Chapter 10

Quantum Mechanics

Time-independent Schroedinger Equation

$$
-\frac{\hbar^2}{2m}\frac{d^2\phi(x)}{dx^2} + V(x)\phi(x) = E\phi(x)
$$
 Eq. (1)
\n
$$
\hat{H}\phi(x) = E\phi(x)
$$

\n
$$
\hat{H} = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)
$$

\n
$$
\phi(x)
$$
 is an *eigenstate* of the Hamiltonian operator
\nwith the *eigenvalue* E

Time Independent Schroedinger Equation (cont.)

■ In the time-independent Schroedinger Equation,

$$
-\frac{\hbar^2}{2m}\frac{d^2\phi(x)}{dx^2} + V(x)\phi(x) = E\phi(x).
$$

the constant *E* is an unknown

 \blacksquare The solution has to obey boundary conditions fixed by physical consideration.

Ground state energy of an infinite square well

Figure 10.1: Potential energy for a particle in a box. The potential is $V = 0$ inside the box (i.e., for $|x| \leq \alpha$ and V_0 outside. If $V_0 = \infty$, then the box is said to have "hard" walls, while if V_0 is finite, the walls are "soft."

Analytical eigen values

We first consider potentials for which a particle is confined to a specific region of space. Such a potential is known as the infinite square well and is described by

$$
V(x) = \begin{cases} 0 & \text{for } |x| \le a \\ \infty & \text{for } |x| > a. \end{cases} \tag{16.13}
$$

For this potential, an acceptable solution must vanish at the boundaries of the well. We will find that the eigenstates $\phi_n(x)$ can satisfy these boundary conditions only for specific values of the energy E_n .

$$
E_n = \frac{p_n^2}{2m}; p_n = \frac{h}{\lambda_n}; n\frac{\lambda_n}{2} = L = 2a
$$

\n
$$
\Rightarrow \lambda_n = \frac{4a}{n}
$$

\n
$$
\Rightarrow E_n = \frac{1}{2m} \left(\frac{h}{\lambda_n}\right)^2 = \frac{n^2 \pi^2 \hbar^2}{8ma^2} \qquad n = 1, 2, 3, ...
$$

Analytical eigen solutions

The normalized eigenstates (eigen solutions) have the form

Show analytically that the energy eigenvalues of the infinite square well are given by $E_n = n^2 \pi^2 \hbar^2 / 8ma^2$, where *n* is a positive integer. Also show that the normalized eigenstates have the form

$$
\phi_n(x) = \frac{1}{\sqrt{a}} \cos \frac{n\pi x}{2a}, \quad n = 1, 3, \dots \quad \text{(even parity)} \tag{16.14a}
$$

$$
\phi_n(x) = \frac{1}{\sqrt{a}} \sin \frac{n\pi x}{2a}, \quad n = 2, 4, ... \quad \text{(odd parity).}
$$
\n(16.14b)

Normalisation condition

$$
\int_{-\infty}^{\infty} \phi_n(x) \phi_n^*(x) dx = 1
$$

allows us to obtain the normalisation constant of the eigen state, $\phi_n(x)$ 1 $p_n(x),$ i.e., *a* ϕ

Even and Odd eigen states

 \Box The potential takes on the form of $V_i = \begin{cases} V_0, \\ 0, \end{cases}$ 0, *a i a* $V_0, \quad |i| \leq N$ *V* $|i| > N$ $|V_0, |i| \leq$ $=\begin{cases}$ $\left|0, \right| \left| i \right| >$

■ When solving infinite square well numerically, we can't set V_0 to ∞ . To mimic "infinity" numerically, simply set V_0 to a very large value, i.e., 1000.

Discretisation

\Box Choose unit: \hbar , $m = 1$.

 $x_i = i\Delta x$; $x_{N} = x_{ini}$; $x_N = x_{last}$; $\Delta x = (x_{last} - x_{ini})/N$, *N* number of spatial interval Δx . *i=-N,-N+1*,…,0, 1,2,…, *N*-1, *N* indexes a grid point *xⁱ* .

 ϕ_{0}

 $x(N_a) = +a$

 $x_i = i\Delta x$

The size of the well is 2*a*; its edges are located at $x(-N_a) = -a$ and $x(N_a) = a$. We need to specify (as an input) x_{ini} , x_{last} ; *a*, *N*.

