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1 Introduction

We carry out computer simulations in the hope of understanding the properties of assem-
blies of molecules in terms of their structure and the microscopic interactions between
them. The two main families of computer simulation technique are Molecular Dynamics
(MD) and Monte Carlo (MC). The obvious advantage of the former over latter is that it
can simulate the dynamics of particles, which gives a route to dynamical properties of the
system: transport coefficients, eg. thermal conductivity.

Computer simulations act as a bridge between theory and experiment (Fig. 1). We
may test a theory by conducting a simulation using the same model. We may also test
the model by comparing with experimental results. Besides, we may carry out simulation
on the computer that are difficult or impossible to be carried out in the laboratory, eg.
working at exterme of temperature or pressure.

In this lecture, we shall concentrate on molecular dynamcis simulation (in 2D 1).
Molecular dynamcis simulation is widely used for studying classical many-particles sys-
tems. Basically, it integrates the equations of motion of the system numerically.

2 Methodology

For each atom i, we have the equations of motion :

dxi

dt
= vx,i (1)

dvx,i

dt
= ax,i

dyi

dt
= vy,i

dvy,i

dt
= ay,i

where vx,i and vy,i are the components of the velocity of the ith atom, which is located at
position (xi, yi), and ax,i and ay,i are the components of the acceleration of the ith particle,
which is determined by the forces from all the other particles in the system.

1Although an extension to 3D is just straightforward
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Figure 1: The connection between experiment, theory, and computer simulations

2.1 Verlet Algorithm

In nearly all the problems we have encounted so far, the Euler method has been enough.
However, in MD we will be interested in computing the motion over a very large number
of time steps, and it turns out that the numerical errors associated with Euler method
are too big to tolerate. Therefore, it is necessary to employ other scheme for solving the
equations of motion, i.e. Verlet mehod, which has smaller numerical errors associated
compared with Euler method. Letting xi, vx,i and ax,i be the x components of position,
velocity and acceleration of particle i at time-step t, their values at the next time step are
given according to the Verlet algorithm as :

xi(t+ 1) ≈ 2xi(t)− xi(t− 1) + ax,i(t)(∆t)2 (2)

vx,i ≈ xi(t+ 1)− xi(t− 1)
2∆t

with similar equations for yi and vy,i.

2.2 Interaction Potential

Newton’s second law tells :
mir̈i = Fi (3)

where mi is the mass for atom i and r̈2i = x2
i + y2

i in 2D case. To estimate the force
between any two particles (i and j) requires the knowledge of the interaction potential
U(ri,j) :

Fi,j = − ∂

∂r
U(ri,j) (4)

where ri,j is the seperation of the particles. In this lecture, we shall concentrate on
Lennard-Jones (LJ) potential, which is the most commonly used potential. This potential
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Table 1: Reduced unit for Lennard-Jones

Quantity Unit Conversion

distance σ x∗ = x/σ

time τ τ = t∗ = t 2
√
ε/m/σ2

energy ε E∗ = E/ε

velocity σ/τ v∗ = vτ/σ

force ε/σ F ∗ = Fσ/ε

temperature ε/kB T ∗ = TkB/ε

pressure ε/σ3 P ∗ = Pσ3/ε

was used in the earliest studies of the properties of liquid argon.

U(r) = 4ε[(
σ

r
)12 − (

σ

r
)6] (5)

where ε and σ are constant parameters that set the energy and distance scales associated
with the interaction. ε/kB = 119.8 and σ = 3.405Å are the optimised parameters for
argon.

It is convenience to use reduced units when dealing with LJ potential, since m, kB,
ε and σ are all equal to unity in LJ reduced unit. Table 1 shows the reduced units for
Lennard-Jones.

2.3 Periodic Boundary Conditions

Before we discuss the programming, there is one more issue that must be addressed, i.e.
the boundary conditions. Perhaps the most obvious way to enclose the particles is in a box
with hard, prefectly reflecting walls. However, the problem with this approach is that for
presently available computers we are limited to sytems containing a relatively small number
of atoms. In small systems, the collisions with the walls can be significance to the total
number of collision, in contrast to a real system, where the behavior would be dominated
by collisions with other particles. Ultimately, we do not want the container affect our
simulation results. Hence, it is reasonable to introduce periodic boundary conditions
(PBC) to the system. To view PBC, imagine when a particle encounter a wall, it is
transported instantly to the opposite side of the system, as shown in Fig. 2.

3 Exercises - hands-on simulation

We have already discuss the method, now it is time for us to work on some exercises.
Exercise 1 - Initializing a molecular dynamics simulation

• Choose the number of particles (N), and set the time interval (∆t) and the total
time steps.
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Figure 2: Periodic Boundary Conditions

• Set the initial positions and velocities of the particles:

– Set max position component deviation dr from the vertices of a regular array.

– Set max initial velocity component magnitude v0.

– Iterate through N particles :

∗ Calculate the equidistant grid point coordinates (gx(i), gy(i)) for particle i.

∗ Displace the particle randomly a bit by setting x(i, 1) = gx(i)+2(Random−
0.5)dr, y(i, 1) = gy(i) + 2(Random− 0.5)dr. 2

∗ Calculate a rondomize initial velocity by vx(i, 1) = 2(Random−0.5)v0, vy(i, 1) =
2(Random− 0.5)v0.

• To set the stage for Verlet method calculations, define the frictitious position to this
initial time by x(i, 0) = x(i, 1)− vx(i, 1)dt, y(i, 0) = y(i, 1)− vy(i, 1)dt.

