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Quantum Monte Carlo methods

12.1 Introduction

In Chapters 1 to 4 we studied methods for .m..o?Em the Schrodinger equation for
many-electron systems. Many of the techniques described there carry over to other
quantum many-particle systems, such as liquid helium, and the protons and neut-
rons in a nucleus. The techniques which we discussed there were, however, all of
a mean-field type and therefore correlation effects could not be taken into account
without introducing approximations. In this chapter, we consider more accurate
techniques, which are similar to those studied in Chapter 10 and are based on using
{pseudo-)random numbers — hence the name ‘Monte Carlo’ for these methods.
In Chapter 10 we applied Monte Carlo techniques to classical many-particle sys-
tems; here we use these techniques for studying quantum problems involving many
particles. In the next section we shall see how we can apply Monte Carlo tech-
niques to the problem of calculating the quantum mechanical expectation value of
the ground staie energy. This is used in order to optimise this expectation value by
adjusting a trial wave function in a variational type of approach, hence the name
variational Monte Carle (VMC),

In the following section we use the similarity between the Schrodinger equation
and the diffusion equation in order to calculate the properties of a collection of
interacting quantum mechanical particles by simulating a classical particle diffusion
process. The resulting method is called diffusion Monte Carlo (DMC).

Then we describe the path-integral formalism of quantum mechanics, which is
a formulation elaborated by Feynman, based on ideas put forward by Dirac [1],
in which a quantum mechanical problem is mapped ontc a classical mechanical
system (at the expense of increasing the number of degrees of freedom). This
classical many-particle system can then be analysed using methods similar to those
used in Chapter 10. This is called the path-integral Monte Carlo method {(PIMC).

The last section of this chapter is dedicated to a stochastic technique, based on
diffusion Monte Carlo, for diagonalising the transfer matrix of a lattice spin model
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on a strip, for cases where the matrix size renders even sparse matrix diagonalisation
methods unusable.

Some important applications of quantum Monte Carlo methods are to the elec-
tronic structure of molecules [2], to dense helium-4 [3, 4], and to lattice spin-systems
[5]. The cited literature also contains detailed accounts of the various methods.

12.2 The variational Monte Carlo Emzuam
12.2.1 Description of the method

In Chapter 3 we studied the variational method for finding the ground state and the
first few excited states of the quantum Hamiltonian. This was done by parametrising
the wave function — in a linear or nonlinear fashion — and then finding the minimuom
of the expectation value of the energy in the space of parameters occurring in the
parametrised (trial) wave function. We described in some detail how this calculation
can be carriéd out if the parametrisation is linear, and we have seen in Chapters 4
to 6 that the choice of basis functions in the linear parametrisation is cructal for the
feasibility of the method, Calculating the expectation value of the energy inveolves
integrals over the degrees of freedom of the collection of particles, which can only
be carried out if the basis does not include correlations (single-particle picture) and
if parts of the integration can be done analytically, for example by using Gaussian
basis functions.

In this section we consider the variational method again, but we want to relax
some of the above-mentioned restrictions on the trial wave functions and calculate,

" the high-dimensional integrals using Monte Carlo methods, which are very efficient

for this purpose as we have seen in Chapter 10, This is called the variational Monte
Carlo approach. It should be noted that for some simple atoms, such as hydrogen
and helium, the integrations can often be carried out analytically or using direct
numerical integration (as opposed to MC integration). However, if there are many
more electrons, these methods are no longer applicable.

Let us briefly recall the variational method in the form of an algorithm:

Construct the trial many-particle wave function 14 (R), depending on the S
variational parameters & = (@1, ..., @5). ¥y depends on the combined position
coordinate R of all the ¥ particles R =ry,...,1y.

2. Bvaluate the expectation value of the energy

: C Walte)

3. Vary the parameters ¢ according to some minimisation algorithm and return to
step (1).

—
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The loop stops when the minimum onﬁ.mu\ is reached according to some criterion,
Tt is the second step in this algorithm that we consider in this section. However,
below, we shall describe a variational method in which the parameters e are adjusted
according to some numerical scheme within the Monte Carlo simulation.

It turns out that in realistic systems the many-body wave function assumes very
small values in large parts of configuration space, so a straightforward procedure
using homogeneously distributed random points in configuration space is bound tc
fail. This suggests that it might be efficient to use a Metropolis algorithm in which
a collection of random walkers is pushed towards those regions of configuration
space where the wave function assumes appreciable values. Suppose that we can
evaluate H iy for any trial function 7, which we shall always assume to be real,
and let us define
E (12.2)

YT (R)
(we omit the e-dependence of rr). EL(R) is called the local energy: it is a function
that depends on the positions of the particles and it is constant if vrr is the exact
eigenfunction of the Hamiltonian. The more closely ¥y approaches the exact wave
function (apart from a multiplicative constant), the less strongly will Ey, vary with R.
The expectation value of the energy can now be written as

5y — L RVFRELR
JaR y3®)

Let us now construct a Metropolis-walk in the same spitit as in ordinary Monte
Carlo calculations, but now with a stationary distribution p(R) given by

EL(R) =

(12.3)

) P2 (R)
M= 12.4)
p(R) TR 2@ (

The procedure is now as follows.

Put N walkers at random positions;
REPEAT
Select next walker;
Shift that walker to a new position, for example by moving one
of the particles in the system within a cube with a suitably
chosen size d,
Calculate the fraction p = [Wr(R)/¢r(R)}*. where R’ is the new and
R the old configuration;
If p < 1 the new position is accepted with probability p; ‘
If p = 1 the new position is accepted;
UNTIL finished.
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The expectation value of the local energy is now calculated as an average over the
samples generated in this procedure, excluding a number of steps at the beginning,
necessary to reach equilibrium. The decision to stop the simulation is based on the
precision achieved and on the available processor time.

The algorithm should work in principle with a single walker. However, chances
are that this walker gets stuck in one favourable region surrounded by barriers which
are difficult to overcome. Using a large collection of walkers reduces this effect.

12.2.2 Sample programs and resulls

We demonstrate the VMC approach with some simple programs. Here and in the
rest of this chapter, when dealing with many-particle systems, we shall agsume units
of mass, distance and energy to be such that the kinetic energy operator occurs in
the Schridinger equation as —V?2/2.
We start with the harmenic oscillator in one dimension, described by the
Hamiltonian (in dimensionless units):
. 1d% 1
BO=1"202713
The exact solution for the ground state is given by exp(—xZ/2) with energy Eg =
1/2; we shall use the trial function exp(—ax?). The exact solution lies therefore in
the variational subspace. The local energy is given by ,

1
EL=a+x 5 20t . (12.6)

For & = 1/2 the local energy is 1/2, independent of the position, and we shall
certainly find an energy expectation value 1/2 in that case (this might happen
even when the program contains errors!). The crucial test is whether this energy
expectation value is & minimum as a function of &, In Table 12.1 we show that this is
indeed the case. We also show the variance of the energy. This quantity will be small
if By israther flat, and this will be the case when ¥ is close to the exact ground state:

% | P (x). (12.5)

-the closer yrr is to the ground state wave, the smaller the variance, and this quantity

reaches its minimum value at the variational minimum of the energy itself. Again,
in this particular case where the trial wave function can become equal to the exact
ground state, the variance becomes zero, From the table we see that the variance
does indeed decrease to 0 when the ground state is approached. Interestingly, for

 this simple case, it is possible to calculate the expectation value of the energy as a
function of @ by integrating the local energy weighted by 2. The Gaussian form

of the trial wave function makes the integral solvable with the result

11
= a4 —. 127
Ev=30+ g, (12.7)



Table 12.1. Variational Monte Carlo energies.

Helium atom

Hydrogen atom

Harmonic oscillator

var({£}}

o )

var((£})

(E)

[

var(E)y

E,

var((E})

(E)

-0.4796(2) 0.0243(6) 0.05
—0.4949(1) 0.0078(2) 0.075

0.02521(5)

045 0.50276(4) 0.00556(2)

0.1749(2)
0.1531(2)
0.1360(2)
0.1223(2)
0.1114(2)
0.1028(2)
0.0968(2)
0.0883(2)

—2.8713(4)
—2.8753(4)
—2.8770(3)
—2.8780(4)
—2.8773(3)
—2.8781(3)
—2.8767(4)
—2.8746{10)

0.9

0.0253125 0.8

0.00557
0

055 0.50232(6) 0.00454(1)(1) 05022727 0.0045558

0.6

0.5125
0.50278
12

0.5124(1)

04

0 0.10

—0.4951(2) 0.0121(4) 0.123

—-12

1.0

1.1

0

12

1/2

0.15

0.058(2)

1.2 —0.4801(3)

0508333  0.01680356

0.0168(4)

0.5084(1)

0.175
0.20
0.25

parameters. In each case, 400 walkers have been used and 30000 displacements per walker were atiempted. The first 4000 of these
were removed from the data to ensure equilibrinm. The expectation value (£} of the ground state energy is given, together with the

variance in this quantity, var((£}). For the harmonic oscillator, the analytical values for the energies and variance are also given (E,

VMC energies are given for the harmonic oscillator, the hydrogen atom arid the helium atom for various values of the variational
and var(£),).

e
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The same can be done for the variance with the result
(1 —4a?)?

3202
The Monte Carlo results match the analytical values as is clear from the table, Also
in Table 12.1 we show results for the hydrogen atom with the Hamiltonian

g _tyz_1 (12.9)
2 r

The exact ground state with energy E = —1/2 is given as e"; we take variational

var(E)y, = (12.8)

trial functions of the form e ~%7, so that the ground state is again incorporated in the

variational subspace. Although we could consider the present problem as a one-
dimensional one by using the spherical symmetry of the potential and the ground
state wave function, we shall (reat it lere as a fully three-dimensional problem to
illustrate the general approach. For this case, the analytical values of the average
local energy and variance can also be calculated. This is left as an exexcise for the
reader.