 Δx , N_a are calculated based on these.

Discretising the TISE

• Discretise the TISE on the grid as defined earlier:

$$
\begin{aligned}\n\phi_i &= \phi(i\Delta x) \\
\frac{d^2 \phi_i}{dx^2} &= \frac{\phi_{i+1} + \phi_{i-1} - 2\phi_i}{(\Delta x)^2} \\
-\frac{\hbar^2}{2m} \frac{d^2 \phi_i}{dx^2} &= -\frac{\hbar^2}{2m} \frac{\phi_{i+1} + \phi_{i-1} - 2\phi_i}{(\Delta x)^2} = (E - V_i)\phi_i\n\end{aligned}
$$

$$
\phi_{i+1} = 2\phi_i - \phi_{i-1} - 2(\Delta x)^2 (E - V_i) \phi_i
$$

Initial conditions

- **□** To begin with the first step, we need to supply *two* initial values at $\phi(x=0) = \phi_0, \phi'(x=0)$
- Generically, two initial values are required for solving a second order differentiation. Choosing an initial value at $x=0$ for $\phi'(x=0)=\phi_0$. is equivalent to choosing an initial value at , since $\phi'(0)$ $(0)-\phi(-\Delta x)$ $1 - \varphi_0 - \Delta \chi \varphi_0$ 0 $\psi(0) \approx \frac{\psi(0) - \psi(1-\psi)}{1-\psi(0)} \Rightarrow \phi_{-1} = \phi_0 - \Delta x \phi_0$ *x x x* $\phi(0) - \phi($ $\phi'(0) \approx \frac{f'(0) - f'(1 - 1)}{\Delta x} \Rightarrow \phi_{-1} = \phi_0 - \Delta x \phi_0$ $-\,\phi\hspace{0.025cm}\bigl(-\Delta$ $\approx \frac{\gamma(0) + \gamma(0)}{2} \Rightarrow \phi_{-1} = \phi_0 - \Delta x$ Δ ϕ_{-1}

Symmetry of the solution

- \blacksquare For the case of the infinite potential well, the potential is symmetric about *x*=0. We hence expect the solutions correspond to this potential, i.e., ϕ , should also contain a corresponding symmetry.
- The solutions are expected to display either positive or negative parity Symmetry, ie. $\phi(-x) = \phi(x) + v$ e parity; $\phi(-x) = -\phi(x)$ -ve parity.
- Parity will be used to prepare the initial conditions for our numerical solution scheme.

Initial conditions

- **□** To begin with the first step, we need to supply *two* initial values at $\phi(x=0) = \phi_0$, $\phi'(x=0) = \phi_0'$.
- **□** Generically, two initial values are required for solving a second order differentiation. Choosing an initial value at *x*=0, is equivalent to choosing an initial value at ϕ_{-1} , since $\phi'(0)$ $(0)-\phi(-\Delta x)$ $1 - \psi_0 - \Delta \psi_0$ 0 $\psi(0) \approx \frac{\psi(0) - \psi(1-\psi)}{1-\psi(0)} \Rightarrow \phi_{-1} = \phi_0 - \Delta x \phi_0$ *x x x* $\phi(0) - \phi($ $\phi'(0) \approx \frac{f'(0) - f'(1 - \mu)}{\Delta x} \Rightarrow \phi_{-1} = \phi_0 - \Delta x \phi_0$ $-\,\phi\hspace{-0.5mm}\varphi(-\Delta$ $\approx \frac{f''(0)-f''(1)}{1}$ $\Rightarrow \phi_{-1} = \phi_0 - \Delta x$ Δ

Initial conditions for ϕ_0, ϕ_{-1}

- \blacksquare The solutions can be distinctively be categorised into either positive or negative parity ones.
- \Box For +ve parity case: $\phi(\Delta x) = \phi(-\Delta x)$ $(0)-\phi(-\Delta x)$ 0 0 0 $\zeta_0 = \frac{d\psi}{dt}$ $\approx \frac{\gamma(\zeta) + \gamma(\zeta - \zeta)}{dt} = 0$ *x* $d\phi$ $\phi(0)-\phi(-\Delta x)$ $dx \big|_{x=0}$ Δx ϕ ϕ $(0) - \phi$ (0) ϕ $=$ $-\phi\bigl(-\Delta$ $=\frac{d\psi}{dt}$ $\approx \frac{\gamma(0)+\gamma(2\pi)}{2}$ = (Δ

