum local minimum
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‘ Example 1

= An open-top box is to be cutting small
congruent squares from the corners of a 12-
in.-by-12-in. sheet of tin and bending up the
sides. How large should the squares cut from
the corners be to make the box hold as much
as possible?
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gy e X T

| | X

FIGURE 4.32 An open box made by

cutting the corners from a square sheet of
tin. What size corners maximize the box’s

volume (Example 1)?

Maximum

Yy
A
y=x(12 - 2x)2,
2 0=x=6
=
G
-
min min
N . sy
0 2 6
NOT TO SCALE

FIGURE 4.33 The volume of the box in
Figure 4.32 graphed as a function of x.
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Example 2 ‘

= Designing an efficient
cylindrical can

= Design a 1-liter can
shaped like a right
circular cylinder. What -
dimensions will use
the least material?

FIGURE 4.34 This 1-L can uses the least

2r

P —— —

material when 2 = 2r (Example 2).

Tall and thin

Short and wide

Tall and
thin can

Short and
wide can

/

,r>0

FIGURE 4.35 The graph of 4 = 27r? + 2000/7 is concave up.
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Example 3

3

Inscribing rectangles

A rectangle is to be (x = x2]
inscribed in a semicircle /\/

of radius 2. What is the

largest area the 2
rectangle can have, and
what is its dimension? 2 ~* 0 x 2

FIGURE 4.36 The rectangle inscribed in
the semicircle in Example 3.
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4.6

Indeterminate Forms and
L" Hopital’s Rule

71

Solution

Form the function of the area A as a function
of x: A=A(x)=x(4-x?)"2; x > 0.

Seek the maximum of A:

Indeterminate forms 0/0

THEOREM 6  L'Hopital’s Rule (First Form)
Suppose that f(a) = g(a) = 0, that f'(a) and g'(a) exist, and that g’'(a) # 0.
Then

L @

x—a glx)  g'la)’

72




‘ Example 1

= Using L’ Hopital’s Rule
= (a)

3x —sin x 3—cosx|

lim = =2
S0 Lol

- (b) |
1im\/1+x—1:2\/1+x :1_
x>0 X 1 2

x=0

THEOREM 7  L'Hopital’s Rule (Stronger Form)

Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open inter-
val [ containing a, and that g'(x) # Oon/ifx # a. Then

163 N 1C)

D g(x) v g'()’

assuming that the limit on the right side exists.
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 Example 2(a)

= Applying the stronger form of L’ Hopital’s rule

= (a)

Vi+x—-1-x/2  @/2)d+x) '"=1/2
=1lim

lim

x2 x>0 2x

—1/4Ha+ x0T -1
= lim = —

x>0 2 8

x>0

75
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 Example 2(b)

= Applying the stronger form of L’ Hopital’s rule

= (b)

 x-—sinx
lim
x—>0 X

76




THEOREM 8 Cauchy’s Mean Value Theorem
Suppose functions f and g are continuous on [a, b] and differentiable throughout
(a, b) and also suppose g'(x) # 0 throughout (a, b). Then there exists a number ¢

in (a, b) at which
f'e) _ fb) - fla)
g'(c) gb) —gla)

77

Example 3

Incorrect application of the stronger form of
L" Hopital’s

~ 1l-cosx
lim

0 2
r= X+ x

79

Using I’Hopital’s Rule
To find

by ["Hépital’s Rule, continue to differentiate f and g, so long as we still get the
form 0/0 at x = a. But as soon as one or the other of these derivatives is differ-
ent from zero at x = a we stop differentiating. L Hopital’s Rule does not apply
when either the numerator or denominator has a finite nonzero limit.

Example 4

Using L" Hopital’s rule with one-sided limits

~ sin x . cosx
a) lim = lim = ...
2
x>0" X x> 0" 2x
cCOS X

(b) lim = lim =...
_ 2 -
x—>0 X x—>0 2x

78
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‘ Example 5

‘ Indeterminate forms 00/00, 00.(), 00- 00 , , , ,
’ ’ Working with the indeterminate form

u If f>+= and g>+~ as x>a, then 00,/ 00
SE€EC X
(a) lim
, x>z /2 1 + t
ACO €D o
lim = lim ; Sec x sec x tan x
x> g(x)  xoe g'(x) lim ————= lim —————= lim sinx =1
x> (z/2) 1 4+ tan x x> (7/2)" sec x x—=(7/2)"
= a may be finite or infinite y sec x
1m - . =...
= (/)" 1 + tan x
 Example 5(b)  Example 6
2 . . . .
(b) lim —— 2x = Working with the indeterminate form -0
— =

x> 3xT + 5x

)
J

><|>—‘

lim Lxm

X —> ©
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‘ Example 7

= Working with the indeterminate form « - «

1 1 [ x —sin x )

lim

( ——\zlim — | =...
H(’Lsinx xJ HOL xsinxJ

85

‘ Finding antiderivatives

4.8

Antiderivatives

86

DEFINITION Antiderivative

A function F is an antiderivative of f onaninterval I if F'(x) = f(x)

forallxin 1.

87

‘ Example 1

= Finding antiderivatives
= Find an antiderivative for each of the

following functions

= (a) fix) = 2x
» (b) f(x) = cos x
m (C) h(x) = 2x + cos X

88



The most general
antiderivative

If F is an antiderivative of f on an interval 7, then the most general antiderivative
of fonlis

Fix) + C

where C is an arbitrary constant.

89

TABLE 4.2 Antiderivative formulas

Function General antiderivative

xn+1

1. x" + C, n # —1, nrational
n+1

2. sin kx — % + C, kaconstant, kK # 0

3. cos kx sn;ckx + C, kaconstant, k # 0

4. sec’ x tanx + C

5. csc? x —cotx + C

6. sec x tan x secx + C

7. csc x cotx —cscx + C

91

Example 2 Finding a particular

antiderivative

Find an antiderivative of f (x) = sin x that satisfies

F(0)=3

Solution: F(x)=cos x + C is the most general form of

the antiderivative of f(x).

We require F(x) to fulfill the condition that when x=3

(in unit of radian), F(x)=0. This will fix the value of C,

as per

F3)=3=cos3+C=3-cos3
Hence, F(x)= cos x + (3 - cos 3) is the antiderivative

sought

Example 3 Finding antiderivatives using

table 4.2

Find the general antiderivative of each of the

following functions.
(@) f(x) = x°

(b) g (x) = 1/x"=

(c) h (x) = sin 2x
(d) i (x) = cos (x/2)

90
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‘ Example 4 Using the linearity rules for
antiderivatives

= Find the general antiderivative of
= f(x) = 3/xV2 + sin 2x

DEFINITION Indefinite Integral, Integrand
The set of all antiderivatives of f is the indefinite integral of f with respect to x,

denoted by
/ f(x) dx.

The symbol f is an integral sign. The function f is the integrand of the inte-
gral, and x is the variable of integration.

93

Operationally, the indefinite integral of f{x)
means ...

The indefinite integral of f{x) is the inverse
of the operation of derivative taking of
Sx)

Antiderivative of f(x) Derivative of F(x)

d .
/ =/

F(x) » f(x)

S

F'(x) = f(x)

d
= —F(x)= f(x)
dx

(WA
= J'f(x)dx =F(x)+C o

= In other words, given a function f(x), the most
general form of its antiderivative, previously
represented by the symbol F(x) + C, where C
denotes an arbitrary constant, is now being
represented in the form of an indefinite
integral, namely,

7. yal

j.f(x)ax =F(x)y+C

94

‘ Example of indefinite integral notation

I2x dx =x" + C
Jcosx dx =sinx + C

I(2x+cosx) dx = x’ +sinx+ C

96



Example 7 Indefinite integration done
term-by term and rewriting the constant of
integration

= Evaluate

I(xz - 2x+ S)dx =Ix2dx—j2xdx+ Ide = ...

97



Chapter 5

Integration

1
Riemann Sums
Approximating area bounded by the graph
between [a,/]
¥
J a K}\«‘,f‘ o ™,
J .,
y=fwf
/
/
i
a # b *
Vi
N /
‘b\i‘l‘nv '}:j
FIGURE 5.8 A typicel contivuous fonciion y = #(x) over & closed interval [« 8]
3

5.1

Estimating with Finite Sums

Area is approximately given by

f(cl)Axl t fle)Ax,t fle))Axs+ ... + fle,)Ax,

¥ =7

T

(o1, f('i‘:lg&i

o fleght

R

. o, (s FlE, T
A%
§ s a‘%
(&8 facﬂ‘{ S
\ £l
Fiheetangle | £ 1
i
i
o
/1
] Fol gte
Olxy=fal ;’%’é T Ep=b
)
v

= Partition of [a,b] is the set of
w P ={Xg, X1, X, ... Xp1s Xp}

FIGLRE 5.2 The rectanglos approximate the region betwoen the graph of ihe fumotion

v = Fix and the w-axis

8= X< X< Xy ...< X4 < X,=b
= Cne[xn-1’ Xn]
= ||P]| = norm of P = the largest

of all subintervalwidth



y=f®
Riemann sum for fon [a,b]

W C R, = fle)Ar, + ey
Ae)Axs+ ... #A(c,)Ax,

(2)

y=f . .
FIGURE 5.10 The curve of Figure 5.9 with

rectangles from finer partitions of [a, b].
x Finer partitions create collections of

S

rectangles with thinner bases that approx-
imate the region between the graph of f and
the x-axis with increasing accuracy.

v

I .imits of finite sums

b)

Example 5 The limit of finite approximation to
an area

Find the limiting value of lower sum
approximation to the area of the region R
below the graphs f(x) = 1 - x2 on the interval
[0,1] based on Figure 5.4(a)

» Figure 5.4

Let the true value of the
areais R

Two approximations to R:

c,= X, corresponds to case
(a). This under estimates

‘g

’ o the true value of the area
R if n is finite.
Thi ? C,= X,.4 corresponds to
o case (b). This over
il estimates the true value of
(il the area S if n is finite.
’ ™ I go back
Solution

Ax,=(1-0)n=1/n=Ax; k=1,2,...n
Partition on the x-axis: [0,1/n], [1/n, 2/n],..., [(n-1)/n,1].
C, = X, = kKAx = k/n
The sum of the stripes is
R, = Axq f(cq) + AX, f(c,) + Axs f(cs) + ...+ Ax,, f(C,,)
= Ax f(1/n) + Ax f(2/n) + Ax f(3/n) + ...+ Ax, (1)
= > =" AX f(kAX) = Ax Y ,—" f (kIn)
= (1/'n) Ty [1 - (KINY]
=" n- K =1-03,"kK)I n?
=1 —[(n) (n+1) 2n+1)/6)/ N*= 1 —[2 N + 3 n*+n)/(6n°)

S et K2 = (1) (n+1) 20+1)/6



Taking the limit of n —

) ( 2n” +3n" +n )
llmRn:thl— ; J=1—2/6=2/3
n— o 61’1

The same limit is also obtained if ¢, = x,,_, is chosen
instead.

For all choice of ¢, € [x,._4,X,] and partition of P, the
same limit for S is obtained when n >

DEFINITION The Definite Integral as a Limit of Riemann Sums
Let f(x) be a function defined on a closed interval [a, b]. We say that a number /
is the definite integral of f over [a, b] and that [ is the limit of the Riemann
sums >/=1f(ck) Axy if the following condition is satisfied:

Given any number € > 0 there is a corresponding number 6 > 0 such that
for every partition P = {xo, x|, ..., X, } of [a, b] with ||P| < & and any choice of
Cp in [xg—1, Xz], we have

if(ck) Axy — I < e.
k=1

11

5.3

The Definite Integral

The function is the integrand.

Upper limit of integration
A
=iy
Ja

Lower limit of integration

x is the variable of integration.

When you find the value
e of the integral, you have
evaluated the integral.

Integral of f from a to b

“The integral from a to b of f of x with
respect to x”’



The limit of the Riemann sums of fon [a,b]
converges to the finite integral /

lim Y f(c)Ax, =1= Ihf(x)dx
HPIHOk . a

We say fis integrable over [a,b]
Can also write the definite integral as

I = Iabf(x)dx = th(z)dz = Iahf(u)du

b
= I f(what ever) d(whatever)

The variable of integration is what we call a
‘dummy variable’

Integral and nonintegrable functions

Example 1
A nonintegrable function on [0,1]

(1, if x is rational

J(x) =4

10, if x is irrational

Not integrable

15

THEOREM 1 The Existence of Definite Integrals

A continuous function is integrable. That is, if a function f is continuous on an
interval [a, b], then its definite integral over [a, b] exists.

Question: is a non continuous
function integrable?

Properties of definite integrals

THEOREM 2
When f and g are integrable, the definite integral satisfies Rules 1 to 7 in Table 5.3.




TABLE 5.3 Rules satisfied by definite integrals

ey = 20

3 ]
1.  Owder of Tntegratios: / flx)yde = — / Flxdde A Diimition .
B Sda e
i
2. Zevo Width Interval: f Jixydc=10 Alss o Delindtin
Ed
B 5
3. Constant Multiple: [ Eode =k [ Flxydx Ay Noior &
i Wi

[ &
/ —feyde = — [ ) d P

" " >
4, Sum ond Difference: / (flx) £ glx)) dx = / Flx)de £ / elx) dx
i3 & %

Shownfork =23

B ¢ 3 -
3. Additivig: / Flxddx -+ / Ffleyde = / Flxyax i £ |- pa
Ja Jh Ja o =Ry =
6. Max-Min Inequality: 1 § has maximum valuoe max f and minimum value wing Wi y=1

min § on [, 5], then

min {6 — a) = /g}*{x}& = max f-{h — a).

7. Domination: Flx) = plx)on[a, B8] = /ﬁ bfix) dy = L ég(x) dx
Flx) = Oonfa, b] = /WEf(x)zbf 2 (Special Caze) FIGURE 8.11 St
17 18
Example 3 Finding bounds for an integral Area under the graphs of a nonnegative
function
= Show that the value of
is less than 3/2 IO NI+ cos xdx DEFINITION  Area Under a Curve as a Definite Integral

If y = f(x) is nonnegative and integrable over a closed interval [a, ], then the
area under the curve y = f(x) over [a, b] is the integral of f from a to b,

= Solution 4 =/bf(x)dx.
= Use rule 6 Max-Min Inequality a

19 20



Example 4 Area under the line y = x

b

= Compute |, ¥4x (the y
Riemann sum) L /
and find the area A _
under y = x over the y=-
interval [0,b], b>0 )
0 b > X

FIGURE 5.12 The region in
Example 4 is a triangle.

21

Using the additivity rule

. : y
for definite integration: \ /
b b b B
dex=jxdx+jxdx y=x
—>hdfbd—”df£—£ <b b
{X}C—{X}C .([xx—z 2,a ab
Using geometry, the area ‘ .
is the area of a trapezium 0 < a—:f
A= (1/2)(b-a)(b+a)
= b?/2 - a*/2 FIGURE 5.13  The area of
Both approa ches to this trapezoidal region is

A= (b - d?))2.

cvaluate the area agree

23

By geometrical consideration:
A=(1/2)xhighxwidth= (1/2)xbxb=
b*/2

Choose partition of » subinterval with equal width:

golution

{0 = X, X, X, X, = b},Axk =x,-x, _, =Ax= b/ny

Riemann sum: ) /
] . b
limZAxf(ck):lim sz f(x,) .
e no @ ~ y=x
=lim Ax) x, = lim sz kAx b
no ~ no® ~
) ) n ) (b\z n
= lim (Ax) ZkzllmL—J Zk
n—w o n—>x{ p P 0 b > X
(b\zn(n+]) (b\zn(n+l)
= lim L—J = lim k—J
n— o 2 n— o 2 . .
" " FIGURE 5.12 The region in
L2 L2 . .
o lim L LT Example 4 is a triangle.
nowe ) L nJ 2 22

= One can prove the following Riemannian sum
of the functions f(x)=c and f(x)= x*

b
/ cdx = c(b — a), ¢ any constant (2)
a

b 3 3
Lxde=%—%, a<b 3)

24



Average value of a continuous function
revisited

= Average value of nonnegative continuous
function fover an interval [a,b] is

) )T ) Le
n noyo
A " 1 "
-3 e = ——3 Axf(e,)
—a o —a =

= In the limit of n >, the average =

If(x)dx

h aq
o “

25

DEFINITION The Average or Mean Value of a Function

If f is integrable on [a, b], then its average value on [a, b], also called its mean
value, is

1 b
i) = 5y [ s

27

y =fx)

FIGURE 5.14 A sample of values of a
function on an interval [a, b].

26

Example 5 Finding average value

= Find the average value
of f(x)=+4-x’

over [-2,2]

FIGURE 5.15 The average value of
f(x) = V4 — x?on[—2,2]is 7/2
(Example 5).

28



5.4

The Fundamental Theorem of Calculus

29

y
y —fy
|l
[ f(c), average
: l height
|
0| a ¢ b *
fe——b—a —

FIGURE 5.16 The value f(c) in the

Mean Value Theorem is, in a sense, the
average (or mean) height of f on [a, b].
When f = 0, the area of the rectangle
is the area under the graph of f from a

Mean value theorem for definite integrals

THEOREM 3 The Mean Value Theorem for Definite Integrals

If f is continuous on [a, b], then at some point ¢ in [a, b],

to b,

31

b
o) =5 [y
30
Yy
T y =f(x)
1 - o
1 Average value 1/2
2| notassumed
L ' > X
0 1 2

FIGURE 5.17 A discontinuous function
need not assume its average value.

32




Example 1 Applying the mean value ’ Fundamental theorem Part 1
theorem for integrals

4
= Find the average value of x
f(x)=4-x on [0,3] and_where i y=4-x = Define a function F(x): F(x)= If(t)dt
f actually takes on this value 5 _ o _
as some point in the given dl | = Xx,a € I, an interval over which f(t) > 0 is
. | .
domain. | integrable.
1F i . ,
. Solution : \ = The function F(x) is the area under the
= Average = 5/2 - R " graph of f(t) over [a,x], x> a
2

= Happens at x=3/2

FIGURE 5.18 The area of the rectangle
with base [0, 3] and height 5/2 (the average
value of the function f(x) = 4 — x)is
equal to the area between the graph of f
and the x-axis from 0 to 3 (Example 1)3.3 “

Fundamental theorem Part 1 (cont.)

y area = F(x)
y

Ly

y =f() x+h

F(x+h)=F(x)= [ f(r)dt y =1

F(x+h)-F(x)

:LI f(t)di=f(c);xfclx+h
h

’t

0l a X b
Fx+h)-F(x) 0l a xx+h b
‘ ‘ lim =F'(x)= f(x)
FIGURE 5.19 The function F(x) defined " h FIGURE 5.20 In Equation (1): F(x) is
by Equation (1) gives the area under the the area to the left of x. Also, F(x + h) is
graph of f from a to x when f is the area to the left of x + 4. The
nonnegative and x > a. The above result holds true difference quotient [F(x + k) — F(x)]/h

even if £1s not positi:ze is then approximately equal to f(x), the

N definite over [ a, b] height of the rectangle shown here.

20



THEOREM 4 The Fundamental Theorem of Calculus Part 1

Note: Corivince yourself that
(i) F{X) 1s an antiderivative of f(x)

(ii)f(x) 1s a derivative of F(x)

The main use of theorem 4 i1s ...

ittells us that ~—( s )= 1)
dx \"¢

In pragmatic terms, if a function is expressed
in terms of an integral of the form

F(x)= J':f(t)dt

then the derivative of F(x),diF(x), is simply
f(x) '

Ax) 1s a derivative
d/dx of F(x) because

A F'x)=flx)

F(x)= J: f(t)dt f()C) — Fr(x)
\_//
F(x)1s an antiderivatiye
of f{x) because ¥ (x) = | /(1

38

Example 3 Applying the fundamental

theorem

Use the fundamental theorem to find

X

d d
(a)—jcoszdz (b) —j
dx dxa 1 +¢

a

dt
2

5

d d "
(c)—yifyzjmsintdz (d)lifyzjcostdt
dx dx

x 1

40



Solution for (d): you have to invoke chain
rule :

X

d
—F(x), where F(x) = Icostdt
dx

1

Chain rule says if F(x)= (fou)(x)= f [u(x)],

d d . d d d
—F(x)=—(f"u)(x)=—flu(x)]=—f(u) —u(x)

dx dx dx du dx

41

Example 4 Constructing a function with a
given dertvative and value

Find a function y = f(x) on the domain (-7 /2, #/2) with
derivative dy/dx = tan x that satisfies f(3)=5.

The strategy:

Use the fundamental theorem of calculus.

Think along this line: find a function F(x) of the form
F(x) = [q(n)dt

such that ’

—F(x)=g¢g(x), with g(x) = tan x
dx

Solution for (d): you have to invoke chain
rule

F(x)= j costdt is a composite function of the form F(x)=f [u(x)]
! F(x)= flu(x)], where

f(u) = Icostdt, u(x)=x"

so that 1
d d d A
—F(x)= —f(u) —u(x)= —| jcostdt| —(x )
dx du dx du ] ) dx
( ) 2
= fcostdt| 2x =cosu- 2x—2xcos( )
U J

42

Example 4 (Cont. 1)

Solution

dF
Stage 1: 1f F(x) = Itantdt then — = tan x.
dx

Stage 2: construct the function f(x) using F(x),
and then try to make f(x) so constructed
fulfills the condition of f(3)=5.

The way to construct f(x) from F(x) is

obviously

d
vy = f(x)= F(x)+ constant (so that 2 tan x)
x dx

= Itan tdt + constant
44



Example 4 (Cont. 2)

f(x)= Itan tdt + constant

=« Find the values of a and constant so that f(3)=5
= This can be done by choosing a = 3, constant =5.
= Verify this: s

f(3) = j tan tdt + 5=0+5=5

= So, finally, the function we are seeking is

f(x):Itantdt+5

Fundamental theorem, part 2 (The
evaluation theorem)

THEOREM 4 (Continued)  The Fundamental Theorem of Calculus Part 2

If f is continuous at every point of [a, b] and F is any antiderivative of f on [a, b],
then

b
/ f(x) dx = F(b) — Fl(a).

45

‘ To calculate the definite integral of fover
[a,0], do the following

= 1. Find an antiderivative F of f, and
= 2. Calculate the number

b

b b
J'f(x)dsz(b)—F(a) = F(x)] or [F(x)]

a a

47
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‘ To summarise

dF (x)

dx

d X
—jf(t)df= = f(x)
dx

(dF(t)\\dtz f(t)dt = F(x)- F (a)
-

48




Example 5 Evaluating integrals Example 7 Canceling areas

. Compute y
(a)[cosxdx (a) the definite integral L ) i
0 of f(x) over [0,27]
’ (b) the area between Area = 2 )
(b) [ secxtan xdx the graph of f(x) and 0 N, o
R the x-axis over [0,27]
1k

(3 4 )
@f (3= )e
X
FIGURE 5.22 The total area between
y = sinx and the x-axis for0 = x = 27

is the sum of the absolute values of two
integrals (Example 7).

49 50

Example 8 Finding area using
antiderivative Area = 15—2 y=x" —x"—2x

>

Find the area of the region between the x- |
axis and the graph of f(x) = x3 - x? — 2x, - 5 —h
-1<x=<2. /

Solution
First find the zeros of 1.
f(x) = x(x+1) (x-2)

FIGURE 5.23 The region between the

curve y = x> — x? — 2x and the x-axis

(Example 8).



5.5

Indefinite Integrals and the Substitution
Rule

53

‘ Antiderivative and indefinite integral in
terms of variable x

= If F(x) is an antiderivative of f(x),

LR
—r(x) =/ (x)

—

= the indefinite integral of f(x) is

If(x)dsz(x)+C

55

‘ Note

= The indefinite integral of f with respect to x,

jf(x)dx
is a function plus an arbitrary constant

= A definite integral }f(x)dx is a number.

‘ A useful mnemonic

d
— + constant =
. ( * ) ‘

J' ‘ dx = * + constant
d

—(tan x + constant) = sec’ x
Example: dx

2
fsec xdx = tan x + constant

56



Antiderivative and indefinite integral with

chain rule
d—F (x)=f(x) ,ie., F(x) antiderivative of f (x),
dx
d
= —F[ul= f(u), where u = u(x).
du

d
Applying chain rule to — F [u]:

‘ The power rule in integral form

du
differential of u(x),du is du = —dx
dx

dx
d du(x) dF (u) du d
—F P S ST A —F -
dx [M] dx du dx f(u): X [u] X f(u)
In other words, F [u]is an antiderivative of d—uf(u) so that w e can write
dx
(du )
[|1—f(u)|dx=F[u]+C
S ax J

57

| Example 1 Using the power rule

The strategy is to convert the integral into

the form : +1
u" du = % +.€
n+1

J‘\/l+y2-2y dy =7

5 du
Letu =1+ y ,du = —dy =2ydy.
dy

J.«/l+y2-2y dyzj.\/u_-duz...

If u is any differentiable function, then

; B un+1 .
[u du = PR C (n # —1, n rational). (1)

59
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‘ Example 2 Adjusting the integrand by a
constant

I\/4t—1 dt =2

Letu=4t-1,du = 4dt,

I\/4t—1 dt:judt:l—ju4dt=1—j\/u_du=---
4 4

60



Substitution: Running the chain rule
backwards

THEOREM 5 The Substitution Rule

If u = g(x) is a differentiable function whose range is an interval / and f is con-
tinuous on /, then

/f(g(X))g’(x)dx = /f(u) du.

du
let u = g(x);_[f[g(x)]'g'(x)dx =ff(u)'d—dx =jf(u)du
X

Used to find the integration with the integrand in the
form of the product of f[g(x)]-g'(x)

[ £lg(x)1- g (x)dx = [ f(u)du

f(u) du
61

| Example 4 Using substitution
Ixzsinx3 dx =7

u = xS;du = 3x dx

. 3 2 . 1 1
Ismx xdxzjsmu-—duz——cosu+C
) | 3 3
—du
3
1 3
= —cosx +C

63

‘ Example 3 Using substitution

d 1 1
Icos(7x+_5) dx:fcosu-%:;sinu+c =;sin(7x+5)+C
1

—du
7

62

‘ Example 5 Using Identities and
substitution

J

dx =.[sec22x dx =jsec22x dx =

2
cos 2x .
—du

2

1 ) 1 1
—J'sec udu=—tanu +C = —tan2x + C
2 4 2 2

—tanu

64



 Example 6 Using different
substitutions

2z ~1/3
dz = (Zz+1) e
el o

u

22dz=J.u du =...

65

‘The integrals of sin’x and cos®x

= Example 7(b)

5 1
.[cos xdxz—jc052x+1dx=...
2

67

The integrals of sin%x and cos?x

= Example 7

J'sinzx dx=l—jl—cos2x dx

66

ﬂixample 8 Area beneath the curve

y=sin® x
= For Figure 5.24, find
= (a) the definite integral
of y(x) over [0,27].
= (b) the area between

the graph and the x-
axis over [0,27].

y

1+ y = sin?x
1l
2
L 1 > x
0 T T 2
2

FIGURE 5.24 The area beneath the
curve y = sin’ x over [0, 27r] equals 7
square units (Example 8).