The local energy is given by

1 1 2
mrﬁw.vﬁ.iﬂ.lMQ Aﬁlﬂv.

It is seen from Table 12.1 that the energy is minimal at the ground state and that its

variance vanishes there too. .
Finally we consider the helium atom, which we have already studied extensively
in Chapters 4 and 5. Constructing good trial functions is a problem on its own —

here we shall use the form:

(12.10)

Y (r, 1) = a—2r1 g2z ariaf12{1+ar2)] (12.11)

where i = |1 —rz|. This function consists of a product of two atomic one-electron
orbitals and a correlation term. The local energy now has the form:

1
riz(1 + arp)?
- ! 5 ! 7+ |Hl (12.12)
Ny rra(l +ar2)® 4 +ar)* 2
With © we denote a unit vector along r, and ryz is the distance between the two
electrons. Energies and variances are also displayed in Table 12.1. The variance
does not have a sharp minimum for the same value of & as the energy. The reason
is that most of the variance is due to the trial wave function not being exact, even
for the best value of . The optimum vaiue of the energy, —2.878 1 &= o.ooo 5,
should be compared with the Hartree-Fock value of —2.861 7 a.u. and the DFT value

EL(ri,rp) = =4+ (F — £2) - (r; —rp)
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of —2.83 a.u., and with the exact value of —2.903 7 a.u. The VMC value can obvi-
ously be improved by including more parameters in the wave function. The wave
function is apparently not perfect. One of its deficits can be appreciated by con-
sidering the case where one of the electrons is far away from the nucleus and the
other electron. Then the trial wave function depends on the position of this particle
like the wave function of the helium ion, i.e. it is the asymptotic wave function for
an electron in the field of a Z = 2 nucleus. In reality, however, the wave function
should ‘see’ a charge Z = 1 as the other electron shields off one unit charge.

It is possible to adjust the value of the parameters « in these simulations ‘on
the fly’ [6]. To this end, we need a minimum finder, The most efficient minimum
finders use the gradient of the function to be minimised (see Appendix A). This
is a problem, as a finite difference calculation of the gradient is bound to fail: the
derivatives of stochastic variables are subject to large numerical errors. However,
from the analytic derivative of the wave function with respect to &, we can sample
this derivative over the population of walkers. From (12.3) we see that

dE dIn rr dlnyrr
i Ty Ep{—r .
I Er i E dar (12.13)
Using a simple damped steepest decent method: '
| dE
Unew = Cold — ¥V | = , (12.14)
de /519

the method then finds the optimal value (and therefore also the energy) for e This
method works remarkably well for the harmonic oscillator, where, starting from
o = 1.2, the correct value @ = 0.5 is found in a smnall fraction of the time needed
.for accuratelyevaluating one of the points in Table 12.1. However, the success in
this particular case is partly due to the exact solution being in the family of solutions
‘considered. The method is generalised straightforwardly to more parameters. It has
been applied successfully to electrons in quantum dots [6].
The reader is invited to write the programs described and check the results with
those given in Table 12.1.

12.2.3 Trial functions

The trial wave function for helium, Eq. (12.11), is the two-particle version of the
general ground state trial wave function used in quantum Monte Carlo (QMC)
calculations of fermionic systems:

N
Y(X1, ..., X)) = WA (X1, ..., Xy) exp W diry) | (12.15)
1

ij=
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Wus is the Slater determinant (see Chapter 4) and ¢ is a function which contains
the two-particle correlation effects. For identical bosons, all the minus-signs in the
determinant are replaced by pluses. The particular form we chose in the helium case
is asimple form of a class called Padé-Jastrow wave functions [7]. Inclusion of three
and four point correlations is obviously possible. We shall not go into the problem
of finding the best Slater determinants and ¢-functions but restrict curselves to
a short discussion of the requirements which we can derive for special particle
configurations — these are the ‘cusp conditions’: boundary conditions satisfied at
the points where the potential diverges. Near these points the kinetic and potential
energy contributions of the Hamiltonian are both very large, and they should cancel
out for a large part. This leads to large statistical fluctuations which are avoided
by respecting the cusp conditions. In the next section we shall see that these cusp
conditions are essential for trial wave functions wsed in the DMC method. We
have already dealt with a similar problem in Chapter 2 of this book, when we
found appropriate boundary conditions for the numerical solution of the radial
Schrésdinger equation with a Lennard-Tones potential, which diverges strongly at
r = (. Now we consider singularities in the Coulomb potential.

In the helium atom, the potential diverges when one of the electrons approaches
the nucleus, or when the electrons are close to each other, The Schrédinger equation
can be solved analytically for these configurations since the Coulomb potential
dominates all other terms except the kinetic one. Suppose that one of the electrons,
labelled i, is very close to a nucleus (which we take at the origin} with charge Z. Tn
that case the Schrodinger equation becomes approximately
hﬂmlm W(ry,...,ry) = 0. (12.16)

2 Fi
Writing out the kinetic energy in spherical coordinates of particle i, we arrive at a
radial Schrodinger equation of the form (r = ;)
2 2d 22 I+

|z tigt= ——5 (R =0 (12.17)
If, as is usually the case, the wave function is radially symmetric in r; for r; small,
we have exclusively an / = 0 contribution, and the two terms contzaining the factor
1/r must cancel (the first term does not contribute for a function which is regular
at the origin). For R(0) = 0 this leads to

LR, oo (12.18)
Rdr

so that R(r) = exp(—Zr).
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For | > 0, the radial wave function is written in the form r/p(») where p does
not vanish at ¥ = 0. Analysing this in a way similar to the = 0 case leads to the
cusp condition

I dp(n) _ Z . (12.19)
o7y dr I+1
Note that this form is the same as (12.18) if we put [ = 0.

Another cusp condition is found for two electrons approaching each other. Con-
sidering the trial wave function of the helium atom, Eq. (12.11), we see that it is the
dependence on the separation r between the two electrons which must incorporate
the correct behaviour in this limit. The resulting radial equation for the » depend-
ence is the same as for the ¢lectron—nucleus cusp except for the —Z/r potential
being replaced by 1/ (the Coulomb repulsion between the two electrons), and the
kinetic term being twice as large (because the Hmacooa mass of the two electrons is
hatf the electron mass):

&2 4d 2 K+

Dog b = = = —
dr? +::. ro 2

R(F) = 0. (12.20)

The cusp condition, wiitten in terms of o(r) = r—'R(#), is therefore
1 a_o 3 1
S dr T 204D n’
The right hand side reduces to 1/2 in the usual case of an s-wave function ({ = 0).
For like spins, the value of the wave function must vanish if the particles approach
each other; therefore the wave function with lowest energy is a p-state and the
night hand side will reduce to 1/4. For a general system, containing more than two
;electrons, we Hiave this cusp condition for each electron pair if. It is recommended
to have a look at Problem 12.5 to see how cusp conditions are implemented in
practice.

12.2.4 Diffusion equations, Green functions and Langevin equations

In the following sections we shall discuss several QMC methods in which the
ground state of a quantum Hamiltonian is found by simulating a diffusion process.

In the next section for example, we shall use such a simulation to improve on the
variational method described above. In this section, we give a brief overview of -

diffusion and the related equations,

Consider a one-dimensional discrete axis with sites located at na, with integer
n. We place a random walker on a site, and this walker jumps from site to site with
time intervals /4. The walker can only jump from a site to its left or right neighbour,
Both jumps have a probability «, and the walker remains at the current position with

(12.21)
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probability 1 — 2. This is clearly a Markov process as described in Section 10.3.
We are interested in the probability o(x,t) to find the walker at site x = na at
time ¢ = mh, where n and m are both integer. This probability satisfies the master
equation of the Markov process:

8%p(x,t
plnt+h) — p(xt) = alp(e+ a, ) + plx — a, 1) = 20(x, 0] = wa? mm .

(12.22)

For small &, the left hand side can be written as 2(8p/8¢), and defining y = a’a/h,
we can write the continuum formn of the master equation (for small ,& as
2
dplx1) _ wm n@,c. (12.23)
ar’ 5x2
This equation is called the diffusion equation: it describes how the probability
distribution of a walker evolves in time. It may equivalently be interpreted as the
density distribution for a large collection of independent walkers.
Consider the following function:

Q@Q:vuiH I (12.24)

iyt
This function has the following properties:

o Considered as a function of v and ¢, keeping x fixed, it is a solution of the
diffusion equation for ¢ > 0.
« For ¢t — 0, G reduces to a delta-function:

Glx,v:1) = 8(x — ) for £ — 0. (12.25)

G is called the Green’s function of the diffusion equation. This function can be
used to write the time evolution of any initial distribution o(x,0) of this equation
in integral form:

pOnt) = \ dx G(x, ;) p(x,0), (12.26)

which can easily be checked using the properties of G. Inspection of the Green’s
function shows that it is normalised, that is, \ dy G{x,y;t) = 1, independent of x
and 1. : _
The Green’s function can be interpreted as the probability distribution of a single
walker which starts off at position x at ¢+ = 0. We can use G to construct a new
Markov process corresponding to the diffusion equation. We discretise the time in
steps Az, We start with a walker localised at x at # = 0. Then we move this walker-
to a new position y at time At with probability distribution G(x, y; Af). From this,
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we move the walker to a new position z at time 2Ar with probability distribution
G(y, z; At). We have therefore a Markov process with transition probability given
by G-

Tar(x — y) = Glx,y; At). (12.27)
Using the properties of the Green’s function it cén be shown that the detailed
balance condition for the master equation for the Markov process leads to the
integral form (12.26), so that the Markov process does indeed model the diffusion
process described by (12.23) (check this). The difference between this process and
the previous one on the discrete lattice is that we now use the continuum solation
of the former version, which.should be much more efficient, as a single step in
the continuum diffusion process represents a large number of steps in the discrete
diffusion process. The Markov process described by (12.27) can be summarised by
the equation

x(t + A = x() + nv/ Al “ (12.28)
where 1 is a Gaussian random variable with variance 2y:
1 2 )
P e /Y, 12.29
(m) = )\mﬂo ( )

This result can be understood by realising that a step in the Markov process (12.27)
is distributed according to a Gaussian with width /2y Az. In this form, the process is
recognised as a [.angevin equation for discrete time. Note that a random momentuni
rather than a random force is added at each step, in contrast to the Langevin equation
discussed in Section 8.8.
The general form of the diffusion equation is
3
En
where £ is a second order differential operator. The formal solution of this equation
with a given initial distribution o (x,0) can be written down immediately:

Pl t) = eCp(x,0) (12.31)

but as this involves the exponential of an operator (which is to be considered as an
infinite power series), it is not directly :mm?_ Using Dirac notation, En Green'’s
function can formally be written as

G yi1) = (xle")y), (1232

which indeed satisfies the equation {12. 31) as a function om y and N, and which
reduces to 8(x — y) for ' = 0. The diffusion equation can only ww used to con-
struct a Markov chain if the Green’s function is normalised, in En sense that
[dy Gx,v;p) = 1, Eamwomammﬁ of t. This is not m?&%w the case, as we shall
oW see.