 \Box Choose $\phi_{-1} = \phi_0 = 1$

,

Initial conditions for ϕ_0, ϕ_{-1}

 \Box For $-\vee$ e parity case: $\phi(\Delta x) = -\phi(-\Delta x)$ $(\Delta x) - \phi(-\Delta x)$ $2\phi(\Delta x)$ $\phi(\Delta x)$ 0 0 $\left.\frac{d\phi}{dx}\right|_{x=0} \approx \frac{\phi(\Delta x) - \phi(-\Delta x)}{2\Delta x} = \frac{2\phi(x)}{2\Delta x}$ $d\phi$ $\phi(\Delta x) - \phi(-\Delta x)$ $2\phi(\Delta x)$ $\phi(\Delta x)$ $dx\big|_{x=0}$ 2 Δx 2 Δx Δx ϕ ϕ Δx ϕ Δx ϕ Δx ϕ ϕ ϕ $=$ $(\Delta x)-\phi(-\Delta x) = 2\phi(\Delta x) - \phi(\Delta x)$ $=\frac{u\psi}{l}$ $\approx \frac{r(2v)}{l}$ $\approx \frac{1}{l}$ $\approx \frac{1}{l}$ $\approx \frac{1}{l}$ $\approx \frac{1}{l}$ $\approx \frac{1}{l}$ Δx 2 Δx Δx

$$
\phi_0 = 0 \quad \frac{d\phi}{dx}\Big|_{x=0} = 1 \Rightarrow \phi(-\Delta x) = \phi_{-1} = -\Delta x
$$

Boundary condition

- **□** But now, there is the boundary condition to take care of: we need the solution to be such that $\phi(x = -a) = \phi(x = a) = 0$
- This is a physical requirement as we know that there is no particle to be found outside the potential well, according to the probabilistic interpretation of $\phi\phi^*$.
- But before we arrive at the end points we would not know whether such boundary condition is obeyed. We hence have to adjust the so-far unknown values of *E*, the eigen value of the TISE, to achieve this requirement.

Expected eigen values

- We will find that, if the size of the box is chosen to be $L = 2a = 2$, mass $m = 1$, then when *E* is chosen to be exactly 1.2337 will the boundary condition get statisfied.
- The next lowest eigen value for which the boundary condition get satisfied is 4×1.2337 .
- In fact only for $E = 1.2337 n^2$, $n = 1, 2, 3, ...$ will the boundary condition be met.
- For values of *E* other than 1.2337*n*², the solution divert to $\pm\infty$ at the boundaries. The discrete values of eigenvalues corresponds to the quantise energy levels of the infinite quantum square well system.

Note: We have chosen the unit where $\hbar = 1$ so that $E_n = \frac{n^2 \pi^2 \hbar^2}{2}$ 2 $\frac{1}{2}$ = 1.2337 $n-\overline{8}$ *n* $E_n = \frac{n \pi n}{2} = 1.2337 n^2$ *ma* $=\frac{n^2\pi^2n}{2}=1$ \hbar

Shooting method

- **□** To this end, we use what is called the SHOOTING method: we iterate Eq. (1) with a dynamically adjusted value of *E* so that the code could find for itself automatically a value of *E* such that the boundary condition is met.
- **E** Hint: choose a value of *E* close to 1.2 as an initial guess to *E*.

ever-decreasing ...

EXAMPLE 10.1 Interactive shooting method routine calculate

- Input are the number N and the size Δx of the spatial grids, the initial guess for the energy E and increment ΔE , and the cutoff parameter b (see below).
- Implement $\psi'(0) = 0$ for an even parity solution by setting $\psi_0 = \psi_{-1} = 0$.
- Initialize variable last diverge (which keeps track of the direction of the diverging trend) to zero (since we do not know this direction à priori). If the subsequent calculations to evaluate ψ for a given value of E exits by detecting a diverging trend, the sign of the last value of ψ evaluated indicates the direction.

