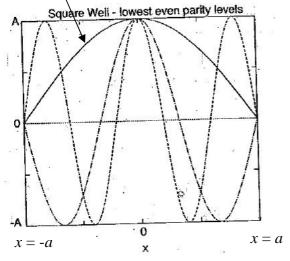

Homework assignment 10

10.1 Modify the ample code 10.5 by defining an infinite square potential of the form


When solving infinite square well numerically, we can't set V_0 to ∞ . To mimic "infinity" numerically, simply set V_0 to a very large value, i.e.,

1000 or larger.

Calculate the GS energy and the error associated with it. Display also the solution. The theoretical eigen energies for a infinite square well is known to be

$$E_n = \frac{n^2 \pi^2 \hbar^2}{8ma^2}$$

Hence you should get a ground state energy consistent with $E_0 = 1.2337$, in unit $\hbar = 1$, with mass and size of the well m = 1, a = 1. Estimate the error in E_0 . The ground state is a cosines function of this form

10.2. Modify the sample code 10.5 to calculate the ground state energy of a particle confined by a 2-D harmonic potential, $V(x, y) = \frac{1}{2}k_xx^2 + \frac{1}{2}k_yy^2$. Display your ground state solution using the Mathematica command ListPlot3D. For simplicity sake, assume $k_x = k_y = 1$. You should get E_0 to be around the theoretical value of 1.0. (See page 329 - 330, Giordano 2nd edition.)