= Lo(x, 1), : {12.30)
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A particular diffusion equation which we shall encounter later in this chapter is

dp  10%0(x,1)
Bt 2 axe
This looks very much like the one-dimensional time-dependent Schrijdinger
equation for a zero-mass particle; in fact, this equation is recovered when we con-
tinue the time analytically into imaginary time v = iz (we use © for imaginary
time). Using (12.31), we can write the solution as

— Vix)o(x, 7). (12,33)

p(x, ) = "KW (0 (12.34)
where K is the Kinetic energy operator K = p2/2 = ~1/2(8%/8x2) (p is the
momentum operator p = —i(d / mé of quantum mechanics). The exponent cannot

be evaluated because the operators K and V do not commute. However, we might
neglect Campbell-Baker—Hausdorff (CBH) commutators — this is only justified
when 7 is small. To emphasise that the following is only valid for small =, we shall
use the notation At instead of r. We have

e AT EIY) = =A=MY 1 O (AT?) S (123%)

where the order At? érror term results from the neglect of CBH commutators.
To find the Green’s function explicitly, we must find the matrix element of the
exponential operator on the right hand side. The term involving the potential is
not a problem as this is simply a function of x. It remains thea to find the matrix
elements of the kinetic operator:

Gicin(x, v AT) = (x]e= 2772 (12.36)

where p is the momentum operator — we have used the caret * to distinguish the
operator from its eigenvalue.

The Green’s function can be evaluated explicitly by inserting two resolutions of
the unit operator of the form [ dp |p) (p| and using the fact that

(xlp) = —
V=

As the kinetic operator is diagonal in the p-representation, the matrix element is
then found simply by performing a Gaussian integral. The result is

e (h=1). _ (12.37)

1 —(e—x"Y f(2AT)
%m . (12.38)
This form is recognised as the Green’s function of the simple diffusion equation;
indeed our imaginary-time Schrédinger equation reduces to this equation for.V = 0,
and therefore the kinetic part of our Green’s function should precisely be equal to
the Green’s function of the simple diffusion equation. We have derived this form

Gkin{x, y; Ar) =




L
f
1
!

N

384 Quantum Monte Carlo methods

explicitly here, because we need to find the Green’s function for a more complicated
type of diffusion equation along the same lines below.
The full Green’s function for the diffusion equation (12,33) reads:

G(x, y; AT) = Gkinfx, v; A)e™ 27 4 O(ATY). (12.39)

Unfortunately, the term involving the potential destroys the normalisation of the
full Gréen’s function, and this prevents us from using it to construct a Markov chain
evolution, which is convenient, if not essential, for a successful simutation as we
shall see later. We can make the transition rate Markovian by normalising it, which
can be done by muitiplying the Green’s function by a suitable prefactor exp(t Er).

Of course we do not know beforehand what the value of this prefactor is, bat we -

shall describe methods for sampling its value in Section 12.3. The new, normalised,
Green’s function is no longer the proper Green’s function for Eq. (12.33}, but for
a modified form of this equation, in éEow the wonomn& has been shifted by an
amount E:
8 18%p(x,7)
3t 2 0%
If we choose Et such that the Green’s function is normalised, it describes a Markov
process, hence there will be an invariant distribution. This invariant distribution is
determined by Eq. (12.40), which for stationary distributions reduces to

187 p)
T2 a2
which is the stationary Schrodinger equation.

For many problems, it is convenient to construct some Markovian diffusion pro-
cess which has a predefined distribution as its invariant distribution. This turns out
to be possible, and the equation is called the Fokker-Planck (FP} equation. It has
the form

=V = mi.o@ 7). (12.40)

+ Vx)plx) = Ere(x), (12.41)

dox,t) . 19 [ :
— - . 12.42
T T 75 Flx)jplx, 1) ({ )

The ‘force’ F(x) is related to the invariant distribution o (x): the relation is given by

1 dp(x
Flx) = ——. {12.43)
plx) dx
It can easily be checked that o (x) satisfies {12.42) when the time derivative occurring
in the left hand side of this equation is put equal to zero.
The Green’s function can be found along the same lines as that of the kinetic
part of the Green’s function for the HEmmEmQ-:Bm morao&umﬁ eqoation. We must

work out .
Gix, v 1) = (x|~ 2PE—FDI2)py (12.44)

i
H
t
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We again separate the exponent into two terms, one containing % and the other p, at
the expense of an (} A#2) error. Calculating Gaussian Fourier transforms as before,
we obtain the result:

_ L br-Fwagiean

)\Mwibi . {12.45)
Zonm that this expression is a first order approximation in Az of the exact Green’s
function. This is normalised, and we can therefore use it again for constructing a
Markov chain. This is done by moving the random walker first from its old position
x to the position x -+ F(£)A¢/2 and then adding a random displacement n+/Ar,
where 7 is drawn from a Gaussian distribution with a variance 1 (see Eq. (12.29))
In formuia, the method reads '

x(t + Ar) = x(1) + AF[x(8)/2 + nv/Ar, (12.46)

50 if is a discrete Langevin equation with ‘force’ F.

We end this section with a few remarks. First, all resuits can be extended mﬂEmE-
forwardly to higher dimensions. Using a 3N-dimensional variable R instead of
the one-dimensional variable x (R denotes the positions of a set of particles in
three dimensions as usual), the Green’s function of the simple diffusion equation -
Eq. (12.23)with y = 1/2is

Gix,y; Af) =

H .. 2z
F Y — (R =R/ 20
Quz_ﬁﬂ R TR e . (12.47)
The Green’s function of the Fokker—Planck equation (12.42) becomes
. 1 3 2z
Gan (R, R Af) = —— —[R'—R—AF (R 2127 (200)
v ( ) Qabauzbm , (12.48)
where F(R) is a three-dimensicnal vector, given by
F(R) = Vro(R}/0(R). (12.49)

You might have been surprised by the way in which the exponential containing
noncommuting operators was split in Eq. (12.35). After all, the following splitting

mlbﬂﬁ?_.w.v — wlbaﬂ\mmlbﬁﬂnlbaﬂ\m + Gﬁbﬂuu (12.50)

is more accurate: you can check that the first order CBH commutator vanishes,
hence the O(A13) error. The reason we use the simpler splitting (12.35) is that
diffusion steps are carried out successively, hence the rightmost term in the right
hand side of (12.50) at one step combines with the leftmost term at the next step,
so that the total effect of the more accurate splitting is reduced to a different first
and final step. This difference is, however, of the same order of magnitude. as the
accumulated error of the sequence of steps, and therefore it does not pay to use
{12.30).
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12.2.5 The Fokker-Planck equation approach to VMC

The VMC method described in Sections 12.2.1 and 12.2,2 has an important dis-
advantage: typical many-particle wave functions are very smail in large parts of
configuration space and very large in small parts of configuration space. This means,
first, that we might have difficulty in finding the regions where the wave function is
large, and second, that attempted moves of walkers from a favourable region (where
the wave function is large) will be rejected when they move out of that region, Hav-
ing a substantial fraction of rejected moves is part of any Metropolis Monte Carlo
scheme, and we could live with that if there did not exist a more efficient approach,
based on the Fokker—Planck equation described in the previous section.

In this method we try to sample the function p(R) = w__\,w (R) rather than the trial
function ¥ (R) itself: that is, we use

F = 2V (R)/¥p(R) (12.51)

in the FP equation. ,

The distribution p (R, ) can be sampled by mwBEmsnm a diffusion ?.ooomm. The
algorithm is close to that of ordinary VMC, Now we let a collection of walkers
diffuse with probabilities given by the Green’s function (12.45):

Put ¥ walkers at random positions;
REPEAT
Select next walker;
Shift that walker from its current position R to R 4+ F(R}A#/2;
Displace that walker by an amount 5~/Az, where 77 is a
random vector with a Gaunssian distribution (see (12.29) and (12.28));
UNTTL finished. ,

We see that there is no acceptance/rejection step; this causes the gain in efficiency
when using the FP approach.