5.6

Substitution and
Area Between Curves

69

‘ Substitution formula

THEOREM 6 Substitution in Definite Integrals
If g’ is continuous on the interval [a, ] and f is continuous on the range of g, then
g(b)

b
f Het) g dx = [ f(u) du

gla)

‘ Example 1 Substitution

= Evaluate |

ISxZVx3 +1 dx
-1

x=1 u(x=1)
3 2 1/2
x _+]1-3x'dx= I du =
=—1 .2 du u(x=-1)

71

x=b x=b u=g(b)

du
let u=g(x); I flg(x)]-g'(x)dx = I Slu]-—dx = _[ S(u)du

dx
- = u=g(a)

70

Example 2 Using the substitution formula

x=rz/2
J. cotxcsc xdx =?
x=x/4
2

jcotxcsczxdx =Icotx -wji,_xix =—judu = —u—+c

—du 2
Cotzx
= - +c
2
z12 2 /2 5 /4 |— -l
) cot™ x cot” x 1 ) )

Icotxcsc xdx = — = = —lcot (7 /4)-cot (7[/2”:
7 /4 2 x4 2 z/2 2 \‘_ 1 - 0 J

72



'Definite integrals of symmetric
functions

Y ¥y

A

(a) (b)

FIGURE 5.26 (a) feven, [ f(x)dx = 2 ) f(x)dx (b) fodd, [ f(x)dx =0

X
—a \/a

Theorem 7

Let f be continuous on the symmetric interval [—a, a].

(a) If f is even, then /a f(x)dx = Zfaf(x) dx.
—a 0

(b) If f is odd, then /a fx)dx = 0.

73

‘ Example 3 Integral of an even
function

2

Evaluate J'(x4 —4x 6)dx

-2

Solution:
f(x)=x" —4x"+6;
f=x)=(-x) —4(-x) +6=x"—4x"16= f(x)

even function

How about integration of the same
function from x=-1 to. x=2

75
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Area between curves

y
Upper curve

y=fx

A |

IT

Lower curve
y=gx

FIGURE 5.27 The region between
the curves y = f(x) and y = g(x)
and the lines x = aand x = b.
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y :f(x) 74"—— (Cky f(Ck))
7¢£
| T
(cp) — glep)
a = | any |0
5 ] /‘;x a AAk Ci ‘
v = b= N i | "
I |
- I

4
\‘\' Ii{\_"“(ck’ &(cp))

Axk

FIGURE 5.28 We approximate the
region with rectangles perpendicular
to the x-axis.

A=Y a4, =Y Ax, [(fe)-gle,)]

FIGURE 5.29 The area A4y of the kth
rectangle is the product of its height,
fler) — gler), and its width, Ax;.

n

A= lim ZAka(f(ck)—g(ck)J: J:’[f(x)_g(x)]dx

[1P]l—>0
k=1 77

Example 4 Area between intersecting

curves Y
= Find the area of the region (x, f(x))
enclosed by the parabola / \ y=2-x?
y=2-x*andtheliney=-x. b1/ |Ax
l l L 5 x
/_10/ 1 2
AA = (fn(x)— g(x))-Ax [(x, g(x))
A=limy ad, = [ as; L y=—x 1\

A=] (0= g(oldx

2

s FIGURE 5.30 The region in

L2 i \ Example 4 with a typical
:J (Z=x —x)dx=". . .
-1 approximating rectangle.

DEFINITION Area Between Curves

If f and g are continuous with f(x) = g(x) throughout [a, ], then the area of
the region between the curves y = f(x) and y = g(x) from g to b is the inte-
gral of (f — g) from a to b:

b
A= f [f(x) — g(x)] dx.

78

Example 5 Changing the integral to

match a boundary change /4
Area = (\fxfx+2)dx

» Find the area of the y .
shaded region 21 Area = 0\/J_ca!x o f) N @2
Area = A + B L By:"_2
L, I: N ) & @, 8(x) L
5= [ - (x-2)dx A 4

FIGURE 5.31 When the formula for a
bounding curve changes, the area integral
changes to become the sum of integrals to
match, one integral for each of the shaded
regions shown here for Example 5.
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Integration with Respect to y Example 6 Find the area of the region in

If a region’s bounding curves are described by functions of y, the approximating rectangles . . .
are horizontal instead of vertical and the basic formula has y in place of x. EXample 5 by 1nte gr atlng Wlth re Sp CCt tO J
For regions like these A~ kz::l Ad, = kz::l AYy [(f(c'f% g(ck)] {

n

(4.2)

) Y oa=aim Y Ay, [(Flen-gte)]= [ [£ ) - g()]dy Ad=(f(»)~g(») Ay 2t _ 2
IPi—0°7 ¢ (g(Y)aY) 2
|l AL J \ x=y+2

) x=f0) =800/ ¢ = 1) 1
x=f(y) n s Ay ’
A, xE) é . A=lim 3 A4 = [ [f(2)-g()]dy $)

&) 0 " |<_f(y) - g(y)_>|
x| oL L . | ' > X
" : = [ (re2)- (37 )dy = of y=0 2 4
FIGURE 5.32 It takes two
use the formula . . . .
; integrations to find the area of this
4= / () = gy dy. region if we integrate with respect to

_In this equation f always denotes the right-hand curve and g the left-hand curve, so x. It takes only one if we integrate
(y) — g(») is nonnegative. .
e : 1 with respect to y (Example 6).



0.3

Lengths of Plane Curves

Py = (f(), 8())

Ly

Axp= f(t,)~ f(1,))
Py = (1), 81)

FIGURE 6.25 The arc Py— Py is
approximated by the straight line segment
shown here, which has length

L = V(Ax)? + (Ap)?.

|
1Ay =g(t,) -

g, )

| Length of a parametrically defined

curve y 5

L, the line segment

Az p, » between P, and P,
P
0 X
FIGURE 6.24 The curve C defined L= ”EHTOZ L,

parametrically by the equations x = f(¢)
and y = g(¢),a = ¢t = b. The length of
the curve from A4 to B is approximated by
the sum of the lengths of the polygonal
path (straight line segments) starting at

A = Py, then to P, and so on, ending at
B=P,.

y is parametried by ¢t via y =g(t);

x is parametried by ¢ via x = f(¢).
Ay, =g(t)-glt, )=g't)(t,—1,)=g'(t) At;

Ax, = f(t,)~ f(t,_ )= f'(t,)(t,—t,,)= f'(t,) At

due to mean value theorem

1/Ay)+(Ax —At\/g(t) (£, ))

L—llmZL = lim ZL

n— o [[P||— O

2

lim Z At\/(g '(t;:))2 + (f'(t,:*))

[12]l— 0

\/(g'u)) + () df‘f\/{z\ {dfj ai




| Example 1 The circumference of a
circle

= Find the length of the circle of radius r
DEFINITION  Length of a Parametric Curve

If a curve C is defined parametrically by x = f(¢) and y = g(¢),a =t =< b, defined parametrlca”y by

where f' and g’ are continuous and not simultaneously zero on [a, b], and C is = Xx=rcost an d y= r Sin { O <t< 2 T
traversed exactly once as ¢ increases from ¢ = a to ¢ = b, then the length of C is ! - T

the definite integral

b
= / VI OF + [g' (1)) dt.

L—J. L J L J dt = £\/(rcost) + (rsinz) dt

‘ Length of a curve y = f(x) ‘

A ssign the parameter x = 7,the length of the curve

y = f(x) is then given by Formula for the Length of y = f(x), a=x=b
If f is continuously differentiable on the closed interval [a, b], the length of the
_ (dy \ N ((dx Je curve (graph) y = f(x) fromx = atox = bis
L dt L dtJ ¢ dy\? b 5
L= 1+ e dx = V1 + [f'(x)] dx. (2)
dy dy dx dy (.. dx A ¢ ¢
y=alx(]= ——= == T =1
dt dx dt dx dt
, (dy dx) (dx\ " lfayY

f" Lax o) L) Il !
—Idx\/f(x) +1




Example 3 Applying the arc length
formula for a graph

Find the length of the curve

4

2
y = x> -1 0 x<1

3

Example 4 Length of a graph which has a
discontinuity in dy/dx
Find the length of the curve y = (x/2)%3 from x
=0tox=2.
Solution
dyldx = (1/3) (2/x)'3 is not defined at x=0.
dx/dy = 3y'2 is continuous on [0,1].

11

Dealing with discontinuity in dy/ dx

At a point on a curve where dy/dx fails to
exist and we may be able to find the curve’s
length by expressing x as a function of y and
applying the following

Formula for the Length of x = g(y), c=y=d
If g is continuously differentiable on [c, d], the length of the curve x = g(y)
fromy =ctoy =4dis

d 2 d
L—f Ji+ (2’;) dy—f V1 + g ()P dy. 3)

0 1 2

FIGURE 6.27 The graph of y = (x/2)%?
from x = 0 tox = 2 is also the graph of
x =2 fromy=0toy =1
(Example 4).




Chapter 7

Transcendental Functions

DEFINITION  One-to-One Function

A function f(x) is one-to-one on a domain D if f(x;) # f(x;) whenever x; # x;
in D.

7.1

Inverse Functions and
Their Derivatives

‘ Example 1 Domains of one-to-one
functions
= (a) f(x) = x2 is one-to-one on any domain of
nonnegative numbers

= (b) g(x) = sin xis NOT one-to-one on [0, 7] but
one-to-one on [0,7/2].




/y:x3 y=Vx

/ - ,

One-to-one: Graph meets each

The Horizontal Line Test for One-to-One Functions
horizontal line at most once.

A function y = f(x) is one-to-one if and only if its graph intersects each hori-

zontal line at most once.
y y= _x2

Same y-value

/1 ;
Same y-value

[ 1 | / \
} } 05 L~ )
' ! x AN FIGURE 7.1 Using the horizontal line test, we

|
x
-1 o] 1 T ST\
6 6 see that y = x> and y = Vx are one-to-one on
! their domains (— 00, 00) and [0, ), but y = x2
y =sinx . :
and y = sinx are not one-to-one on their

Not one-to-one: Graph meets one or —— domains (—00, c0)
, .

more horizontal lines more than once.

1

"

TSN

DEFINITION Inverse Function
Suppose that f is a one-to-one function on a domain D with range R. The inverse
function f ! is defined by

fNa) = b if f(b) = a.
The domain of ! is R and the range of ™! is D.




Finding inverses Example 2 Finding an inverse

function

1. Solve the equation y =f(x) for x. This gives ]'findt_the if;VerSG of y =x/2 + 1, expressed as a
a formula x = f-1(y) where x is expressed as unction ot x.
a function of y.

2. Interchange x and y, obtaining a formula y = 1S_°S|z|t\l,zr:corx in terms of y: x = 2(y — 1)
f-1(x) where f-1(x) is expressed in the 2. interchange xand y: y = 2(x — 1)
conventional format with x as the The inverse function f-1(x) = 2(x — 1)
independent variable and y as the dependent Check:
variables. 1] = 2[f(x) — 11 =2[(x12 + 1) = 1] = x = f[f! (x)]

Example 3 Finding an inverse

function

Find the inverse of y = x2, x 2 0, expressed
as a function of x.

Solution
=2 1. solve for x in terms of y: x =y
, 2. interchange x and y: y = x

The inverse function f-1(x) = Vx
FIGURE 7.3 Graphing

fx) =(1/2)x + 1and f 1(x) = 2x — 2
together shows the graphs’ symmetry with
respect to the line y = x. The slopes are
reciprocals of each other (Example 2).



Ly
=

/6

FIGURE 7.4 The functions y = Vx and
y= x%, x = 0, are inverses of one
another (Example 3).

0

FIGURE 7.5 The slopes of nonvertical
lines reflected through the line y = x are
reciprocals of each other.
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Derivatives of inverses of differentiable

functions

From example 2 (a linear function)
f(x)=x/12+1; f1(x)=2(x +1);
df(x)dx = 1/2; df -1(x)/dx = 2,

i.e. df(x)/dx = 1/df -1(x)/dx

Such a result is obvious because their graphs are

obtained by reflecting on the y = x line.

Does the reciprocal relationship between the slopes

of fand f-' holds for other functions as well?

ar

slope at x =a = —

"
b = fla) slope atx=b=f"(a)=d§7
b’ /
a —fl(b)——--___ﬁ_‘i’l/
Sy =rw
I X
0 0 3
The slopes are reciprocal: (f“)'(b) = ,1 or (f_')’(b) - 1
p i f@ £ o)

FIGURE 7.6 The graphs of inverse functions have reciprocal

slopes at corresponding points.



THEOREM 1 The Derivative Rule for Inverses

If f has an interval 7 as domain and f'(x) exists and is never zero on I, then f ' is
differentiable at every point in its domain. The value of (f ')’ at a point b in the
domain of ! is the reciprocal of the value of f at the pointa = f!(b):

1
FAVA )

(f7) () =

or

df !
dx

x=b - # (1)
dx

x=f"!(b)

41 Slope4(2,4)

|
3 ' 1

: Slogez

|

L =Vx

2 ey

f [

|
1+ | |

| |

I B o

0 1 2 3 4

FIGURE 7.7 The derivative of

f~(x) = Vx at the point (4, 2) is the
reciprocal of the derivative of f(x) = x* at
(2, 4) (Example 4).
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Example 4 Applying theorem 1

The function f(x) = x2, x 2 0 and its inverse
f-1(x) = Vx have derivatives f'(x) = 2x, and

(F-1)'(x) = 1/(2Vx).
Theorem 1 predicts that the derivative of
f-1(x)is
(F1)(x) = 1/ £ [F1(x)] = 1/ £'[Vx]
= 1/(2Vx)

Example 5 Finding a value of the inverse

derivative
Let f(x) = x3 — 2. Find the value of df -'/dx at x
= 6 = f(2) without a formula for f-1.

The point for fis (2,6); The corresponding
point for f-1is (6,2).

Solution
df ldx =3x?2
df -1/dx|,-¢ = 1/(df Idx],-,)
= 1/3x?|,-, = 1/12

20



y= =2
61 (2,6)¢ Slope3x? =3(2)? =

|

>

1

)

) Reciprocal slope: —

12

12

[

_____.——-—_'__—_—-.\
| (69 2)

> X

I
|
i
-2 0 6

FIGURE 7.8 The derivative of
f(x) = x* — 2atx = 2 tells us the
derivative of f ' at x = 6 (Example 5).

21

Definition of natural logarithmic

fuction

Natural Logarithms

22

DEFINITION

The Natural Logarithm Function

lnx=/idt, x>0
1

23

* 1
If0<x<1,then1nx=/ %dtz_f%dr
1 X

gives the negative of this area.

Ifx>1,menlnx:f%dt
1

gives this area.

y=Inx

1\ x

1
Ifx= 1,thenlnx=] %dt=0‘
1

FIGURE 7.9 The graph of y = Inx and its
relation to the function y = 1/x,x > 0. The
graph of the logarithm rises above the x-axis as x
moves from 1 to the right, and it falls below the
axis as x moves from 1 to the left.

24



lnx:/ %dx
1

Domain of In x = (0,«)

TABLE 7.1 Typical 2-
Range Of In x = ('OO’OO) values of ln ip cal 2-place
In x is an increasing function since x In x
dy/dX =1/x>0 0 undefined
0.05 —-3.00
0.5 —0.69
1 0
e lies between 2 2 0.69 Inx =
and3 | 3 Lo |
4 1.39
10 2.30

26

By definition, the antiderivative of In x is just 1/x

4, 1
2 nx = x-
DEFINITION The Number e
The number e is that number in the domain of the natural logarithm satisfying
In(e) =1 d _1du
dxlnu_udx’ u=>0 (1)

Let u = u (x). By chain rule,
d/dx [In u(x)] = d/du(In u)-du(x)/dx
=1/w)-du(x)/dx

27 28



Example 1 Derivatives of natural

logarithms
d
(a)—In2x =
dx
) du 1
(b) u=x"+3;,—lnu =——=
dx dx u

‘ Properties of logarithms

THEOREM 2  Properties of Logarithms

For any numbers ¢ > 0 and x > 0, the natural logarithm satisfies the following
rules:

1. Product Rule: Inax = Ina + Inx

2. Quotient Rule: ln% = Ina — Inx

3. Reciprocal Rule: ln% = —Inx Rule 2 witha = 1

4. Power Rule:

Inx" = rlnx r rational

29

Example 2 Interpreting the properties of
logarithms

(a)In6 =1n(2-3)=1n2 + In 3;
(b)In4 —In5=1n(4/5)=1n0.8

(¢)In(1/8) =Inl1-In2"=-3In2

31
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Example 3 Applying the properties to

function formulas

(a)In4 + Insin x = In (4sin x);

x +1

(b)1n =In(x+1)=-In(2x - 3)

2x -3

(¢)In(secx) =In =—Incosx

COos x

(d)1In 3\/x+1 =In(x+1) P=@1/3)In(x+1)

32




Proofoflnax =Ina+ In x

In ax and In x have the same derivative:
d d(ax) 1 1 1 d

—1Ilnax = —=qg—=—=—I|nx
dx dx ax ax X dx

Hence, by the corollary 2 of the mean
value theorem, they differs by a constant C

Estimate the value of In 2

2

Inax=Inx+C

We will prove that C = In a by applying the

definition In x at x = 1.

The integral J (/4 du

1 du
From —lnu = ——
dx u dx

Foru >0

Taking the integration on both sides gives
d 1 du

J‘fln udx = J**dx.
dx

u dx

d dy d
Lety=Ilnu > —lnudx = —dx =dy > J.flnudx:J'dy:J'dlnu
dx

dx dx

du du
Idlnu:jjalnzuc :JT’

Foru <0:
—u >0,
d 1 d(-u
J'fln(—u)dx: Iigdx
dx (—u) dx

du du
[din(-u)=[—> In(-u)+ C"=[—

u u
Combining both cases of u > 0,u <0,

du
I—:lnyu|+c
u

33
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1
y ln2:I—dx
Y 1"
2
1 1
—~(271)<J'—dx<14(271):1
1+ 2 X
1
—<In2«<l1
1 2
2
> X
0 1 2

FIGURE 7.10 The rectangle of height
y = 1/2 fits beneath the graph of y = 1/x

forthe interval 1 = x = 2.
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n+1

n u .
tecall: Iu’du = + C,n rational, # —1

n+1

If u is a differentiable function that is never zero,

letd” =In|u| + C. (5)

From J.ufldu =In|ul|+C.

letu = f(x).

dx

af (x)
o du df (x) dx

du = [— = =
Iu ! j u J S(x) I S(x)
- _[f '(x)

S (x)

dx=1n| f(x)]|+C

36




| Example 4 Applying equation (5)

2xdx d(x’-5)

(a)'[ ‘o5 :J x’

X

=In|x’=5|+C
-5

4cosx

®) |

”/23+Zs1nx

X = ...

The integrals of tan x and cot x

cotudu = In |sinu| + C = —In|cscx| + C

/tanudu = —In|cosu| + C =In|secu| + C

37

‘ Example 5

1 d
sin 2 x T cosax
J'taandx =I dx='[2dx—dx
cos2x cos2x
1 ~dcos2x 1 . du 1
| =~ [ == —hjul+C
2 cos2x 27 u 2

1
=——In|cos2x|+C

1
—lIn |sec2x|+C
2

38
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Example 6 Using logarithmic
differentiation

= Find dy/dx if

Iny=1In(x+1)+(1/2)In(x+3)=In(x-1)

d d 5 1 d d
—lny:—ln(x +1)+——1n(x+3)——1n(x—1)
dx dx 2 dx dx

1 dy

y dx

40




The inverse of In x and the number ¢

7 3 In x is one-to-one, hence it has an inverse.
) We name the inverse of In x, In! x as exp (x)

limln 'x =00, lim In ' x =0

The Exponential Function ro e
. The graph of the inverse of In x The function y = ¢* in terms of the
S e y exponential function exp
L c=lny ODefinition of eas Ine = 1. _ _ .
il S0, e = In"(1) = exp (1) We can raise the number e to a rational power r, e
e =2.718281828459045. . e’ is positive since e is positive, hence e" has a

logarithm (recall that logarithm is defied only for

(an irrational number) -
positive number).

OThe approximate value for e is

22 obtained numerically (later). From the power rule of theorem 2 on the properties
2r of natural logarithm, In x" = rIn x, where r is rational,
U= , we have

1 | | Xl 1 x ro—

-2 -1 ,0 1 2 e 4 Ine'=r
/ We take the inverse to obtain
In"! (In ") =In"1 (r)
FIGURE 7.11 The graphs of y = Inx and e’ =In' (r) = exp-r, for rrational.

y = In"'x = expx. The number e is
In'1 = exp (1).

43 44



The number ¢ to a real (possibly irrational)

power x

How do we define eX where x is irrational?

This can be defined by assigning eX as exp x
since In"! (x) is defined (because the inverse
function of In x is defined for all real x).

Typical values of ¢

X e* (rounded)
—1 0.37
0 1
1 2.72
2 7.39
10 22026
100 2.6881 X 10%

47

DEFINITION  The Natural Exponential Function
For every real number x, e* = In"' x = exp x.

Note: please do make a distinction between e* and exp x. They have
different definitions.

e* is the number e raised to the power of real number x.

exp x is defined as the inverse of the logarithmic function, exp x = In"! x

46

Inverse Equations for ¢* and In x
e = x (allx > 0) (2)
In(e*) =x (all x) (3)

(2) follows from the definition of the
exponent function:

From eX=exp x, let x — In x

e x = exp[In x] = x (by definition).

For (3): From eX = exp x, take logarithm
both sides, — In €= In [exp x] = x (by
definition)
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‘ Example 1 Using inverse equations ‘ Example 2 Solving for an exponent

Ine’ = ... : :
e « Find k if e2=10.
(b)lne ' = ...

(¢)In \/_: Ine''” = ...
(d)lne™" = ...

(fre"? =..

In(x®+1

(g)e =...

3In2 In 2

(h)e =e =...

(i)€31n2 _ eS-an _ (ean) -
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‘ The general exponential function &~ Example 3 Evaluating exponential
functions

= Since a = e for any positive number a e
J3= may V3 \/3=ln2 1.20
mgX= (elna)x = gxlna (a)2 " = (e ) =e e ~ 3.32

DEFINITION  General Exponential Functions (b)2" = (6“‘2 )” —e™™ x e’ 2 8.8
For any numbers ¢ > 0 and x, the exponential function with base a is

a* = ex]na‘

For the first time we have a precise
meaning for an irrational exponent.
(previously #¥is defined for only rational x

and a)
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‘ Laws of exponents

THEOREM 3 Laws of Exponents for e*
For all numbers x, x;, and x;, the natural exponential e* obeys the following laws:

1. e = ehtm

3. =e"'"™
ev

4‘ (exl)xz — exlxz — (exz)xl

Theorem 3 also valid for a*

53

| Example 4 Applying the exponent

laws

In 2
(a)ex+ _

—1n x

(bye " =

Proof of law 1

X

yl _ exl’yz — e
x =Iny,x =Iny,
1

=
=> x,+tx,=lny +Iny =Inyy,
=

exp(x, + x,)=exp(lnyy,)

X tx, X, x2

_ylyzze e

Q
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' The derivative and integral of ¢*

55

f(x)=lnx,y=e =1ln x=f (x)

dy d d
= = — )=

dx dx dx df (x)

dx x:f_l(x)
1 1

= = :y:e

Wl (/0|

iex=ex (5)
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‘ Example 5 Differentiating an exponential

C(se)-

dx

| By the virtue of the chain rule, we
obtain

If u is any differentiable function of x, then

——e' =e"—. (6)

4wy 4 zdf(u)du(x)z ud_“
dx(e ) dxf(u) du dx ¢ dx

fe“du=e“+C.
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‘ Example 7 Integrating exponentials

In 2

(a)j e Mdx =

/2 /2
(b) ‘[ ™ cosx dx = I e cosxydx
0 0 e" du
u(r/2)
= J. e"du
u(0)

u u(r/2)

— e u(r/2) u(0) sin(z/2) sin(0)

=e e =e e =e—1

u(0)

This 1s the integral equivalent ot (6)
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'The number ¢ expressed as a limit

THEOREM 4  The Number e as a Limit
The number e can be calculated as the limit

e = lim (1 + x)*.
x—0

59
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Proof

If f(x) =In x, then f(x) =1/x,so f'(1) = 1.
But by definition of derivative,

Sy +h)— f(y)

f'(y) =1lim
h—0 h
iy = tim LD 2SO SAE ) 7 ()
=0 h 0 .
In(1+ x)—-1In(1) In(1+ x)
= lim = lim
x>0 X ‘s 0 ¥

1
1

= lim [In(1 + x)]? =1In|lim (1 + x): |=1 (sincef'(1)=1)
L,raﬁ

x>0

1
1 -
lim(1+x)* =lim(l+—)" =e¢
x>0 yo® ¥
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n . . . n n X . . . .
Once x 1is defined via x =e ,we can take its differentiation :

d n d nlnx du d@ n n Inx n n n -1
/X =—| € = - = = —X =nx
dx dx dx du X X

d n n-1
= —X =nx

dx

Note:Can you tell the difference between this formula

and the one we discussed in earlier chapters (Theorem 4, Chapter 3)?
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nlnx

Define x" for any real x >0 as x" =e
Here n need not be rational but can be any real number

as long as x is positive.
Then we can take the logarithm of x":
Inx" =1n (e"lnx): nln x.

Note:c.f the power rule in theorem 2.

