Tutorial 6 (Chapter 7) Thomas' Calculus 11th edition

EXERCISES 7.1

Graphing Inverse Functions

Exercise 10 shows the graph of a function y = f(x). Copy the graph and draw in the line y = x. Then use symmetry with respect to the line y = x to add the graph of f^{-1} to your sketch. (It is not necessary to find a formula for f^{-1} .) Identify the domain and range of f^{-1} .

10.

Formulas for Inverse Functions

Exercise 15 gives a formula for a function y = f(x)and shows the graphs of f and f^{-1} . Find a formula for f^{-1} in each case.

Derivatives of Inverse Functions

In Exercises 25 and 30: **a.** Find $f^{-1}(x)$. **b.** Graph f and f^{-1} together. **c.** Evaluate df/dx at x = a and $\frac{df^{-1}}{dx}$ at x = f(a) to show that at these points $\frac{df^{-1}}{dx} = 1/(\frac{df}{dx})$. **25.** f(x) = 2x + 3, a = -1

30.

a. Show that $h(x) = x^3/4$ and $k(x) = (4x)^{1/3}$ are inverses of one another.

b. Graph *h* and *k* over an *x*-interval large enough to show the graphs intersecting at (2, 2) and (-2, -2). Be sure the picture shows the required symmetry about the line y = x.

c. Find the slopes of the tangents to the graphs at h and k at (2, 2) and (-2, -2).

d. What lines are tangent to the curves at the origin?

EXERCISES 7.2

Using the Properties of Logarithms

1. Express the following logarithms in terms of ln 2 and ln 3.

a. ln 0.75	b. ln (4/9)	c. ln (1/2)
d. ln ∛9	e. $\ln 3\sqrt{2}$	f. ln $\sqrt{13.5}$

Derivatives of Logarithms

In Exercise 22, find the derivative of y with respect to x, t, or θ , as appropriate.

$$22. \ y = \frac{x \ln x}{1 + \ln x}$$

Integration

Evaluate the integrals in Exercise 39.

$$39. \int \frac{2y \, dy}{y^2 - 25}$$

Logarithmic Differentiation

In Exercise 64, use logarithmic differentiation to find the derivative of y with respect to the given independent variable.

$$64. \ y = \frac{\theta \sin \theta}{\sqrt{\sec \theta}}$$

Theory and Applications

69. Locate and identify the absolute extreme values of

a. ln (cos x) on $[-\frac{\pi}{4}, \frac{\pi}{3}]$, **b.** cos (ln x) on $[\frac{1}{2}, 2]$.

EXERCISES 7.3

Algebraic Calculations with the Exponential and Logarithm

Find simpler expressions for the quantities in Exercise 2.

2. a. $e^{\ln(x^2+y^2)}$ b. $e^{-\ln 0.3}$ c. $e^{\ln \pi x - \ln 2}$

Solving Equations with Logarithmic or Exponential Terms

In Exercise 10, solve for y in terms of t or x, as appropriate.

10.
$$\ln(y^2 - 1) - \ln(y + 1) = \ln(\sin x)$$

In Exercise 16, solve for t.

16.
$$e^{(x^2)}e^{(2x+1)} = e^t$$

Derivatives

In Exercises 23 and 36, find the derivative of y with respect to x, t, or θ , as appropriate.

23.
$$y = (x^2 - 2x + 2)e^x$$

36. $y = \int_{e^{4\sqrt{x}}}^{e^{2x}} \ln t \, dt$

Integrals

Evaluate the integrals in Exercises 49 and 56.

49.
$$\int \frac{e^{\sqrt{r}}}{\sqrt{r}} dr$$

56.
$$\int_{\pi/4}^{\pi/2} (1 + e^{\cot\theta}) \csc^2\theta \, d\theta$$

Theory and Applications

67. Find the absolute maximum and minimum values of $f(x) = e^x - 2x$ on [0, 1].

EXERCISES 7.4

Algebraic Calculations With a^x and $\log_a x$

Simplify the expressions in Exercise 4.

4. a.
$$25^{\log_5(3x^2)}$$
 b. $\log_e(e^x)$ c. $\log_4(2^{e^x \sin x})$

Derivatives

In Exercises 18 and 29, find the derivative of y with respect to the given independent variable.

18.
$$y = (\ln \theta)^{\pi}$$

29. $y = \log_3 \left(\left(\frac{x+1}{x-1} \right)^{\ln 3} \right)$

Logarithmic Differentiation

In Exercises 41 and 46, use logarithmic differentiation to find the derivative of y with respect to the given independent variable.