 \bullet Main loop in which we iterate and home-in to a valid eigenvalue E :

- \triangleright For the current value of E, loop through the index $i = 0, 1, ..., N 1$ to successively compute the wave function $\{\psi_i\}$.
	- Calculate ψ_{i+1} from ψ_i and ψ_{i-1} using $\psi_{i+1} = 2\psi_i - \psi_{i-1} - 2(E - V(x_i))(\Delta x)^2 \psi_i.$

• Check if $|\psi_{i+1}| > b$ for a suitable cutoff value b.

- \triangleright If yes, assume that ψ is diverging. Exit the loop over i and display the computed ψ .
- \triangleright Otherwise, continue the loop with the next value i.
- \triangleright Display the computed ψ and current value of ΔE , and wait for key input to see if we should continue further.
	- If ΔE is small enough, we may conclude that the current E is acceptable (if the displayed ψ looks good), or reject this calculation (if it is not). Exit the subroutine.
	- If further iteration is indicated, continue.
- \triangleright If the last value of ψ evaluated $(\psi(i+1))$ and last diverge are of different signs, turn around the direction of varying E and halve its magnitude by assigning $\Delta E = -\Delta E/2$.

 \triangleright Update the trial value of E to $E + \Delta E$.

- \triangleright Replace last diverge by the sign of $\psi(i+1)$.
- \triangleright Go back to the beginning of the homing-in process and iterate.

Descrised eigen energies

- For $L = 2a = 2$, when *E* is chosen exactly as 1.2337, the boundary condition get statisfied.
- The next lowest eigen value for which the boundary condition get satisfied is 4×1.2337 .
- \Box In fact only for $E = 1.2337n^2$, $n = 1, 2, 3, ...$ will the boundary condition be met.
- For values of *E* other than 1.2337*n*², the solution divert to $+\infty$ at the boundaries.
- The discrete values of eigenvalues corresponds to the quantise energy levels of the infinite quantum square well system.
- Note that the agreement between numerical and analytical eigen value can only be achieved if the discretisation is made sufficiently fine $(N \sim 10^5)$.

Normalisation

□ Once the eigen solution is obtained, with the right eigen values *E* is found with the shooting method, we will have to rescale the solution according to the normalisation condition:

$$
A = \int_{-a}^{a} \phi^*(x) \phi(x) dx
$$

$$
\phi_i(x) \rightarrow \phi_i^N(x) = \phi_i(x) / \sqrt{A} \text{ so that } \int_{-a}^{a} \phi_i^{N*}(x) \phi_i^N(x) dx = \int_{-a}^{a} \frac{\phi_i^*(x)}{\sqrt{A}} \frac{\phi_i(x)}{\sqrt{A}} dx = 1
$$

 In Mathematica, this can be done via the command:

- Sumphi=Sum[phi[i]^2*Deltax,{i,iini,ilast}];
- phili $|$ =phili $|S\text{grt}[\text{Sumphi}]$ for all i

Flow chart of shooting method

Sample code 10.1

■ Sample code 10.1 implements the shoot method to solve the 1D infinite square well. If *V*0 is set effectively very large at the edge of the well, i.e., $V(-a) = V(a) = V0$, it mimics an infinite 1-D square well.

1D non-symmetrical potential: LJ Potential

■ Consider a general potential where the solutions have not any parity symmetry, e.g., a Lennard-Jones potential,

Initial conditions for ϕ_L

- **I** lterate $\phi_{i+1} = 2\phi_i \phi_{i-1} 2(\Delta x)^2 (E V_i)$ **D** from the left region from \Box Call this ϕ_L 2 $\phi_{i+1} = 2\phi_i - \phi_{i-1} - 2(\Delta x)^2 (E - V_i) \phi_i$ *x_L*, where $\phi(x_L) = 0, \phi'(x_L) = \delta \rightarrow 0$, with $\delta > 0$
- **□** To this end, we need two initial values: \Box Since $\phi'(x_L)$ $\phi(x_L)$, $\phi(x_L - \Delta x)$ $\phi(x_L) = \phi(x_L) - \phi(x_L - \Delta x)$ $(x_L) = \delta \approx \frac{\varphi(x_L) - \varphi(x_L)}{2}$ *L* $(x_L) - \phi(x_L - \Delta x)$ *x x* $\phi(x_L) - \phi(x)$ $\phi'(x_L) = \delta$ $-\phi(x_L - \Delta x)$ $=\delta \approx \Delta$ $\rightarrow \phi(x_L - \Delta x) = \phi(x_L) - \delta \Delta x$

