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a function of functions) that is proportional to €2 or a higher power of €. An important
extremum principle in classical mechanics is based on the action S:

§= f L (7.64)
to

where #, and #g,y are the initial and final times, respectively. The Lz?gr'flngian Lin (7,§4)
is the kinetic energy minus the potential energy. The extre.mmn 'pn?1C1ple for the action
is known as the principle of least action or Hamilton’s acnog principle. TI}e path where
(7.64) is stationary (either a minimum or a saddle point) satisfies Neyton s second l.aw
(for conservative forces). One reason for the importance of Fhe principle of leas.t acti
is that quantum mechanics can be formulated in terms of an integral over the actio

ion 16.10). B
Se":lElc? Ese (7-.6)4) to find the motion of a single particle in one dimension, we fix the(pom'ufm
at the chosen initial and final times, x (%) and x (fgea), and then choose Fhe velocities
and positions for the intermediate times fy < f < Zfinal to_minimi;e the action. }1;16 Way
to implement this procedure numerically is to convert the integral in (7 .64) to a sum:

N-1
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i=1
where 1; = o + i Ar. (The approximation used to obtain (7.65) is lmgwn as the recftangu}ar
approximation and is discussed in Chapter 11.) For a single particle in one dimension
moving in an external potential u (x), we can write

L; (i1 — x)% — ulx), (7.66)
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where m is the mass of the particle, and u(x;) is the potential GHSI'.g}.' of the particle at %
The velocity has been approximated as the difference in position divided by the change
time A?.
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Problem 7.39 Principle of least action

{a) Write a program to minimize the action S given in (7.64) for the motiop of a sing.le
particle in one dimension. Use the approximate form of the Lagrangian given in
(7.66). One way to write the program is to modify class Fe r'fnat so that the V.ertlcal
coordinate for the light ray becomes the position of the pamclet and the horizontal
region number i becomes the discrete time interval of duration 'At. .

(b) Verify your program for the case of free fall for which the pott.anua.l energy is u(y) =
mgy. Choose y(t = 0) = 2mand y(z = 10s) =8m and begin with N = 20. Allow
the maximum change in the position to be 5m.

(¢) Consider the harmonic potential u(x) = %kxz. ‘What shape do you expect the path

x(t) to be? Increase N to approximately 50 and estimate the path by minimizing th:

action.

It is possible to extend the principle of least action to more dimensions or 'parucles;
however, it is necessary to begin with a path close to the optimum one to obtain a good
approximation to the optimum path in a reasonable time.
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In Problems 7.37-7.39, a simple Monte Carlo algorithm that always accepts paths that
reduce the time or action is sufficient. However, for more complicated index of refraction
distributions or potentials, it is possible that such a simple algorithm will find only a local
minimum, and the global minimum will be missed. The problem of finding the global
minimum is very general and is shared by all optimization algorithms if the system has
many relative minima. Optimization is a very active area of research in many fields of
science and engineering. Ideas from physics, biology, and computer science have led to
many improved algorithms. We will discuss some of these algorithms in Chapter 13. In most
of these algorithms, paths that are worse than the current path are sometimes accepted in an
attempt to climb out of a local minimum. Other algorithms involve ways of sampling over
a wider range of possible paths. Another approach is to convert the Monte Carlo algorithm
into a deterministic algorithm. We have already mentioned that an analytical variational
calculation leads to Newton’s second law. Passerone and Parrinello discuss an algorithm
for looking for extrema in the action by maintaining the discrete structure in (7.66) and then
finding the extremum by taking the derivative with respect to each coordinate x; and setting
the resulting equations equal to zero. This procedure leads to a set of deterministic equations
that need to be solved numerically. The performance can be improved by enforcing energy
conservation and using some other tricks.

7.11 B PROJECTS

Almost all of the problems in this chapter can be done using more efficient programs, greater
number of trials, and larger systems. More applications of random walks and random number
sequences are discussed in subsequent chapters. Many more ideas for projects can be gained
from the references.

Project 7.40 Competition between diffusion and fragmentation

As we have discussed, random walks are useful for understanding diffusion in contexts
more general than the movement of a particle. Consider a particle in solution whose mass
can grow either by the absorption of particles or shrink by the loss of small particles,
including fragmentation. We can model this process as a random walk by replacing the
position of the particle by its mass. One difference between this case and the random walks
we have studied so far is that the random variable, the mass, must be positive. The model
of Ferkinghoff-Berg et al. can be summarized as follows:

(i) Begin with N objects with some distribution of lengths. Let the integer L; represent
the length of the ith object. :

(i) All the objects change their length by 1. This step is analogous to a random walk.
If the length of an object becomes equal to 0, it is removed from the system. An easy
way to eliminate the ith object is to set its length equal to the length of the last object
and reduce N by unity. ’

(iii) Choose one object at random with a probability that is proportional to the length
of the object. Fragment this object into two objects, where the fraction of the mass
going to each object is random.

