Lecture 7 Random systems

Random Numbers

Random number generator in Mathematica: RandomReal[]. Random number generated is uniformly
distributed in [0,1].

We could also generated random number distributed as a Gaussian between a given interval, using the
command NormalDistribution. Seesample code7.1-7.3.1.

Stochastic system.

In this chapter we con51de1: a class of systems in which randomness plays
a central role. These are called random or stochastic systems. Typically, these
systemns consist of a very large number of “degrees of freedom,” which might be as-
sociated with particles (e.g., in a macroscopic sample of a liquid) or perhaps spins
(in a piece of a ferromagnet). Randomness can then arise in several different ways.
For example, it might be in.possible to obtain complete knowledge of the positions
and velocities of all of the particles. Or, our system may interact with a thermal
reservoir in the comphca.ted manner that is best described using probabilities and
averages as familiar from statistical mecha.mcs. Hence, even though the “under-
lying” physics of the system may be determlmstlc our incomplete knowledge may
force us to resort to a statistical, ie. StOChaSt]C, description. Fortunately, as we will
see, a statistical description i I8 often extremely useful, and indeed, most a,pproprmte
in these problems.

Our point is that such a complete computational solution of the problem would
give far more information than we want or need to understand the mixing process.
What we really require is a statistical description, or theory, of the behavior. We
_don’t .care about the detailed trajectory of every cream particle. It is enough for
us to know the average properties of a particle trajectory. Since the number of
partmies involved is very large, these averages will be very sharply defined, and
if we are careful we can also estimate the fluctuations from the averages using
- statistical arguments.

A typical stochastic prohlem is' diffusion; this describes such important pro- -
cesses as the spreading of a drop of cream in your morning coffee.

Each cream molecule follows a complicated

trajectory as it collides repeatedly with other molecules. Such a trajectory can be described by what
is known as a “random walk.” This is a process in which a particle (the walker) moves one step at a
time, according to certain rules. In the model appropriate for our cream molecule, the walker’s steps
correspond to the motion of the molecule between collisions. Each collision changes the direction of the
velocity of the molecule, and this is modeled by letting the direction of each step in the walk be random.
Hence, our random walker follows a zig-zag path that is similar to the effectively random trajectory of
a cream molecule.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)



http://www.novapdf.com
http://www.novapdf.com

y o

FIGURE 7.1: Sketch of a random walk in one d:mensmn The walker began at x = zg = 0, and each

step is indicated schematically by a dotted arrow. Here the first step happened to be to the right,
while the next three steps were to the left.

EXAMPLE 7.1 Routine rvalk for simulating one-dimensional random walks
and calculating the mean-squared displacement |

e Initialize a random number generator (say, rnd) (if necessary).

o Initialize an array z2ave(i) = 0 (i = 1,2,...,n) which will hold the squared
displacements at time step 7.

e Loop through the desired number of walkers (j = 1,...,m).

t> Initialize the initial location of the walker to z = 0. (Note that you need
not keep the locations of all of the walkers at all steps. You can simply
accumulate the squared displacement at step ¢ into the array r2ave(s)
as soon as it becomes available and update z for the ¢ + 1-st step, etc.)

> Loop through the number of steps (i = 1 through n) in each walk.

» Get a random number r = rnd between 0 and 1.
o If r < 0.5, update z to z + 1 otherwise to z — 1.
¢ Accumulate the squared displacement: zave(i) = m2ave(e) +x2.

o Normalize the squared displacements to get the mean squared displacement
averaged over all of the walkers: z2ave(i) = x2ave(i)/m foralli=1,...,n
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Random walk in one dimension
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FIGURE 7.2: Left: z versus step number, that is, time, for two ra_nfiom walks in one‘dimensmn.
Right: {(z2) as a function of step number .{which is proportional to time) for a collection of onz—
' dimensional random walks. The step length was unity and the resuits for 500 walkers were averaged.
The points are the calculated values and the straight line is a least-squares fit to thg form {7.1).

the most basit; is the mean displacement
of a walker after n steps. Since a walker is as likely to step left as right, this average,
which we denote by (z,), must be zero.*

The random walk code of a single walker can be found in sample code 7.4.

Fluctuation in x

Consider the displacements of jlast walkers at any instance, x[j]_n.

jlast

D %Ll
(K="

st 0 since the walker has equal probability to walk left and right.

jlast

D XLl
We can also calculate<x2> =—‘:1_I —
n jlas

The variance in x is defined as o2 =<x2> —((x)n)z. Note that o2 = 52 (t), and is evaluated at fixed time by

summing over all walkers’ contribution. The variance in x, 2, is sometimes referred to “‘fluctuation of x’.

oy = <x2> —((x)n )2 is known as the root mean square of the displacement.
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Diffusion

w2% L aNZ
We can show that the variance at time n is given by (r > <I> = 2Dt
D = diffusion constant. Here, n and t are used interchangeably. The value of D can be

calculated analytically. Writing the position after n steps, x,, as a sum of n

n
Xn =) si, (7.8)
i=l

where s; is displacement for the ith step. For this problem s; = %1 with equal probabilities. We can

then write
2 = ) (Z Si sj) : (7.9)
j=1

n
i=1

separate steps gives

Since the steps are independent of each other, the terms s;s5; with i % j will be 1 with equal

probability. If we average x? over a large number of separate walks this will leave only the terms s?.

Thus we find

n
<x3>=2si2=n, (7.10)
i=1
where we have used the fact that s> = 1. Since n is also equal to time, this is identical to » with
jlast
(%) — (x)? = 2Dt 2 %l
N B *, with D = %. Note that we have made use of the fact that (x)_ =‘:}IT=0

2
o, = <x2>n —((x)n)
should be contrasted to the displacement of a free particle with initial velocity vg. In that
case the distance from the initial position after a time ¢ is x(t) = vt whereas for a diffusion

process the root mean square value is \/(22) — (x)2 x /7. Since diffusion is strongly linked
with random walks, we could say that a random walker escapes much more slowly from the
starting point than would a free particle. We can vizualize the above in the following figure. In

The root mean square displacement after a time ¢ _ _ (%) ~((x),) ~2Dn, can be

interpreted as the deviation of the displacement of any single walker from the sample’s averaged
displacement (x) attime n. o, measures how far a typical walker is ‘drifted’ away from its original position.

<xX>
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It is found that the fluctuation in x grows with n, o2 «t. This also implies that the separation of two typical
walkers will grows as n increases.

All in all, the random walkers behave like what we see in diffusion behaviour of particles such as that found
in a drop of cream in a cup of coffee. The behavior of diffusion is characterized by<x2> =2Dn.

See sample code 7.5 for the simulation of a collection of jlast walkers. The averaged displacement-squared
<x2> as a function of time is simulated.

2D Random walk.
The random walk in 1-D can be easily generalized to 2-D.

Exercise 10.1
Extend the above program to a two-dimensional random walk with probability 1/4
for a move to the right, left, up or down. Compute the variance for both the = and y

directions and the total variance.
(Jensen, page 172)

See sample code 7.6.

Diffusion
See chpater7a.nb

Random walk and diffusion
See chpater7a.nb
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