41.
$$y = (\sqrt{t})^t$$

46. $y = (\ln x)^{\ln x}$

Integration

Evaluate the integrals in Exercise 65.

$$65. \ \int_0^2 \frac{\log_2{(x+2)}}{x+2} \, dx$$

Evaluate the integrals in Exercise 72.

$$72. \int_{1}^{e^{x}} \frac{1}{t} dt$$

Theory and Applications

75. Find the area of the region between the curve $y = 2x/(1 + x^2)$ and the interval $-2 \le x \le 2$ of the *x*-axis.

EXERCISES 7.5

6. Voltage in a discharging capacitor

Suppose that electricity is draining from a capacitor at a rate that is proportional to the voltage V across its terminals and that, if t is measured in seconds,

$$\frac{dV}{dt} = -\frac{1}{40}V.$$

Solve this equation for V, using V_0 to denote the value of V when t = 0. How long will it take the voltage to drop to 10% of its original value?

8. Growth of bacteria

A colony of bacteria is grown under ideal conditions in a laboratory so that the population increases exponentially with time. At the end of 3 hours there are 10,000 bacteria. At the end of 5 hours there are 40,000. How many bacteria were present initially?

EXERCISES 7.7

Common Values of Inverse Trigonometric Functions

Use reference triangles to find the angles in Exercise 6.

6. a.
$$\cos^{-1}\left(\frac{-1}{2}\right)$$
 b. $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$
c. $\cos^{-1}\left(\frac{-\sqrt{3}}{2}\right)$

Trigonometric Function Values

13. Given that $\alpha = \sin^{-1}(5/13)$, find $\cos \alpha$, tan α , sec α , csc α , and cot α .

Evaluating Trigonometric and Inverse Trigonometric Terms

Find the values in Exercise 26.

26.
$$\sec(\cot^{-1}\sqrt{3} + \csc^{-1}(-1))$$

Finding Derivatives

In Exercise 51, find the derivative of y with respect to the appropriate variable.

51.
$$y = \sin^{-1}\sqrt{2} t$$

Evaluating Integrals

Evaluating the integrals in Exercise 72.

$$72. \int \frac{dx}{\sqrt{1-4x^2}}$$

Evaluate the integrals in Exercise 107.

107.
$$\int \frac{(\sin^{-1} x)^2 \, dx}{\sqrt{1 - x^2}}$$

Integration Formulas

Verify the integration formulas in Exercise 117.

117.
$$\int \frac{\tan^{-1} x}{x^2} dx = \ln x - \frac{1}{2} \ln (1 + x^2) - \frac{\tan^{-1} x}{x} + C$$

EXERCISES 7.8

Hyperbolic Function Values and Identities

Each of Exercise 1 gives a value of sinh x or cosh x. Use the definitions and the identity $\cosh^2 x - \sinh^2 x = 1$ to find the values of the remaining five hyperbolic functions.

1.
$$\sinh x = -\frac{3}{4}$$

Derivatives

In Exercise 16, find the derivative of y with respect to the appropriate variable.

16.
$$y = t^2 \tanh \frac{1}{t}$$

Indefinite Integrals

Evaluate the integrals in Exercise 43.

$$43. \int 6 \cosh\left(\frac{x}{2} - \ln 3\right) dx$$

Definite Integrals

Evaluate the integrals in Exercise 60.

 $60. \ \int_0^{\ln 10} 4 \sinh^2\left(\frac{x}{2}\right) dx$

Evaluating Inverse Hyperbolic Functions and Related Integrals

When hyperbolic function keys are not available on a calculator, it is still possible to evaluate the inverse hyperbolic functions by expressing them as logarithms, as shown here.

$$\begin{aligned} \sinh^{-1} x &= \ln \left(x + \sqrt{x^2 + 1} \right), & -\infty < x < \infty \\ \cosh^{-1} x &= \ln \left(x + \sqrt{x^2 + 1} \right), & x \ge 1 \\ \tanh^{-1} x &= \frac{1}{2} \ln \frac{1 + x}{1 - x}, & |x| < 1 \\ \operatorname{sech}^{-1} x &= \ln \left(\frac{1 + \sqrt{1 - x^2}}{x} \right), & 0 < x \le 1 \\ \operatorname{csch}^{-1} x &= \ln \left(\frac{1}{x} + \frac{\sqrt{1 + x^2}}{|x|} \right), & x \ne 0 \\ \operatorname{coth}^{-1} x &= \frac{1}{2} \ln \frac{x + 1}{x - 1}, & |x| > 1 \end{aligned}$$

Use the formulas in the box here to express the numbers in Exercise 66 in terms of natural logarithms.

66. csch⁻¹(
$$-1/\sqrt{3}$$
)

Applications and Theory

83. Arc length

Find the length of the segment of the curve $y = (1/2) \cosh 2x$ from x = 0 to $x = \ln \sqrt{5}$.