Computational Physics (ZCE 111)

Yoon Tiem Leong USM School of Physics, Academic Year 2010/11, 2nd semester

Note

- The lecture notes are adopted from Giodarno and Nakanishi, Second edition.
- Programming tool: Mathematica
- Install your own Mathematica. For instruction, visit the course webpage.
- Visit the course webpage and to read more about what's computational physics.
- **Read Giodano.**

Chapter 1

A First Numerical Problem

1.1 Radioactive Decay

 A large sample of nuclei decays according to the first order equation $\frac{dN_U}{dt} = -\frac{N_U}{\tau}$

The analytical solution is given by

$$
N_U = N_U(0) e^{-t/\tau}
$$

- where τ is the mean lifetime for a particular nuclear species.
- Plot the graph $N_U = N_U(0) e^{-t/\tau}$ using *Mathematica*'s Plot command. [Sample code 1.1.1]
- In order to plot the graph, numerical values must be supplied to $N_U(0)$ and τ . These are the 'initial values'.

For example, U-238, $\tau = 10^9$ yr.

• Note that to plot the function, you must not use the symbol "N" to name the function, since "N" is the symbol reserved for *Mathematica.* Use the symbol "Nu" instead of "N" (it's just a label anyway).

Plotting N/N _U(0)

- You can also plot $N/N_U(0)$ as a function of time
	- This let you monitor the fraction of nuclei number remains as a function of t/τ .
	- To do so, define $x = t/\tau$ *t*
- *N* / $N_U(0) = e^{-\tau} = e^{-x}$ *X* is the measure of time in unit of τ . $N/N_U(0) = e^{-\tau} = e^{-x}$ τ ŧ $= e^{-\tau} = e^{-\tau}$
	- Sample code 1.1.2

Estimating the half life

- Can you estimate the time (in unit of τ) when the half of the original nuclei has decayed?
- Theoretically, this time is called the half-life, given by $e^{-t/\tau} = 1/2$, i.e., $t=t_{1/2} = \tau \ln 2$, or $x = t/\tau = \ln 2$.
- How to obtain $t_{1/2}$ using *Mathematica*? This could be solved using the function Solve.
- Here we ask the Mathematica to solve the equation for the value of *t* such that $f(t) = e^{-t/\tau} = V_2$.

Sample code 1.1.3

Try this

- What is the time *t*' taken for 75% of the total nuclei has decayed?
- This means only 35% = 0.35 of the nuclei remains at time *t*'. To solve for *t*' in Mathematica, see Sample code 1.1.4.

Improved the way to use Solve

- A slightly more improved way to use the Solve function can be found in Sample code 1.1.5
- tprime= t /. Solve[Exp[- t /tau] == frac, t] [[1]]
- Here tprime is the numerical value of the solution to the equation $Exp[-t/tau] == frac$, where frac = 0.35 in our case.

DSolve

- *Mathematica*'s DSolve function can be used to solve the differential equation $dN/dt = -(N/\tau)$.
- This is a symbolic operation. Sample code 1.1.6.

NDSolve

- *Mathematica*'s NDSolve function can be used to solve the equation $dN/dt = -(N/\tau)$.
- This is a numerical operation. Sample code 1.1.7.
- To use NDSolve, numerical values of the initial or boundary conditions for the differential equation must be supplied, e.g., Nu[0]==N0.

Euler's method

 Now, we will write our own numerical program to solve the equation d*N*/dt=-(*N*/t), instead of using NDSolve.

Our goal is to obtain N_U as a function of t. Given the value of N_U at one particular value of t

we want to estimate its value at later times.

Taylor expansion for
$$
N_U
$$

\n $N_U(\Delta t) = N_U(0) + \frac{dN_U}{dt} \Delta t + \frac{1}{2} \frac{d^2 N_U}{dt^2} (\Delta t)^2 + \cdots$
\n $N_U(\Delta t) \approx N_U(0) + \frac{dN_U}{dt} \Delta t$
\n $\frac{dN_U}{dt} = \lim_{\Delta t \to 0} \frac{N_U(t + \Delta t) - N_U(t)}{\Delta t} \approx \frac{N_U(t + \Delta t) - N_U(t)}{\Delta t}$
\n $N_U(t + \Delta t) \approx N_U(t) + \frac{dN_U}{dt} \Delta t$

The difference equation used to determine N_U at the next time step

Given that we know the value of N_U at some value of t,

$$
N_U(t+\Delta t)\approx N_U(t) - \frac{N_U(t)}{\tau}
$$

LHS, the value for the next time step is calculated based on the RHS

RHS, values from previous time steps already stored in computer's memory

we can use (1.7) to *estimate* its value a time Δt later.