Initial conditions for ϕ_R

E Repeat the procedure from the right region from x_R , where $\phi(x_R) = 0, \phi'(x_R) = \delta \rightarrow 0$ \Box Call this $\phi(x_R)$

 $\phi(x_R - \Delta x) = \phi(x_R) - \delta \Delta x$

Matching procedure

- Identify the point *x* where *V* is minimal, call it X_{min} .
- \Box Scale both or either of ϕ_L , ϕ_R so that $\phi_L(x_{\min}) = \phi_R(x_{\min})$
- **D** Vary *E* until $\phi'_{L}(x_{\min}) = \phi'_{R}(x_{\min})$

Assign *match*= $\text{Sign}[\phi'_{L}(x_{\text{min}}) - \phi'_{R}(x_{\text{min}})]$

If *match* different from pervious trail, $\Delta E = -\Delta E/2$ $E=E+\Delta E$ Iterate the loop again with the new *E*.

 \Box Run the LJ potential with $\varepsilon=10$, $\sigma=1$, $\Delta x = 0.01$, $x_R = 5.0$, $x_L = 0.5$.

Sample code 10.2

- **□** Sample code 10.2 is modified from sample code 10.1 by replacing the potential to the LJ form.
- To make things happen one in a step, sample code implements the iteration for phiL from the left hand side and independently, phiR from the right side.
- **D** No matching procedure is carried out. Once you know how to iterate from both sides, then proceed to sample code 10.3 where the full matching procedure is implemented.

Sample code 10.3

- Sample code 10.3 implement the full matching procedure for the LJ potential.
- We find slightly different answer as compared to that given by Giordano's 2nd edition, Figure 10.8, page 317.
- \Box For the parameter values we find the first eigen value at *E*=-1.8899, and is insensitive to the 'meeting point' x_{Min} , be it 1.12246, obtained by minimising *V*(*x*), or 1.4 as given by Giodarno.

Some details

- **<u>E</u>** However the exact location of the left side point x _L is important: it can't be too close to *x*=0, the singularity of *V*(*x*).
- We find a value of $x_1=0.65$ can do the job well.
- Any value closer to 0 renders the solution unstable, resulting in phiL(*x*R) and phiR(*x*L) diverging at the edges.

Some details

- \Box We can monitor phiL(x_R) and phiR(x_L) for the numerical behaviour of the code.
- **If these numbers diverge, then adjust the input** parameters such as x_R , x_L , or to the lesser extent X_{Min} .
- A diverging values (i.e., very large values, e.g., phiR(xL) = 55345433423) signifies numerical error.
- Visually we can also minitor the graphs of phil, phiR. They will not overlap with each other in the case of this numerical error mentioned.

Excited states with matching method

□ Sample code 10.4, which is written in a separated package under the folder "TISE" calls the subroutine as implemented in sample code 10.3 (with some minor modification) to evaluate the excited state eigenenergies, $E_1, E_2, E_3, ..., E_{\text{nlast}}$, for any potential function defined explicitly in the file "potential.m". Sample code 10.4 fine-tune the matching method based on sample code 10.3 to handle generic TISE.

Excited states with matching method

- \Box Higher excitation states, i.e., other eigen values of the energy, can be obtain by systematically increase the input trial energy *E*.
- \Box Say once you have obtained the lowest eigenenergy (a.k.a eigen value, energy), say $E=E_0 = -1.8899$ (which corresponds to the ground state energy), rerun the code with a new energy input of $E_1 = E_0 + k|E_0|$, where *k* a small positive fractional number, e.g., $k = 0.5$.
- \Box Try to adjust the value of *k* incrementally until the resultant eigenvalue from the code to be different from E_0 .