Can you tell the difference?
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By virtue of chain rule,

u=u(x);

d , du(x)du" du(x) e
—u = = nu
dx dx du dx

Power Rule (General Form)

If u is a positive differentiable function of x and » is any real number, then u” is a
differentiable function of x and

iu” = nu"! du
dx’




Example 9 using the power rule with
irrational powers

d  du' du

n-1

(a)—x " =— = —nu

dx dx dx
du dx
—nu' = —\/Z_X\/Zil = \/Z_x\/zi1
dx dx

d . o du’ du
(b)—/(2+sin3x)" = — = —nu

dx dx dx
du a1 d(2+sin3x) o ) Y
—nu =————7u =37(2+sin3x)" cos3x
dx dx

65

‘ The derivative of &*

x xlna

a® =

d x d ( xlna\ d d u
—a =—|e |=—(xlna)—(e )
dx dx\ ) dx du

u xIna x
=¢ Ilna=ce Ina=a Ina

By virtue of the chain rule,
d du d d
—a"" = _”_(au): a" lna—u
dx dx du dx

7.4

a*and log, x
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If a > 0 and u is a differentiable function of x, then a” is a differentiable function
of x and

d u_ uy,, du
L T Ina e (1)

Example 1: Differentiating general
exponential functions

d x d [ x1:3\\ d d u
(a)—3 =—|e |=—(xln3)—(e )

dx dxk ) dx du
=In3-e"" =3"1n3

d d .y d d .
(b)y—3 " =- 3 =—-—3 =-—3

dx d(—x) du du

= 3'In3=-3""In3=-1n3/3"

u

d(Sinx) u sin x
=—3 In3=3 In3-cosx
dx dx du dx
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Other power functions

= Example 2 Differentiating a general power
function

» Find dy/dx if y = xX, x> 0.
= Solution: Write x* as a power of e

m XX = exlnx

d
—| e |=——(eu)=—(xlnx)-(e")z...
dxk ) dx du dx

| Integral of &”

d u(x) u du .
From —a ~ =a Ina—, devide by Ina:
dx dx
1 d ) du
= —a =a —
Ina dx dx
d u(x) u du .
= —a =a Ina—, integrate both sides wrp to dx:
dx dx
(d ) ( du

= J'L;a de :Ikaulna;de:
= Ida" =1naJ'a“du+C

3Ia”du = ! Idau: «

Ina

Ina

69

u
/a“du =2 4.
Ina

()

Example 3 Integrating general exponential
functions

. 2"
(a)jz dx = +C
In 2

du

(b)jzs‘“"cosdx = jz"du = ...

| Logarithm with base «

DEFINITION  log, x

For any positive number a # 1,

log, x is the inverse function of a*.

Inverse Equations for «* and log, x
alos* = x (x >0)

log,(a*) = x (all x)

®3)
(4)
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FIGURE 7.13 The graph of 2" and its

inverse, log, x.
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Example 4 Applying the inverse equations

(a)log225 =35
(b)210g23 _ 3
(c)loglOIO(_7)=

(d)10°*" =4

‘ Evaluation of log x

1
a

og, x

74

Taking In on both sides of = x gives
ln(alog“x) =In x
LHS,ln(alog“x) =log_xIna.
Equating LHS to RHS yields
log xlna=1Inx
logaxZﬁ'lanE—z (5)

= Example: log,,2=1n 2/In10

75

TABLE 7.2 Rules for base a
logarithms

For any numbers x > 0 and
y =0,

1. Product Rule:
log,xy = log,x + log,y

2. Quotient Rule:

log[% = log,x — log,y

3. Reciprocal Rule:

1
logay = —log, y

4. Power Rule:
log, x¥ = ylog,x

= Proof of rule 1:
Inxy=Inx+1Iny

divide both sides by In a

In(xy) Inx Iny
+

In a In a In a

log (xy)=1log, x+log, y
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Derivatives and integrals involving log x

77

7.5

Exponential Growth and Decay

79

| Example 5

d 1 d(Inu) 3 1

dx In10 du In10 (3x +1)

log, x 1 dx 1

dx = J'lnx —_— =
In 2 X In 2

Iudu = ...

d(In x)=du
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' The law of exponential change

= For a quantity y increases or decreases at a
rate proportional to it size at a give time ¢
follows the law of exponential change, as per

dy dy
—ox y() = —=ky(1).
dt dt

k is the proportional constant.
Very often we have to specify the value of y at

some specified time, for example the initial condition

y(t=0)=y,

80



d
Rearrange the equation 2 ky:
dt

ldy_ _d_ _
ydt_ —>J'ydtdt J‘kdt

1
—>j—dy:kIdt=kt—>ln|y|=kt+lnC

> y=+Ce" = de", 4 ==C.
Put in the initial value of y at =0 is y :

- y(o):y():Aek.O:A—) y:yoekz

The Law of Exponential Change

¥ = yoe" (@)
Growth: £ >0 Decay: k<0

The number £ is the rate constant of the equation.

Example 3 Half-life of a radioactive
element

The effective radioactive lifetime of polonium-
210 is very short (in days). The number of
radioactive atoms remaining after t days in a
sample that starts with y, radioactive atoms is
y= ¥, exp(-5x10-3t). Find the element’s half
life.
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Example 1 Reducing the cases of
infectious disease

Suppose that in the course of any given year
the number of cases of a disease is reduced
by 20%. If there are 10,000 cases today, how
many years will it take to reduce the number
to 10007 Assume the law of exponential
change applies.

82

Solution

Radioactive elements decay according to the
exponential law of change. The half life of a given
radioactive element can be expressed in term of the
rate constant k that is sg)ecmc to a given radioactive
species. Here k=-5x10-

At the half-life, t=t,,,
Y(t12)= Yol2 = Yo exp(-5x107t, )
exp(-5x103t,,) = 1/2

> In(1/2) = -5x10-3t,,

> t,= -1In(1/2)/5x103 = In(2)/5x103 = ...
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7.7

Inverse Trigonometric Functions

Domain
restriction that
makes the
trigonometric
functions one-
to-one

85

Function: sinxz Domain: [-m/2, w/2] Range : [-1, 1]

Range : [-1, 1]

Functien: tanx Domaln: [-m/2, w/2] Range : (-, @)

‘ Detining the inverses

= Trigo functions are periodic, hence not one-
to-one in the their domains.

= If we restrict the trigonometric functions to
intervals on which they are one-to-one, then
we can define their inverses.

Domain
restriction tha
makes the
trigonometric
functions one-
to-one

Functlon : cotx Deomaln: [0, 5] Range : (-=, =)

Cotx

min;: [-n/2,0) (0, n/2] Range: (-

86

Punction: secx Domain: [0, m/2}|)(7/2, ~] Hange: (-w«, -1], [1, =)

-1 U1, =)



Tnverses for the restricted trigo

Dy —1 € | Vi —L = w1

Feavgs *gf % Bange: =y
J = The graphs of the
VAN inverse trigonometric
‘Lz functions can be

obtained by reflecting
the graphs of the
restricted trigo
functions through the

Tvmdin: 5 =5
Pomge: a2

Toamgin, x-Tevxz 1 Dt —ew < 3 ve
Bonge: - =omym B Pange: Bopala
FIGURE 7.17 Graphs of the six basic inverse trigonometric

e functions.
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functions
| .

y =SsIn X = arcsin x
-1

Yy = CO0S X = arccosx
-1

y = tan x = arctan x
-1

y =cot x =arccotx
-1

)y = S€c X = arcsecx
-1

Yy = CSC Xx = arccscx

89
DEFINITION  Arcsine and Arccosine Functions

y

sin 1 x is the number in [—7/2, /2] for which siny = x.

cos ™! x is the number in [0, 7r] for which cos y = x.

91

y
N
x=siny
y = sin"lx
o Domain: [-1, 1]
y ¥ =sinx, ~g =x< % 20 Range: [-m/2, m/2]
| Domain: [-m/2, m/2] , L
Range: [-1,1 -1 0 1 *
1 ~
! L \\\ -TL
. —g 0 o N o 2
~o b2
(a) (b)

FIGURE 7.18 The graphs of (a) y = sinx, —7/2 = x = /2, and (b) its inverse,
y = sin"! x. The graph of sin”! x, obtained by reflection across the line y = x,isa
portion of the curve x = siny.
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y
X =COSYy
P
Y y=cosx,0=x=m J’:C‘?S_lx
Domain: [0, 7] T E::;ael.n: {61 ’,”1]]
/14 Range: [-1,1] D) ’ ’
7 | R L : > X
% 0 7 T -1 0 1
“1h 2\« -7
(a) (b)

FIGURE 7.19 The graphs of (a) y = cosx,0 = x = 7, and (b) its
inverse, y = cos ! x. The graph of cos ! x, obtained by reflection across
the line y = x, is a portion of the curve x = cos y.
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0= coslx; _11

cos@p=cos (7 —6) =—cosl

¢ =cosl(— cos@) = cos!(—x)

Add up 6 and ¢: FIGURE 7.20 cos™! x and cos™'(—x) are
supplementary angles (so their sum is 7).
0+¢=cos'x + cos’!(-x)

= cos'x + cos'(-x)

95

Some specific values of sin'! x and cos™ x

X sin”' x x cos x
V3/2 /3 V3,2 7/6
V2/2 /4 V2/2 /4

1/2 /6 1/2 7/3
~1/2 —7/6 {3 23
—\/5,/2 —7/4 —\/5/2 37 /4
-\V3/2 —7/3 V32 51/6

94

sin"lx = /2 -0

FIGURE 7.21 sin™'x and cos™' x are
complementary angles (so their sum is 7/2).

_ _ V4
coslx=6’;sin1x=(——0\;
27
-1 .-l (77 T
cos x+sin x+=60+|—-0 |=—
277

link to slide derivatives of

the other three .



DEFINITION  Arctangent and Arccotangent Functions

y = tan~!x is the number in (—/2, /2) for which tany = x.

y = cot™!x is the number in (0, 77) for which coty = x.

97

y= tan lx
Domain: (—ee, o)
Range: (—m/2, w/2)

FIGURE 7.22 The graph of y = tan ' x.

y
0 y = cot lx
Domain: (—e<, )
Range: (0, m)
_______ 11' e e e - ——

FIGURE 7.23 The graph of y = cot ' x.
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y= sec”lx

Domain: |x| =1
Range: [0, w/2) U (7/2, 7]

FIGURE 7.24 The graph of y = sec™' x.
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Domain: |x| = 1
Range: OSysa'r,yig
y
4
_______________________ 3w
2
B
s
,é/
______________________ E
. 2
y = sec x——/’*
| ! >
-1 0 I
__________________ lit.m
2
N
_ak
S R 3m
2

FIGURE 7.26 There are several logical
choices for the left-hand branch of

y = sec” ! x. With choice A,

sec ' x = cos ! (1/x), a useful identity
employed by many calculators.
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Some specific values of tan™ x

x tan 1x
V3 /3

1 /4

\/?:/3 /6
—\V3/3 —7/6
-1 —/4
-V3 —/3
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y = cscx
Domain: |x| =1
Range: [-#m/2,0) U (0, w/2]

FIGURE 7.25 The graph of

y = csc .
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| Example 4

= Find cos ¢, tan «, sec ¢,

= Si =2/3
csc a if a = sin1 (2/3). sin &

\ o

Vs

FIGURE 7.27 Ifa = sin"!(2/3), then
the values of the other basic trigonometric
functions of a can be read from this
triangle (Example 4).
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EXAMPLE 5 Find sec (tan™' 3). The derivative of )= sin’! x
Solution Welet & = tan ' (x/3) (to give the angle a name) and picture 6 in a right trian-
gle with .-l -1 .
tan @ = opposite/adjacent = x/3. f(x)=sinx= f (x)=sinx;
The length of the triangle’s hypotenuse is daf (x) _ ! _ 1 _ 1
dx dfil(x) cosxx:f(r) cos f(x)
sec = x23+9 dx x=[(x)
* Lety= f(x)=sin 'x > x=siny = cosy =1-x"
1 1 1
Thus, cos(f(x)) cosy 1-x’
-1X ) _ d 1
sec (tan 3> sec 6 —(sinfl x) _
2 dx 1-x’
_ Vx*+9 . _ hypotenuse
N 3 ’ sect = adjacent
105
The derivative of y = sin™! #
y
A
M If u =u(x) is an diffrentiable function of x,
\
\ d _ 1
- Ny =sinlx —(sin 1x)z— d 0
20 Domain: -1=x=1 dx 1= x° —Sin U =
Range: —7/2 =y = 7/2 dx
-1
! ! > . Use chain rule: Let y =sin u
T 1 ¥ Note that the graph is not Y
differentiable at the end d du d , | du 1
=1 oints of x=+1 because S (sin"u)=
\ ?he tangents_at these o davdu PN
\
N - . Note that |u [<1 for the formula to apply
points are vertical.
FIGURE 7.29 The graph of y = sin” ' x. 4 (i) = L du
egraphof y = sin ' x dx(sm u) T dd |u] < 1.
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Example 7 Applying the derivative
formula

109

| Example 8

x(¢) = tan \/t_

dx
dt

t=16

111

' The derivative of y=tan!

cos’ y=1/(1- xz)

y=tan 'x= x=tany

d d
= —(tan y) = —ysec2 y 1
dx dx

d
Y costy=1/1-x%) X
dx y(

V(1-x2)

By virtue of chain rule, we obtain

du

1 + u?dx’

% (tan™' u) =

110

' The derivative of y=sec! x

-1
y=sec X => X =secy

by = sec”x

dy
= —(secy)=—sec ytany
X dx

tany:i\/seczy—lzi\/xz—l _______‘__‘_—?5
d -1 1 1 | x
—Sec X =cosycoty ==+ ——F—
dx X ,(xz_l)

. d

RN (from Figure 7.30), FIGURE 7.30 The slope of the curve
dx y = sec”! x is positive for both x < —1

and x > 1.
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'The derivative of 'y = sec’!

U
By virtue of chain rule, we obtain
d - 1 du
“(secly) = ————"7, ul > 1.
dx Iu|w/u2_1dx | |

113

‘ Derivatives of the other three

= The derivative of cos'x, cot'x, csc'x can be
easily obtained thanks to the following
identities:

‘ Example 5 Using the formula

d -1 4
— 5 =...
Ix S€cC ( X )

114

Inverse Function—Inverse Cofunction Identities

1 1

x=a/2 —sin ' x

cot 'x = 7/2 — tan'x

'x = /2 — sec!x

coS

cse

Link to fig. 7.21
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TABLE 7.3 Derivatives of the inverse trigonometric functions

d(sin'u)  dufdx

1. e Vi lu] <1
d(cos™ u) du/dx
2. =- , Jul <1
dx V1 - 42

3 d(tan™" u) _ dufdx
) dx T+t

4 d(cot'u) B du/dx
) dx 1+ u?

5 d(sec™ u) _ du/dx o
CE e

P dlesc'u)  —dufdx .
. dx - |u| /—uz _ 1 > |u|
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Example 10 A tangent line to the
arccotangent curve

Find an equation for the tangent to the graph
of y = cot' x at x = -1.

Use either ¢ _ !
dx  df (x)
dx
1
o <
1 - X
A= v x2
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Example 11 Using the integral

formulas
( )jm &
a =
\/2_/2 1_ x2
(b -
)J°1+ X
> d
(C)L/J; j -

119

Integration formula

By integrating both sides of the derivative
formulas in Table 7.3, we obtain three
useful integration formulas in Table 7.4.

TABLE 7.4 Integrals evaluated with inverse trigonometric functions

The following formulas hold for any constant a # 0.

1. f \/a% = gin”! (Z) + C (Valid for u? < a2)
2. fazc_i:luz - %tan_l (Z) +C (Valid for all )

el + ¢ (valid for [u] > a > 0)

3. fdu = %sec
uVu? — a?
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Example 13 Completing the square

J. dx _J, dx _J_ dx
Vax - x’ J-(x7 = 4x) \/—[(x—2)2—4]
du

=I \/4—(x—2)2 =I V27— u
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Example 15 Using substitution

J_ dx :J_ dx _
R RV
1 de’ 1 du
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Even and odd parts of the exponential
function

In general:

F(x)="%[f(x) +f(-x)] + 2 [f(x) - £ (-x)]
Y [f (x) + f(-x)] is the even part

Y [f (x) - f(-x)] is the odd part

Specifically:

f(x)= %= (% + &%) + 1 ("~ )

The odd part 'z (eX - e*) = cosh x (hyperbolic cosine
of x)

The even part 2 (eX + eX) = sinh x (hyperbolic sine
of x)

123

Hyperbolic Functions

TABLE 7.6 Identities for
hyperbolic functions

cosh’x — sinh?x = 1
sinh 2x = 2 sinh x cosh x
cosh 2x = cosh®?x + sinh?x

cosh?x = cosh 22x + 1
sinhx = cosh 22x — 1

tanh’x = 1 — sech’x
coth’x = 1 + csch?x

122
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‘ Proof of

sinh 2x = 2cosh xsinh x

1 L. (e
sinh2x=—(e2x—ez)=—( ; )
2 2 e’
1’ =1 (e +1) 2 1
= — =—-—(e —e )e +e )
2 e e’ 2 2
1 X - X X - X .
=2-—(e —e )-—(e +e )=2sinhxcoshux
2
125
o . . 1 2
yperbolic secant: sechx =

1 2 y

cschx = — = =
sinhx e — ¢ 2
1
1 1 Lo x
= Lf:2
”\\1 /
y=cschx
(

e)

Hyperbolic cosecant:

TABLE 7.5 The six basic hyperbolic functions FIGURE 7.31

Hyperbolic sine of x: sinhx = £ _2 €7

X .
Hyperbolic cosine of x:  coshx = 2 €
. ; _ sinhx _ e" — e
Hyperbolic tangent: tanhx = Gohs - P hET
X —-x
Hyperbolic cotangent: cothx = (o b B s

sinhx ' —e™

Derivatives and integrals
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TABLE 7.7 Derivatives of TABLE 7.8 Integral formulas for
hyperbolic functions hyperbolic functions
d , . du .
- = - nh = coshu +
i (sinhu) = coshu it /Sl udu = coshu + C
d (coshu) = sinh u@ coshu du = sinhu + C
dx dx
d (tanh ) = sechzu@ /Sechzu du = tanhu + C
dx dx
i(coth u) = —csch2ud—” /cschzudu = —cothu + C
dx dx
d du _
£ = — L2 sechutanh u du = —sechu + C
i (sech u) sech u tanh u o /
du _
£ = — L cschucothudu = —cschu + C
e (cschu) csch u coth u o /
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d du d
—sinhu = — —sinh x
dx dx dx
d d 1 X -x X -
—sinhx=——(e —e )=—(e +e
dx dx 2
d du
. —sinhu = —cosh x
dx dx

Inverse hyperbolic functions

y y = coshx,
Yy y=sinhx y=x x=0 y=x
L . 81 i
- . . s ~
C ,7 y=sinh™ x 6 pd
T/, =simy s}
2+ // 4 //
||||||1_|/||||| 3 .
x 2F /7 y =cosh™! x
6 —4 %/ 2 4 6 1—,mhy,y20)
, [ R T N N R
7 0l 12345678

(b)

N
T T 171717

~
o
=2

FIGURE 7.32 The graphs of the inverse hyperbolic sine, cosine, and secant of x. Notice the symmetries about

the line y = x.

The inverse 1s useful in integration.

Example 1 Finding derivatives and
integrals
d B u
(a)—tanh A1+ ¢ = ——tanhu
dx dx du
' 1 1 .coshu d
(5)[ coth Sxdx = —[coth udu = —I#
5 5 sinh u
—
1 d(sinhu 1 . d 1 1
=—j¥:—j—v:—ln|v|+c=—1n|sinh5x|+C
5 sinh u 5 v 5 5
. 2 1
(c)Ismh x dx = —I(cosh 2x —1) dx=...
2
(d)[4e sinh x d 4ex_e_rd* 2 g
e sinh x X = —_— e = u-—-u u
I I J
(u® ) s s .
:2L——1n|u{J+C=(e)—lne +C=e -2x+C
2
y y y
| | | |
x=:tanhy : x=cothy: : x=cschy
y =itanh™lx | y = coth x| | y = csch™'x
| |
| I . |
| | | |
| | | |
T T X T T x
-1, 0 1 -1, 0 i1 0
| | | |
| | | |
| | | |
| | | |
I | | |
| | | |

(@ (b

FIGURE 7.33 The graphs of the inverse hyperbolic tangent, cotangent,

©

and cosecant of x.



Useful Identities

hyperbolic functions

TABLE 7.9 Identities for inverse

_ 1
sech™!x = cosh 1}

R §
csch™' x = sinh X
coth™lx = tanh_'%

133

TABLE 7.10 Derivatives of inverse hyperbolic functions
d(sinh'u) 1 du Integrating these formulas
dx V1 + u? & will allows us to obtain a list
d(cosh™ 1) U du of useful integration formula
& ~oaoja “7 ' involving hyperbolic
dtanh™ ) 1 functions
dx B 1 —uZE’ |u| <1 e.g.
d(coth™! u) 1 du L. isinh“x
dx - 1 _uz%a |I/l| > 1 1+x2 dx
d(sech™' u) —du/dx 0<y< 1% I dx = —smh 'x dx
= u 1+ x°
dx A1 _ 2
uV1—u
d(CSCh_I u) —du/dx J' 2abc =sinh 'x + C

dx _|u|\/1+u2,

135

‘ Proof

sech

-1 -1
x = cosh

X

1

Take sech of cosh —.

L 1)
sech| cosh —
L )

(
secthosh

e .
sech ILsech{cosh ]_JJ =sech 'x = Lcosh

X

1

= ‘Hl_
Il
=

cosh[cos )ICJ

L1y
)

Take sech '

on both sides:

1)) . ( |

= | =

)
J -

X

sech

-1

X

134

‘ Proof

d

. -1
—sinh x =

dx

1+ x

let y =sinh 'x

. d d . dy
x =sinh y > —x = —sinh y = —cosh y
dx dx dx
dy 1 1 1
— —=sechy= = =
dx cosh y \/1+sinh2y \/1+x2

= By virtue of chain rule,

d

-1

du

—sinh u = —

dx

dx

1

2
1+u

136



Example 2 Dertvative of the inverse

hyperbolic cosine
= Show that
d , |
—cosh u =
dx u’ -1

Let y =cosh ' x...

137

sinh’l(z/\/;)=?

Let g = sinh_](2/\/3_)

sinh ¢ = 2/\/3_—> I—(eq—e"’):
2

4

e ——=e’"-1=0

g

4+J(4\24<1> L
L) R
2

2

sinh '(2/3) = ¢ = In2.682 = 0.9866

| Example 3 Using table 7.11

j 2dx
o V3 + 4x°

Let y=2x

1 2dx ; dy
{\/3+4x2 _'([\/3+y2

Scale it again to normalise the constant 3 to 1

2 25 25
y dy \/3_(12 dz
Let z=—F/—=—> | —/—= —
\/3_ '([«/3+y2 { \/3+322 { \/1+22
:sinhlzi/ﬁ:sinh1(2/\/3_)—sinh1(0)=sinh1(2/\/3_)—0

=sinh (2/4/3)

138

TABLE 7.11 Integrals leading to inverse hyperbolic functions

du o fu
1. /=smh -1+ C, a>0
Va* + u? (a)
du 1 fu
2. /—=c0sh 1+ C, u>a>0
Vu? — a? (a)
p %tanh*l (%) + C ifu? < a?
u —
> fflz —u? B 1 u
gooth ' (5] + C, ifu? > a?
4. /#\/%:—%360}1_1 (%)-FC, 0<u<a

=—lcsch_l|%’+C, u# 0anda >0

du
) /u\/a2+u2 a

139
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Chapter 8

Techniques of Integration

TABLE 8,1 Basic integration formulas

1. /-a’ze =g+ C 13, /s:i}wdu =Tn|sinu| + C

. = —in |escul + ¢
2. /kduzka+c {any mumber £) In [eseu| + €

&
" 14. /e"dmfe“ O
3./{;2”!4+dv}=‘/a’u~'~]dv E

4 s X .
; ) ) 15, fm“r.?ze = ]:)Ta + ¢ @a>0asl)
# g = 8 n#—
4./ s n+l+c {n# —1)
16. /sm&mdu = goshw +
]— =y +¢C R
17. / coshudu = sinhu + C
6. /smudu=—wsu+{7 .
18, / - fa = sin~ (%} +C
7. fmw:;‘u = sinu L 7 Vat —dt
, 19, / i Lyt (”) c
8. /Seczmlufffmu%—c at+ut ¢ .
' 1 #
. 20. [ _ = gsec! | 8|+ C
9, /csc‘udu:=cmu+c u“\wu —& ¢ “
5 s _ p \
10. fmuﬁumdu =secu + € A [ \;"’a* Tt wink™ ( \} la=0)
1 | ? .
11. /c-se wootudu = —csicn + € 2. / Vi — & = cosh } >a>0)

12. /manudu = —In [cosu| + C
J

=In|secu] + C

3.1

Basic Integration Formulas

Example 1 Making a simplifying
substitution

— AL

d(x -9x)

2x -9
J‘\/)c —9x+1 \/ P _9x+1
du d(u+1) dv .
= = = =2
'[\/u+1 J.\/u+1 "‘\/v_ !

1/2

:2(u+1)1/2+C=2(x2—9x+1) +C

—

/2
+ C




‘ Example 2 Completing the square ‘ Example 3 Expanding a power and using a
trigonometric identity

J_ dx B J_ dx B
\V8x - x° «/16—(x—4)2

I(sec X + tan x)zdx

|
16— (x —4) =j(sec2x+tan2x+2secxtanx)dx.
-1 [x =40 5 ) d ) d
= sin —+ C =sin + C Racall:tan " x =sec” x —1; —tan x =sec x; —sec x = tan xsec Xx;
4 L 4 J dx dx

:I(2sec2x—1+ZSecxtanx)dx

=2tanx+ —x+ 2secx+ C

‘ Example 4 Eliminating a square root ‘ Example 5 Reducing an improper fraction
z/4 3x - 7x
J' N1+ cosdxdx = J e dx
6
cosdx =cos2(2x) =2cos (2x) -1 =fx—3+3x+2dx
I\/l+cos4xdx= IV200522xdx=\/2_I|0052x|x :jx—3+ dx
0 0 0 x+2/3

/4
:\/2_-" cos2xdx = ... =

0

1, 2
—x =-3x+2In|x+ —|+C
2




‘ Example 6 Separating a fraction ‘ Example 7 Integral of y = sec x

3x+ 2

——dx
j,/l_xz Isecxdxz?
5 d secx =secxtan xdx
X
= 3I—dx + I—dx 5
N 1 x> d tan x = sec” xdx = secxsec xdx
2
—d(x") 1 d(secx + tan x) = sec x(sec x + tan x)dx
V1 - x’ 1-x’ d(sec x + tan x)
3 du L du s ‘ sec xdx =
:—j—+2sm x+C [——7=-20-u)y " +C sec x + tan x
2°\1-u (I—u)
3 _
= [-2(1-u)"?1+2sin 'x+C" d(sec x + tan x)
2 Isecxdxzj =In|secx +tanx | +C
5 secx + tan x
= —34f(l - %) +2sin_x+C"
9 10
‘ ‘ Procedures for Matching Integrals to Basic Formulas
PROCEDURE EXAMPLE
Making a simplifying 22x——9dx = d_\/u_
substitution Vx® = 9 + 1 u
TABLE 8.2 The secant and cosecant integrals Completing the square Vexr — 22 = V16 — (x — 4)
Using a trigonometric (secx + tanx)? = sec’x + 2secxtanx + tan®x
identity = sec’x + 2secxtanx
1. secudu = In|secu + tanu| + C o
+ (sec*x — 1)
= 2sec’x + 2secxtanx — 1
2. /CSC udu = —In |CSC u + COtU| + C Eliminating a square root V1 + cosdx = V2 cos? 2x = \/5|00st|
. . 3% —Tx _ 6
Redqcmg an improper wr2 o F 3+ I+ 2
fraction
. . 3x +2 3x 2
Separating a fraction = +
Vi-x2 Vi-x2 Vi-x
s _ .secx + tanx
Multiplying by a form of 1 secx = secX o
_sec’x + secxtanx
T secx + tanx

11 12



3.2

Integration by Parts

13

| Alternative form of Eq. (1)

f Fx)g () d = F(x)elx) — / £ () d B

15

‘ Product rule in integral form

d d d
—[f()g(x)]=g(x) —[f(x)]+ f(x) —TLg(x)]
dx dx

X

d d d
[—f () g()ldx =[ g (x) —{f (x)]dx + [ f(x) —{g(x)]dx
dx dx dx

f(x)gx) = fg(X)f '(x)dx + _[f(X)g '(x)dx

[ fx)g'(x) dx = f(x)g(x) — / f'(x)glx) dx 1)

Integration by parts formula

Alternative form of the integration by

parts formula
d d d
T (g0 = g () —[f (0] + £(x)—Lg(x)]
dx dx

dx
d d d
j—[f(x)g(x)]dx =_[g(X)—[f(X)]dx + .[ S(x)—I[g(x)ldx
dx dx dx
S(x)g(x)= J'g(x)df(x) + J'f(x)dg(x)

Letu = f(x);v=g(x).The above formular is recast into the form

uv = jvdu + judv

Integration by Parts Formula

fudv=uv—/udu (2)




‘ Example 4 Repeated use of integration
by parts

2
Ix e'dx =?

17

| Evaluating by parts for definite
integrals

‘ Example 5 Solving for the unknown

integral

Iexcosxdx =7

Integration by Parts Formula for Definite Integrals

b b
f g/ () dx = f)g)]’ - f F(0)g) de @)

or, equivalently

[ 7y (x)dr = 1" (x)h ()] = [ {7 (0)[ [ (x)dx ]} ax

19

Example 6 Finding area

= Find the area of the region in Figure 8.1

y

1E
0.5F y=xe™*
g e
—gsk
1k
FIGURE 8.1 The region in Example 6.