Note that we have made a time-step error of order (A7)2. Itis possible to eliminate
this error by combining this Langevin approach with a Metropolis procedure. The
point is that we know the form of stationary distribution p (it is the square of the
trial function yrr), and the Langevin process leads to a distribution which is close
to but not exactly equal to this distribution. The Metropolis algorithm can give
us the desired distribution o by acceptance/rejection of the Langevin steps, which
themselves are considered as trial moves in the Metropolis algorithm. Referring
back to Section 10.3, we call the transition probability of the Langevin equation
wrrr = G(R, R'; At), where G is given in (12.48). This is not symmetric in R and
R’ as F depends only on R, and therefore we have to use the generalised Metropolis
algorithm, described at the very end of Section 10.3. The Langevin trial move is
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accepted with probability min(1, gpe:), where

wppo (R
QW.%.. = tr@:F: AMNMNU

wrrP(R)
Note that the fraction wgp/wrg s in equilibrium approximately equal to the ratio
0(R)/p(R") —if no time step error was made in constructing wrz:, they would have
been exactly equal — so ggps is always close to 1. The acceptance rate is therefore
always high when At is taken small, and the methed is very efficient. The Metropolis
acceptance/rejection step is merely a correction for the time step discretisation error
made in the Langevin procedure,

The implementation of the algorithm is straightforward. The resulting energies
must be the same as for the standard VMC method, but the error bars are smaller. As
an example, an MC simulation for the harmonic oscillator using 300 walkers which
perform 3000 steps and « = 0.4 yields for the energy expectation in the ordinary
VMC program value E = 0.51 £ 0.03, to be compared with £ = 0.515 4 0.006 in
the Folkker-Planck program.

Variational Monte Carlo has the advantage that it is simple and straightforward.
An important disadvantage is that it relies on the quality of the trial function, hence
subtle but important physical effects are sometimes neglected when they are not
taken into account when constructing the trial function,

12.3 Diffusion Monte Carlo
12.3.1 Simple diffusion Monte Carlo

The second quantum Monte Carlo method that we consider is the so-called diffusion
ot projector Monte Carlo method, abbreviated as DMC. This method does not use
variational principles for obtaining ground state properties, but as we shall see,
the convergence rate of the practical version of this method relies heavily on the
accuracy of the, trial functions. The idea of this method has already been sketched in
Section 12.2.4, We use the imaginary time form of the time-dependent Schrédinger
equation. This is a diffusion equation with a potential. We use the Green’s function
in the ‘normalised’ form, i.e. with the normalisation factor exp(—AtTEy) present:

GR.R Av) = o~drV®—En] _L__

V2T AT

This Green’s function is a short-time approximation of the imaginary-time operator
exp[—7(H + E1)]. If we resolve this operator in its eigenstates |y}, we obtain

e~ TH—Er) _ M | e T (EnmEr) (¢ (12.54)

n

o~ (R=R)2/ (2 AT) + O(ATD.  (12.53)
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Forlarge 7 the ground state energy £ dominates in the sum by a factorexp{—t{E] —
Eq)]; therefore it acts as a projector onto the ground state (for large enough times).

As we have the explicit form of the time-evolution operator at our disposal only
in a short-time approximation, we have to perform many short time steps before
the distribution will approach the ground state wave function.

In the simulation, a collection of walkers diffuses through configuration space.
Every diffusion step consists of two stages: a diffusion step and a branching step.
In the diffusion step, the walkers are moved to a new position with a transition
rate given by the diffusive part of the Green’s function, ie. the part due to the
kinetic energy. The term invelving the potential is dealt with in the second stage.
Suppose we were to assign a weight to each walker, then the effect of the potential
term could be taken into account by multiplying this weight for a walker which
has arrived at a position R’ by a factor exp{~AT[V(R') — E7]}.' Tt turns out that
this procedure is not very efficient. In the end quite a few walkers might have
moved to unfavourable regions and represent small weight, but they require similar
computational effort to the more favourable ones. This problem was previously
encountered in Section 10.6. It would be more efficient to use computational effort
proportional to the significance of the region probed by a particular walker. This
is possible by a ‘birth and death’, or ‘pruning and enrichment’ (Section 10.6) or
branching process: poor walkers die, favourable ones give rise to new walkers.
More precisely, if a walker moves from a point R to a new point R/, we calculate
g = exp(—Az[V(R}y — Et]}. If ¢ < 1, the walker survives with a probability ¢ and
dies with probability 1 —g. If g > 1, the walker gives birth to either [¢ —1] or [¢] new
ones at R, where [g] represents the integer part (truncation) of g. The probability
for having [¢] new walkers is given by g - [g], and [g ~ 1] new waikers will come
into existence with the complementary probability 1+ [¢] -~ ¢. An efficient way of
coding this is to add a uniform randem number » between O and 1 to g: fors = g+,
[s] new walkers are created: if [s] = 0 then the walker is deleted.

Finally, we must specify how Et is found. Remember that this value is Emmzw
chosen such as to normalise the overall transition rate in the process. This is neces-
sary to prevent the population from growing or decreasing steadily. A growing
population would cause a steady increase in the computer time per diffusion step,
whereas a decrease leads to bad statistics, if not a vanishing population! The energy
E7 is in fact deterrined by keeping track of the change in population and adjusting
it at each step in order to keep the population stable. The average value of Er after
many steps will then converge to the ground state energy as we have already seen
in Section 12.2.4. Suppose we have a target number of M walkers in our simulation

U It is also possible to maltiply the welght by exp{—7[{(V(R) + V(R})/2 — Et]), which corresponds to the

symmetric distribution of the potential terms in the Green's function as in {12.50).
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and that after the last branching step their actual number is M, then we adjust Et as

M
Er =E In{ — .
T n+oln W (12.55)
where £y is close to the ground state energy (our ‘best estimate”), and « is some
small parameter.

In an algorithmic form, the resulting E.oonaim can be presented as follows:

Put the walkers at random positions in configurational space;
REPEAT
FOR all walkers DO
Shift walker from its position R to a new position R
according to the Gaussian transition probability {12.24);
Evaluate g = exp{—Az[V(R"Y — ATET]}:
Eliminate the walker or create new ones at &/,
" depending on § = g + r, where r is random,
uniform between 0 and 1;
END FOR;
Update ET;
UNTIL finished.

The major difference with the variational Monte Carlo method described in the
previous section is that the present method does not rely on a trial function and
therefore the results have no sysiematic error due to the trial function being (in
general) not exact. There is, however, an error due to the fact that we have split the
time-evolution operator into two parts, one depending on the kinetic energy and
the other on the potentiai, by neglecting CBH commutators. By reducing At we
can make this error arbitrarily smail, but the convergence speed will be reduced
accordingly. In Section 12.3.3, we shall describe a gmqomorm algorithm to correct
for the discretisation error.

The populatien itself should represent the ground state wave function. For a one-
dimensional problem (or a radially symmetric three-dimensional problem) this can
be checked by constructing a histogram in which we record the frequencies with
which the various positions are occupied. Below we shall give some results of DMC
simudations for the harmonic oscillator and the heliam atom.

The DMC procedure outlined here might faif in some cases. The distribution
of walkers can only represent a density which is positive everywhere. Therefore,
it can sample the ground wave function only if the latter is everywhere positive.
Fortunately, the ground state of a boson system is indeed everywhere uom:?m.
However, for fermions this is no longer the case. Moreover, the Green’s function is
no longer positive in that case and it is not clear how to perform the diffusion, as
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N

Figure 12.1. Ground state wave function (times 72) for the three-dimensional
harmenic oscillator as resulting from the DMC calculation (dots) compared with
the exact form, scaled to match the numerical solutign best.

the transition probability should be positive, This is called the fermion problem. We
shall come back to this later. Another problem arises when the interaction potential
assumes strongly negative values, This will be discussed in some detail in the next
section and then we shall consider a refinement of the DMC which is not susceptible
to this problem.

12.3.2 Applications

We apply the DMC procedure first to the three-dimensional harmonic oscillator.
The exact ground state wave function is given by

M ,
V)= me (12.56)

the energy is 3/2 (in dimensionless units}. It should be noted that the probability
distribution for finding a walker at a distance r from the origin is given by the
wave function times 72, because the volume of a spherical shell of thickness dr

is 2w r2dr. For an average population of 300 walkers executing 4000 steps and

a time step v = 0.05, we {ind Eg = 1.506 & 0.015, to be compared with the
exact value Hw. The distribution histogram is shown in Figure 12.1, together with
the exact wave function, multiptied by r? and scaled in amplitude to fit the DMC
results best. Ground state energy and wave function are calculated with reasonable
accuracy. Note that these results are obtained without using any knowledge of the
exact solution: the diffusion process ‘finds’ the ground state by itself.
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Next we analyse the helium atom using the diffusion Monte Carlo method. This
s less successful. The reason is that writing the time-evolution operator as a product
of a kinetic and potential energy evolution operator

O!DﬂAﬁuTw\lm,ﬂv — .ID.._..WOI.D._..Q\ENHV + GADHMV AHN.MQV

is not justificd when the potential diverges, as is the case with the Coulomb potential
atr = 0. Formally, this equation is still true, but the prefactor of the (X AT2)} term
diverges. However, even if the potential does not diverge but varies strongly, the
statistical efficiency of the simulation is low. This is due to the fact that if a walker
moves to a very favourable region, it will branch into many copies. But these are
all the same, and together they form a rather biased sample of the distribution in
that region. It requires some time before they have diffused and branched in order
to form a representative ensemble. Frequent occurrence of such strong branching
events will degrade the efficiency considerably. Quite generally one can say that
the efficiency increases with the flatness of the potential.

There exist, in principle, two ways to solve the divergent potential problem.
The first one consists of finding a better alternative to the simple approximation
to the time-evolution operator than in {12.57). Such approximations have been
devised and we shall consider these in the context of path-integral Monte Carlo
(see Section 12.4). The common procedure, however, is to use a guide function,
which transforms the original Schrédinger equation into a new one with a flatter
potential, just as in the case of the Fokker-Planck variational Monte Carlo method.
This method will be described in the next section.