Some details

- \Box To this end, we introduce a cutoff b to control the behaviour of the solution.
- \Box Should |phiR(xL)| or |phiL(xR)| larger than b, typically set to a large e.g. 50 or 1000, we readjust the position of xL so that it is slightly further away from the original one.
- \Box It is found that for some cases of potential such as for LJ, an initial position of xL too "deep" into the region where $V(x)$ is large, numerical convergence may not be achieved.

Some details

- In general, given a generic potential, trial and error has to be carried out to find out what are the optimum values for the following parameters:
- \Box Initial guess of the energy, Eini;
- \Box initial position of the xL (xini), xR (xlast),
- \Box cut-off b,
- \Box and k, which determine how the initial guess for the next excited state energy should be, as occurs in En=eigenEnergy[n-1]+k*Abs[eigenEnergy[n-1]].
- \Box Fine tuning is a must in order to assure that the eigen energies obtained are authentic.
- \Box Check against known numerical results or inspect the numerical solution of phiL, phiR to determine if the numerical results are reliable.

Sample code 10.4

- **□** Sample code 10.4 is an improved code using matching method for generic potential.
- \Box The potential form is defined in the file potential.m, and read in by Main.nb.
- In the sample code 10.4, four types of potentials defined.
- $p = 1$ for square potential barrier
- $p = 2$ for square LJ
- $p = 3$ for infinite well
- $p = 4$ for 1-D harmonic oscillator
- However the code only takes care of the symmetric case and does not provide asymmetric solutions.

1-D Variation Monte Carlo

VMC for 1-D TISE

Variation Monte Carlo method is an alternative method to solve the TISE, using stochastic approach.

Its strength: much efficient than the difference method when $d > 4$, where d is the dimension of the problem.

Discretisation

Discretise the 1-D TISE into N bins, each with a width of Δx :

$$
H\phi(x) = \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial^2 x} + V(x) \right] \phi(x) = -\frac{\hbar^2}{2m} \frac{\partial}{\partial x} \left(\frac{\partial \phi(x)}{\partial x} \right) + V(x) \phi(x);
$$

$$
x_{ini} \le x \le x_{ilast}; \Delta x = \frac{x_{ilast} - x_{iini}}{N};
$$

$$
\phi(x_i) \equiv \phi_i; x_i = x_{ini} + i\Delta x; i = 0, 1, 2, \dots, \text{ilast} = \text{IntegerPart}[(x \text{last} - x \text{ini}) / \Delta x];
$$

Central differencing

Derive
$$
\frac{\partial^2 \phi(x_i)}{\partial x_i}
$$
 using central differencing:
\n
$$
\frac{\partial \phi_i}{\partial x_i} = \left(\frac{\phi_{i+1} - \phi_{i-1}}{2\Delta x}\right);
$$
\n
$$
\frac{\partial^2 \phi(x_i)}{\partial^2 x_i} = \frac{\partial}{\partial x_i} \left(\frac{\partial \phi(x_i)}{\partial x_i}\right) = \frac{\partial}{\partial x_i} \left(\frac{\phi_{i+1} - \phi_{i-1}}{2\Delta x}\right) = \frac{1}{2\Delta x} \left(\frac{\partial}{\partial x_i} \phi_{i+1} - \frac{\partial}{\partial x_i} \phi_{i-1}\right)
$$
\n
$$
= \frac{1}{2\Delta x} \left(\frac{\phi_{i+2} - \phi_i}{2\Delta x} - \frac{\phi_i - \phi_{i-2}}{2\Delta x}\right) = \frac{1}{4\Delta x^2} (\phi_{i+2} - 2\phi_i + \phi_{i-2})
$$

Discretisation (cont.)

$$
H\phi_{i} = \left[-\frac{\hbar^{2}}{2m} \frac{\partial^{2}}{\partial^{2} x} + V_{i} \right] \phi_{i} = -\frac{\hbar^{2}}{8m} \frac{1}{\Delta x^{2}} (\phi_{i+2} - 2\phi_{i} + \phi_{i-2}) + V_{i}\phi_{i}
$$

$$
\int \phi^{*}(x) H\phi(x) dx = \sum_{i = i\text{ini}}^{i\text{last}} \phi_{i}^{*} H\phi_{i} \Delta x_{i} = \sum_{i = i\text{ini}}^{i\text{last}} \phi_{i}^{*} \left[-\frac{\hbar^{2}}{8m} \frac{1}{\Delta x^{2}} (\phi_{i+2} - 2\phi_{i} + \phi_{i-2}) + V_{i}\phi \right] \Delta x_{i} = \sum_{i = i\text{ini}}^{i\text{last}} \frac{\phi_{i}^{*}}{8m} (\phi_{i+2} - 2\phi_{i+1} + \phi_{i}) + V_{i}\phi_{i}^{2} \Delta x
$$