20



Solution

xe

8.3

Ydx

Integration of Rational Functions by
Partial Fractions

Example 9 Using a reduction formula

Evaluate .
Icos xdx

Use

A

o N r—_d.\&_\

n n-—1
Jcos xdx::Jcos X -CcoSs xdx

1 .
cos xsinx n -1 he2
= + Jcos xdx
n n

21 22

General description of the method

A rational function f(x)/g(x) can be written as a sum
of partial fractions. To do so:

(a) The degree of f(x) must be less than the degree
of g(x). That is, the fraction must be proper. If it isn’t,
divide f(x) by g(x) and work with the remainder term.

We must know the factors of g(x). In theory, any
polynomial with real coefficients can be written as a
product of real linear factors and real quadratic
factors.

23 24



Reducibility of a polynomial Example

A polynomial is said to be reducible if it is the product
of two polynomials of lower degree.

=x —4x=(x-2)- 2
A polynomial is irreducible if it is not the product of glx)=x S G R C S

two polynomials of lower degree. linear factor  poly. of degree 2
g(x)=x3+4x= (x2+_4) . X
THEOREM (Ayers, Schaum’s series, pg. 305) L poly. ofdegres
Consider a polynomial g(x) of order n = 2 (with leading !
coefficient 1). Two possibilities: g(x)=x"-9= (x’+3) '(_XL\/_;)(L__\/E)
g(x) = (x-r) h,(x), where h,(x) is a polynomial of degree b eewn 1 “’; ,
n_1’ Or educible quadratic factor poly. or degree
g(x) = (x2+px+q) hzz(x), where h,(x) is a polynomial of g(x)=x"=3x"—x+3=(x+1) (x-2)

degree n-2, and (x

+px+q) is the irreducible quadratic
factor.

linear factor poly. or degree 2

QQuadratic polynomial

In general, a polynomial of degree n can
always be expressed as the product of
linear factors and irreducible quadratic

A quadratic polynomial (polynomial or order n
= 2) is either reducible or not reducible.

Consider: g(x)= x2+px+q. factors:
If (p2-4q) 2 0, g(x) is reducible, i.e. g(x) § .
— (X+I‘1)(X+I‘2). P(x)=(x-r) ' (x—r,) ..(x—r) x

If (p2-4q) < 0, g(x) is irreducible. (Ot P+ g) O pxdg) M p g )

n=(n+n,+...+n)+2(m +m,+..+m,)



partial fractions

Method of Partial Fractions (f(x)/g(x) Proper)

1. Letx — rbe alinear factor of g(x). Suppose that (x — )" is the highest
power of x — r that divides g(x). Then, to this factor, assign the sum of the
m partial fractions:
A[ Az Am
+ +o 4 .
I O O (x = r)"

Do this for each distinct linear factor of g(x).

2. Letx? + px + g be a quadratic factor of g(x). Suppose that (x> + px + ¢)"
is the highest power of this factor that divides g(x). Then, to this factor,
assign the sum of the # partial fractions:

le + C] Bzx + C2 an + C,,
X2+pr+qg 2+ px+ g)? 2+ px + g
Do this for each distinct quadratic factor of g(x) that cannot be factored into
linear factors with real coefficients.

3. Set the original fraction f(x)/g(x) equal to the sum of all these partial
fractions. Clear the resulting equation of fractions and arrange the terms in
decreasing powers of x.

4. Equate the coefficients of corresponding powers of x and solve the resulting
equations for the undetermined coefficients.

29

| Example 2 A repeated linear factor

6x + 7
[——dx=..
(x+2)
6x + 7 A B
) + 2
(x +2) (x+2) (x+2)

31

‘ Example 1 Distinct linear factors

x2+4x+1
I dx = ...
(x —D(x+1)(x+3)
x T+ 4x+1 A B C

+ +

(x = 1)(x + 1)(x +3) :(x—l) (x+1) (x+3) o

30

‘ Example 3 Integrating an improper
fraction

2x3—4x2—x—3

'[ x’—2x-3 *

2x  —4x’—x-3 5x -3
- =2y +
x —-2x-3 x —-2x-3
5x -3 5x -3 A B
= = + = ...
xP-2x-3 (x=3)x+1) (x-3) (x+1)

32



‘ Example 4 Integrating with an irreducible
quadratic factor in the denominator

-2x+ 4
j . 2olxz...
(x"+D)(x-1)
-2x+ 4 Ax + B

C D

= + + = ...
(x>+D(x-1" x*+1) (x=1) (x-1)°

33

Other ways to determine the

coefficients

= Example 8 Using
differentiation

= Find A, Band C in the
equation

x—1 A B C

= + +
x+1D (x+1D) (x+1D° (x+1)°

A(x+ 1)+ B(x+ 1)+ C x—1

(x+1)° x40y
= A(x+1)’+B(x+DH)+C=x-1
x=-1>C=-2

= A(x+1) +B(x+1)=x+1

= A(x+1)+ B =1

d d
—[A4A(x+1)+ B]=—(1)=0
dx dx

A=0
B =1

35

‘ Example 5 A repeated irreducible
quadratic factor

1
J o zd==?
x(x"+1)

Bx +C Dx + E
+ + = ...

(x>+1) (x>+1)°

1 A
X

x(x2 + 1)2

34

Example 9 Assigning numerical values to
X

= Find A, Band Cin

2
x +1

(x =D(x =2)(x=3)
A B C

= + +
(x-1) (x-2) (x-3)

A(x =2)(x =3)+ B(x = 1)(x =3) + C(x = )(x = 2) = [ (x)
=x"+1
f()y=24+=1"+1=2= 4 =1

f(2)=-B=2"+1=5,= B =-5

f(3)=2C=3"+1=10;=> C =5 y



3.4

Trigonometric Integrals

37

Example 1 7 1s odd

. 3 2
Ism xXcos x dx =7
. 3 2 . 2 2
Ism XCOS Xx dxz—jsm XCOS X d(cosx)
2 2
=I(cos x—1)cos x d(cosx)

= j(uz —1)u2du = ...

39

Products of Powers of Sines and Cosines

‘We begin with integrals of the form:

/ sin” x cos” x dx,

where m and » are nonnegative integers (positive or zero). We can divide the work into

three cases.

Case 1 If m is odd, we write m as 2k + 1 and use the identity sin?x = 1 — cos’x to

obtain

sin x = sin®**!1x = (sin®x)*sinx = (1 — cos®x)¥sin x.

1)

Then we combine the single sin x with dx in the integral and set sin x dx equal to —d (cos x).

Case 2 Ifmisevenand nis odd in f sin” x cos” x dx, we write n as 2k + 1 and use the

identity cos?x = 1 — sin’x to obtain

2 \k

26+l x)*cosx.

cos"x = cos**!x = (cos’x)fcosx = (1 — sin
We then combine the single cos x with dx and set cos x dx equal to d(sin x).

Case 3 Ifboth m and n are even in f sin” x cos” x dx, we substitute

1 — cos2x cos?x = 1 + cos2x
2 ’ 2

to reduce the integrand to one in lower powers of cos 2x.

sin?x =

Example 2 72 1s even and # 1s odd

5
Icosx dx = 7

2

38

jcossx dx = ~|‘cos4xcosx dx = j (coszx) d (sin x):

I(l—sinzx)z dsin x

u

~[(l-uz)2 du = I1+u4—2u2 du = ...

40



‘ Example 3 7 and 7 are both even Example 6 Integrals of powers of tan x

and sec X ;
J'sec xdx =7

Use integration by parts.

2 . 4
Icos xsin x dx =7? .
dv jsec xdx = Isec X Mu’x

tan x + sec x

3
Isec xdx = Isecx~
u

2 . 4
J'COS xsin x dx = dv = sec’ xdx > v:jseczxdxztanx )
J(secxtanx+sec X)
= X
2 u =secx > du =secxtan xdx tan x + sec x
(1-cos2x V[ 1+cos2x ) ) ,
j dx Isecx-w :IM
2 2 u dv tan x + sec x

=secxtanx—jtanx-s_cc_zcl,agndxix =Infsecx+tanx|+C

1
J(l-cost)(l+cos2x)2 dx au

4

:secxtanx—jtanzxsecxdx
1 2 3 2
:—j(1+cos 2x—c0S2x—coOS Zx) dx = ... =secxtanx—j(sec x —1)sec xdx
4

3 3
M Isec xdxzsecxtanx—!sec xdx-i—J'secxdx...

| Example 7 Products of sines and

cosines
jcosstin3xdx=? 85
sin mxsin nx = —[cos(m - n)x — cos(m + n)x|;
sinmxcosnx = 1—[Sin(m —n)x +sin(m + n)x];
cos mxcos nx = ;—[cos(m ~n)x 4 cos(m + m)x] Trigonometric Substitutions

jcosstin 3xdx

1
—j[sin(—2x) + sin 8 x]dx
2

43



‘ Three basic substitutions

a va —x

x=atanf x=asinf x=asech

Va? +x>=alsecd] Va®— x*= alcos 6] Vx? — a* = altan 6|

FIGURE 8.2 Reference triangles for the three basic substitutions
identifying the sides labeled x and a for each substitution.

x y x p Vx?—a?
) 0
2_ 2 4

Useful for integrals involving va* - x* Vo + x* Vx* - a?

in the denominator of the integrand.

45

‘ Example 2 Using the substitution x =
asin@

2
x dx
=?

J.\/9—x2 )

x=3siny > dx =3cosy dy

J, x dx J9sin2y~3cosy dy

\/9—x2 \/9—9sin2y
.2
sin -cosy d

:9J- y y ay
\/l—sinzy

= 9jsin2 ydy = ...

47

‘ Example 1 Using the substitution x=atan®

x=2tany —> dx = ZSeczydy = 2(tan2y + 1)dy

2(tan2 y+1)

dx
J —" —
\/4+4tan y \/4+4tan y

2
tan +1 [
z.[#dyzj. seczydy=.|'|secy|dy
w/1+ tanzy

=In|secy+tany|+C

46

‘ Example 3 Using the substitution x =

asec@
dx
.[—:?
V25x" - 4
2
x=—secy > dx =—secytany dy
5

secytan y dy secytany dy

dx 2 1
J\/25x2—4 _51\/4seczy—4 _5'[ \/sec2y—1

1 .secytany dy

1
=—|—F=————==—|secy d
5'[ \/seczy—l 5'[ n

1
=—In|secy+tany|+C = ...
q

48



Example 4 Finding the Volume of a
solid of revolution 1

2
. dx
y vV =16z

0 (xz + 4)2

(a) (b)

FIGURE 8.7 The region (a) and solid (b) in Example 4.

49

8.6

Integral Tables

51

‘ Solution

2

V =16r

dx

=7
o(x2+4)2

Letx=2tan y > dx=2seczydy

Y osec’ ydy o sec’ yvdy
V =nx =7 _—

0 (tanzerl)2 0 (sec2y)2

7 /4
=2r I cos’ ydy =...

0

50

‘ Integral tables is provided at the back of
Thomas’

= T-4 A brief tables of integrals

= Integration can be evaluated using the tables
of integral.

52



EXAMPLE 1  Find

[x(2x + 5) 1 dx.
Solution We use Formula 8 (not 7, which requires n # —1):
-1 _ X b
fx(ax—l—b) dx =7 — —SIn|ax + b| + C.
a
Witha = 2and b = 5, we have

fﬂn+@lﬂ=§~%ﬂn+ﬂ+c.

53

EXAMPLE 3  Find

dx
fom—4'
Solution We use Formula 13(a):
dx 2 -1 ax — b
——=—tan '\ [~ + C.
./x Vax — b Vb b

Witha = 2 and b = 4, we have

dx _ 2 —1 2x — 4 _ -1 x—2
= tan + C = tan + C.
/xVa—4 V4 Vo4 V. 2

EXAMPLE 2 Find
/ dx
xV2x + 4

Solution We use Formula 13(b):

/ dx ZLIH‘\/ax+b—\/l_)
Vax+b Vb NVax + b+ Vb

Witha = 2 and b = 4, we have

+ C, ifb > 0.

/ dc 1mmvh+4—wﬁ
V2 +4 V4 IV + 4+ Va4
\Vox + 4 — 2
V2x +4 + 2

+C

+ C.

-1
—2ln‘

54

EXAMPLE 4  Find

dx
f Vo — 4
Solution  We begin with Formula 15:

Vax+b a dx i c

dax .
fxz\/ax-i-b bx 2b) xNax + b

Witha = 2and b = —4, we have

_V2x —

f de  _ 4+L[L+C
\V2x — 4 —4x 2:4) W — 4

We then use Formula 13(a) to evaluate the integral on the right (Example 3) to obtain

VI o4 lon 24 c
o a . & T3 2 '



EXAMPLE B Find

j xain ™t xddx.
Solution  'We use Fonmula 99:

P £ a2l g,
B el e B K P @ T e .
in ' @ de = - —gin " ax — G %,
M[xs arde = 2 @ s@z—{—lj( , .

V1 = g%t

Withs = landa = 1, we have

- - 7 % E

]! peilxde = 5 sinlx — 4 =&
LIV S ) sl & T -

u “ = Wl'ﬁﬁ

The irdegral on the right & found in the iable a3 Formula 33:

Improper Integrals

57 58
‘ y
Infinite limits of integratiQn
Area = 2
y _r
. . —-b/2
_Inx A(a) =1lim A(b) =1im 2 - 2e =2 x
02 y= 2 b w h— oo
(a)
y
0.1 b
-x/2 -b/2
A = =...=2-2
! ! ! I ! > x (&) J. ¢ dx ¢ N Area = —2¢7%2 4 2
0 1 2 3 4 5 6 0
(a) (b)
FIGURE 8.17 Are the areas under these infinite curves finite? (b)

FIGURE 8.18 (a) The area in the first
quadrant under the curve y = e /2 is

(b) an improper integral of the first type.
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DEFINITION
Integrals with infinite limits of integration are improper integrals of Type 1.

Type I Improper Integrals

1. If f(x) is continuous on [a, o©), then

o0 b
/ fx)dx = bli)ngo/ flx) dx.

2. If f(x) is continuous on (—09, b], then

b b
/f(x)dx= _1311100/ flx) dx.

3. If f(x) is continuous on (—o0, 00), then

Lof(x)dx=[;f(x)dx+/ £ d,

where c is any real number.

In each case, if the limit is finite we say that the improper integral converges and
that the limit is the value of the improper integral. If the limit fails to exist, the
improper integral diverges.

61

‘ Solution

b b Inb
In x dx In x u )
J' —:J. d(lnx)zITdu ;su=Inx,x =e
1 X X 1 X lnle
In b
In b In b
I ue "du =u(-e )| - I (—e “)du
0 dw w 0 0 w
Inb
—u 0 —u —u 0 —u lnb
=ue + Ie du = ue —e
Inb In b 0
0
i i 1 1
=—Inb-e " (e " -1)=——Inb-—+1
b b
) "In x [ 1 1
lim dx=lim;——Inb-—+1 =1
b—> xz b—)oo!_ b b J|
1

63

Example 1 Evaluating an improper
integral on [1,0]

= Is the area under the curve y=(In x)/x? from
1 to = finite? If so, what is it?

Yy
b
_Inx . In x
02F y_x_2 lim dx = ?
b— X
1
0.1
> X
0 1 b

__FIGURE 8.19 The area under this curve

is an improper integral (Example 1).

‘Example 2 Evaluating an integral on
[—00700]
dx

Area = 7

NOT TO SCALE

FIGURE 8.20 The area under this curve

is finite (Example 2).
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‘ Solution

Using the integral table (Eq. 16)

dx 1 X
.[ . T = —tan —+ C
a + x a a
b
dx _ b i _ _
I =[tan1x] =tan1(b)—tan10=tan1(b).
2
1+ x 0
0
T dx ) . /4 b
J' 2=211mtan b=2-—=nrx y
Sl+x b 2 R
! 1
y=tan 'b= b=tany
. -1 4
lim tan = —
b o 2 65

Example 3 Integrands with

y
A
_ 1 vertical asymptotes
y —_——
Vix
FIGURE 8.21 The area under this curve
is
1
Area =2 - 2Va - (L) -
ali)r{)hj; ‘\/; & =12,
an improper integral of the second kind.
1 -
> X
Of a 1
-

67

DEFINITION  Type II Improper Integrals
Integrals of functions that become infinite at a point within the interval of inte-
gration are improper integrals of Type II.

1. If f(x) is continuous on (a, b] and is discontinuous at a then

b b
/ f(x)dx = li)m+/ f(x) dx.

2. If f(x) is continuous on [a, b) and is discontinuous at b, then

fbf(x)dx = l_i)n}/cf(x) dx.

3. If f(x) is discontinuous at ¢, where a < ¢ < b, and continuous on
[a, ¢) U (¢, b], then

fﬂx)dx - [f(x)dx ¥ [f(x)dx.

In each case, if the limit is finite we say the improper integral converges and that
the limit is the value of the improper integral. If the limit does not exist, the inte-
gral diverges.
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| Example 4 A divergent improper
integral

S el = Investigate the
/ convergence of

1

J‘dx

0

1-x

1 b
1 f( 1 )dx=1imf LIS
b \1l —x =1 fg 1 —x

x-axis for [0, 1) is not a real number
(Example 4).

> X

FIGURE 8.22 The limit does not exist:

= 0

The area beneath the curve and above the

68



‘ Solution

ldx_l.ba’x_l.1 lb
J(; = binF-([ = —1lim [In | x |]0

1-x 1-x b1

~lim [In [b~1|-1In |0 ~1]]

b1
=—lim[In|b-1|-1In|0-1]]= lim [1n|b—1|“]
b—>1" bh—1"
1
= lim ln——lzoo
e—»OL gJ

Example 5 Vertical asymptote at an

y interior point

69

Example 5 Vertical asymptote at an

3 1

lim [3(1; -n'- 3(—1)”3} = lim [0 +3]=3;
b—>1" b—>1"
3 3

dx dx

3
J(x—1)2/3 - }erll+.|; (x_1)2’3 = }iﬁnlq+[3(x_1)1/3:|c

1
= lim [3(3 -1 = 3(c —1)”3] =3.2%"
co1’

3

dx
- '[(xfl)Z/

0

=3(1+2""

T =

> X

yinterior pomt & & g
! (x—1)2/3 0 (x—l)2/3 l(x—1)2/3
_ i j dx . lim S lim |:3(x _1)1/3:|b _
y (x_1)2/3 O(xfl) . b1 o(xfl) b1 0

-]
71

: dx
I 23 ?
1 . (x-1)
(JC _ 1)2/3
FIGURE 8.23 Example 5 shows the
convergence of
P
1 / —————dx = 3 + 3V2,
0o (x — 1)¥
so the area under the curve exists (so itis a
ox real number).
0 b c 3

-]

Example 7 Finding the volume of an

infinite solid

= The cross section of
the solid in Figure
8.24 perpendicular to
the x-axis are circular
disks with diameters
reaching from the x-
axis to the curve y =
eX, -0 < x<|n 2. Find
the volume of the
horn.

2
%
y=e¢e* ’,/’“// \\\
prey
D
~— - )
\‘T:\\ | \ f
b 7\\':1\\ | \ /‘/
\\\\\T\‘\ \\ /
o] =y
2

FIGURE 8.24 The calculation in
Example 7 shows that this infinite horn
has a finite volume.



‘ Example 7 Finding the volume of an
infinite solid

volume of a slice of disk of thickness dx,diameter y

Vv In2

V = J'dV =1—1im Jﬁy(x)zdx
0 b

4 b> -

dV =z (y/2) dx

In2

1
= — lim J- re tdx
4b—)—oo "

1 In2

= Jim [ze™ ],

= 1— lim [47[ - ﬁeZb]

8 b— —x
e lim (4 ey FIGURE 8.24 The calculation in
8 oo 2 Example 7 shows that this infinite horn

has a finite volume.



Chapter 11 11.1

Infinite Sequences and Series Sequences

What 1s a sequence
DEFINITION  Infinite Sequence

An infinite sequence of numbers is a function whose domain is the set of positive
integers.

A sequence is a list of numbers

4 a . S
. T A In the previous example, a general term a,
In a given order. of index nin the sequence is described by
Each a is a term of the sequence. the formula

Example of a sequence: a,= 2n.
2.4.6,8,10,12,....2n,... We denote the sequence in the previous

example by {a,} = {2, 4,6,8,...}
In a sequence the order is important:
2,46.8,...and ...,8,6,4,2 are not the same

n is called the index of a,



a
 Other example of sequences  Divees
3_
| ‘i_l ay a3 G4a;s 2| . ®
0 1 2 ]
a"=\/5 A N Y RO
ol 1 2 3 4 5
(o) = (VAT NT AT N, = N . © comepeunn
b= 11 : 1)n+11 )b = 1),,+,1 -4 1 ” il . i
= s T T s T T T, s\ T ) 5 =\- -, L >
! 23 4 n " n =1 0 2 3 4 5
1 2 3 4 -1 -1
{C"}: {07_7 R _a‘ 5 - b ;c,, = ! ) a:: ConvergestoO
2 3 45 n n 4y Gq 4533 T X Ik
n+l o, n+l 0 = T i i
{dn}:{l,—l,l,—l,l, ,(—1) , },dn:(—l) ; an:(—l}”‘”% : L1 . n

FIGURE 11.1 Sequences can be represented as points on the real line or as
points in the plane where the horizontal axis » is the index number of the

term and the vertical axis a, is its value.
5 6

L—e L L+e
DEFINITIONS Converges, Diverges, Limit
The sequence {a, } converges to the number L if to every positive number € there cf{’
corresponds an integer N such that for all #,
L+e
n>N == |a,,—L| <E | S R (n’au)_!_i___
If no such number L exists, we say that {a,} diverges. - A
If {a,} converges to L, we write limy—cc @, = L, or simply a, —> L, and call ° ® ®(N, ay)
L the limit of the sequence (Figure 11.2). ° .
®
| | 1 | | 1 n
of 1 2 3 N n

FIGURE 11.2 g,—Lify =Lisa
horizontal asymptote of the sequence of
points {(n, a,)} . In this figure, all the a,’s

after ay lie within € of L.



DEFINITION  Diverges to Infinity

The sequence {a,} diverges to infinity if for every number M there is an integer
N such that for all n larger than N, g, > M. If this condition holds we write
lim g, = o0 or a, —> 00,
n—*00
Similarly if for every number m there is an integer N such that for all # > N we
have a, < m, then we say {a,} diverges to negative infinity and write

lim a, = —00 or a,—> —00,
n—00

THEOREM 1
Let {a,} and {b,} be sequences of real numbers and let 4 and B be real numbers.
The following rules hold if lim,—w a, = 4 and lim,—c b, = B.

1. Sum Rule: lim,—oo(a, + by) =4 + B
2. Difference Rule: limy—oo(a, — b,) = A — B
3. Product Rule: lim,—ocl(a,*b,) = A+B

4. Constant Multiple Rule: lim,—ool(k*b,) = k+B (Any number k)

5. Quotient Rule: lim,—co 95 ifB#0

A4
b, B

EXAMPLE 3  Applying Theorem 1

By combining Theorem 1 with the limits of Example 1, we have:

(a) lim (— %) = —=1+lim % =—10=20 Constant Multiple Rule and Example 1a
=X =20

i n—1 = i =5 1 = 15 — 5 1 I ey Difference Rule
) nl—lrmoo( n ) nlingo (1 ") n]l{gol nl_l’ﬁgon I o l and Example la

(C) Iim % = 5- lim %‘ Iim % =5:0:-0=0 Product Rule
n—o0 n n—00 =00
s 6 6y _ _
(d) lim i'l = lim (4/?3 } ! = 0 7 = -17. Sum and Quotient Rules

n—00 n8 +3  a—ool + (3/n%) 1+0

THEOREM 2 The Sandwich Theorem for Sequences

Let {a,}, {b,}, and {c,} be sequences of real numbers. If a, = b, = ¢, holds
for all n beyond some index N, and if lim,—w g, = limy—e ¢, = L, then
limy—e by = L also.

11




EXAMPLE 4

Since 1/n — 0, we know that

(a) CO';JH 50

(b) 37 —0

© (-1)i-

Applying the Sandwich Theorem

0

because

because

because

THEOREM 3 The Continuous Function Theorem for Sequences

Let {a,} be a sequence of real numbers. If @, — L and if f is a function that is
continuous at L and defined at all a,, then f(a,) — f(L).

13

Example 6: A/pplying theorem 3 to show that the
sequence {2'7} converges to 0.

= Taking a,= 1/n, =lims.,a,=0=L

Define f(x)=2*. Note that f(x) is continuous on x=L, and
is defined for all x=a,= 1/n

According to Theorem 3,

limy, ... f(@,) = (L)

LHS: lim, ., f(a,) = lim .. f(1/n) = lim ., 2"/
RHS = f(L) = 2L =20 = 1

Equating LHS = RHS, we have lim, 5., 2"" = 1
— the sequence {217} converges to 1

0

W—§

b—-

—¢
o

FIGURE 11.3 Asn—>00,1/n— 0 and

21/" — 2° (Example 6).