(iv) Repeat steps (ii) and (iii).
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(a) Write a program to implement this algorithm in one dimension. One way to imple-
ment step (iii) is given in the following code, where totalMass is the sum of the

lengths of all the objects.

int 1 = 0; // label of object

// length of first object, all lengths are integers

int sum = length[0];

// choose object to fragment so that choice is proportional to
/! length

int x = (int)(Math.random()*totalMass);
while(sum < x) {
FE=
sum += length[i1];
}
/f if object big enough to fragment, choose random fraction/ for
// each part /
if(length[il > 1) {
int partA = 1 + (int)(Math.random{)*(length[i1-1)); |
int partB = Tength[il - partA;
length[i] = partA;
lengthlnumber0fObjectsd = partB; // new object
number0f0bjects++;
}

The main quantity of interest is the distribution of lengths P(L). Explore a variety
of initial length distributions with a total mass of 5000 for which the distribution
is peaked at about 20 mass units. Is the long time behavior of P(L) similar in
shape for any initial distribution? Compute the total mass (sum of the lengths) and
output this value periodically. Although the total mass will fluctuate, it should remain
approximately constant. Why?

Collect data for three different initial distributions with the same number of objects

N, and scale P(L) and L so that the three distributions roughly fall on the same curve.

For example, you can scale P (L) so that the maximum of the three distributions has

the same value. Then multiply each value of L by a factor so that the distributions

overlap.

(c) The analytical results suggest that the universal behavior can be obtained by scaling
L by the total mass raised to the 1/3 power. Is this prediction consistent with your
results? Test this hypothesis by adjusting the initial distributions so that they all have
the same total mass. Your results for the long time behavior of P (L) should fall on
a universal curve. Why is this universality interesting? How can this result be used
to analyze different systems? Would you need to do a new simulation for each value

(b

~

of L?
(d) What happens if step (iii) is done more or less often than each random change of
length. Does the scaling change? |

Project 7.41 Application of the pivot algorithm to self-avoiding walks

The algorithms that we have discussed for generating self-avoiding random walks are all
based on making local deformations of the walk (polymer chain) for a given value of
N, the number of bonds. As discussed in Problem 7.31, the time T between statistically
independent configurations is nonzero. The problem is that v increases with N as some
power, for example, T ~ N3. This power law dependence of T on N is called critical
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Figure 7.14 Examples of the first several changes generated by the pivot algorithm for a self-
avoiding walk of N = 10 bonds (11 sites). The open circle denotes the pivot point. This figure is
adopted from the article by MacDonald et al.

slowing down and implies that it becomes increasingly more time consuming to generate
long walks. We now discuss an example of a global algorithm that reduces the dependence
of T on N. Another example of a global algorithm that reduces critical slowing down is
discussed in Project 15.32.

() Consider the walk shown in Figure 7.14a. Select a site at random and one of the
four possible directions. The shorter portion of the walk is rotated (pivoted) to this
new direction by treating the walk as a rigid structure. The new walk is accepted
only if the new walk is self-avoiding; otherwise, the old walk is retained. (The
shorter portion of the walk is chosen to save computer time.) Some typical moves
are shown in Figure 7.14. Note that if an end point is chosen, the previous walk is
retained. Write a program to implement this algorithm and compute the dependence
of the mean square end-to-end distance R? on N. Consider values of N in the range
10 < N < 80. A discussion of the results and the implementation of the algorithm
can be found in MacDonald et al. and Madras and Sokal, respectively.

Compute the correlation time  for different values of N using the approach discussed
in Problem 7.31b. |
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Project 7.42 Pattern formation

In Problem 7.34 we saw that simple patterns can develop as aresult of random behavior. The
phenomenon of pattern formation is of much interest in a variety of contexts ranging from
the large scale structure of the universe to the roll patterns seen in convection (for example,
smoke rings). In the following, we explore the patterns that can develop in a simple reaction
diffusion model based on the reactions, A + 2B — 3B and B — C, where C isinert. Such
areaction is called autocatalytic.

In Problem 7.34 we considered chemical reactions in a closed system where the reac-
tions can proceed to equilibrium. In contrast, open systems allow a continuous supply of
fresh reactants and a removal of products. These two processes allow steady states to be
realized and oscillatory conditions to be maintained indefinitely. In this problem we assume
that A is added at a constant rate, and that both A and B are removed by the feed pro-
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