Alternative differencing scheme

Alternatively, we could also arrive at the following expression if followed a different difference scheme:

$$
\int \phi^*(x) H \phi(x) dx = \sum_{i=0}^{i \text{last}} -\frac{\hbar^2}{2m} \frac{\phi_i^*}{\Delta x} (\phi_{i+1} - 2\phi_i + \phi_{i-1}) + V_i \phi_i^2 \Delta x
$$

The VMC algorithm

In VMC, the following procedure is followed:

- Discretise the simulation space into N bins of size Δx , each indexed by $i =$ \bullet [iini, ilast].
- Provide a trial guess for ϕ , call it ϕ^0 , conveniently chosen to be a constant, e.g., 1 in the simulation space, i.e., $\phi^0_i = 1$ for $i = \lceil \text{iini}, \text{ilast} \rceil$.

$$
\bullet \quad \text{Evaluate } E^* = \frac{\int \phi^*(x) H \phi(x) dx}{\int \phi^*(x) \phi(x) dx} = \frac{\sum_{i = \text{limit}}^{\text{ilast}} -\frac{\hbar^2}{2m} \frac{\phi_i^*}{\Delta x} (\phi_{i+1} - 2\phi_i + \phi_{i-1}) + V_i \phi_i^2 \Delta x}{\sum_{i = \text{init}}^{\text{ilast}} \phi_i^* \phi_i \Delta x}
$$

The VMC algorithm (cont.)

While $n \leq n$ and iterate:

Randomly choose a bin, i=iran, shift $\phi_{iran} \rightarrow \phi_{iran}^{trial} = \phi_{iran} + \delta \phi_{iran}$, where \circ $\delta\phi_{\text{iran}} = \text{Random}[\text{Real}] = [0,1].$ Evaluate $E_{trial}^* = \frac{\sum_{i=limit}^{ilast} -\frac{\hbar^2}{8m} \frac{\phi_i^{trial*}}{\Delta x} \left(\phi_{i+2}^{trial} - 2\phi_i^{trial} + \phi_{i-2}^{trial}\right) + V_i \left(\phi_i^{trial}\right)^2 \Delta x}{\sum_{ilast}^{ilast} \phi_{i}^{trial} + \phi_{i-2}^{trial}}$ $\sum\phi_i^{\textit{trial}\,*}\phi_i^{\textit{trial}}\Delta x$ $i = i$ ini

If $E_{trial}^* < E^*$, accept the shift, i.e, $\phi_{tran} = \phi_{tran}^{trial}$, and let $E^* = E_{trial}^*$, else reject \circ the move.

Upon exiting the loop after nlast step, normalised the function ϕ : $A = \sum_{i = im}^{ilast} \phi_i^* \phi_i \, \Delta x \, , \, \phi_i \rightarrow \frac{\phi_i}{\sqrt{A}}$

Sample code 10.5 (VMC.nb)

- Sample code 10.5 implements the VMC algorithm which reproduces the expected ground state energy of the LJ potential quite satisfactorily. The ground state is known to be lying at $E_0 =$ -1.8899 . The sample code 10.5 gives $E_0 = -1.91479$ (with some error), running for 50000 steps, with $N=70$ bins.
- The code also calculates the GS energy of harmonic oscillator with potential $V=$ $\frac{1}{2}$ kx^2 . With the mass $m=1$, and the spring constant $k = 1$, the expected GS of the harmonic oscillator is 0.5, which is also reproduced by sample code 10.5.
- Comment: This is a non-optimised method, and could be further improved using e.g., simulated annealing, or importance sampling method.
- In principle, the longer the code is run (i.e., if you wait longer), and with larger number of bins, the code converges to produce better quality results.