THEOREM 4
Suppose that f(x) is a function defined for all x = ny and that {a,} is a sequence
of real numbers such that a, = f(n) forn = ny. Then

lim f(x) =L = lim a, = L.

x—>00 H—200

15




Example 7: Applying I’Hopital rule
Show that iim 22 -0

n—sw p

In x

Solution: The function /(=== is defined
for x 2 1 and agrees with the sequence
{a,= (In n)/n} for n21.
Applying I’Hopital rule on f(x):

In x 1/x 1

lim =lim—=1lm—=0
X—> o X xX—> © 1 x> y

By virtue of Theorem 4,

In x

lim :0:>liman:O

X —> 0 X n— ®©

Solution: Use 1’Hopital rule

1
Let f(x):[x+lJ so that f(n)=a forn2>1.
x —

— In f(x):xln{erij
X —

| (x+1)
x+1) an—lj

lim In f(x) = lim xln( J:Iim
x -1

xX— o X—> © X—> © 1/x

(-2 )

xP -1 2x’
= lim ~——% = lim =2
X— o —1/X xow et ]

By virtue of Theorem 4, lim In f(x) =2 =

lim f(x)=exp(2)= lima,  =exp(2)

x> o n— o 19

Example 9 Applying I’Hopital rule to

determine convergence

, (n+1)
Does the sequence whose nth term is a = L

n-—1

If so, find lim a .

n— oo

THEOREM 5
The following six sequences converge to the limits listed below:
. Inn
L By=d
- ﬂll’rréo\/r_z =1 All of the results in Theorem 5
3. fim x¥ =1 (x> 0) can l?e proven using Theorem 4.
n—s00 See if you can show some of
4. lim x"=0 (x| < 1) them yourself.

H—0C0
x n
5. nlirréo (1 + H) = g* (any x)
n

6. lim X =0 (any x)

n=—s00 ﬂ'

In Formulas (3) through (6), x remains fixed as n — ©0.

J converge?

20




Example 10

(a)(InnZ)/n 2(nn)/n>20=0

R G U}

(c) \/_ \/3_ \/_=3””-n s 11=1
3)-

21

DEFINITIONS Bounded, Upper Bound, Least Upper Bound

A sequence {a,} is bounded from above if there exists a number M such that
a, = M for all n. The number M is an upper bound for {a,}. If M is an upper
bound for {a,} but no number less than M is an upper bound for {a,}, then M is
the least upper bound for {a,}.

Example 13 Applying the definition for
boundedness

(a) 1,2,3,...,n,...has no upper bound
(b) Y, 213, %, 415, ...,n/(n+1),...is bounded
from above by M = 1.

Since no number less than 1 is an upper
bound for the sequence, so 1 is the least
upper bound.

23

DEFINITION Nondecreasing Sequence

A sequence {a,,} with the property that a, = a,+, for all n is called a
nondecreasing sequence.

Example 12 Nondecreasing sequence
(@) 1,2,3,4,...,n,

(b) Y2, 213, %, 415, ...,nl(n+1),...
(nondecreasing because a,,.-a,2 0)
(c){3}=1{3,3,3,...}

Two kinds of nondecreasing sequences: bounded
and non-bounded.

22

A
=M
o y
y=£L
- (8, ag)
L i
s ¥ §
(]sal)
L ]
' S N N S N N S
of 1 2 3 4 5 6 7 8

FIGURE 11.4 If the terms of a
nondecreasing sequence have an upper
bound M, they have a limit L =< M.

24



THEOREM 6 The Nondecreasing Sequence Theorem

A nondecreasing sequence of real numbers converges if and only if it is bounded
from above. If a nondecreasing sequence converges, it converges to its least
upper bound.

= If a non-decreasing sequence converges it is
bounded from above.

= If a non-decreasing sequence is bounded
from above it converges.

= In Example 13 (b) {%, 2/3, %, 4/5 ,
...,h/(n+1),...} is bounded by the least upper
bound M = 1. Hence according to Theorem 6,
the sequence converges, and the limit of

convergence is the least upper bound 1.

25

DEFINITIONS Infinite Series, nth Term, Partial Sum, Converges, Sum
Given a sequence of numbers {a,}, an expression of the form

i T @ T3+ Ty

is an infinite series. The number a, is the nth term of the series. The sequence

{5} defined by
8§51 = a4

S =4y + az
n

Sy =ay+ay+-+a,= Ea;{
k=1

is the sequence of partial sums of the series, the number s, being the nth partial
sum. If the sequence of partial sums converges to a limit L, we say that the series
converges and that its sum is L. In this case, we also write

oo
agta+--ta,+--= Zan=L.
n=1

If the sequence of partial sums of the series does not converge, we say that the
S series diverges.

27

11.2

Infinite Series

26

Example of a partial sum formed by a

sequence {a,=1/2"1}

Suggestive
expression for

Partial sum partial sum Value
First: 51 =1 2.~ 1 1
; . L oy 3
Second: s;=1+ 3 2 > >
- = | . oy ¢ 4
Third: s3=1+ 7t 17 2 ) 3

_ 1.1 1 1 2" — 1

nth: s, =1+ >t 2 PYET 2 Y =1

28



®

T T
_— e

0 1 172 1M 2

FIGURE 11.5 As the lengths 1, ,g, ;4, 1,/3, . are added one by one, the sum
approaches 2.

29

Geometric series

= Geometric series are the series of the form
a+ar+arr+arr+ .  +tar'+. .= v,

= aandr=a,,/a, are fixed numbers and a=0. r
is called the ratio.

= Three cases can be classified: r< 1, r>1,r=1.

If |r| < 1, the geometric series @ + ar + ar® + -+ + ar" ' + -
toa/(1 — r):

converges

[+5]
E]ar”_]‘——lir, |r| < 1.
=

If|r| = 1, the series diverges.

31

‘ Short hand notation for infinite series

Z Za orZa

= The |nf|n|te serles is either converge or
diverge

30

Proof of >art=—  for |r|<1
Assume r # 1.
S":Zarkil —a+ar +ar’ +..+ar""

2 n-1 2 3 n-1 n
rs”:r<a+ar +ar + ...+ar )=ar+ar +ar + ...+ ar + ar

sn—rsn:a—arnza(l—rn)
sﬂza(l—r")/(l—r)
a(l—rn)

If [#|<1: lim s = lim =

n— o n—» o l_r

(By theorem 5.4,1im r"=1 for |r|<1)
1_},- n— o

32



| For cases 7| =1

a(l—r")

1-r

If [7[>1: lim s = lim = o (Because | 7' |> o if [7>1

n—> © n—> ©

n-1

1 2
Ifr=l:sn=a+ar +ar +...+ar =na

1imsn=1imna:a1imn:oo

n—> 0 n—> © n— o

33

‘ Example 2 Index starts with #=0

. = (=1)"5
= The series Z( ) :io__+__
- 47 4

is a geometric series with a=5, r=-(1/4).
= It converges to s,.= a/(1-r) = 5/(1+1/4) = 4

= Note: Be reminded that no matter how complicated
the expression of a geometric series is, the series is
simply completely specified by rand a. In other
words, if you know r and a of a geometric series,
you know almost everything about the series.

EXAMPLE 1  Index Starts withn = 1
The geometric series witha = 1/9andr = 1/3 is
1,1 1 _l(1Y'__ 19 _1
9 T 27 T3 +"",§9(3) ~1=(pB) &
34
Example 4
5232323 = 523=5.23

Express the above decimal as a ratio of

two integers.

5.23=5+["]
[*]=0.23+0.0023+0.000023 + -
23

=023 (m) = ()

100

(**)=1+0.01+0.0001+ = - -

23100 23
5.23=——— = =

35

100 99 99
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Example 5 Telescopic series

1

Find the sum of the series Z

n(n+1)
Solution
1 1 1
n(n+1) :n__ (n+1)
* 1 1 1
£ :Z n(n+l):§|n__ (n+1)

Note

In general, when we deal with a series, there are
two questions we would like to answer:
(1) the existence of the limit of the series *- = Z “

(2) In the case where the limit of the series exists,
what is the value of this limit?

The tests that will be discussed in the following
only provide the answer to question (1) but not
necessarily question (2).

37
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Divergent series

Example 6

Zn2:1+2+4+16+...n2+...

diverges because the partial sums s grows beyond every number L

n 1 2 3 n
diverges because each term is greater than 1,

2 3 4 n+1
= —+ —+ —+ .+
1 2 3 n

+...>Zl—> £
n=1

38

Theorem 7 (not very useful to test the
convergence of a series)

THEOREM 7

oo
If E a, converges, then a, — 0.

n=1

Let S be the convergent limit of the series, i.e.
lim, 5., S,=Y«¢=3S

When n is Igrge, S,and s, , are close to S
This meansa,=s,-s,,2>a,=S-S=0as
n—>e

40



The nth-Term Test for Divergence

[a 8}

' a, diverges if lim a, fails to exist or is different from zero.
n—00

n=1

Comment: useful to spot almost instantly
if a series is divergent.

| Example 7 Applying the nth-term test

©

2 . . 2 . . . .
(a)z n~ diverges because lim n” = o, i.e. lim a  fail to exist.
1 n-—» 0 n—
n=

n+1 on+1
diverges because lim

n n— o n

=1=#0.

)

n— o

(c)z (—I)H1 diverges because lim (—1)”+1 fail to exist.
=1

—n —n _
diverges because lim =—= 0 (I'Hopital rule)
"o 2p + 5 2

()Y

1 2n+5

41

‘ A question

= Will the series converge if a,>0 as n—>«?

42

| Example 8 4,20 but the series
diverges

1 1 1 1 1 1 1 1 1 1
I+ —+—+ —+ —+ —+ —+ ... + —+ +.—+
2 2 4 _4 4 _4 2t 2" 2" 2]
2 terms 4 terms 2" terms
= The terms are grouped into clusters that
add up to 1, so the partial sum increases

without bound —>the series diverges
= Yeta,=2"-> 0

43
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THEOREM 8
If Ya, = Aand X b, = B are convergent series, then

1. Sum Rule: >(a, + b)) = Za, + 2b,= A+ B .

2. Difference Rule: >(a, — b)) =>a, — 2bp,=A4— B - QueStlon'

5. Constnt Mulple Rule: Sha, = kZa, = kA (Any number ) « If Sa, and b, both diverges, must X(a,+b,)
diverge?

= Corollary:

= Every nonzero constant multiple of a divergent
series diverges

= If Za, converges and Zb, diverges, then
X(a,+b,) and X(a,- b,) both diverges.

45

EXAMPLE 9  Find the sums of the following series.

w3 l-1_ (1 1
(a) 2 n—1 = E ( n—1 o _Fl_)
n=1 6 n=1 2 6
= Z 2"_] —_ ; 6»‘1—| ifference Rule
o - 1[1/2) - 1 1(1/6) Geometric serics witha = landr = 1/2. 1/6
—w B
= 5 3
s &
=3 The Integral Test
(h) E % = 42 % Constant Multiple Rule
n=0 n=0
- 1 Geometric series with a l,r=1/2
(= (1/2)) | | |

=§

47



Nondecreasing partial sums

Suppose {a,} is a sequence with a, > 0 for all n
Then, the partial sum s,,,=s,*ta, 2 s,
= The partial sum form a nondecreasing sequence

n

{s, = Z a,} ={8,5,,8,,..,8 ...}

Theoremu6, the Nondecreasing Sequence Theorem
tells us that the series >« converges if and only if
the partial sums are bounded from above.

49

Example 1 The harmonic series

The series i1__l_+1_+(1_+1_\+(1_+1_+1_+1_\+/1_+1_+ +1_\+
=PRI CRPY M CRFAEATY M CASTIAITS M
diverges. 2 4 5 1
T N2 T2
Consider the sequence of partial sum {s,,s,.5,,5,., " .5, '}
s, =1

s,=s, +1/2>1-(1/2)
s, =5, +(1/3+1/4)>2-(1/2)
sg=8, +(1/5+1/6+1/7+1/8)>3-(1/2)

s> k-(1/2)

The partial sum of the first 2« term in the series, s, > k/2, where
k=0,1,2,3...

This means the partial sum, s, is not bounded from above.
Hence, by the virtue of Corollary 6, the harmonic series diverges

51

Corollary of Theorem 6

. o0 . . iy .
A series X ,=; @, of nonnegative terms converges if and only if its partial sums
are bounded from above.

Comment: To test whether a non-decreasing
sequence converges, check whether its partial sum in
bounded from above. If it is, the sequence converges.

This is particular useful for sequence with

a —> 0asn—> o
for which neither the n-term test nor theorem 7 can be
used to conclude the divergence / convergence.

50

THEOREM 9 The Integral Test

Let {a,} be a sequence of positive terms. Suppose that a, = f(n), where f is a
continuous, positive, decreasing function of x for all x = N (N a positive inte-
ger). Then the series Eiiw a, and the integral f ;.-)0 f(x) dx both converge or both
diverge.
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EXAMPLE 3  The p-Series

Show that the p-series

(p a real constant) converges if p > 1, and diverges if p < 1.

53

Ifp<l,thenl —p > 0Oand

I |
[x”dx_l—p

The series diverges by the Integral Test.

lim (b7 — 1) = o0,
h—00

55

If p > 1,then f(x) = 1/x” is a positive decreasing function of x. Since

00 o0 h
f lpdx = / xPdx = lim
1 ¥ 1 b
|

= lim (L_ - 1)
] = P b—oo \phP 1
1 1 b~ ' — 00 as h—> 0

=10 V=7"7

x—p-l—]
=

1

because p — 1 > 0.

the series converges by the Integral Test.

54

If p = 1, we have the (divergent) harmonic series

LU ST S
L 45 + g+t g+

The p-series with p = 1 is the harmonic series

We have convergence for p > 1 but divergence for every other value of p

cO
1 1 1 1 1
;np:1p+

2p_|_3p_|_..._|_n_p_|_...

56



‘ Example 4 A convergent series

o0 o0 1
doa, =3 — is convergent by the integral test:
_ o n +1

1
Letf(x)=—; ,s0 that f(n) =a, =—;
x  +1 n- +1

. f(x) is continuos,

positive, decreasing for all x >1.

- ” 1 . ~1 b T T T
I f(x)dx:j - dx =...=lim tan x] - _Z_Z
! L x™ +1 b— o 1 o) 4 4
o0 l .
Hence, converges by the integral test.
o n +1
57

Comparison Tests

59

‘ Caution

= The integral test only tells us whether a given

series converges or otherwise

= The test DOES NOT tell us what the
convergent limit of the series is (in the case
where the series converges), as the series
and the integral need not have the same
value in the convergent case.
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THEOREM 10 The Comparison Test

Let > a, be a series with no negative terms.

(a) X a, converges if there is a convergent series >.c,

with a, = ¢, forall n > N, for some integer N.

—

(b) Xa, diverges if there is a divergent series of

nonnegative terms > d, with
a, = d, for all n > N, for some integer N.

60



’7 EXAMPLE 1 Applying the Comparison Test

(a) The series

diverges because its nth term

s 1 1
Si—1_ 17
5

n_

is greater than the nth term of the divergent harmonic series.

61

EXAMPLE 1 Applying the Comparison Test
(b) The series

< | 11,1
%E:1+ﬁ+i+i+”'

converges because its terms are all positive and less than
or equal to the correspon- ding terms of

2

The geometric series on the left converges and we have

< 1 ]
1+ =1+——"=3,

1+2%=1+1+l+%+---.
ﬂ=02 2

‘ Caution

= The comparison test only tell us whether a
given series converges or otherwise

= The test DOES NOT tell us what the
convergent limit of the series is (in the case
where the series converges), as the two
series need not have the same value in the
convergent case

62

THEOREM 11  Limit Comparison Test
Suppose that a, > 0 and b, > 0 foralln = N (N an integer).

L. Iflim 2=c¢> 0, then Xa, and X b, both converge or both diverge.

n—0od bn

2, If 11'n;1o % = 0 and X b, converges, then X a, converges.

3. If lim & = o and X b, diverges, then X a, diverges.

n—o0 bn

63
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EXAMPLE 2  Using the Limit Comparison Test
Which of the following series converge, and which diverge?
5. . D S 2+l s 2+l
~ 4 + — o e saa = — =
@4+otiet s ;(n + 1)? En? F2n+ 1
] o

1 1 1 1
) p+3+g+qs+= Deoy

a=1

Solution

(a) Let @, = (2n + 1)/(n* + 2n + 1). For large n, we expect a, to behave like
2n/n* = 2/n since the leading terms dominate for large , so we let b, = 1/, Since

b= S 1 diverges
=1 n=1
and

: Gy . 2”2 +n
lim — = lim — =
= Oy p—wpt + 2n + 1

—— Xa, diverges by Part 1 of the Limit Comparison Test. We could just as well have
taken b, = 2/n, but 1/n is simpler.

65

‘ Caution

= The limit comparison test only tell us whether
a given series converges or otherwise

= The test DOES NOT tell us what the
convergent limit of the series is (in the case
where the series converges)

67

éxample 2 continued

(b) Let a, = 1/(2" — 1). For large n, we expect a, to behave like 1/2", so we let
b, = 1/2". Since

and

oo 00 l

2bn = 2, 55 converges

n=1 n=1

. G 5
L S
= lim — L __
T = ()

e= ] s

> a, converges by Part 1 of the Limit Comparison Test.

66

11.5

The Ratio and Root Tests

68



EXAMPLE 1  Applying the Ratio Test

Investigate the convergence of the following series.

THEOREM 12 The Ratio Test

Let X a, be a series with positive terms and suppose that

00 o0
lim a — pP. (a) E 3 (b) E n'n!
n—00 N n=0 n=1 """
Then
(a) the series convergesif p < 1,
(b) the series diverges if p > 1 or p is infinite,
(c) the test 1s inconclusive it p = 1.
Solution Solution
(a) (b)
For the series 3~ (2" + 5)/3", Ifa, = (2:’1)‘! then a, ., = (2n + 2)!
n+1 n+1 h:n. (H =+ 1)‘(” T 1)'
aper _ (2" +5)/3" 1 2l 4 s . ,
&y (2;1 + 5)/3;3 - 3 M 4 5 Ay+1 _ nn(Zn + 2)(2?? + 1)(27’!)
b (n+ 1)!(n + 1)!(2n)!
_ 1 (2+5-27") [ 1.2_2

(mn+Dn+1) n+1

The series converges because p = 2/3 is less than 1.
The series diverges because p = 4 is greater than 1.
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‘ Caution

= The ratio test only tell us whether a given THEOREM 13 The Root Test
SerieS ConvergeS or otherwise Let Y a, be a series with a, = 0 for n = N, and suppose that
lim Va, = p.
= The test DOES NOT tell us what the —_ B
convergent limit of the series is (in the case ‘ ;
) (a) the series converges ifp < 1,
where the series Convel’geS) (b) the series diverges if p > 1 or p is infinite,

(c) the test is inconclusive if p = 1.

73 74

EXAMPLE 3 Applying the Root Test
Which of the following series converges, and which diverges? 1 1 6

@3% 32 (c)i( 1 )
n=1 2" n=1 n2 n=1 Il +n

Solution
1/ \2
2! nz n ﬁ!z _ W _ (\/?;) 1
(a) 2 o converges because W= 3 3= 1. ) .
= o Alternating Series, Absolute and

Conditional Convergence

a2 . W2l _ 2 2
(b) E 7 diverges because 37 ” 0 = L,
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| Alternating series

= A series in which the terms are alternately
positive and negative

11 1 1 (-1)
- —+ — —+ —+ 7" + +
2 3 4 5 n
o1 ~1) 4
-2+1- —— —+ +( ) +
2 4 8 2"

THEOREM 14 The Alternating Series Test (Leibniz’s Theorem)
The series

o0

D (I =i —~ w5 + uy—aeg +

n=1
converges if all three of the following conditions are satisfied:
1. The u,’s are all positive.

2.ty = uy4 foralln = N, for some integer V.

3. u,—0.

77

THEOREM 15  The Alternating Series Estimation Theorem
If the alternating series Zf__] (—1)""ly, satisfies the three conditions of
Theorem 14, then forn = N,

Sp = — s + -+ (=1,

approximates the sum L of the series with an error whose absolute value is less
than u,,+ |, the numerical value of the first unused term. Furthermore, the remain-
der, L — s, has the same sign as the first unused term.

n+1

(=1
The alternating harmonic series 2 — —
converges because it satisfies the three
requirements of Leibniz’s theorem.

78
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EXAMPLE 2  We try Theorem 15 on a series whose sum we know:

I O 1 1 1

oo
Seaploigeddal Lol Lh
n= 1

24 8716 32 64 128} 256

The theorem says that if we truncate the series after the eighth term, we throw away a total
that is positive and less than 1/256. The sum of the first eight terms is 0.6640625. The sum
of the series is

N S
1-(-12) 32 %

The difference, (2/3) — 0.6640625 = 0.0026041666..., is positive and less than
(1/256) = 0.00390625.
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DEFINITION Absolutely Convergent

A series 2.a, converges absolutely (is absolutely convergent) if the correspon-
ding series of absolute values, >|a,|, converges.

DEFINITION Conditionally Convergent
A series that converges but does not converge absolutely converges conditionally.

Example:

The geometric series

RS N T .
Z | -— =l-—4+ —— —+ converges absolutely since
72) T

the correspoinding absolute series

Y
20 J

o

l 1 |
+ —+ converges
8

) |~

n=1

81

Example:

The alternative harmonic series

n+l
(-1 1 1 1
Z ( ) =1-—+ ———+ """ converges (by virture of Leibniz Theorem)
ol n 2 3 4

But the correspoinding absolute series

(=)

Hence, by definition, the alternating harmonic series z
n=1 n

THEOREM 16 The Absolute Convergence Test

o0 oo

If > |a,|converges, then > a, converges.
n=] n=1

converges conditionally.
82

In other words, if a series converges
absolutely, it converges.

@

1
In the previous example, we shown that the geometri ¢ series Z 1 L— —J
2

converges absolutely. Hence, by virtue of the absolute convergent test, the series

©

"
- converges.
2| zJ

83

‘ Caution

= All series that are absolutely convergent
converges.

= But the converse is not true, namely, not all
convergent series are absolutely convergent.

= Think of series that is conditionally
convergent. These are convergent series that
are not absolutely convergent.
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F EXAMPLE 3  Applying the Absolute Convergence Test F EXAMPLE 3  Applying the Absolute Convergence Test
(2) (b)

—

o0

0
1 1,1 1 ; ; sinn _sinl _ sin2 | sin3
PR st CH SNV R g e bis, —

For ;( 1) . =391 T the corresponding series of absolute For ,; 2 1 + 4 + 9 F g
values is the convergent series ) ) .

@ {11 the corresponding series of absolute values 1s

=ttt . .

;nz 49 16 2 | sing |sin1|  |sin2]| A

The original series converges because it converges absolutely. = n? 1 4 ’

which converges by comparison with 3~ (1/n?)
because [sinn| = 1 for every n.

The original series converges absolutely; therefore it converges.

85 86

1. The nth-Term Test: Unless a, — 0, the series diverges.
THEOREM 17  The Rearrangement Theorem for Absolutely 2. Geometric series: 2ar” converges if || < 1; otherwise it diverges.
Canvergent Series 3. p-series: 2 1/n” converges if p > 1; otherwise it diverges.

If Eiil a, converges absolutely, and by, by, ..., b,, ... s any arrangement of the 4. Series with nonnegative terms: Try the Integral Test, Ratio Test, or Root
sequence {a,}, then 2 b, converges absolutely and Test. Try comparing to a known series with the Comparison Test.

00 00 5. Series with some negative terms: Does X |a, | converge? If yes, so does

Ebn = Zﬂn— > ay, since absolute convergence implies convergence.

P o 6. Alternating series: > a, converges if the series satisfies the conditions of

the Alternating Series Test.
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11.7

Power Series

89

EXAMPLE 1 A Geometric Series

Taking all the coefficients to be 1 in Equation (1) gives the geometric power series

o0
2‘6,:"=1+x+x2+-»-+x“+---.

n=

This is the geometric series with first term 1 and ratio x. It converges to 1/(1 — x) for

[x| < 1. We express this fact by writing

1

=l+x+x>+--+x"+-
l—x

. -l1<x<l.

Mathematica simulation

(3)

91

DEFINITIONS Power Series, Center, Coefficients
A power series about x = 0 is a series of the form

o0

Seax" =cotax +ext ot x" e (1)
n=0

A power series about x = a is a series of the form

oo

dealx—a)y=co+abx—a)+tax—al+ - tex—a)l+- (@

n=0

in which the center a and the coefficients ¢, ¢, ¢.. ... ¢y ... are constants.

— FIGURE 11.10 The graphs of f(x) = 1/(1 — x) and four of

90

- _ .

yg=1+x+x?+x* +x*

-1 0 1

its polynomial approximations (Example 1). 92




EXAMPLE 3  Testing for Convergence Using the Ratio Test Solution  Apply the Ratio Test to the series X|u, |, where u, is the nth term of the series

For what values of x do the following power series converge? 10 question.
- T ¥ A a wic| PR x| x|
@ S Eax-gag o @ %] = =i
0 5 e 53 The series converges absolutely for |x| < 1. It diverges if |x| > 1 because the nth
(b) ;(_1) m—1_* "3 tF term does not converge to zero. At x = 1, we get the alternating harmonic series
o . s 1=1/2+1/3-1/4+ -+, which converges. At x = —1 we get =1 = 1/2 -
© > i‘;—, =1+x+ % + x—, + .- 1/3 = 1/4 = -+, the negative of the harmonic series; it diverges. Series (a) con-
":00 ' ' ' verges for —1 < x < | and diverges elsewhere.
@ Dnx"=1+4x+2x2+ 3> +--- " | .
n=0 = 0
(b) (c)
ntl | |x|
un-H 2” - ] ) ) uﬂ'l'l _ X n: _
= oy = | = — () for every x.
| Tt R Uy (n+ 1) 2" n+1 ty
The series converges absolutely for +* < 1. It diverges for * > 1 because the nth The series converges absolutely for all x.
term does not converge to zero. At x=1 the series becomes 1 - 1/3+ i i

[/5=1/7+ -+, which converges by the Alternating Series Theorem. It also con-
verges at x = —1 because it 15 again an alternating series that satisfies the conditions
for convergence. The value at x = —1 1 the negative of the value at x = 1. Series (b)
converges for —1 < x < 1 and diverges elsewhere.

(d)

Up+1
Uy

(n+ 1)

i

n'x

The series diverges for all values of x except x = 0.

® > X
-1 0 I o
0

4 | A

> X

= (n + 1)|x|— o0 unless x = 0.



The radius of convergence of a power
series

THEOREM 18  The Convergence Theorem for Power Series

oo
If the power series Ea,,x” =aqy + ax + a3x2 + --- converges for
n=0

x = ¢ # 0, then it converges absolutely for all x with |x| < |c|. If the series
diverges for x = d, then it diverges for all x with|x| > |d|.