12.3.3 Guide function for diffusion Monte Carlo

As we have just seen, the diffusion Monte Carlo method causes problems if the
potential is unbounded, and this is the case in almost every many-particle system.
Sampling some other function instead of the ground state wave function yr might
care this problem., .

A suitable function is p(R, 7} = ¥ (R, t)Wr(R) where Wy (R) is some trial func-
tion which models the exact wave function in a reasonable way. 1t turns out that o
satisfies a Fokker—Planck type of equation:

do(R, 7y 1
T mdidx —F(&)]pR, 1) ~ [ELR) - Er]p(R, T). {12.58)
Here, the ‘force’ F(R) is again given as 2VpWr(R)/ Wr(R). This form differs
from (12.49) because {12.58) is not a ‘pure’ Fokker—Planck equation: it contains a
‘potential term” Ef (R) — Er. The ‘local energy’ Ey.(R) is given as usual by
H¥r(R)  —VAU(R)/2+ VRt

ELR) = = . 12.59)
0= rm ®) ﬁ
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The FP-diffusion term will be used to diffuse the walkers, whereas the ‘potential’
EL(R) — Er is used in a branching process. By writing out all the terms on the left
and right hand sides of Eq. (12.58), it can be checked that this equation reduces to
the imaginary time-dependent Schrédinger equation (12.33).

The procedure is now a combination of the Fokker—Planck VMC and of the
DMC method without guide function: we let the walkers diffuse just as in the
Fokker-Planck VMC method, with a transition probability .

1
Tn an [Ry+1 — Ry — F(RYAT/2P/(2AT)H).
(12.60)

Then branching is performed, according to the value g = exp{—At[EL(R) — Et]}.
What do we gain by this method? We avoid problems of the kind encountered above
with strongly varying potentials. The role of V in standard DMC is now taken over
by EL{R), which is (we hope) rather flat. If W (R) were an exact eigenstate, then £y,
would be independent of B. If Wy is a reasonable approximation to the ground state,
then Fy (R) is reasonably flat, and the method will be wm:mzm. Itis clear now why the
cusp conditions are so important: they guarantee that the trial function converges
to the exact solution in those regions where the potential diverges strongly. These
are the points that cause problems. The method using trial - or guide — functions

Tat(Re = Ruq1) =

was introduced by Kalos [8] and is ooBEomQ called importance sampling Monte.

Carlo:

We can again correct for the time step error using a Metropolis procedure, just
as we did for VMC in Section 12.2.5, Note that (& is not symmetric, so we must use
the generaliged Metropolis method in order to guarantee detailed balance (see also
the variational Fokker—Planck simulation). A trial displacement is accepted with
probability

Taz(R' = R)p®)

BEF Hm.@
Taz (R — R)p(R) : ( )

and rejected otherwise,
With importance sampling, the m_moda:: nomam.

Put the walkers at random positions in configurational space;
REPEAT
FOR all walkers DO
Shift walker from its position R to a new position &’
by first moving it over a distance FAt/2 and then
adding a random displacement according to the
transition probability (12.24);
Accept the move with a probability given by (12.61);
IF Accepted THEN
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Evaluate ¢ = exp{— AT [Epgcal (R) 4+ ELoeat(R)]/2 —~ Et};
Eliminate the walker or create new ones at &/,
depending on s = g + r, where r is random,
uniform between O and 1;
END TF;
END FOR
Update Er using (12.53);
UNTIL finished.

Let us first apply the importance sampling method to the o:m-&BobmHos& har-
monic oscillator. We use the same trial (or guide) function Wr(x) = p—ex as in the
VMC simulation. In that case the quantum force is given by

F{x) = —dox, (12.62)

and the local energy by Eq. (12.6). Indeed, the local energy is aconstant if oo = 1/2
and it will be slowly varyingif o is close to 1/2. For o = 0.4, a target number of 6000
walkers and 4000 steps, we find for the ground state energy E = 0.5002 == 0.0003
and with « = 0.6, E = 0.4998 = 0.0003.

We can now do the hydrogen and the helium atom problems. For hydrogen we
use a guide function exp(—cr)} and a target aumber of 2000 walkers performing
4000 steps. The local energy is given by (12.10). Obviously, for « = 1 we find the
exact ground state energy of —0.5 Hartree as the local energy is constant and equal
to this value. For ¢ = 0.9, we find a ground state energy of —0.4967(5) and for

= 1.1 we find Eg = 0.5035(5). Neither of these values agrees with the exact
value. The reason is that the guide function should solve the divergence problem at
# = 0, but it can-do this only if the cusp conditions are satisfied. For o # 1 this is
not the case. This shows the importance of the cusp conditions being satisfied for
the trial function.

Finally we present results for the helium atom. We use the Padé-Jastrow wave
function CN.:U. Varying the parameter o gives values above and below the exact
energy. If we monitor the variance of the energy, we find a minimum at ¢ =.0.15 and
an energy Eg = —2.9029(2) for 1000 walkers performing 4000 steps. Remember
the exact energy is —2.903 and the variational energy for the uncorrelated wave
function (the Hartree—Fock energy) is —2.8617 atomic units.

PROGRAMMING EXERCISE

Modify the DMC programs of the previous section to include a guide function
and compare the results with those given in this section.
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12.3.4 Problems with fermion calculations

We have described how the simulation of a diffusion process can generate an average
distribution of random walkers which is proportional to the ground state wave
function or (in the case of guide function DMC) to the product of this function and a
trial function. But a distribution of walkers can only represent wave functions which
are positive everywhere. For bosons, this property is satisfied by the ground state,
but the same does not hold in the case of fermions. The difficulties associated with
treating fermions in quantum Monte Carlo are generaily denoted as ‘the fermion
problem’, Tt should be noted that there is no fermion problem in VMC.

The fixed-node method

There are several approaches to the fermion problem. The simplest approximation is
the fixed-node method, in which the diffusion process is simulated as before, except
for steps crossing a node of the trial function being forbidden. The nodes of the
trial function divide the configuration space up into, $imply connected volumes in
which the trial wave function has a unique sign. These volumes are separated from
each other by nodal surfaces: hypersurfaces on which the wave function vanishes.
To understand why the fixed-node method is usefidl, suppose that we know the
nodes of the exact ground state wave function. If we could solve the ground state
of the Schridinger equation in each simply connected region bounded by the nodal
surfaces of the ground state wave function with vanishing boundary conditions
on these surfaces, this solution would be proportional to the exact ground state
of the full Hamiltonian in each region. In the fixed-node solution, we solve the
Schrédinger equation in connected regions bounded by the nodal surfaces of the
trial function instead of the exact function, and therefore the quality of the solution
depends on how close these surfaces are to those of the exact ground state. Tt can be
shown that the resulting energy is a variational upper bound to the exact ground state
energy [2]. It should be noted that the fixed-node method often gives a substantial
improvement over the variational Mente Carlo method {which does not suffer from
the fermion problem). .
An additional problem with the fixed-node method is the fact that moves in which
two (or any even number of) nodal surfaces are crossed are accepted. This introduces

an error as the number of walkers in two regions separated by an even number of

node crossings does not necessarily represent the norm of the wave functions on
those regions. The degree to which we suffer from this increases with the time step,
as a larger time step will result in larger steps to be taken. It introduces an extra
time-step bias error which goes by the name cross—recross error.

Let us study the nodes more carefully. The requirement that ¥ (x;,...,Xy) = 0
(x; denotes the spin-orbit coordinate of electron {) defines the nodal surfaces. If
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we assume the spins of the N fermions to be given, then the nodes form (3N —
1)-dimensional hypersurfaces in the 3N-dimensional configurational space. The
obvious zeroes of Y whenever X; = x; for any pair i # j define a (3% — 3)-
dimensional scaffolding for the nodal surface structure. This scaffolding does not
depend on the particular form of the trial function. A node of a one-electron orbital
in the Slater determinant occurring in the wave function should not be. confused
with a ‘fermionic zero’, as such an orbital node does not force the many-electron
wave function to vanish: one of the electrons, say i, might be at a zero of some
orbital, but the wave function also contains contributions with the coordinates of
the electrons permuted, and in general the coordinates of the other electrons are
ditferent from those of electron i.

Changing the diffusion Monte Carlo method to a fixed-node simulation is easy.
Simply add the following step just after having generated a new trial position
of a particle, say {. Check whether the trial wave function changes sign for this
displacement. If this is the case, the move is not accepted, otherwise proceed as in
the boson case. The interested reader can implement the fixed-node extension and
test it, for example, for the lithium atom, taking an appropriate Slater determinant
for the guide function. More details can be found in Ref. [9].

*The transient estimator method

In view of the variational error present in the fixed-node method it is worthwhile to
devise other methods. A methed which does not depend on fixed nodal surfaces is
the transient estimaror method. To understand how and why this method works, it is
important to realise that the Hamiltonian and hence the time-evolution operdtor are
the same for fermions and for bosons. However, because the time-evolution operator
is symmetric with respect to particle permutations, an antisymmetric (fermionic)
initial state will remain antisymmetric and a symmetric (bosonic) state remains
symmetric.

Let us split an arbitrary fermion wave function ¢ into two parts, ¢— and ¢,
which contain the negative and positive parts of ¢ respectively (all wave functions

depend on all the spin-orbit coordinates X = (%, %2,...,Xy), and on imaginary
time 7):
bt =101+ ¢) (12.632)
¢ = LUgl — ¢, (12.63b)
so that
¢ = ¢+~ . C(12.64)
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Now perform two independent DMC calculations, one with ¢ and the other
with ¢.. as a starting distribution, where ¢ is a trial fermion wave function. What
will happen? Applying the (exact) imaginary-time evolution operator T(X — ¥; 7)
t0 ¢ we obtain

$(¥;7) == \ aX T(X — 73 1) (X;0)

= \%m TX — Y1) (X, 0) I\QN TX — ¥V;1)e-(X.0)
—be (T — (VB (12.65)

This suggests that we can follow the time evolution of ¢ by subtracting ¢ () and
é_ (2) as produced in the two simulations. As ¢ (0} and ¢4(0) are both positive,
and as the imaginary time-evolution operator is always positive, the application of
the DMC approach causes no problems. In fact, one could also say that if the initial
wave function is positive everywhere, it contains no fermion character and hence
we have an unambiguous bosonic time evolution for such an initjal state. A guide
function approach can be used in the two boson simulations.

