EXERCISES 5.1

Area

In Exercise 1 use finite approximations to estimate the area under the graph of the function using **a**. a lower sum with two rectangles of equal width. **b**. a lower sim with four rectangles of equal width. **c**. an upper sum with two rectangles of equal width. **d**. an upper sum with four rectangles of equal width.

1. $f(x) = x^2$ between x = 0 and x = 1

Area of a Circle

21. Inscribe a regular n-sided polygon inside a circle of radius 1 and compute the area of the polygon for the following values of n:

a. 4 (square)
b. 8 (octagon)
c. 16
d. Compare the areas in parts (a), (b) and (c) with the area of the circle.

EXERCISES 5.2

Sigma Notation

Write the sums in Exercises 1 without sigma notation. Then evaluate them.

1.
$$\sum_{k=1}^{2} \frac{6k}{k+1}$$

Values of Finite Sums

17. Suppose that $\sum_{k=1}^{n} a_k = -5$ and $\sum_{k=1}^{n} b_k = 6$. Find the values of

c.
$$\sum_{k=1}^{n} (a_k + b_k)$$

Evaluate the sums in Exercise 24.

24.
$$\sum_{k=1}^{6} (k^2 - 5)$$

Limits of Upper Sums

For the functions in Exercise 36, find a formula for the upper sum obtained by dividing the interval [a,b] into n equal subintervals. Then take a limit of this sum as $n \to \infty$ to calculate the area under the curve over [a,b].

36. f(x) = 2x over the interval [0, 3]

EXERCISES 5.3

Expressing Limits as Integrals

Express the limits in Exercise 1 as definite integrals.

1.
$$\lim_{\|P\| \to 0} \sum_{k=1}^{n} c_k^2 \Delta x_k$$
, where *P* is a partition of [0, 2]

Using Properties and Known Values to Find Other Integrals

12. Suppose that
$$\int_{-3}^{0} g(t) dt = \sqrt{2}$$
. Find
a. $\int_{0}^{-3} g(t) dt$
b. $\int_{-3}^{0} g(u) du$
c. $\int_{-3}^{0} [-g(x)] dx$
d. $\int_{-3}^{0} \frac{g(r)}{\sqrt{2}} dr$

Using Area to Evaluate Definite Integrals

In Exercise 15, graph the integrands and use areas to evaluate the integrals.

15.
$$\int_{-2}^{4} \left(\frac{x}{2} + 3\right) dx$$

Evaluations

Use the results of Equations (1) and (3) to evaluate the integrals in Exercise 38.

$$38. \int_0^{3b} x^2 \, dx$$

Average Value

In Exercise 55, graph the function and find its average value over the given interval.

55.
$$f(x) = x^2 - 1$$
 on $[0, \sqrt{3}]$

EXERCISES 5.4

Evaluating Integrals

Evaluate the integrals in Exercises 23 and 25.

23.
$$\int_{1}^{\sqrt{2}} \frac{s^{2} + \sqrt{s}}{s^{2}} ds$$

25.
$$\int_{-4}^{4} |x| dx$$

Derivatives of Integrals

Find dy/dx in Exercise 36.

36.
$$y = \int_{\tan x}^{0} \frac{dt}{1+t^2}$$

Area

Find the areas of the shaded regions in Exercise 45. **45.** v

Theory and Examples

62. Find

$$\lim_{x \to 0} \frac{1}{x^3} \int_0^x \frac{t^2}{t^4 + 1} dt$$

EXERCISES 5.5

Evaluating Integrals

Evaluate the indefinite integrals in Exercise 4 and 11 by using the given substitutions to reduce the integrals to standard form.

4.
$$\int \left(1 - \cos \frac{t}{2}\right)^2 \sin \frac{t}{2} dt, \quad u = 1 - \cos \frac{t}{2}$$

11.
$$\int \csc^2 2\theta \cot 2\theta \, d\theta$$

a. Using $u = \cot 2\theta$ b. Using $u = \csc 2\theta$

Evaluate the integrals in Exercises 36 and 48.

36.
$$\int \frac{6\cos t}{(2+\sin t)^3} dt$$

48. $\int 3x^5 \sqrt{x^3+1} dx$

Simplifying Integrals Step by Step

Evaluate the integrals in Exercise 51.

51.
$$\int \frac{(2r-1)\cos\sqrt{3(2r-1)^2+6}}{\sqrt{3(2r-1)^2+6}} dr$$

EXERCISES 5.6

Evaluating Definite Integrals

Use the substitution formula in Theorem 6 to evaluate the integrals in Exercises 7 and 14.

7. **a.**
$$\int_{-1}^{1} \frac{5r}{(4+r^2)^2} dr$$
 b. $\int_{0}^{1} \frac{5r}{(4+r^2)^2} dr$
14. **a.** $\int_{-\pi/2}^{0} \frac{\sin w}{(3+2\cos w)^2} dw$
b. $\int_{0}^{\pi/2} \frac{\sin w}{(3+2\cos w)^2} dw$

Area

Find the total areas of the shaded regions in Exercise 32.

73. Find the area of the region in the first quadrant bounded by the line y = x, the line x = 2, the curve $y = 1/x^2$, and the x-axis.

EXERCISES 6.3

Length of Parametrized Curves

Find the lengths of the curves in Exercise 1.

1.
$$x = 1 - t$$
, $y = 2 + 3t$, $-2/3 \le t \le 1$

Finding Lengths of Curves

Find the lengths of the curves in Exercises 7 and 16. If you have a grapher, you may want to graph these curves to see what they look like.

7.
$$y = (1/3)(x^2 + 2)^{3/2}$$
 from $x = 0$ to $x = 3$
16. $y = \int_{-2}^{x} \sqrt{3t^4 - 1} dt$, $-2 \le x \le -1$

Theory and Applications

27. a. Find a curve through the point (1, 1) whose length integral is

$$L = \int_{1}^{4} \sqrt{1 + \frac{1}{4x}} \, dx$$

b. How many such curves are there? Give reasons for your answer.