COROLLARY TO THEOREM 18
The convergence of the series Xc,(x — a)" is described by one of the following
three possibilities:

1. There is a positive number R such that the series diverges for x with
|x — a| > R but converges absolutely for x with [x — a| < R. The series
may or may not converge at either of the endpoints x = a — R and
x=a+R.

2. The series converges absolutely for every x (R = 0).

3. The series converges at x = a and diverges elsewhere (R = 0).

97

R is called the radius of convergence of the
power series

= The interval of radius R centered at x = a is
called the interval of convergence

= The interval of convergence may be open, closed,
or half-open: [a-R, a+R], (a-R, a+R), [a-R, a+R)
or (a-R, a+R]

= A power series converges for all x that lies within
the interval of convergence.

IxXa|<R
98

How to Test a Power Series for Convergence

1. Use the Ratio Test (or nth-Root Test) to find the interval where the series
converges absolutely. Ordinarily, this is an open interval

#=@| <R of @=Rxx=x4=*R

2. Ifthe interval of absolute convergence is finite, test for convergence or diver-
gence at each endpoint, as in Examples 3a and b. Use a Comparison Test, the
Integral Test, or the Alternating Series Test.

3. If the interval of absolute convergence isa — R < x < a + R, the series
diverges for |x — a| > R (it does not even converge conditionally), because
the nth term does not approach zero for those values of x.

99

See example 3 (previous slides, where we

_determined their interval of convergence)

100




THEOREM 19 The Term-by-Term Differentiation Theorem

If Zeu(x — a)" converges fora — R < x < a + R for some R > 0, it defines
a function f:

a—R<x<a+R.

fG) = %cn(x - a),

Such a function f has derivatives of all orders inside the interval of convergence.
We can obtain the derivatives by differentiating the original series term by term:

fi(x) = Xnc,(x — a)"!
n=1

o0

['(x) = Ein(n = Deslx —a) ™,

=
and so on. Each of these derived series converges at every interior point of the in-
terval of convergence of the original series.

101

‘ Caution

= Power series is term-by-term differentiable

= However, in general, not all series is term-by-
term differentiable, e.g. the trigonometric
series (") jsnot (it’s not a power series)

n=1

103

o0
) = En(n — 1)x"?
n=2

EXAMPLE 4
Find series for f'(x) and f"(x) if

Applying Term-by-Term Differentiation

f(x)=ﬁ=l+x+x2+x3+x4+~‘+x”+~-
= ¥3% —l<z<1
n=0
Solution
f’(x)=(1 : )2=1+2x+3x2+4x3+---+nx"“+---
- X
o0
= Enx"_l, -1<x<1
n=|
() 1 - )3=2+6x+12x2+ ot n(n = 1"+
—ig

-1l<x<1

102

A power series can be integrated term by
term throughout its interval of

(‘ﬂﬂ‘fP?’gPﬂ ce

THEOREM 20
Suppose that

The Term-by-Term Integration Theorem

x) = ch(x —a)
n=0

converges fora — R < x < a + R (R > 0). Then

a) n+l

Ef’" n+1

converges fora — R < x < a + Rand

o0 (x _ a]n+l

f(x) dx = Ec,, =7 16

fora—- R<x<a+R.




EXAMPLE 5 ASeriesfortan™x, -1 =x=1

Identify the function
g o EXAMPLEG6 ASeriesforln(1 +x), -1 <x=1
=g T By ISR .
The series
Solution  We differentiate the original series term by term and get T L 5= ] —if & B2 = 33 donen
f’(x}=l—xz+x4—x6+---, —l=<=x < 1.
This is a geometric series with first term 1 and ratio —x2, so converges on the open interval —1 < t < 1. Therefore,
(o T R i 2T N i i
)= -1 = Pelgin ek e g
1 —(=x3) 1+4x? In(l + x) L T tdl‘ t 3 + 3 i + (} Theorem 20
We can now integrate f'(x) = 1/(1 + x?) to get 3 5 P
X x X
=x—H+ -, —l<x<I1,
ff'(x)dx=f L anlx + C. LU T ’ k Sarsd
J 1 +x
The series for f(x) is zero when x = 0, so C = 0. Hence It can also be shown that the series converges at x = 1 to the number In 2, but that was not
; o guaranteed by the theorem.
x5 % X =
f(x]=x—?+?—7 oo =tan'x, =1 < x< 1. (7)
— In Section 11.10, we will see that the series also converges totan™ ' x at x = +1, —_
105 106

EXAMPLE 7  Multiply the geometric series

)

:5xn =1 +x+xd et p? fone= ——l——‘ for|x| < 1,
=, i

by itselfto get a power series for 1/(1 = x)*, for|x| < 1.
THEOREM 21 The Series Multiplication Theorem for Power Series

Solution Let

If A(x) = Zpeoapnx" and B(x) = 3,—qb,x" converge absolutely for |x| < R, o )
A) = Dax" =1 +x+x2+ -+ 2"+ =1/(1 —x)
and =4
L Blxy= Dbx"=1+x+x?+ o+ x"+ o= 1f(1 —=x)
¢, = agh, + ajb,—y + azbp_a + -+ a, by + a,by = Eagb”_;,, e
k=0 and
then 3,—¢ c,x” converges absolutely to A(x)B(x) for|x| < R: Gpht st bbb Sty

#n+ | terms

2 2 i =141+t 1=n+1
(Ea,,x”)- (Eb,,x”) = S, 1
a=0 n=0 n=0

Then, by the Series Multiplication Theorem,

Alx)+Blx) = Ec,;_r" = E(n + 1"
n=0 n=1

=l+2x+3+4+F I+

is the series for 1/(1 — x)?. The series all converge absolutely for x| < 1.
Notice that Example 4 gives the same answer because

g(;) e 1
dx\l—x/) (1 -x?
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11.8

Taylor and Maclaurin Series

109

Finding the Taylor series

representation

In short, given an infinitely differentiable function f(x),
we would like to find out what is the Taylor series
representation of f(x), i.e. what is the coefficients of
bn in>Y b, (x-a)

In addition, we would also need to work out the
interval of x in which the Taylor series
representation of f(x) converges.

In generating the Taylor series representation of a
generating function, we need to specify the point
x=a at which the Taylor series is to be generated.

111

Series Representation

In the previous topic we see that an infinite series
represents a function. The converse is also true, namely:

A function that is infinitely differentiable f(x) can be
expressed as a power series s s (v - o)’

We say: The function f(x) generates the power series S b0

The power series generated by the infinitely differentiable
function is called Taylor series.

The Taylor series provide useful polynomial
approximations of the generating functions

110

DEFINITIONS Taylor Series, Maclaurin Series
Let f be a function with derivatives of all orders throughout some interval con-
taining a as an interior point. Then the Taylor series generated by f at x = a is

oo g(k) ,
I‘; 7 kga) (e —af= Jld) + Flle—a) + fz(!a) (x — a)?

B AR(C)

+ - .
B}

(= g}t $=e,

The Maclaurin series generated by f is

2. %) f7(0)
Z g o R

f(n)(o) p

X -+

x* = f(0) + f'(0)x +

the Taylor series generated by f at x = 0.

Note: Maclaurin series is effectively a special case of Taylor

series with a = 0.
112




‘ Example 1 Finding a Taylor series

= Find the Taylor series generated by
f(x)=1/x at a= 2. Where, if anywhere, does
the series converge to 1/x?

= fix) = x5 F(x) = -x2, f()(x) = (-1)" n! x(r*1)
= The Taylor series is

2 2 (=1) ket
@) ) =Z( ) kix
k! - k!

(k)
J (x— 2yt =

®
k=0
x=2

—( k+)

(1) 27 (-2 4 (c1) 27 (2= )+ (—1) 27 (k= 2) + L (-1) 2

4oy (kt1)
+ ...

(x-2)"+ ..

N 5 A PPN K Ak
1 =(x=2)H4F(x=2)y 8F () (x=2)7
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| Taylor polynomials

= Given an infinitely differentiable function f, we can approximate f(x)
at values of x near a by the Taylor polynomial of f, i.e. f(x) can be
approximated by f(x) = P,(x), where

k=n (k)
P”(x):zf (a)(x—a)k

k=0

k!

_ fét!z) . f'l(!a)(x_ o)+ f;(!a)(x_ oL 3!<a>(x_ AT n!(a) (c-a)’

= P,(x) = Taylor polynomial of degree n of f generated at x=a.

= P,(x) is simply the first n terms in the Taylor series of f.

= The remainder, |R,(x)| = | f(x) - P,(x)| becomes smaller if higher
order approximation is used

= In other words, the higher the order n, the better is the
approximation of f(x) by P,(x)

= In addition, the Taylor polynomial gives a close fit to f near the point
x = a, but the error in the approximation can be large at points that
are far away.

" f“()(?,) k 2 k k (k+1)

Z (x=2) =1/2-(x=-2)/4+(x-2) /8+...(—1) (x-2) /2 + ...
k=0 k!

This is a geometric series with »r = —=(x —-2)/2,

Hence, the Taylor series converges for |r|=|(x —2)/2|<1,

or equivalently,0 < x < 4.

o (k)
Zf (2)(x—2)k: a 1/2

~ l—r:1—(—(x—2)/2)

1
X

k -
= the Taylor series 1/2 — (x—2)/4+ (x—-2)"/8+...(-1) (x=2) 72"+ .

1
converges to — for 0 < x < 4.

X
*Mathematica simulation

114

DEFINITION  Taylor Polynomial of Order n
Let f be a function with derivatives of order & for k = 1, 2,..., N in some inter-
val containing ¢ as an interior point. Then for any integer n from 0 through A, the
Taylor polynomial of order n generated by f at x = a is the polynomial
: fu(a)
P,,(.r)=f(a)+f{a)(x—a)+ 21 (.x—a)2+---
F¥(a)
k!

j{"}(a) "

= (& —"a)y".

+

x—ayf+-+
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Example 2 Finding Taylor polynomial
for efat x =10

f(x)y=e > fM(x)=e"

k=n (k) 0 0 0 0 0
f(x) k€ o € 4 e 5, e 5 €
Pn(x)zz— X =—Xx +—Xx +—Xx 4+ —x +.—x
k! 0! 1! 21 3! n!
k=0 x=0
2 3 n
x x x . . . X
=14+x+—+4+ —+...— This is the Taylor polynomial of order n for e
2 3! n!

If the limit n — o is taken, P (x) — Taylor series.

2 3 n ) n
) . X X X X
e Taylor series for e is X+ —+ —+...—+..= —
The Tayl f 1+ x+ + + + ,
2 3! n! oo 1!

In this special case, the Taylor series for e’ converges to e for all x.

FIGURE 11.12 The graph of f(x) = &'
and its Taylor polynomials
Piix)=1+x

Py(x) = 1 + x + (x%/2!)

Py(x) = 1 + x + (x%/21) + (x*/3!).
Notice the very close agreement near the
center x = 0 (Example 2).

(To be proven later)

*Mathematica simulation
118

117
EXAMPLE 3  Finding Taylor Polynomials for cos x ‘
Find the Taylor series and Taylor polynomials generated by f(x) = cosxatx = 0.
Solution The cosine and its derivatives are
flx) = cos X, )= —sinyx,
) = —Cos X, ) = sinx,
f(z"’(a\') = (—1) cosx, fM+l,(I) = (—1)"! sinx.
At x = 0, the cosines are | and the sines are 0, so
j(Zm(o] = (—l)'. /ﬂn-ll(o) =0.
The Taylor series generated by f at 0 is
; £7(0) /"(0) ")
f(0) + f'(0)x + BT x? T'\J + oot i x" +
2 4 2
= o P AT SOOI A [ L7, 5.
=1+0'x 2!+0.\'+4!+ +(1)[2")!+
o3 DA
=I5 I
This is also the Maclaurin serics for cos x. In Section 11.9, we will see that the series con-
verges to cos x at every x.
Because f"*1(0) = 0, the Taylor polynomials of orders 27 and 2» + 1 are identical:
2 4 2
_ _ X x x
Pay(x) = Pppar(x) =1 — artg ot =1r ol
Figure 11.13 shows how well these polynomials approximate f(x) = cosx near x = 0.
Only the right-hand portions of the graphs are given because the graphs are symmetric
about the y-axis. 1o

FIGURE 11.13 The polynomials

n(—1)k2k
converge to cos x as # —> 0, We can deduce the behavior of cos x
arbitrarily far away solely from knowing the values of the cosine

ﬂnd itS derivatives atx =0 (Example 3). *Mathematica simulation
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11.9

Convergence of Taylor Series;
Error Estimates

Taylor's Formula

If f has derivatives of all orders in an open interval / containing a, then for each
positive integer n and for cach x in 7,

121

16) = @ + f@ - @) + L - ap 4
+ fn—fa) (x — a) + Ry(x), (1
where
(n+1)
R,(x) = f+—(lc)' (x — a)"*! for some ¢ between ¢ and x. 2
(n +1)! R, (x) is called the remainder of order n

Y
f(a)* ....... °
Sx) .

123

When does a Taylor series converge to its
generating function?

ANS:

The Taylor series converge to its generating
function if the [remainder| =

IR,(¥)| = [f(x)-P,(x)] 2 0 as n>e

122

fix) =P, (x) + R, (x) for each x in .

If R (x) 20 as n 2w, P (x) converges to f(x),
then we can write

o f(k)
T .-
f(x) ,Lann(x) kZ:‘,O -
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‘ Example 1 The Taylor series for ¢
revisited

= Show that the Taylor series generated by
f(x)=eX at x=0 converges to f(x) for every
value of x.

= Note: This can be proven by showing that
|R,|= 0 when n >

125

Combining the result of both x >0 and x <0

n+l

[R,(x)|< e’ when x >0,

(n+1)!

n+l

IR, (x)I< when x < 0

(n+1)!

Hence, irrespective of the sign of x,lim [ R (x)|=0 and the series

n— o
© n

X
> — converge to e for every x.

—o n!
THEOREM 5 "~°

The following six sequences converge to the limits listed below:

S =0 THEOREM 1
2. lim Wh = Let {a,} and {b,} be sequences of real numbers and let 4 and B be real numbers.
n—00 The following rules hold if lim,—« @, = 4 and lim,—« b, = B.
3 lmx"=1 (x>0 1. Sum Rule: limy—co(an + by) = 4 + B
n—
4 lim x" =0 (x| < 1) 2. Difference Rule: lfm,,ﬁou(a,, —b)=4-B
=00 3. Product Rule: lim,seola, b,) = A-B
4. Constant Multiple Rule:

5. ]iﬂgo (] " %> o g Pty lim, »eolk-b,) = k- B (Any number k)
fhre

B

i Quotient Rule: lim,—oo ? =5 if B #0
5 X n
6. lim =0 (any x)

n—oco 1!

2 3 n

N X X X
e =l+x+—+—+..—+ R (x)
2! 3! n!
A .
R (x)=——"x for some ¢ between 0 and x
(n+1)!
R, (x)|= "
(n+1)!
Ifx>0,0<c<ux f } }
0 c X
n+l c x n+l
0 c x X | | e n+l
= l=e <e <e — < X <
(n+1)!| |(n+1)! (n+1)!
n+1 O
- |R"(x)|< e” for x > 0. e
(n+ 1)
Ifx<0,x<c<0 y:ex
) ) , | o » |eoxn+1 | L | 1 »
= e <e <e — x < = =
|(n+1)! |(n+l)!| |(n+1)!| (n+ 1)
nt e*
|«
- |R”(x)|< forx <0
(1)L 1 1
=)~ T T
X C
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THEOREM 23 The Remainder Estimation Theorem

If there is a positive constant M such that | f""V(¢)| =< M for all # between x and
a, inclusive, then the remainder term R,(x) in Taylor’s Theorem satisfies the in-
equality

|X — a|n+]

(n + 1)!

If this condition holds for every n and the other conditions of Taylor’s Theorem
are satisfied by f, then the series converges to f(x).

|Ru(x)| = M

In Formulas (3) through (6), x remains fixed as n — 0.
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EXAMPLE 3

Show that the Taylor series for cos x at x = 0 converges to cos x for every value of x.

The Taylor Series for cos x at x = 0 Revisited

Solution ~ We add the remainder term to the Taylor polynomial for cos x (Section 11.8,
Example 3) to obtain Taylor’s formula for cos x with n = 2k:

2 4 2%
= e O R
cosx = | 2 + 7 + (—1) 201

+ Ru(x).

Because the derivatives of the cosine have absolute value less than or equal to 1, the Re-
mainder Estimation Theorem with M = 1 gives
| X |2k+l

k+ )

For every value of x, Ry — 0 as £k — 0. Therefore, the series converges to cos x for every
value of x. Thus,

[Ra(x)| =1

o0 k.. 2k
o (1) = xY. _af
COSx—éw—l—ﬁ+4—!—a+"'. (5)
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EXAMPLE 7 For what values of x can we replace sin x by x — (x3/3!) with an error of
magnitude no greater than 3 X 107*7

Solution ~ Here we can take advantage of the fact that the Taylor series for sin x is an al-
ternating series for every nonzero value of x. According to the Alternating Series Estima-
tion Theorem (Section 11.6), the error in truncating

W

Sinx=x—%§+%_”_
after (x3/3!) is no greater than
S| IxP
517120

Therefore the error will be less than or equal to 3 X 107*if

5
X
lﬁ <3X 10 o |x] < V360 X 107 = 0.514.

Rounded down,

to be safe

The Alternating Series Estimation Theorem tells us something that the Remainder
Estimation Theorem does not; namely, that the estimate x — (x3/3!) for sin x is an under-
estimate when x is positive because then x*/120 is positive.

Figure 11.15 shows the graph of sin x, along with the graphs of a number of its ap-

_ proximating Taylor polynomials. The graph of P3(x) = x — (x*/3!) is almost indistin-
guishable from the sine curve when —1 = x = 1.
131

EXAMPLE 6  Calculate e with an error of less than 1076,

Solution ~ We can use the result of Example 1 with x = 1 to write

e=l+l+%+"'+nl!+Rn(l)’

with

. -
(n+ 1)

for some ¢ between O and 1.

Ry(1) = e°

For the purposes of this example, we assume that we know that e < 3. Hence, we are
certain that

1
(n+ 1)

3
< S
Ri(1) (n+ 1)
because | < e <3for0 <c¢ < 1.
By experiment we find that 1/9! > 107°, while 3/10! < 107, Thus we should take
(n + 1) to be at least 10, or n to be at Icast 9. With an error of less than 1079,
1 1 1

e=1+14=+5+-+

2 T3 o1 ~ 2.718282. [ ]
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11.10

Applications of Power Series
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' The binomial series for powers and

roots
= Consider the Taylor series generated by
f(x) = (1+x)™, where m is a constant:

f(x)=(1+x)"
S =m@+ )" ) = m(m =D+ )"

Fr(x)=m(m—1)(m-2)(1+x)"",

IOy =mm =1)(m =2)(m -k + DA+ x)" "
o (k) 0 . ©
P AU

ko k!

m(m —1)(m =2)..(m =k +1) ,
X
k!

m(m —1)(m —2)....m —k+1)
X
k!

ST mx+m(m=Dx +m(m=D(m =2)x + ..+
133

+ ...

' The binomial series for powers and

roots

fx)=0+x)"
m(m —-1)(m —-2)...(0m -k +1)
X+
k!

=ld4mx+mm-Dx"+m(m—-D(m-2)x"+ ...+

= This series is called the binomial series,
converges absolutely for |x| < 1. (The
convergence can be determined by using
Ratio test,

Uy m =k

- = ||

X

u k+1

k

In short, the binomial series is the Taylor series
for f{x) =(1+x)™, where m a constant
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The Binomial Series
For—1 <x <1,

(O alr= 14 (m)x",
=1 \k

(- (-5

m\ _mm—1)m—2)---(m —k+ 1)
(k)— k!

where we define

and

fork = 3.

135

EXAMPLE 2  Using the Binomial Series

We know from Section 3.8, Example 1, that V1 + x = 1 + (x/2) for |x| small. With
m = 1/2, the binomial series gives quadratic and higher-order approximations as well,
along with error estimates that come from the Alternating Series Estimation Theorem:

e, 20, BE)EY),

2 21 * 3!

B)2))0)

4!

+

2 3 4
= R B s B s
=1+~ *tw -1t

Substitution for x gives still other approximations. For example,

2 4
\/iﬂxzwl—%—% for |x?| small
1-tm1-L - for [1] small, thatis, [x] 1
X = . or |5 | small, that is, |x| large.
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‘ Taylor series representation of In x at x =
1 EXAMPLE 7  Limits Using Power Series

Evaluate

= f(x)=In x; f'(x) = x; e
o FT0 = (1) (X £ () = (12)(1) X2

w f (n)(X) = (-1 ) n-1 (n-1 )'X'n ; Solution =~ We represent In x as a Taylor series in powers of x — 1. This can be accom-
plished by calculating the Taylor series generated by In x at x = 1 directly or by replacing
TS %0 o 2 () x by x — 1 in the series for In (1 + x) in Section 11.7, Example 6. Either way, we obtain
S (x-1) =——| (x-1) +> —— (x-1)
oo n! . 0! B el n! B 1
1 1 1nx=(x-1)-§(x—1)2+--—,
Inl 2 (-D" " (m-1)1x" c-n"ay p
=—+z (x-1) =O+z (x-1)
(L — n! - el n from which we find that
0 1 2
-1 1 -1 2 -1 3
Sy Sy ey lim 2% = jim (1 -2 -1+) =1
1 2 3 =1 X — | r—1 2 :
1 2 1 3 a1l n
=(x—-1)— —(x—=1) + —(x—1) — +(=1) —(x—=1) =+
\ 7 AN 7 3 \ 7 \ 7 n \ 7 . i i
*Mathematica SImulat/on13 s
EXAMPLE 8 L-im-its Us-ing POwe,- Seﬁes TABLE 11.1 Fraquently used Taylor series
! : Bl s SR =
Evaluate e R R 'Z'Y |¥| =1
A | S T i ,,_=x(_ Yyt <
limw‘ Tz ‘I:” _,:”] +°°,,L»§ L <
=0 x c"=I+x+-2-;.+---+;H+---=";|-_E. |x] < 20
P Ll _ B i 1
Solution  The Taylor series for sin x and tan x, to terms in x°, are LIRSS A i R Gapre  M<«
x3 xs x:‘ sz cosx =] - ; + ;‘. — 3 +{—1]“;N:‘. o e ':‘-[;‘:-nv Jx| < oo
sinx=x—?+§—---, tanx=x+?+ﬁ+->-. 1n[|+xj=.r—§+T—:—-'-+{—1J“"x’—:+---=i{_]);_lt*_ e
- 1n§ ii = Zianh™x = 2(1 +‘%‘1—%‘—--- + ?':::I] +) = 2'\2—2‘:le|. x| =1
ence, B e -Y; ;I: i 'Vﬁiu i .21{_2'[']?:;”' x| =1
3 5 2 Binomial Series
sinx — tanx = _% — % Ty x3 (’“’% = % — "') (1 +gm=1 +m+mim2-! 1 " mlm - 1;[;"- 2y’ +m+m{m - I]!m-E;]‘!-“(m -k + llr‘_i_m
- m
and —[{-%(l)x‘, k=<1,

where

my my _ mim = 1) my _mim=1)-im=k+1) "
()om (0)-REoD (M) mE—bmokrn o,

oting—damg o 0L, Al
m 3 = m )

v PR ; co n 2
=0 x x—0 8 Nate: To write the binomial series compactly, it is customary to define (“) 10 be 1 and to take t® = 1 (even in the usually
‘m
excluded case where x = 0], yielding {1 + )™ = E:\iu (1)\-‘. I m is a positive integer, the series terminates at x™ and the
— e %' T T result converges forall v, -
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11.11

Fourier Series

141

Suppose we wish to approximate a function f on the interval [0, 277] by a sum of sine
and cosine functions,

fulx) = ap + (aycosx + bysinx) + (azcos2x + bysin2x) + -
+ (a, cosnx + by, sin nx)

or, in sigma notation,
n
falx) = ao + D (arcos kx + bysin kx). (1)
=

We would like to choose values for the constants ag, ay, a,...a, and by, bs,. .., b, that
make f,(x) a “best possible” approximation to f(x). The notion of “best possible” is
defined as follows:

1. fa(x) and f(x) give the same value when integrated from 0 to 27 .

2. fa(x)cos kx and f(x) cos kx give the same value when integrated from 0 to
2w (k=1,...,n).

3. fu(x) sinkx and f(x) sin kx give the same value when integrated from 0 to
2o (k=1,...,n).

143

'4 .
Weakness’ of power series
approximation

In the previous lesson, we have learnt to approximate a given
function using power series approximation, which give good fit if
the approximated power series representation is evaluated near
the point it is generated

For point far away from the point the power series being
generated, the approximation becomes poor

In addition, the series approximation works only within the
interval of convergence. Outside the interval of convergence, the
series representation fails to represent the generating function

Furthermore, power series approximation can not represent
satisfactorily a function that has a jump discontinuity.

Fourier series, our next topic, provide an alternative to overcome
such shortage

142

We chose f, so that the integrals on the left remain the same when f, is replaced by f, so
we can use these equations to find ao, a1, @2, ...a, and by, b, . .., b, from f:

B L 2m
1 27
ak-:Ef f(x) cos kx dx, k= Lt 3)
0
1 2
bk=qr'/ fx)sinkxdx, k=1,...,n (4)
0

144



y A function f(x) defined on [0, 27| can
be represented by a Fourier series

lim f (x) =lim Z f,(x) =lim Z a,coskx +b, sin kx
_)wk:() =0

n— o n n— o

=a,+lim Y a, coskx +b, sinkx, Fourier series

n— o

0<x<2r.

y=fx)

»

o representation of f{x)

o

145

| Orthogonality of sinusoidal
functions

m,k nonzero integer.

Ifm=k,

27 27 1 .27 1
.[ cosmxcoskxdx:J' cosmxcosmxdx:—.[ 1+cos(2mx)dx:—|—x+
0 0 2 0 ZL

2z 2z 2

J' sin mxsin kxdx = j' sin" mxdx =&
0 0

Ifm # k,

27 27
j cosmxcos kxdx = O,J' sin mxsin kxdx = 0.(can be proven using, say, integration
0 0

by parts or formula for the product of two sinusoidal functions).

2

.4 2z
In addtion, J' sin mxdx=j cosmxdx =0.
0 0

2z

Also,j

0

each other.

27
sin 2mx ]
_— =7.