Ags the time-evolution operator contains no fermion-like features (see above),
both simulations will tend to the bosenic ground state solution for long times. The
fermion ground state wave function is an excited state solution of the many-particle
Hamiltonian, so the boson ground state contribution to the solution at imaginary
time 7 will dominate the fermion contribution by a factor exp[t(Er — Eg)], where
Eg and Er are the fermion and boson ground state energies respectively. Note that
this factor grows exponentially with time. The fermion ground state' wave function
is the difference between the two distributions resulting from ¢ . and ¢, which
because of the foregoing analysis are both essentially boson-like, If we are to find
a fermion wave function as a small difference of two large, essentially boson wave
function distributions we must be prepared for large statistical errors. The analysis
given here is represented pictorially in Figure 12.2. |

The analysis so far leads to the conclusion that, at the beginning, the difference
between the distributions is equal to the trial function ¢, and for large times it
converges to the exact fermion wave function, but it will be buried in the noise of
the boson solutions forming the bulk of the two distributions: We might be lucky: if
the triai function relaxes to the exact Fermi wave function quickly enough, before
the latter is buried in the ‘boson noise’, then we have an intermediate ‘transient’)
regime in imaginary time during which we might extract usefu] data from the
simulation. The trial energy which is adjusted to keep the respective population
sizes stable is no longer a suitable energy estimator as this will converge to the
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Figure 12.2. BEvolution of the distributions in the transient energy estimator
method. The wave function ¢(r = 0) is shown in (a); it can be written as the
difference of the ¢ and ¢—. These two functions evolve separately and tend
therefore to the same boson ground state solution, as skown in {¢). Subtracting the
two wave functions in (¢) gives the small difference in (d}, and this will be soon
huried in the noise in the solutions in (¢).

boson energy. Therefore we use the “transient estimator’:

[ AX $()H(x = 0)
JaX ¢(D)g(x = 0)
J4X ¢_(D)H$(x = 0) X ¢ (HS(x = 0)

[dX {4 () — ¢ (D] (z = 0) - JaX (g4 (r) ~ p_(Dip(x = 0)
(12.66)

Erg(r) =

As the wave function ¢ () converges to the exact fermion ground state, this estim-
ator will indeed relax to the exact fermion erergy. As mentioned already, the
problem resides in ¢ () to be extracted as the small difference between two large
distributions. ’

The estimator (12.66) is evaluated as follows. At time t, the walkers occupy
points in configuration space which are distributed according to ¢ (7). Fora walker
at the point X in the ¢,.-simulation we evaluate Hep (X, v = 0) (for the numerator}
and ¢(X,r = 0) (for the denominator), and sum over walkers. We do the same
with the ¢_ simulation, but now give the congributions a minus sign. The quantity
H¢(X,t = 0) can be evaluated because ¢ (X, v = 0) is a trial function, given in
analytic form, The sum is divided by the sum of ¢ (X, v = 0) over all the walkers.

There exist several extensions to and refinements of the transient estimator
method, which are beyond the scope of this book, A common characteristic of
these methods is that they are subject to instability in the errors for large .
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12.4 Path-integral Monte Carlo

In Chapter 11 we saw that the partition function of a classical lattice spin system
on a strip can be evaluated by diagonalising the transfer matrix. The transfer matrix
can be considered as a kind of ‘time-evolution operator’, which projects cut the
eigenvector belonging to the largest eigenvalue (in absolute value). The relation
with the time-evolution process described in the previous section is evident. The
transfer matrix effectively reduces the dimension of the classical system by one, but

the price we pay for this reduction is that the diagonalisation of the transfer matrix is

an expensive operation. In this section we consider the reverse transformation: we
shall transform 2 quantum mechanical system in 4 dimensions, which can be solved
by diagonalising the Hamiltonian matrix, to a classical system in 4 1 dimensions.
This system can then be simulated with the Monte Carlo procedures described in
Chapter 10. The new formulation enables us to obtain time-dependent properties,
or physical quantities of the system at finite ternperature. For a very clear discussion
of the path-integral concept, see the book by Feynman and Hibbs {10].

]

12.4.1 Path-integral fundamentals

The path-integral method provides a way to calculate matrix elements and traces
of the time-evolution operator of a quantum system in imaginary time: ’

T{r)=e""# (12.67)

which we have encountered in the previous section. If we interpret the imaginary
time as an inverse temperature v <> S and take the trace of the time-evolution
operator, we obtain the partition function Z of the quantum system at a finite
temperature T

Z(B) =Tr(e #)y = \ dR (Rle™P¥|R). (12.68)

R denotes the coordinates of N particles, The path-integral method enables us
to sample system configurations with the appropriate Boltzmann factor, so that
expectation values for a quantum system at a finite temperature can be evaluated.
The problem with expression (12.68) is that it contains the exponential of the
Hamiltonian, which, as mentioned in Section 12.2.4, makes the trace of the time-
evolution operator difficult to evaluate. For short times © (or 8), this is not a problem
as we can write the Hamiltonian as a sum of several terms {e.g. kinetic and potential

energy) which themselves are easily tractable in an exponential — the neglected CBH

commutators yield systematic errors of order 72, What can we do if 7 is not small?
In that case, we divide the time t up into many (say M) small segments At = /M
which can be treated in the short-time approximation. For a system consisting of
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N spinless particles with coordinates R;, the partition function can be written as
\.%%D_mr%%a = \%o dR; ...dRy_

(Role™ ™ R} Ry e~ |Ra) - - (Rpr—1]e 2" |Ry). (12.69)

‘We have inserted M — | unit-operators \ dR; |R;}{R;] between the short-time evolu-
tion operators. The procedure in which time is divided up into many short segments
is called time-slicing. The fact that the first and the last state in the product of matrix
elements are identical (|Ro)) implies that we have periodic boundary conditions in
the t-direction. _ .

We know the matrix elements of the short-time evolution operator: it has been
derived in Section 12.2.4;

s _ —ATH | ph __ 1

The potential could have been distributed symmetricatly over R and R, but we shall
see that the final result does not depend on this distribution, The first order CBH com-
mutator can be shown to vanish in this case, so that this short-time approximation
18 accurate to oamﬂbﬂm. Substituting this result into (12.69), we obtain

1
—tH N —

—ATV(Rg~(R-RV2/QA7) (17 70)

.\,&mo dR{ dRy ... dRy

M-1 2
I (Rypyy1 — Ry
exp{ —AT m o eee—— ) +V(Rp) |+
- 2 At

(12.71)

In this expression, Ry = Rp. The prefactor before the integral seems dangerous in
the sense that it explodes when we take the limit At -+ 0. However, this is balanced
by the fact that, of the huge integration volume, only a tiny part gives significant
contributions to the integrand — in fact, the smaller we take Ar, the narrower the
Gaussian kinetic energy integrands will be and the limit for large M therefore still
ex1s(s. :

You might recognise the summand in the exponent as the Lagrangian (in discrete
imaginary time) of the classical many-particle system with coordinates R; if we take
A7 — 0. The sum is then the action, which assumes its minimum for the classical
trajectory. The integral is a sum over all possible sets of coordinates Ry, . . ., Rar.
Such a set denotes a parh in configuration space. We see that the trace of the
time-evolution operator is written as a sum, or rather an integral, over all possible
paths. It is important to realise what the classical system represents. The quantum
many-patticle system we are describing contains N particles, interacting with each
other and with an external potential through the potential V(R). We have M copies
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Figure 12.3. Classical system described by the path integral of the two elec-
trons in the helium atom. Periodic boundary conditions are imposed along the
quantum imaginary time (the circle). The small full circles denote the helium
nuclei, the heavy ones the electrons, The circle is thie time axis with periodic
boundary conditions. The dashed lines represent harmonic couplings between the
electrons of adjacent copies (along the time axis). The heavy solid lines denote
the electron—electron 588969 and the heavy dotted lines the electron-nucleus
interactions.

of this many-particle system along the quantum imaginary-time direction, so that
the classical system consists of NM particles. The first term in the sum in (12.71)
derives from the kinetic part of the quantum Hamiltonian, but in the classical system
i denotes a harmonic coupling between corresponding particles in adjacent copies:
they are connected by springs. Figure 12.3 shows the classical particle system and
couplings for the two electrons in helivm with M = 5.

The quantum partition function for a system of N three-dimensional particles
is given as Trexp(—pBH). The right hand side of Eq. (12.71) can be interpreted
as the classical partition function of NM particles in three dimensions (without
momentum degrees of freedom — these can be thought of as being integrated over),
because it is an integral over all the configurations of the coordinates R; with an
appropriate Boltzmann factor. The energy 7 of the classical system is identified with
the Lagrangian associated with the quantum Hamiltonian H. An unusual feature is
the inverse temperature occurring in the denominator of the harmonic interactions of
the classical Hamiltonian H (remember At = 8/M). We see that the path integral
maps the partition function of a 3N -dimensional systemn onto a (3N +1)-dimensional
system where the extra dimension can be interpreted either as an imaginary-time
or as an {nverse-temperature axis — it corresponds to the sub-index i of the R;.

