Lecture 7 Random systems
Random Numbers

Random number generator in Mathematica: RandomReal[]. Random number generated is uniformly distributed in [0,1].
We could also generated random number distributed as a Gaussian between a given interval, using the command NormalDistribution. See sample code 7.1 – 7.3.1.
Stochastic system.
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The random walk code of a single walker can be found in sample code 7.4.
Fluctuation in x
Consider the displacements of jlast walkers at any instance, x[j]_n. 
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since the walker has equal probability to walk left and right. 

We can also calculate
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The variance in x is defined as
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. Note that
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, and is evaluated at fixed time by summing over all walkers’ contribution. The variance in x,
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, is sometimes referred to ‘fluctuation of x’.


[image: image18.wmf](

)

2

2

x

n

n

xx

s

=-

is known as the root mean square of the displacement. 

Diffusion

We can show that the variance at time n is given by [image: image19.emf]
D = diffusion constant. Here, n and t are used interchangeably. The value of D can be 
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[image: image22.emf], with D = ½. Note that we have made use of the fact that 
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, can be interpreted as the deviation of the displacement of any single walker from the sample’s averaged displacement 
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 at time n. 
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 measures how far a typical walker is ‘drifted’ away from its original position. 
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It is found that the fluctuation in x grows with n, 
[image: image32.wmf]2

x

t

s

µ

. This also implies that the separation of two typical walkers will grows as n increases. 

All in all, the random walkers behave like what we see in diffusion behaviour of particles such as that found in a drop of cream in a cup of coffee.  The behavior of diffusion is characterized by
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See sample code 7.5 for the simulation of a collection of jlast walkers. The averaged displacement-squared 
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 as a function of time is simulated. 

2D Random walk.

The random walk in 1-D can be easily generalized to 2-D. 
[image: image35.emf]
(Jensen, page 172)

See sample code 7.6.
Diffusion
See chpater7a.nb
Random walk and diffusion
See chpater7a.nb
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