2m JO

sin mxcos kxdx =0 for all m,k. We say sin and cos functions are orthogonal to

147

n

limz a,coskx +b, sinkx,0 <x <o

n— o
k=0

- /\\ /\\/\\AN

Y 0 27 47 ' 87

n n

If -0 <x < o, the Fourier series lim ) f,(x) =lim ) a, coskx + b, sin kx

n— o
k=0 k=0

n— o
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Derivation of a,

fo(x)=a,+> a, coskx+b,sinkx
k=1
Integrate both sides with respect to x from x =0 to x =27
27 2

.[0 S, (x)dx =-[

k3 n 2r
, a,dx +ZJ'0 a,coskxdx + b, sinkxdx =
k=1

2

V.4 " 2z n 2z
J.O a,dx +z akJ'O cos kxdx +z bk_[o sin kxdx
k=1 k=1
=27za0+0+0=27ra0

27
= 27raO=J. S, (x)dx.
0

For large enough n, f gives a good representation of f,

hence we can replace f, by f:

0

1 2z
= — d
= a 27;'.0 S (x)dx

148
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Derivation of z,, £ = 1

fo(x)=a,+ 3 a, coskx+b, sinkx

k=1

Derivation of 4,, £ =1

. ) . . . b, is simularly derived by multiplying both sides by sinmx (m nonzero integer),
Multiply both sides by cos mx (m nonzero integer), and integrate with respect to x

. and integrate with respectto x from x =0 to x = 27x.
from x =0 to x =27.By doing so, the integral J cos mxsin kxdx get 'killed off '
0

2z
'f f(x)sinmxdx =
due to the orthogality property of the sinusoidal functions. 0

2z

In addtion, .[ cosmxcos kxdx will also gets 'killed off 'except for the case m = k.
0

JOZ” S (x)cosmxdx =

2z

2z " 2z "
I aosinmxdx+z akj coskxsinmxdx+z bkj sin kx sin mxdx
0 0 0
k= k=

2z

=0+0+ bm.f sinmxsinmxdx = zb,
0

2z ! 2z " 2z
. 1 .27
IO a,cosmxdx +y akjo coskxcosmxdx + bk_[o sin kx cos mxdx :bm:_-“ £ (x)sinmx dx.
0

k=1 k=1

N

2z
=0+ amj cosmxcosmxdx+ 0=rma,
0

1 2z
= a =—j S (x)cosmx dx.
pra 0

m
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Fourier Series Can represent Some :::n:::rl:scanﬁbr;dt::cgti:oii;r:z;sti:::cz:::z:::lm cannot be represented by Taylor
fu nctions that Cannot be represented by series; for example, the step function f shown in Figure 11.16a.
Taylor series, e.g. step function such as

Ay {1, ?f‘lj =r=m
¥y

2, ifr<x=3m,
A 1

ay ===
4 27 fy

T 2 3
([t [
i ] -

[ (x) cos kx dx
2w
(/ coskxd.x—:[ 2005&.::1.\:)
| |
0 T 27 =4, ([smkx] [2 smka ) -0, k=1

(a) 2w
[ flx) sin kx dx

U smﬂxrbr+f ?,smlu:dx)
(o] o)

_ coskw — | =(—1)* -1
151 ferr ar 152

The coefficients of the Fourier series of f are computed using Equations (2), (3), and (4).
2w

Jlx)dr

[

I

]
m| "

—
&
=
I
‘H—

I

=

by =

il

FIGURE 11.16 (a) The step function

flx) = {

A=

I, 0=x=xw

i

2, w<x=2mw




So

aa—%, a =a= =0,
and
2 2 2
bi=— b=0, by=—3 by=0, bs=—5_ bs=0,

The Fourier series is

%—%(sinx+%+ Smsi+)
Notice that at x = v, where the function f(x) jumps from 1 to 2, all the sine terms vanish,
leaving 3/2 as the value of the series. This is not the value of f at 7, since f(sr) = 1. The
Fourier series also sums to 3/2 at x = (0 and x = 2. In fact, all terms in the Fourier se-
ries are periodic, of period 27, and the value of the series at x + 27 is the same as its
value at x. The series we obtained represents the periodic function graphed in Figure
11.16b, with domain the entire real line and a pattern that repeats over every interval of
width 27r. The function jumps discontinuously at x = nm,n = 0, £1, +£2,... and at
these points has value 3/2, the average value of the one-sided limits from each side. The
convergence of the Fourier series of f is indicated in Figure 11.17.
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]
b

| 1

0 T 27 -lr -7 0 T 2 3 4

(a) (b)

FIGURE 11.16 (a) The step function

fgei b YEE=w

2, m<x=2m

(b) The graph of the Fourier series for f is periodic and has the value 3/2 at each point of
discontinuity (Example 1).
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¥ ¥ ¥
2 f - f I f
15 h L5 ) 1.5 fs
1 1
1 1 1 1 x 1 1 1 1 x 1 1 1 1 x
L] o i 1] - I 0 L 2
(a} by ©)
¥ ¥
2F F 2F f
LSt % 1St fis
1 1
1 1 1 Loy 1 1 1 L5y
0 T m 0 T 2

(d)

~FIGURE 11.17 The Fourier approximation functions f). f3, fs, fu, and f\5 of the function f(x) = {

(e)

1
2

0sxsw
T<x=<=21m

2
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THEOREM 24 Let f(x) be a function such that f and /' are piecewise contin-
uous on the interval [0, 27r]. Then f is equal to its Fourier series at all points
where f is continuous. At a point ¢ where f has a discontinuity, the Fourier series
converges to

fle™) + fi&)
2

where f(c¢™) and f(c¢™) are the right- and left-hand limits of f at c.

in Example 1.
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Fourier series representation of a function

defined on the general interval [a,/]

For a function defined on the interval [0,2x],

the Fourier series representation of f(x) is

defined as f(x)=a,+ > a coskx+b, sinkx
How about a function defined on an general

interval of [a,b] where the period is L=b-a

instead of 2n? Can we still use

a, + z a,cos kx + bk sin kx to represent f(X) on

[a,b]?

Derivation of 4,

f(x)=a,+> a,cos

k=1

Lbf(x)dx = Iahaodx +Zn jabak cos
k=1

b " b
L a,dx +Z akj'a cos
k=1

27 kx . 2rmkx
+ b, sin
L L

27 kx

L
27 kx

" b
dx +% b, [ sin
L k=1 ¢

X

27w kx

L

dx + b, sin

dx

27 kx
L

dx =
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Fourier series representation of a function
defined on the general interval [4,/]

For a function defined on the interval of [a,b] the
Fourier series representation on [a,b] is actually
27 kx 27 kx

+ b, sin
L L

n
a0+2akcos X
k=1

<>

IN)
o
I

(x)dx

;—a
~

b 2rmx
.[ f(x)cos —dx
a L

Q
N
Il

o

- 2mmx o )
f(x)sin ——dx,m positive integer
L

S
Il

—_—
S

3

L=b-a
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Derivation of a,

. ! 2r7kx . 27kx
f(x)=a,+> a,cos + b, sin
k=1 L L

X

b 2xmx

L f(x)cos B

dx

b 2xmx

'[ 27kx 2xmx 27kx 2xmx )
=| a,cos

n ’7(
dx+Z'[ a,cos cos dx + b, sin cos dx
=\ p p P L)

L

, 2mmx L
dx+0=a, —
L 2

b
= 0+am'|' cos
a

2rmx

2 b
= am:—J. f(x)cos dx
L a

L
Similarly,

2 b 2rmx
b, =—| f(x)sin
s
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‘ Example:

161

n=10

n=50

m*mathematica simulation
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1 1 _» m L
aoz—j f(x)dxz—.[ mxdx:—(bz—az):—
L~ L-e 2L 2
2 b 2rkx 2m b 2rkx 2m L2(COSZk7Z -1)
ak:—_[ mxcos dx:—I Xcos dx = — P— =0;
L-e L L -« L L 4k 7
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mL mL " sin2rxkx
S(x)=mx = -
2 VA k
(1 sin2zx sindzx sin6brx sin2n7xx h
=mL| —-— - - — = + ...
LZ V3 2r 3z nrx J
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Tutorial 1 (Chapter 1)
Thomas Calculus 11th edition

Exercise 1.3
Functionsand Their Graphs
find the domain and range of each function.

1. f(_r} =1 + x*

3 F() = —

Vi

g(z) = V4 - 22

EJI

Finding Formulasfor Functions

13. Express the edge length of a cube as afunction
of the cube’s diagonal length d. Then expressthe
surface area and volume of the cube as afunction
of the diagonal length.

Functionsand Graphs

Find the domain and graph the functions
16. f(x) = 1 — 2x — x?
18. g(x) = V—x

22. Graph the following equations and explain why g

they are not graphs of functions of x.
a, x|+ |y|=1 b. |x + y|=1

Piecewise-Defined Functions

Graph the function
. l — &, t=x=1
24. g(x) = { '
2 =~ X, l<x=2
27. Find a formula for each function graphe
b.
2 ¢—0 G—

~——#—«;’-—6—&——» t

[
(3]
B

Exercise 1.4
Recognizing Functions

In Exercises 3, identify each function as a constant
function, linear function, power function,
polynomia (state its degree), rational function,
algebraic function, trigonometric function,
exponentia function, or logarithmic function.
Remember that some functions can fall into

more than one category.

b. y =22 —2x 4+ 1

c. y =tanwx d. y = logyx

Increasing and Decreasing Functions

Graph the functions. What symmetries, if any, do
the graphs have? Specify the intervals over which

the function isincreasing and
( __x.);a,.fz the intervals whereit is

16. y
Y o decreasing.
523

y =

Even and Odd Functions

Say whether the function is even, odd, or neither.
Give reasons for your answer.

19. f(x) = 3

4 2L f(x) = x* + 1

23. g(x) = x* + x



EXERCISES 15

Sums, Differences, Products, and Quotients

Find the domains and ranges of f, g, f + g, and

f-g

2. f(x) = Vix + 1, gl(x) = Vi — 1

Composites of Functions

6.If f(X) =x-1and g(x) = Y(x + 1), find
a. f(g ("2))
b. g (f(1/2))

12. Copy and complete the following table.

b.

C.

d.

g(x) fx) (f ° @)
i 1 ?
i x=1 %
' X % ¥ 1
? Vi x|
Vi ? x|

Shifting Graphs

17. Match the equations listed in parts (a)-(d) to the graphs in the ac-
companying figure.

a. v = (x

1) — 4

. y=(x+2?2+2

5.9 \

Paosition 2

e 4 A
Position 3 /)

\

bh. y=(x

d y=(x+3?2-

"

2)? 4

Position | /

M2 5 —f-.\ 0

(-3.-2)

\

\

[T oV

Graph the functions

39, y=Vx—1-1
1

Vertical and Horizontal Scaling

48.

Exercises below tell by what factor and direction
the graphs of the given functions are to be stretched
or compressed. Give an equation

for the stretched or compressed graph.

51. y = ¢* — 1, stretched vertically by a factor of 3
55. y = Vx + I compressed horizontally by a factor of 4
EXERCISES 1.6

Radians, Degrees, and Circular Arcs

4. If you roll a 1-m-diameter wheel forward 30 cm
over level ground, through what angle will the
whed turn? Answer in radians (to the nearest tenth)
and degrees (to the nearest degree).

Evaluating Trigonometric Functions

5. Copy and compl ete the following table of
function values. If the function is undefined at a
given angle, enter “UND.” Do not use a
calculator or tables.

/] -1 =27/3 0 w/2 Im/4
sin f
cos fl
tan 6

cotf

Find the other two if x liesin the specified interval.

X € E‘.".l"
J 7

. 3
sinx = =,

7. 5



Graphing Trigonometric Functions
Graph the functions the ts-plane (t-axis horizontal,

s-axisvertical). What is the period of each
function? What symmetries do the graphs have?

23. 5 = cot 2t

25. 5 = sec (%I)

Additional Trigonometric I dentities

Use the addition formulas to derive the identity.

31. cos(_r — %) = ginx

Using the Addition Formulas

Express the given quantity in terms of sin x and
COS X.

39, cos(m + x)
Using the Double-Angle Formulas
Find the function values

2T
47. cos 2

49. sinZ%



Tutorial 2 (Chapter 2)
Thomas Calculus 11th edition

Exercise 2.1

Limitsfrom Graphs

3. Which of the following statements about the function y = f(x)
graphed here are true, and which are false?
a. lim f(x) exists.
=0

b. lim f(x) = 0.
x=—0

¢. lim f(x) = 1.
x—=0

d. lim1 flx) = 1.
ATE

e. liml f(x) = 0.
x=*

f. lim 7F(x) exists at every point xqin (—1, 1).

Ty

Existence of Limits

9, If lim,—, f(x) = 5, must f be defined at x = 17 If it is, must
f(1) = 57?7 Can we conclude anything about the values of f at
x = 17 Explain.

10. If f(1) =5, must lim,—; f(x) exist? If it does, then must
lim, .y f(x) = 57 Can we conclude anything about lim,—.; f(x)?
Explain.

Limits by Substitution

Find the limits by substitution.

27. lim xsinx

x—f2

Average Rates of Change

Find the average rate of change of the function
over the given interval or intervals.

33. R()) = V40 + 1; [0,2]

Exercise 2.2

Limit Calculations

Find the limits.

17. lim M

h—0 h
19. lim > 2
3 xT— 25

4
s |
27. lim
u==l ° — 1
Using Limit Rules
39, Suppose lim,—, f(x) = 5 and lim,—, g(x) = —2. Find

a. lim f(x)g(x)
x—rc
Limits of Average Rates of Change

Because of their connection with secant lines, tangents,
and instantaneous rates, limits of the form
. fx+h) = f(x)

m

Ii
h—0 h

occur frequently in calculus. Evaluate this limit
for the given value of x and function f.

47. o) = Vx, x=71

Using the Sandwich Theorem

49, If V5 — 2x% = f(x) = V5 — x*for—1 = x =< 1, find
lim,—q f(x).

EXERCISES 2.3

Centering I ntervals About a Point

In Exercises 1-6, sketch the interval (a, ) on the x-axis with the
point xy inside. Then find a value of & = 0 such that for all
L0<|x—x| <8 = a<x<bh.

4. a=-7/2, b=-1/2, xp= —3/2



Finding Deltas Graphically

use the graphs to find a & > 0 such that for all x

i ”

6.2

5.8

Finding DeltasAlgebraically

Each of Exercises 15-30 gives a function f(x) and numbers L, xy and
€ = (). In each case, find an open interval about x; on which the in-
equality |f(x) — L| < € holds. Then give a value for § = 0 such
that for all x satisfying 0 < |x — x5] < & the inequality

|f(x) = L| < e holds.

15, f(x) =x% 1, L=5,

Moreon Formal Limits

31. f(x) =3 — 2x, xp = 3,

Prove the limit statements

49, lim xsin L. 0

r—

X

xo = 4,

e = 0.02

EXERCISES 24

Finding Limits Graphically
: s x # 1

7. a. Graph f(x) = {0, gyl

b. Find lim,—, - f(x) and lim,—, - f(x).

¢. Does lim,—,; f(x) exist? If so, what is it? If not, why not?
Finding One-Sided LimitsAlgebraically

Find the limit

24 4h+5—
- V2 + 4h V5

h—0" h

Using F}im $nD - 1

—0 H
Find the limits

. sin#
33. 1 .
91—13}1 sin 26
Calculating Limits as x — £ c¢

In Exercises 37-42, find the limit of each function (a) as x — o< and
(b) as x— —00. (You may wish to visualize your answer with a
graphing calculator or computer.)

=5+ (7/x)

41. h(x) = m

Limits of Rational Functions

In Exercises 47-56, find the limit of each rational function (a)
Xx—> 00 and (b) as x — — 00,

49. f(x) = xq.+ 1
e
EXERCISES 2.5

Infinite Limits

Find the limits.

13. lim tanx
x—>(m/2)"



Additional Calculations

Find the limits.

25. 1im(L S

x23

a. x—0"

— 2 N
(x— 1))

c. x— 1"

Graphing Rational Functions

Graph the rational functions in Exercises 27-38. Include the graphs
and equations of the asymptotes and dominant terms.
2
36 S—
w ¥ =g
2x + 4

I nventing Functions

Find afunction that satisfies the given conditions and
sketch its graph. (The answers here are not unique. Any
function that satisfies the conditionsis acceptable. Feel
free to use formulas defined in pieces if that will help.)

43. lim

x—>$00

Graphing Terms

The function is given as the sum or difference of two
terms. First graph the terms (with the same set of axes).
Then, using these graphs as guides, sketch in the graph
of the function.

| T T
Ly = tan; — Bl it
59. y = tanx + 2 > X 5

EXERCISES 2.6
Continuity from Graphs

In the exercises below, say whether the function graphed
iscontinuouson [ -1, 3] . If not, where does it fail to be

f(x) =0, liryjl_ f(x) = 00, and _lir121+ f(x) =

continuous and why?

v = k(x)
2 —

Applying the Continuity Test

At which points do the functions fail to be continuous?
At which points, if any, are the discontinuities
removable? Not removable? Give reasons for your

17. y = |x — 1| + sinx

e

20. y = Soex

Composite Functions

Find the limits. Are the functions continuous at the
point being approached?

29. lim sin (x — sinx)

X=2T

EXERCISES 2.7
Slopesand Tangent Lines

Find an equation for the tangent to the curve at the
given point. Then
(—1, 3) sketch the curve and

5. y=4— x*
tangent together.



Find the slope of the function’s graph at the given point.
Then find an equation for the line tangent to the graph
there.

18. f(x) = Vx+ 1, (8,3)

_x—1 _
22. Y= 1 x=20

Tangent Lineswith Specified Slopes

26. Find an equation of the straight line having slope 1/4 that is tan-
gent to the curve vy = Vx,

Rates of Change

30. Ball’s changing volume What is the rate of change of the vol-
ume of a ball (V = (4/3)7r?) with respect to the radius when the
radius is r = 27



Tutorial 3 (Chapter 3)
Thomas Calculus 11th edition

EXERCISES 3.1
Finding Derivative Functionsand Values
Using the definition, calculate the derivatives of the
functions. Then find the values of the derivatives as
specified.

6. r(s) = V2s + 1; r(0),r(1), r(1/2)

Find the indicated derivatives.

dv .. .1
10. 55 1f =i 7
A%, sk 1
12, — if 7= —
dw Viw — 2

Slopes and Tangent Lines

Differentiate the functions. Then find an equation of the

tangent line at the indicated point on the graph of the
function.

18. w=g(z) =1+ V4 -2z (zw)=(32)

Find the values of the derivative.

2y, & T -
Va4 -8

de =0
Differentiability and Continuity on an Interval

The figure below shows the graph of afunction over a

closed interval D. At what domain points does the
function appear to be

a differentiable?

b. continuous but not differentiable?

c. neither continuous nor differentiable?

43.

38. p=

EXERCISES 3.2

Derivative Calculations
Find the derivatives of the functions

_5x+ 1

24, u = 72\/;
_(x+ Dx+2)
28. y = G=1Dx=2)

Find the first and second derivatives.
q2 + 3

(@ — 1P+ (g+ 1)

Using Numerical Values

39. Suppose « and v are functions of x that are differentiable at x =

and that

u(0) =5, u'(0)=-3 v0)=-1, v'(0)=2.

Find the values of the following derivatives at x = 0.

d .
a. E(lrv}

Slopes and Tangents
4l. a. Normal to a curve Find an equation for the line perpendicular
to the tangent to the curve y = x* — 4x + 1 at the point (2, 1).

b. Smallest slope What is the smallest slope on the curve? At
what point on the curve does the curve have this slope?

¢. Tangents having specified slope Find equations for the
tangents to the curve at the points where the slope of the
curve is 8.

EXERCISES 3.3

Motion Along a Coordinate Line

7. Particle motion At time ¢, the position of a body moving along
the s-axis is s = 7 — 61> + 9rm.

a. Find the body’s acceleration each time the velocity is zero.
b. Find the body’s speed each time the acceleration is zero.

c. Find the total distance traveled by the body from ¢ = 0 to

t=2.

0

d (u d (v d .
B edx (v) & e (h‘) d. x5 (Tv — 2u)




Free-Fall Applications

10. Lunar projectile motion A rock thrown vertically upward
from the surface of the moon at a velocity of 24 m/sec (about 86
km/h) reaches a height of s = 24+ — 0.8% melers in 7 sec.

a. Find the rock’s velocity and acceleration at time t. (The accel-
eration in this case is the acceleration of gravity on the moon.)

b. How long does it take the rock to reach its highest point?

c. How high does the rock go?

d. How long does it take the rock to reach half its maximum

height? 27. Draining a tank It takes 12 hours to drain a storage tank by
&, How Toneis the fock alofte opening the valve at the bottom. The depth y of fluid in the tank ¢
© hours after the valve is opened is given by the formula
ConclusionsAbout Motion from Graphs o 6(1 - %9) o
y a. Find the rate dy/dt (m/h) at which the tank is draining at time 1.
r b. When is the fluid level in the tank falling fastest? Slowest?
What are the values of dy/dt at these times?
®
EXERCISES 34
© Derivatives
find dy/dx
5. y = (secx + tanx)(secx — tanx)
> [ 9 . 3
0 11. y = x“sinx + 2xcosx — 2sinx
25. Find y" if
d. ¥y = CSCX.

e grap S O]. ){E e 2 T t i
FIGURE 3.21 Th ] F E i l angen Lines
Grapl 1 the curves over the given interva S, togetl er with

35. Find all pOintS on the curve ¥ = lanx, —‘7T/2 < X< 11'/2, where the”‘ tanga’]tsat the g|ven Val ues Of X. Label ea:h curve
the tangent line is parallel to the line y = 2x. Sketch the curve gpg tangent with its equation.
and tangent(s) together, labeling each with its equation.

29, y=secx, —w2<x<mf2
—/3, w/4

X

Trigonometric Limits

Find the limits

; ; 1 1
39. }1_:}12 sin (; = 5)

40. lim V1 + cos (7 csc x)

x—=—1/6




Differentiating I mplicitly
Use implicit differentiation to find dy/dx
19. x3y + x> =6

EXERCISES 3.5
Second Derivatives

In Exercises 37-42, use implicit differentiation to find dy/dx and then
d*y/dx*.

Derivative Calculations

In Exercises 9-18, write the function in the form v = f(u) and

1 = g(x). Then find dy/dx as a function of x,

Find the derivatives of the functions

1 . - X ;
26. y = ;sin ’x — -,;cos*‘x

Second Derivatives

Find y"
(1 + %)

51. y = %cm{i\‘ =

49. vy

Finding Numerical Values of Derivatives

61. Find ds/dr when § = 37/2if s = cos @ and df/dr = 5.

Tangentsto Parametrized Curves
94. x =sec’t— 1, y=tant, t=—7w/4
EXERCISES 3.6

Derivatives of Rational Powers
Find dy/dx
13. y = sin[(2t + 5)7%3)

41. 2Vy=x—y

Slopes, Tangents, and Normals

Verify that the given point is on the curve and find

the lines that are (@) tangent and (b) normal to the curve
at the given point.

45. y*+ x> =y*—2x at (-2,1)and (-2, -1)

Implicitly Defined Parametrizations

2

63. 2 —2tx+2t7=4, 293 —32=4, =2

EXERCISES 3.7

12. Changing dimensions in a rectangular box Suppose that the

edge lengths x, y, and z of a closed rectangular box are changing
at the following rates:

dx
dt

;\' d
= lm/sec, — = —2m/sec, — = 1 m/sec.
/ dt ; dt /

20. A growing raindrop Suppose that adrop of mistisa
perfect sphere and that, through condensation, the drop
picks up moisture at arate proportional to its surface
area. Show that under these circumstances the drop’s



19. A draining hemispherical reservoir Water is flowing at the rate Linearizing Trigonometric Functions

of 6 m*/min from a reservoir shaped like a hemispherical bowl of
radius 13 m, shown here in profile. Answer the following ques- Find the linearization of fatx=a.

tions, given that the volume of water in a hemispherical bowl of ra- i - P
dius Ris V = (7/3)y*(3R — y) when the water is y meters deep. 11. f(X) sinx  at (a) X 0‘ (b) X ™

Center of sphere

The Approximation (1 + x]k ~ 1+ kx

ﬂ 13 |
\ o o f 7 f 3
L z -/ 17. Faster than a calculator Use the approximation (1 + x)!
\ / 1 + kx to estimate the following.

b ¥ s = =

D ' a. (1.0002)* b. V1.009

Derivativesin Differential Form
Find dy.
28. vy =sec(x?— 1)

Approximation Error
The function f(x) changes value when X changes
fromxoto X + dx . Find

3. fx) =x*+2x, xp=1, de=0.1

EXERCISES 3.8
Finding Linearizations

find the linearization L(x) of f(x) at x = a.
4, f(x) = \:V,;, a= — "":-fy

1
l.‘L_r Af = flxg + dx)
df f fxp) dx

Linearization for Approximation
(. f(x0))

You want linearizations that will replace the functionsin
the following over intervals that include the given points T

. . angent
Xo. To make your subsequent work as simple as possible,
you want to center each linearization not at xo but at a
nearby integer x = a at which the given function and its
derivative are easy to evaluate. What linearization do
you use in each case?

5. f(x) = x2+ 2x, xy=0.1

dx

0 Xp X + dx



Tutorial 4 (Chapter 4)
Thomas Calculus 11th edition

EXERCISES4.1

Absolute Extrema on Finite Closed Intervals

Find the absolute maximum and minimum values

of the function on the given interval. Then graph the
function. Identify the points on the graph where the
absol ute extrema occur, and include their coordinates.

24. g(x) = —V5 — x%, V5 =x=0

Finding Extreme Values
Find the function’s absolute maximum and minimum
values and say where they are assumed.

xt+1

4, y= ———
y X2+ 2x+2

L ocal Extrema and Critical Points

Find the derivative at each critical point and determine
the local extreme values.

48. y = x*V3 — x

54. Let f(x) = |x3 — 9x|.
Does £'(0) exist?
Does f'(3) exist?
Does f'(—3) exist?

Determine all extrema of f.

& n ¥ B

Optimization Applications

Areaof an athletic field

62. An athletic field isto be built in the shape of a
rectangle x units long capped by semicircular regions of
radiusr at the two ends. Thefield isto be bounded by a
400-m racetrack.

a. Express the area of the rectangular portion of the field
as afunction of x aone or r alone (your choice).

b. What values of x and r give the rectangular portion
the largest possible area?

EXERCISES4.2

Finding cin the Mean Value Theorem

Find the value or values of ¢ that satisfy the equation
f)-fl@
“bh-a O
in the conclusion of the Mean Value Theorem for the
functions and intervals.

2. f(x) =%, [0,1]
Checking and Using Hypotheses

10. For what valuesof a, m and b doesthe function

x=10
0<x<1

l=x=2

3,
flx) = {—xz + 3x + a,

mx + b,
satisfy the hypotheses of the Mean Vaue Theorem on
theinterval [0, 2]?

Roots (Zeros)

Show that the function has exactly one zero in the given
interval.

15. f{x) =x* + 3x + 1, [-2,—1]

Finding Functionsfrom Derivatives

25. Suppose that f’(x) = 2x for all x. Find f(2) if
a. fO)=0 b f1)=0 ¢ f(—=2)=3.

Finding Position from Acceleration

Exercise 43 give the acceleration a = d?s/dt?, initia
velocity and initial position of abody moving on a
coordinate line. Find the body’s position at time t.