The path integral provides a very clear insight into the nature of quantum mech-
anics. Up to now, we have put /i = 1. Had we kept A in the problem, we would have
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Figure 12.4. The path integral for a one-dimensionzal system, The vertical azes
are R-axes at different times. A path is & set of points given on these axes. The
heavy drawn path is the stationary path of the action, which is the solution to the
classical equations of motion. The thin lines represent neighbouring @m_&m For
these paths, the action is not stationary, but they are taken 58 account in the
ﬂ:m:z:d mechanical path integral,

seen that the prefactor in the exponent occurring before the sum was At /B instead
of Az, The classical limit corresponds to % = 0, which implies that the path with
minimal action dominates all the other paths. This is in fact Hamilton’s principle:
the-classical path corresponds to the minimal action. If we ‘switch Planck’s con-
stant on’, we see a contribution from the nonminimai paths emerging. If we had
not identified Ry with Ry and if we had not integrated over this coordinate, we
would have a system with fixed end points, which brings the analogy with classical
mechanics even closer. Figure 12.4 gives a pictorial representation of the idea of
the path integral.

In this section and in the previous one,; we have assumed that the errors in the
individual short-time approximations do not add up to significant errors for large
times. The justification of this assumption is a theorem, which is usually denoted
as the Lie-Trotter—Suzuki formula, which says that for a Hamiltonian & Emﬂnw can
be written as the sum of K operators:

H=> "H (12.72)

it holds that

—aH — m@lnm_\.a\.w

. e /M .mlnmx\ﬁvﬁ (12.73)
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for large M. The error is then given by [11, 12]

2
Y 1B Hyle™ (12.74)

i

where | ... | denotes the norm of an operator.

Tt is very easy to get confused with many physical quantities having different
meaning according to whether we address the time-evolution operator, the quantam
partition function, or the classical partition function. Therefore we summarise the
different interpretations in Table 12.2. The classical time in the last row of Table 12.2
is the time that elapses in the classical system and is analogous to the time in a Monte
Carlo simulation. This quantity has no counterpart in quantum mechanics or in the
statistical partition function.

The quantum partition function is now simulated simply by performing a standard
Monte Carlo simulation on the classical system. The PIMC algorithm is

Put the NM particles at random positions;
REPEAT
FORm =1TOM DO
Select a time slice / at random; :
Select one of the N particles at time slice / at random;
Generate a random displacement of that particle;
Calculate 7 = exp[—AT{(Hnew — Hod)1;
Accept the displacement with probability min(1, r);
END FOR;
UNTIL finished.

In this algorithm we have used H to denote the Hamiltonian of the classical system,
which is equal to the Lagrangian occurring in the exponent of the path integral -
see Bq. (12.71).

Letus compare the path integral method with the diffusion Monte Carlo approach.
In the latter we start with a given distribution and let time elapse. At the end of the
simulation the distribution of walkers reflects the wave function at imaginary time
7. Information about the history is lost: physical time increases with simutation
time. The longer our simulation rens, the more strongly will the distribution be
projected onto the ground state. In the path integral method, we change the positions
of the particles along the imaginary-time (inverse-temperature} axis. Letting the
simulation run for a longer time does not project the system more strongly onto the
ground state — the extent to which the ground state dominates in the distribution is
determined by the temperature 8 = M A, i.e. for fixed At, it is determined by the
length of the chain. The PIMC method is not necessarily carried out in imaginary

;
i

of the path integral,

LORS @

Table 12.2. Meaning of several physical quantities in diffevent interpreiod

Statistical physics

Classical mechanics

anics

Quantum statistical mech

Quanturn mechanics

d-dimensional

d-dimensional subspace

d-dimensional

d-dimensional

configuration space
inverse temperature

of configuration space

1-dimensional axis

configuration space
inverse temperature

configiration space

imaginary time 7

L/kgT

B
transfer matrix

in configuration space

i/kT

time-evolution operator  Boltzmann operator e A2

kinetic energy

'BI

inter-row coupling of

harmonic isterparticle potential

kinetic energy

transfer matrix

Hamiltontan

function
of (d + 1)-dimensional sysiem

Zero temperature

paitition

Lagrangian

of d-dimensional system

quantum partition function
ZETo temperature

Lagrangian

Lagrangian
path integral

stationary path

classical limit
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time — there exist versions with real time, which are used to study the dynamics of
quantum systems [13-15].

The analysis so far is correct for distinguishable particles. In fact, we have simply
denoted a coordinate representation state by |R). For indistinguishable bosons, we
should read for this state: ‘

H ,_
R == hID1 315 TN SO (12.75)
P

where the sum is over all permutations of the positions. The boson character is
noticeable when we impose the periodic boundary conditions along the T-axis,
where we should not merely identify ry in the last coordinate |Ry} with the corres-
ponding position in [Ro}, but also allow for permutations of the indivicual particle
positions in both coordinates to be connected.

This feature introduces a boson entropy contribution, which is particularly notice-
able at low temperatures. To see this, let us consider the particles as diffusing from

‘left {Rp) to right (Rag). On the right hand side we miust connect the particles to

their counterparts on the left hand sides, taking all permutations into account. If the
Boltzmann factor forbids large steps when going from left to right, it is unlikely
that we can connect the particles on the right hand side to the permuted leftmost
positions without introducing a high energy penalty. This is the case when 7 = B
is small, or equivalently when the temperature is high. This can be seen by noticing
that, keeping At = §/N fixed, a decrease § must be accompanied by a decrease in
the number of segments N. Fewer segments mean less opportunity for the path to
wander away from its initial position. On the other hand, we might keep the num-
ber of segments constant, but decrease At. As the spring constants are inversely
proportional to At (see Eq. (12.71)), they do not allow, in that case, for large dif-
ferences in position on adjacent time slices; hence permutations are quite uniikely.
When the temperature is high (z = 8 small), large diffusion steps are allowed and
there is a lot of enfropy (o be gained from connecting the particles to their starting
positions in a permuted fashion. This entropy effect is responsible for the superfluid
transition in *He [14-16]. Path-integral metheds also exist for fermion systems, A
review can be found in Ref, [19].

What type of information can we obtain from the path integral? First of all,
we can calculate ground state properties by taking m very large (temperature very
small), The system will then be in its quantum ground stats. The particles will be
distributed according to the quantum ground state wave function. This can be seen by

considering the expectation value for particle 0 io be at position Rg. This is given by
1 )
P{Rg) = 7 \ dRidRy ... dRy—:

(Role 2™ |R1) (Rile 2 [Ra) . {Ru—1le 4T |Ro). (1276)

'
b
¢
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Note that the numerator differs from the path integral (which occurs in the denom-

inator) in the absence of the integration over Ry. Removing all the unit operators
we obtain

{Role™ ™ |Ry)
S dRo{Role™"H|Ro)’

Large t is equivalent to low temperature. But if 7 is large indeed, then the operator
exp(—tH) projects out the ground state ¢g:

P(Ry) = (12.77)

e” M mlgg 1o (gal,  larger. (12.78)
Therefore we have |

1
P(Ry) = mm-%o:eo%ov 2, larger. (12.79)

Because of the periodic boundary conditions in the  direction we obtain the same
result for each time slice m. To reduce statistical errors, the ground state can be
therefore obtained from the averdge distribution over the time slices via a Eﬂom&g
method.

The expectation value of a physical quantity 4 for a quantum system at a finite
temperature is found as
Tr(de—FH)

Tre—AH

The denominator is the partition function Z. We can use this function to determine
the expectation value of the energy

(A)g = : (12.80)

Tr(HeFH) 3
m_ = — e =
(E)g Z 55 InZ(A). (12.81)
If we apply this to the path-integral form of Z , we obtain for the energy per particle
(in one dimension):

E M i

(8= BN {KYy —{V}). (12.82)

with

M—1
K= M Qms %WS:TCM

35 (12.83)

m=0
mma. V' is the potential energy (see also Problem 12.1). The first term in (12.82)
derives from the prefactor 1/./2m Af of the kinetic Green’s finction. The angular
brackets in the second and third term denote expectation values evaluated in the
classical statistical many-particle system. It turns out that this expression for the
energy is subject to large statistical errors in a Monte Carle simulation. The reason
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is that 1/8 and (K}/(NM) are both large, but their difference is small. Herman et al.
[20] have proposed a different estimator for the energy, given by

E 1 M-l 1
M U V(R + —R, - Vg, V(R . 12.84
N 4 - M — m Eu 5 ] Ry A Ev m v

This is called the virial energy estimator, and it will be considered in Problem 12.6.

The virial estimator is not always superior to the direct expression, as was
observed by Singer and Smith for Lennard—-Jones systems [21]; this is presum-
ably due to the steepness of the Lennard-Jones potential causing large fluctuations

in the virial.