• Visualize the generated initial positions of atoms.

After initializing the particle positions and velocities, the Verlet method can be used
to calculate the subsequent motion of each atom. The acceleration components of ith

particle, ax,i and ay,i, can be obtained from the Lennard-Jones potential :

ax,i =
∑
i 6=j

(
48
r13
i,j

− 24
r7i,j

)cosθi,j (6)

=
∑
i 6=j

(
48
r14
i,j

− 24
r8i,j

)∆xi,j

ay,i =
∑
i 6=j

(
48
r13
i,j

− 24
r7i,j

)sinθi,j

=
∑
i 6=j

(
48
r14
i,j

− 24
r8i,j

)∆yi,j

2I use 1 to represent initial/first time step

4



where ∆xi,j and ∆yi,j are the components of the seperation (ri,j) between particles i and
j. There are a few things which I would like to point out here :

1. We have assumed that m = ε = σ = 1 so that we are using reduced units as
mentioned earlier.

2. When measuring ri,j , it must be associated with the ’minimum’ seperation rule of
periodic boundary conditions.

3. Acceleration is calculated at each tim step and this is the most time-consuming
part. In order to reduce the time consumed, we therefore skip the calculation for
ri,j > rcutoff , since the force is approximately equals to zero when ri,j > 3, which
can be seen from the gradient of the potential curve.

Exercise 2 - Calculation

• Iterate through N particles (i = 1, 2, · · · , N) and calculate the new position and
velocity for each particle.

– Calculate the distance rij to particle j (taking the periodic boundary condition
into account).

– If rij > rcutoff , skip j.

– Otherwise, calculate the force Fij on particle i due to j. Add this force vector
to the net force F (i) on i from all the other particles.

– Use the net force to update the position and velocity of particle i (take mi = 1)
:

∗ x(i, t+ 1) = 2x(i, t)− x(i, t− 1) + axdt
2; 3

y(i, t+ 1) = 2y(i, t)− y(i, t− 1) + aydt
2.

∗ If the new position falls outside of the system, apply periodic boundary
condition and bring it back inside.

∗ vx(i, t) = [x(i, t+ 1)− x(i, t− 1)]/(2dt);
vy(i, t) = [y(i, t+ 1)− y(i, t− 1)]/(2dt).

4 Equilibrium State

Perhaps the most fundamental issue is whether our system reaches a proper equilibrium
state.

To answer this question, we can plot a graph of energy versus time step, and see the its
fluctuation. If our system is in an equilibrium state, the energy should fluctuates around
a constant value, Ē.

Exercise 3 - Energies versus time steps
3t denotes time step
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Plot a graph of kinetic energy, potential energy and total energy versus time steps, and
visualize their fluctuations. Is the system describes a microcanonical (constant energy)
ensemble?

4.1 Velocity Distributions

Alternatively, to answer this question, we will focus on the behavior of the particle ve-
locities, since we know that in equilibrium, a classical gas is described by the Maxwell
distribution. For a 2-D gas, we have the speed distribution :

P (v) = C
v2

kBT
exp(− mv2

2kBT
) (7)

where P (v) is the probability per unit v of finding a particle with speed v, and C is a
constant that depends on the mass of the particle. The corresponding velocity distribution
is

P (vx) =
Cx

(kBT )
1
2

exp(− mv2
x

2kBT
) (8)

with a similar expression for P (vy). If the molecular dynamics method describes the
behavior of a real gas, it should yield velocity and speed distributions that have the
Maxwell forms.

It is now time to do an exercise to justify the statements above.
Exercise 4 - Velocity Distributions

• Initially, all of the particles were given a velocity component whose magnitude was
unity (v = 1 in reduced unit) and whose direction was random.

• Let the simulation run, and the velocities for all atoms and all time steps was recorded
in an array.

• The speed distribution was recorded by dividing the v range into bins and tabulating
the number of atoms whose speed was in the range corresponding to each bin.

4.2 Equipartition Theorem

An important quantity for a system in thermal equilibrium is the temperature, T . T does
not enter the simulations as an input parameter, instead, it must be ’measured’. The
results for the speed and velocity distributions can be used to measured T by fitting the
curve (results) to Maxwell distribution. To make it clear, we ’adjust’ the T in the Maxwell
equations so that the equation shows ’exact’ distribution.

Another apporach is to make use of the equipartition theorem. Equipartition theorem
states that for a classical system an average energy of 1

2kBT is assiciated with any degree
of freedom that enters the energy quadratically. The kinetic energy of an atom in our 2-D
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system is 1
2m(v2

x + v2
y), so the equipartition theorem tells us that for a system in thermal

equilibrium

kBT =<
1
2
m(v2

x + v2
y) > . (9)

Here the angular bracket (<>) can be interpreted in two ways. According to one point
of view, Eq. 9 applies to each atom in the system, so we can obtain T by computing the
time average of the kinetic energy of one particular atom. However, since the atoms are
all equivalent, the same result can be obtained by averaging over the different atoms in
the system at a particular instant in time. In practice the best computational accuracy
will be obtained by combining the two points of view and computing the time average of
the kinetic energy per atom averaged over all of the atoms.

Assignments

1. Briefly explain Equipartition Thoerem and show its formula (similar to Eq. 9) in
3-D case (ignore rotational degree of freedom).

2. Compare the temperature calculated from Equipartition Theorem (Eq. 9) with the
value obtained by fitting the Maxwell distribution fuctions directly to the results in
Exercise 4.
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