43. a = —4sin2t, v(0) =2, s5(0)= -3



EXERCISES4.3

Analyzing f Given f'

Answer the following questions about the functions
whose derivatives are given below:

a. What are the critical points of f?

b. On what intervals is f increasing or decreasing?

C. At what points, if any, does f assume local maximum
and minimum values?

7. F'(x) = xVx + 2)
8. f'(x) =x"x — 3)

Extremes of Given Functions

a. Find the intervals on which the function isincreasing
and decreasing.

b. Then identify the function’s local extreme values, if
any, saying where they are taken on.

¢. Which, if any, of the extreme values are absolute?

x?

24, =
f(x) 32 11

Extreme Values on Half-Open Intervals

a. Identify the function’s local extreme vauesin the
given domain, and say where they are assumed.

b. Which of the extreme values, if any, are absolute?
2. g(x) =—x*—-6x—-9, d4=x<

36. k(x) = x> +3x2+3x+1, —c0o<x=0
Theory and Examples

47. As x moves from left to right through the point

c = 2,isthegraphof f(x) = x3 —3x + 2 rising, or is
it falling? Give reasons for your answer.

EXERCISES 44

Analyzing Graphed Functions

Identify the inflection points and local maximaand
minima of the functions graphed below. Identify the
intervals on which the functions are concave up and
concave down.

Graph Equations

Use the steps of the graphing procedure to graph the
equations below. Include the coordinates of any local
extreme points and inflection points.

40. y = \/|x — 4]

Sketching the General Shape Knowing y’

Each of Exercises below givesthe first derivative of a
continuous function = f(x) . Find y"" and sketch the
general shape of the graph of f.

41. y' =2 +x — x*

Theory and Examples

67. The accompanying figure shows a portion if the
graph of atwice-differentiable function y = f(x). At
each of the five labelled points, classify y' and y"' as
positive, negative, or zero.

v

75. Suppose the derivative of the function y = f(x) is
Y = (=1 -2)
At what points, if any, doesthe graph of f havealoca

minimum, local maximum, or point of inflection?
(Hint: Draw the sign pattern for y'.)



EXERCISES4.5

Applicationsin Geometry

6. You are planning to close off acorner of the first
quadrant with a line segment 20 units long running from
(a,0) to (O, b). Show that the area of thetriangle
enclosed by the segment is largest when a = b.

12. Find the volume of the largest right circular cone
that can be inscribed in a sphere of radius 3.

18. A rectangle is to be inscribed under the arch of the
curve y = 4cos(0.5x) from x = —m to x = w. What
are the dimensions of the rectangle with largest area, and
what isthe largest area?

22. A window isin the form if arectangle surmounted
by asemicircle. Therectangleis of clear glass, whereas
the semicircleis of tinted glass that transmits only half
as much light per area as clear glass does. The total
perimeter isfixed. Find the proportions of the window
that will admit the most light. Neglect the thickness of
the frame.

e

i
1 |
I 1

iz
//

EXERCISES 4.6

Finding Limits

In Exercises 1 and 5, use I’H6pital’s Rule to evaluate the
limit. Then evaluate the limit using a method studied in
Chapter 2.

. X —
1. lim =
—2x° — 4

Applying I’Hépital’s Rule

Use I’HOpital’s Rule to find the limits in Exercises 22
and 25.

. 1 1
22. xl_ll;g+ (Y - @) 25.

Theory and Applications

: 3x — 5
lim ——————
x—=+00 Iyt — x + 2

32. /0 Form

Give an example of two differentiable functions f and

g with lim f(x) = lim g(x) = o that satisfy the
X—00 X—00

following.

) . fx)
ew T MmO
c. lim f&) =

oo g(x)

EXERCISES 4.8

Finding Antiderivatives

In Exercises 8 and 14, find an antiderivative for each
function. Do as many as you can mentally. Check your
answers by differentiation.

C. \5/.\‘ + Tl

4 1
8. a. =\/x b.
5 W

I
c. 1 — 8csc?2x

14. a. csc’x b, —

Finding Indefinite I ntegrals
In Exercise 31 and 46, find the most general

antiderivative or indefinite integral. Check your answer
by differentiation.

31. / 2x(1 — x73) dx

46. /(2 cos 2x — 3 sin 3x) dx

Checking Antiderivative Formulas



Verify the formulas in Exercises 60 by differentiation.
| %
60. dx = + &
/ (x + 1) ¥ .l

Theory and Examples

101. Suppose that
@) =L (1- V&) and g() = L+ 2)

a. / fx) dx b. / g(x) dx

. [t=ranas a [lrg@nan

3 f [f() + glax £ / [£(x) — g(@)] dr



Tutorial 5 (Chapter 5 and 6)
Thomas Calculus 11t edition

EXERCISESS.1

Area

In Exercise 1 use finite approximations to estimate the
area under the graph of the function using

a. alower sum with two rectangles of equal width.

b. alower sim with four rectangles of equal width.

C. an upper sum with two rectangles of equal width.

d. an upper sum with four rectangles of equal width.

1. f(x) = x*betweenx = O and x = 1
Areaof aCircle

21. Inscribe aregular n-sided polygon inside acircle of
radius 1 and compute the area of the polygon for the
following values of n:

a. 4 (square) b. 8 (octagon) c. 16
d. Compare the areas in parts (a), (b) and (c) with the
area of thecircle.

EXERCISESS.2

Sigma Notation

Write the sums in Exercises 1 without sigma notation.
Then evaluate them.
2 6k

1. .
21

Values of Finite Sums

17. Supposethat Y.}_,a;, = —5 and Yp_; b, = 6.
Find the values of

C. ;(ak + by)
=1

Evaluate the sumsin Exercise 24.

6
24. D (k* = 9)
k=1

Limits of Upper Sums

For the functionsin Exercise 36, find aformulafor the
upper sum obtained by dividing the interval [a,b] into n
equal subintervals. Then take alimit of this sum as

n — oo to calculate the area under the curve over [a,b].

36. f(x) = 2x over the interval [0, 3]

EXERCISESS5.3

Expressing LimitsasIntegrals
Expressthe limitsin Exercise 1 as definite integrals.

1. ||}1ﬁmo E ci* Axy., where P is a partition of [0, 2]
Y k=1

Using Properties and Known Valuesto Find Other
Integrals

12. supposethat [°, g(t) dt = v/2. Find

a. /O_ag(r) dr b. f:g(u) du

c. /3[—g(x)] dx d. f3 &\gdr

Using Area to Evaluate Definite Integrals

In Exercise 15, graph the integrands and use areas to
evaluate the integrals.

4
X
15. L (5 + 3>dx

Evaluations

Use the results of Equations (1) and (3) to evaluate the
integralsin Exercise 38.

3b
38. f x? dx
0



Average Value EXERCISES5.5

In Exercise 55, graph the function and find its average Evaluating Integrals
value over the given interval.

2 Evaluate the indefinite integralsin Exercise 4 and 11 by
§5. f(x) =x* — 1 on [0= \@] using the given substitutions to reduce the integrals to

standard form.
EXERCISES5.4

. Y . ]
Evaluating Integrals 4, f(l — COos 5) 51n§dt, u=1— cos

Evaluate the integrals in Exercises 23 and 25.

[SSRE

11. /csc:l 26 cot 26 de

2 4 Vs .
23. - T T— a. Usingu = cot20  b. Usingu = csc 20
25, / |x| dx Evaluate the integrals in Exercises 36 and 48.
. 3. / _Beosi_
Derivatives of Integrals (2 + sin¢)
Find dy/dx in Exercise 36. 48. fsxf Vx3 + 1dx
0
36. = / _dr
tanx 1 + Simplifying Integrals Step by Step
Area Evaluate theintegralsin Exercise 51.
Find the areas of the shaded regions in Exercise 45. (2r — 1) cos \/3 2r — 1)* + 6d
=
& y V3Q2r - 1) + 6
V2

EXERCISES 5.6

v = sec @ tan f Evaluating Definite Integrals

| >0 Use the substitution formulain Theorem 6 to evaluate
—j—: 0 7—; the integralsin Exercises 7 and 14.

1

7. a. _ o > f ,} ~dr

ok —1(4-1-}" (-5—"

0

. ; sin w

Theory and Examples - A a2 (3 + 2cos w)?

62. Find 7[2 -

2 sin w

lim —f ; dt o (3+ 2cosw)
Xt % N |



Area

Find the total areas of the shaded regionsin Exercise 32.
32. 4

A

73. Find the area of the region in the first quadrant
bounded by theline y = x, theline x = 2, the curve
y = 1/x2, and the x-axis.

EXERCISESG6.3

Length of Parametrized Curves

Find the lengths of the curvesin Exercise 1.
l.x=1—-1¢ y=2+3 -23=t=1
Finding Lengths of Curves

Find the lengths of the curvesin Exercises 7 and 16. If

you have a grapher, you may want to graph these curves
to see what they look like.

7. y=>0/3)x* +2)** from x=0tx =23

16. y:/\/:«;ﬁ—mn O s

Theory and Applications

27. a. Find a curve through the point (1, 1) whose length

integral is
£ 1
L= [ .\/' 1 + gd)

b. How many such curves are there?
Give reasons for your answer.



Tutorial 6 (Chapter 7)
Thomas Calculus 11th edition

EXERCISES 7.1

Graphing | nver se Functions

Exercise 10 shows the graph of afunction y = f(x).
Copy the graph and draw intheline y = x. Then use
symmetry with respect to theline y = x to add the
graph of £~ to your sketch. (It is not necessary to find
aformulafor f~1.) Identify the domain and range of

10.

Formulasfor Inverse Functions

Exercise 15 gives aformulafor afunction y = f(x)
and showsthe graphsof f and f~. Find aformulafor
f~! ineach case.

15. flx) =x° — 1

:L:

i y=f)

y=7"x)
1.le

T j1 !

21. f(x) = x3 + 1

Derivatives of I nver se Functions

In Exercises 25 and 30:
a. Find f~1(x).
b. Graph f and f~! together.

. Evaluate df /dx @ x =a and L—at x = f(a) to
o dfTt o df

show that at these points —— =1 / (E)'

25. f(x) = 2x + 3,

30.

a. Show that h(x) = x3/4 and k(x) = (4x)'/3 are
inverses of one another.

b. Graph h and k over an x-interval large enough to
show the graphs intersecting at (2, 2) and (-2, -2). Be
sure the picture shows the required symmetry about the
line y = x.

c. Find the slopes of the tangentsto the graphsat h and
k a (2,2)and (-2, -2).

d. What lines are tangent to the curves at the origin?

a= —1

EXERCISES 7.2

Using the Properties of Logarithms

1. Express the following logarithmsin terms of In 2 and
In3.

a.In0.75 b. In (4/9) c.In(12)
d.In Y9 e.ln3v/2 f.In V13.5

Derivatives of Logarithms

In Exercise 22, find the derivative of y with respect to
x, t,or 6, asappropriate.

_ xlnx
22. y = 1 + Inx

Integration

Evaluate the integralsin Exercise 39.
2y dy

39. fji
y-— 25



L ogarithmic Differentiation

In Exercise 64, use logarithmic differentiation to find the
derivative of y with respect to the given independent
variable.

64. v — Osinb

i \Vsec

Theory and Applications

69. Locate and identify the absolute extreme values of

a.In (cos x)on [-7,7],

b. cos(In x) on [%,2].

EXERCISES 7.3

Algebraic Calculations with the Exponential and
Logarithm

Find simpler expressions for the quantitiesin Exercise 2.

2,2 _
In (x*+y7) b, ¢ 1n03 c.

2. a. e elnﬂ:rx—lnz

Solving Equations with L ogarithmic or Exponential
Terms

In Exercise 10, solvefor y intermsof t or x, as
appropriate.

10. In(y* — 1) — In(y + 1) = In(sinx)
In Exercise 16, solvefor t.

16. e(x2)8(2x+1) — of

Derivatives

In Exercises 23 and 36, find the derivative of y with
respectto x, t,or 6, asappropriate.

23. y = (x* — 2x + 2)e*

36. y = /_ Intdt

Integrals

Evaluate the integrals in Exercises 49 and 56.

e Vr

\Vr

/2
S6.f (1 + ) csc? 0 do
4

49.

dr

Theory and Applications

67. Find the absol ute maximum and minimum values of
f(x) =e*—2x on]0, 1].

EXERCISES7.4

Algebraic CalculationsWith a* and log, x
Simplify the expressionsin Exercise 4.

4. a. 256, loge(€¥) c. log, (29 52%)
Derivatives

In Exercises 18 and 29, find the derivative of y with
respect to the given independent variable.

18. y = (InO)”

x4+ 1\
29. y = logs ((:_ 1) )

L ogarithmic Differentiation

In Exercises 41 and 46, use logarithmic differentiation to
find the derivative of y with respect to the given
independent variable.

41. y = (V)
46. y = (Inx)2~
Integration

Evaluate the integrals in Exercise 65.

2log, (x + 2
65_/de
0

x+ 2



Evaluate the integralsin Exercise 72.

e” 1
72. /; ?df

Theory and Applications

75. Find the area of the region between the curve

y =2x/(1+ x?%) andtheinterval —2 < x < 2 of the
x-axis.

EXERCISES7.5

6. Voltagein a dischar ging capacitor
Suppose that electricity is draining from a capacitor at a
rate that is proportional to the voltage V' acrossits
terminalsand that, if ¢ ismeasured in seconds,

av_ 1,

dt 40
Solvethis equation for V7, using V, to denote the value
of V when t = 0. How long will it take the voltage to
drop to 10% of its origina value?

8. Growth of bacteria

A colony of bacteriais grown under ideal conditionsin a
laboratory so that the population increases exponentially
with time. At the end of 3 hours there are 10,000
bacteria. At the end of 5 hours there are 40,000. How
many bacteria were present initially?

EXERCISES 7.7

Common Values of Inverse Trigonometric Functions

Use reference triangles to find the angles in Exercise 6.

6. a. cos ! (_71) b. cos™ (%)
c. cos™ (—\/5)

2

Trigonometric Function Values

13. Giventhat a = sin~1(5/13), find cos a, tan a,
SeC a, csc «a, and cot «.

Evaluating Trigonometric and I nverse Trigonometric
Terms

Find the valuesin Exercise 26.

26. sec (cot ! /3 + csci(—1))

Finding Derivatives

In Exercise 51, find the derivative of y with respect to
the appropriate variable.

51. y= sin'\V2 ¢

Evaluating Integrals

Evaluating the integralsin Exercise 72.

7 f dx
V1 — 452

Evaluate theintegralsin Exercise 107.

sin * x)? dx
107. %

—_—

V1 - x?
Integration Formulas

Verify the integration formulas in Exercise 117.

 tan'x
<

&

2

=1,
117. / X gy = Inx — 2In(1 + ¥Y)
X =

EXERCISES 7.8

Hyperbolic Function Values and | dentities

Each of Exercise 1 givesavaue of sinh x or cosh x.
Use the definitions and the identity cosh? x —

sinh? x = 1 to find the values of the remaining five
hyperbolic functions.

-~

1. smhx = ——j:



Derivatives

In Exercise 16, find the derivative of y with respect to

the appropriate variable.

16. y = 1* tanh%

Indefinite Integrals

Evaluate the integrals in Exercise 43.

43. / 6 cosh (% — In 3) dx

Definite Integrals

Evaluate the integrals in Exercise 60.

In10 .
60. f 4 sinh? (—) dx
g 2

Evaluating I nverse Hyperbolic Functions and

Related Integrals

When hyperbolic function keys are not available on a
calculator, it is still possible to evaluate the inverse
hyperbolic functions by expressing them as logarithms,

as shown here.

sinh 'x = In (x + \/x2 + 1),

coshlx = ]11(). + Va2 + 1),
tanh_]x—lhll +A’,
271 = %

-1 _ ]__]_ \.l'l _.1’2
sech"x =1In o g
cschlx = In (% + V1|;|_ \-)

s o L X 1
coth™ x 2]111 1

—00 X x <X X0
x=1

[x] <1
0=x=1
x#0

x| =1

Use the formulas in the box here to express the numbers
in Exercise 66 in terms of natural logarithms.

66. csch™'(—1/V3)

Applicationsand Theory
83. Arclength

Find the length of the segment of the curve y =
(1/2) cosh2x from x =0 to x = In+/5.



Tutorial 7 (Chapter 8)
Thomas Calculus 11th edition

EXERCISESS8.1

Basic Substitutions

Evaluate each integral in Exercise 36 by using a
substitution to reduce it to standard form.

36. / Inx a’xj
x + dxlnx

Completing the Square

Evaluate each integral in Exercise 41 by completing the
square and using a substitution to reduce it to standard
form.

41 f dx
(x + DVx? + 2x

Improper Fractions

Evaluate each integral in Exercise 50 by reducing the
improper fraction and using a substitution (if necessary)
to reduce it to standard form.

3 2
4= — 7 .
0. f PrEEER

Separating Fractions
Evaluate each integral in Exercise 56 by separating the

fraction and using a substitution (if necessary) to reduce
it to standard form.

VR
56. / 2= & g
0 1 + 4x-

Multiplying by a Form of 1

Evaluate each integral in Exercise 59 by multiplying by
aform of 1 and using a substitution (if necessary) to
reduce it to standard form.

1
9. / secO + tan6 df

Eliminating Square Roots

Evaluate each integral in Exercise 68 by eliminating the
square root.

68. / V1 — sin*6de
/2

Assorted I ntegrations

Evaluate each integral in Exercise 82 by using any
technigue you think is appropriate.

8. / o
V3 + x?
Trigonometric Powers

83.

a. Evaluate [ cos® 0 d@. (Hint: cos?> 0 =1 —sin?0.)
b. Evauate [ cos® 6 dé.

c. Without actually evauating the integral, explain how
you would evaluate [ cos® 6 d6.

EXERCISES 8.2

Integration by Parts

Evaluate theintegralsin Exercise 1, 19 and 24.

1. /xsin%dx
1. f )
2/\V3

24. /e‘h sin 2x dx

tsec ' tdt

Substitution and Integration by Parts

Evaluate theintegralsin Exercise 30 by using a
substitution prior to integration by parts.

30. / 2(Inz)* dz



37. Average value
A retarding force, symbolized by the dashpot in the
figure, slows the motion of the weighted spring so that
the mass’s position at time t is

y =2etcost, t=0.
Find the average value of y over theinterval
0<t<2m.

Mass

Dashpot

I

Reduction Formulas

In Exercise 41, useintegration by parts to establish the
reduction formula.

x"e™ n _
41. /x”e“xdx = — /x” le® iy a# 0

a d

EXERCISES 8.3

Expanding Quotientsinto Partial Fractions

Expand the quotientsin Exercise 6 by partial fractions.

6. =

2
73 — 22 — 6z

Nonrepeated Linear Factors

In Exercise 12, express the integrands as a sum of partial
fractions and evaluate the integrals.

2x+1

12. / ax
Xt — 7x + 12

Repeated Linear Factors

In Exercise 20, express the integrands as a sum of partial
fractions and evaluate the integrals.

20 f x? dx
' (o

— Dx*+2x+ 1)
Irreducible Quadratic Factors

In Exercise 26, express the integrands as a sum of partial
fractions and evaluate the integrals.

4
+
s(s* + 9)*
Improper Fractions
In Exercise 31, perform long division on the intergrand,

write the proper fraction as a sum of partial fractions,
and then evaluate the integral.

9x3 — 3x + 1
31 ,/ X = x?

Evaluating Integrals

dx

Evaluating the integralsin Exercise 38.

s [

EXERCISES 8.4

s 0 do
cos’@ + cos@ — 2

Products of Powers of Sinesand Cosines

Evaluate theintegralsin Exercise 6 and 14.

/2 B
6. f 7 cos’ tdt
0

7/2
14. / sin® 26 cos® 26 db
0



Integralswith Square Roots

Evaluate the integrals in Exercise 22.

22. / (1 — cos?)*? dt

-

Powersof Tan x and Sec x

Evaluate the integrals in Exercise 26.

7/12
26. f 3 sec* 3x dx
0

Products of Sines and Cosines

Evaluate the integrals in Exercise 38.

/2
38. / Cos X cos 7x dx

72

EXERCISES 8.5

Basic Trigonometric Substitutions

Evaluate the integralsin Exercise 1, 14 and 28.

o
1. ?
VO + y?

2 dx

14. /—
Vet = 1
1 — #2)5/2
28. /(—S)di
2

In Exercise 32, use an appropriate substitution and then
atrigonometric substitution to evaluate the integrals.

/ B dy
32. S
1 V1 + (Iny)?

Applications
41. Find the area of theregion in the first quadrant that
is enclosed by the coordinate axes and the curve

y =9 —x2/3.

EXERCISES 8.6

Using Integral Tables

Use the table of integrals to evaluate the integralsin
Exercise 8 and 20.

8 f dx
x*\4x — 9

dae
L /4 + 5sin 26

Substitution and Integral Tables
In Exercise 45, use a substitution to change the integrd

into one you can find in the table. Then evaluate the
integral.

45. /cotz‘\/l —sin*rdf, 0<t<m/2

Using Reduction Formulas

Use reduction formulas to evaluate the integralsin
Exercise 60.

60. / csc® y cos® y dy

Powersof x TimesExponentials

Evaluate the integrals in Exercise 80 using table
Formulas 103-106. These integrals can also be evaluated
using integration (Section 8.2).

80. / 2V gy

Substitutions with Reduction For mulas

Evaluate the integrals in Exercise 81 by making a
substitution (possibly trigonometric) and then applying a
reduction formula.

81. /ersec3 (ef — 1)dt



Hyperbolic Functions

Usetheintegral tablesto evaluate the integralsin
Exercise 90.

90. / x sinh Sx dx

EXERCISES 8.8

Evaluating Improper Integrals

Evauate the integrals in Exercises 1 and 26 without
using tables.

1.f,,,L
o x*+1

1
26. / (—Inx) dx
0

Testing for Convergence

In Exercises 35, 50 and 64, use integration, the Direct
Comparison Test, or the Limit Comparison Test to test
the integrals for convergence. If more than one method
applies, use whatever method you prefer.

/2
35. / tan 6 d6
0

50./ dHe
o 1 +e

< dx
64. [ T

Theory and Examples

65. Find the values of p for which each integral
converges.

< dx
b. l x(lnx)?



Tutorial 8 (Chapter 11)
Thomas Calculus 11th edition

EXERCISES11.1

Finding Terms of a Sequence

Exercise 2 gives aformulafor the nthterm a,, of a

sequence {a,}. Find thevauesof a,, a,, as, and a,.

l

2. anza

Finding a Sequence’s Formula

In Exercise 16, find aformulafor the nth term of the
sequence.

1

11
£9 1625

16. The sequence 1, —

Reciprocals of squares
of the positive integers,
with alternating signs

Finding Limits
Which of the sequences {a,,} in Exercises 25, 49 and

80 converge. and which diverge? Find the limit of each
convergent sequence.

1 —2n
5. an =179,
7”
49, a, = (1+ﬁ)
Inn)’
80.@7,,,2( )

\Vn

EXERCISES11.2

Finding nth Partial Sums

In Exercise 1, find aformulafor the nth partial sum of
each series and use it to find the series’ sum if the series
converges.
2 2 2 2
1.2+ 54+ 54+ 5+ +
379727 =1

Serieswith Geometric Terms

In Exercise 7, write out the first few terms of each series
to show how the series starts. Then find the sum of the

Telescoping Series

Find the sum of each seriesin Exercise 15.

oo

4
15 2 G~ @ ¥ 1)

Convergence or Divergence

Is Exercise 23 converge or diverge? Give reasons for
your answer. If aseries converges, find its sum.

Geometric Series

In geometric seriesin Exercise 41, write out the first few
terms of the seriesto find a and r, and find the sum of
the series. Then expresstheinequality |r| < 1 interms
of x andfind thevaluesof x for which theinequality
holds and the series converges.

41. D (—1)%"
n=0

Repeating Decimals

Express each of the numbersin Exercise 51 astheratio
of two integers.

51. 023 = 0232323...



EXERCISES11.3

Deter mining Convergence or Divergence

Which of the seriesin Exercises 1, 9, 10 and 28
converge, and which diverge? Give reasons for your
answers. (When you check an answer, remember that
there may be more than one way to determine the series’
convergence or divergence.)

< In

L. Elon 9. g n
10, S A0 i
n=2 \,/; n=

EXERCISES11.4

Deter mining Conver gence and Diver gence

Which of the seriesin 1, 10 and 36 converge, and which

diverge? Give reasons for your answers.

1
1. 10.
2+ o
36. 2 1

=114+ 22+ 3+

1
= (Inn)?

7
-+ n°

EXERCISES 11.6

Deter mining Conver gence or Divergence

Is Exercise 1 converge or diverge? Give reasons for your
anwvers

1. E( 1)n+11

Absolute Convergence

Which of the seriesin Exercises 13 and 30 converge
absolutely, which converge, and which diverge? Give
reasonsfor your answers.

13. Z( 1)”\/ 30. 2(—5)‘”
n n=1

EXERCISES11.7

Intervals of Convergence
In Exercise 1, 11 and 22, (a) find the series’ radius and

interval of convergence. For what values of x doesthe
series converge (b) absolutely, (c) condltlonal ly?

1 2 11 E ( 1 )”T”

22. 2 (In n)x"
n=1

In Exercise 36, find the series’ interval of convergence
and, within thisinterval, the sum of the seriesas a
functlon of X.

36. E(lnx)”

EXERCISES11.8

Finding Taylor Polynomials

In Exercises 1 and 4, find the Taylor polynomials of
orders0, 1, 2, and 3generated by f at a.

1. f(x) = Inx,
4. f(x) = 1/(x + 2),

a=1
a=20

Finding Taylor Seriesat x = 0 (Maclaurin Series)
Find the Maclaurin series for the functionsin Exercise 9.
9. ¢

Finding Taylor Series

In Exercises 24 and 28, find the Taylor series generated
by f a x=a.

24, f(x) = 3x% — x* + 2P 4+ x? — 2,

a=—1

28. f(x) =



EXERCISES11.9

Taylor Seriesby Substitution

Use substitution to find the Taylor seriesat x = 0 of
the functionsin Exercise 1.

1. e ™
More Taylor Series

Find Taylor seriesat x = 0 for the functionsin
Exercise 8.

T’;I .
8. x“sinx

EXERCISES11.10

Binomial Series

Find the first four terms of the binomia seriesfor the
functionsin Exercises 1 and 9.

1. (1 +x)"

1\1/2

Find the binomial seriesfor the functionsin Exercise 11.

11 (1 + x)*

EXERCISES11.11

Finding Fourier Series

In Exercises 1 and 8, find the Fourier series associated
with the given functions. Sketch each function.

1. fx) =1 0=x=2=w
8. f(x) = {2, O0=x=<

ar
-, Akl