Discretising the differential equation

•The differential equation $dN/dt = -(N/\tau)$ is said to be discretised into a difference equation, $N_U(t + \Delta t) \approx N_U(t) - \frac{N_U(t)}{\tau} \Delta t$ which is suitable for numerical manipulation using computer.

•There are many different way to discretise a differential equation. •The method used here is known as Euler method, where the differentiation of a function at time *t* is approximated as

 $\int_{-t}^{t} (t) f(t+\Delta t) - f(t) \int_{-t}^{t} f(t_{i+1}) - f(t_i)$ (t_i) $f(t_{i+1})-f(t_i)$ $(t_{i+1}) = f(t_i)$ (t_i) $\frac{1}{t_i} \frac{1}{t_i} - \frac{1}{t_i} \frac{1}{t_i} = i \Delta t \Rightarrow f(t_{i+1}) = f(t_i) + \frac{dy(t_i)}{t_i} \Delta t = f(t_i) + G(t_i)$ $(t_{i+1}) = f(t_i) + G(t_i) \Delta t$, where $G(t_i)$ (t) f_{i+1}) = $f(t_i)$ + $G(t_i)$ Δt , where $G(t_i)$ is the function appearing in the E.o.M in $\frac{f(t_i)}{dt} = G(t)$ $\frac{i+1}{i} \frac{1}{i} \frac{1}{i} \frac{1}{i} \frac{1}{i}$, $t_i = i \Delta t$, $t_{i+1} - t_i = \Delta t$, $\frac{i}{i} = \frac{f(t_{i+1}) - f(t_i)}{\Delta t}; t_i = i\Delta t \Rightarrow f(t_{i+1}) = f(t_i) + \frac{dy(t_i)}{\Delta t}$ (in our $i - i\Delta i$, $i_{i+1} - i_i$ $i - l \Delta l \rightarrow J$ $(l_{i+1}) - J$ (l_i) \uparrow \longrightarrow $\Delta l - J$ (l_i) \uparrow \bigcup (l_i) $df(t) = f(t+\Delta t) - f(t) = f(t_{i+1}) - f(t_i)$ $t_i = i\Delta t$, $t_{i+1} - t_i = \Delta t$, dt Δt Δt $df(t_i)$ $f(t_{i+1}) - f(t_i)$ $df(t_i)$ $t_i = i\Delta t \Rightarrow f(t_{i+1}) = f(t_i) + \frac{f(t_i) - f(t_i)}{\Delta t} \Delta t = f(t_i) + G(t_i) \Delta t$ dt Δt Δt dt dt $df(t)$ $f(t_{i+1}) = f(t_i) + G(t_i) \Delta t$, where $G(t_i)$ is the function appearing in the E.o.M in $\frac{f(t_i)}{f} = G(t)$ \Rightarrow $f(t_{i+1}) = f(t_i) + G(t_i) \Delta t$, where $G(t_i)$ is the function appearing in the E.o.M in $\frac{f(t_i)}{dt} = 0$ $+$ $^{+}$ $^{+}$ $^{+}$ $f(\mathbf{t}) - f(\mathbf{t}) = f(t_{i+1}) - f(t_{i+1})$ $= \frac{f(t+1) - f(t)}{t}$, $t_i = i\Delta t$, $t_{i+1} - t_i = \Delta t$ Δt Δt Ę $= i\Delta t \Rightarrow f(t_{i+1}) = f(t_i) + \frac{f(t_i)}{t_i} \Delta t = f(t_i) + G(t_i) \Delta t$ Δ \approx \approx (t) case here, $G(t) = -\frac{f(t)}{f(t)}$, $f(t) \equiv N(t)$ $N(t)$ $G(t) \equiv -\frac{\gamma(t)}{2}, f(t) \equiv N(t)$ τ $\equiv -\frac{\gamma(t)}{2}, f(t) \equiv i$

General structure of a code

- **Initialisation**
- **Calculation**
- **Output**

The code's structure

• Initialisation: Assign $N_u(t=0)$, τ , Δt .

- In principle, the finer the time interval Δt is, the numerical solution becomes more accurate.
- The global error is of the order $O \Delta t$
- Also define when to stop, say tfinal= 10τ .
- Calculate $N_u(\Delta t) = N_u(0) \Delta t N_u(t)/\tau$.
- Then calculate $N_u(2\Delta t)$ = $N_u(\Delta t)$ + Δt $N_u(\Delta t)/\tau$
- $N_u(3\Delta t) = N_u(2\Delta t) + \Delta t N_u(2\Delta t)/\tau$...
- Stop when $t=$ tfinal= 10τ .
- Number of steps, Nstep = $1+$ IntegerPart[tfinal/ Δt]
- Plot the output: $N_u(t)$ as function of *t*.
- [Sample code 1.1.8]