12.4.2 Applications

We check the PIMC method for the harmonic oscillator in one dimension. ‘We have
only one particle per time slice. The particles all move in a ‘background potential’,
which is the harmonic oscillator potential, and particles in neighbouring slices are
coupled by the kinetic, harmonic coupling. The partition function reads

| B[ m a1 1285
N”\&o...&b&.lpo%ﬁ Y N +MM§ . (12.85)
m=0
We have used 8 = 10 and M = 100, Thirty thousand MCS were performed, of
which the first two thousand were deleted to reach equilibrium. The maximum dis-
placement was tuned to yield an acceptance rate of about 0.5. The spacing between
the energy levels of the harmoni¢ oscillator is 1 therefore 8 = 10 corresponds
to large temperature. We find for the energy E = 0.51 £ 0.02, in agreement with
the exact ground state energy of 1/2. The ground state amplitude can also be
determined, and it is found to match the exact form |y (x) 2= e~ very well.
The next application is the hydrogen atom. This turns out to be less successful,
just as in the case of the diffusion MC method, The reason is again that writing
the time-evolution operator as the product of the exponentials of the kinetic and
potential energies is not justified when the electron approaches the nucleus, as the
Coulomb potential &éHmmm there — CBH commutators therefore diverge too. The
use of guide functions is not possible in PIMC, so we have to think of something
else. The solution lies in the fact that the exact time-evolution operator over a time
slice A¢ does not diverge at r = 0; we suffer from divergences because we have
used the so-called primitive approximation
i

Qr ATy

exp[—(r — ')/ (2A7) ] exp{— ATV () + V()1/2}
(12.86)

T(r 1 AT) =
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to the time-evolution operator. The effect of averaging over all the continuous
paths from (r, v) to (r', T + A7), as is to be done when calculating the exact time
evolution, is that the divergences at r,r’ = 0 are rounded off. So if we could
find a better approximation to this exact time evolution than the primitive one, we
would not suffer from the divergences any longer. Several such approximations
have been developed [22, 23]. They are based either on exact Coulomb potential
solutions (hydrogen atom) or on the cumulant expansion. We consider the latter
approxirmation in some detail in Problems 12.2 and 12.3; here we shall simply
guote the result;

At ! A
Veumulant (r, '3 AT) = \o de’ o—%_”w.ﬁwmud\d Mo..nm__ (12.87a)
where
n T . (At — )7’
r{z) =r+ mﬁ.\ —r) and o(t) = Ibﬁlu (12.87h)

The cumulant approximation for V can be caiculated and saved in a tabular form, so
that we can read it into an array at the beginning of the program, and then obtain the
potential for the values needed from this array by interpolation. In fact, for At fixed
Vevmulan: depends on the norms of the vectors r and v’ and on the angle Umgmg“
them. Therefore the table is three-dimensional. We discretise r in, say, 50 steps Ar
_uwgwmn 0 and some upper limit rmgx (which we take equal to 4), and similarly for
W, . For values larger than rmay we simply use the primitive approximation, which
is sufficiently accurate in that case. For the angle # in between r and ' we store
cosd, discretised in 20 steps between —1 and 1 in our table. For actual valaes
s " and u = cos® we interpolate linearly from the table — see Problem 12.4.
Figure 12.5 shows the cumulant potential V(r = #,0 = 0; AT = 0.2), together
with the Coulomb potential; the rounding effect of the camulant approximation is
clear. In a path-integral simulation for the hydrogen atom we find a good ground
state distribution, shown in Figure 12.6. For the energy, using the virial estimator
with the original Coulomb potential (which is of course not entirely correct), we
find Eg = —0.494 £ 0.014, using At = 0.2, 100 time slices and 60 000 MC steps
per particle, of which the first 20 000 were removed for equilibration.

. .Euwa\im the method to helium is done in the same way. Using 150 000 steps
with a owm.mm length of 50 and 7 == 0.2, the ground state energy is found as 2.93 +
0.06 atomic units, Comparing the error with the DMC method, the path-integral
method does not seem to be very efficient, but this is due to the straightforward
implementation. It is possible to improve the PIMC method considerably as will
be described in the next section.

. The classical example of a system with interesting behaviour at finite temperature
is dense helium-4. In this case the electrons are not taken into account as independent
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I TYrYy

Figure 12.5, The cumulant potential for At = 0.2 {diamonds) and the Coulomb
potential. It is clearly seen that the cumulant potential is rounded offatr =0.

0.3 T T , T T
025 1
02 r \

w045 t t

0.05 r

Figure 12.6. PIMC ground state amplitude [yr(r) |2 (diamonds) and the exact result.
Sixty thousand Monte Carlo sweeps with a chain length of 100 and 7 = 0.2 were

used.

particles; rather, a collection of atoms is considered, interacting through Lennard--
Jones potentials. We shall not go into details of implementation and phase diagram,
but refer to the work by Ceperley and Pollock [3, 4].

12.4.3 Increasing the efficiency

The local structure of the action enables us to use the heat-bath algorithm instead
of the classical sampling rule, in which particles are displaced at random uniformly
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within a cube (or a sphere). If we update the coordinate R,,, keeping R,,_; and
Rty fixed, then in the heat-bath algorithm, the new value R;, must be gengrated
with distribution

Ry — Rin)’

L — ATV(RY) (12.88)

p(R,) =exp| —At
where Ry, = (Rm1 +Rm—1)/2. We may sample the new position directly from this
distribution by first generating a new position using a Gaussian random generator
with width 1/(2At) and centred around B,,, and then accepting or rejecting the
new position with a probability proportional to exp[—ATV(R/,)]. This procedure
guarantees 100% acceptance for zero potential. If there are hard-core interac-
tions between the particles, the Gaussian distribution might be replaced by a more
complicated form to take this into account [4].

A major drawback of the algorithm presented so far is that only one atom is
displaced at a time. To obtain a decent acceptance rate the maximal distance over
which the atom can be displaced is restricted by the harmonic interaction between
successive ‘beads’ on the imaginary time-chain to ~+/A7. The presence of the
potential V can force us to decrease this step size even further, It will be clear that
our local update algorithm will cause the correlation time to be long, as this time
is determined by the long-wavelength modes of the chain. As it is estimated that
equilibration of the slowest modes takes roughly @(M2) Monte Carlo sweeps (see
the next chapter), the relaxation time will scale as M * single-update steps. This
unfavourable time scaling behaviour is well known in computational field theory,
and a large part of the next chapter will be dedicated to methods for enhancing the
efficiency of Monte Carlo simulations on lattices. An important example of such
methods is normal mode sampling in which, instead of single particle moves, one
changes the configuration via its Fourier modes {24, 25]. If one changes for example
the £ = 0 mode, all particles are shifted over the same distance. The transition
probability is calcalated either through the Fourier-transformed kinetic (harmonic
interaction) term, followed by an acceptance/rejection based on the change in poten-
tial, or by using the Fourier transform of the full action. We shall not treat these
methods in detail here; in the next chapter, we shall discuss similar methods for
field theory.

A method introduced by Ceperley and Pollock divides the time slices upin a
hierarchical fashion and alters the values of groups of points in various stages
[3, 4]. At each stage the step can be discontinued or continued according to some
acceptance criterion, It turns out [4] that with this method it is possible to reduce the
relaxation time from 2 to M1#. The method seems close in spirit to the multigrid
Monte Carlo method of Goodman and Sokal, which we shall describe in the next

chapter.
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It will be clear that for a full boson simulation, moving particles is not sufficient:
we must also include permutation moves, in which we swap two springs between
particles at subsequent beads, for example. However, the configurations are usually
equilibrated for a particular permutation, and changing this permutation can be 5o
drastic a move that permutations are never accepted. In that case it is possible to
¢ombine a permutation with particle displacements which adjust the positions to

the new permutation {4].

12.5 Quantum Monte Carlo on a lattice

There are several interesting @cmd&i systems which are or can be formulated on

a lattice. First of all, we may consider quantum spin systems as generalisations of

the classical spin systems mentioned in Chapter 7. An example is the Heisenberg

model, with Hamiltonian . ‘
Hyeisenberg = I.\Mmm ' m‘_ SN.mwu

(g} .
where the sum is over nearest neighbour sites (ij} of a lattice (in any dimensions),
and the spins satisfy the standard angular momentum commutation relations on the

same site (A = 1)
ig
[s5, 8] = - (12.50)
Another example is the second quantised form of the Schrédinger equation. This
uses the ‘occupation number representation’ in which we have creation and anni-
* hilation operators for particles in a particular state. If the Schrodinger equation is
discretised on a grid, the basis states are identified with grid points, and the cre-
ation and annihilation operators create and annihifate particles on these grid points.
These operators are called nw and ¢; respectively, and they satisfy the commutation
relations ) :
[ene) =lef.c[1=0; lei,c]] =8y (12.91)
In terms of these operators, the Schrédinger equation for a one-dimensional,
noninteracting system reads {26]
S —tefein F el + ) Vim (12.92)
i i
where #; is the number operator anr and where appropriate boundary conditions
are to be chosen. ) )
Amajor advantage of this formulation over the original version of the Schrédinger
equation is that the boson character is automatically taken into account: there is ne
need to permute particles in the Monte Carlo algorithm. A disadvantage is that the
lattice will introduce discretisation errors.
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Finally, this model may be formulated for interacting fermions. A famous mode}
of this type is the so-called Hubbard model, which models the electrons which
are tightly bound to the atoms in a crystalline material, The Coulomb repulsion is
restricted (o an on-site effect; electrons on different sites do not feel it. The creation

and annihilation operators are now called nM o1 Cior» Where o = =+ labels the spin.
A !

They anticommute, except for [¢; 5+ Cio’ ]+ = 8ijfce. The standard form of the
Hubbard model in one dimension reads

H=2 —tlc] cirrg + ¢l yCal TU Y Aighi—s (12.93)
Lo i
where n;,, is the number operator which counts the particles with spin o at site i:
H; = nMa ¢i - The first term describes hopping from atom to atom, and the second
one represents the Coulomb interaction between fermions at the same site.

We shall outline the quantum path-integral Monte Carfo analysis for one-
dimensional fattice quantum systems, taking the Heisenberg method as the principal
example. Extensions to other systems will be considered only very briefly. For a
review, see Ref. [5]; see also Ref. {27].

The quantum Heisenberg model is formulated on a chain consisting of N sites,
which we shall number by the index i. We have already discussed this model in
Section 11.5. The Hilbert space has basis states |S} = |51,52...., Sy}, where the s; ‘
assume values :-1; they are the eigenstates of the z-component of the spin operator.
The Heisenberg Hamiltonian can be written as the sum of operators containing
interactions between two neighbouring sites. Let us call H; the operator —Js; - 84,
coupling spins at sites i and i + 1. Suppose we have N sites and that N is even. We
now partition the Hamiltonian as follows:

H = Hogq + Heven = (H1 + H3 + Hs +--- + Hy_1)
+ (Hy + Hy -+ Hg + - -+ + Hy). (12.94)

H; and Hjy.; commute as the H; couple only nearest neighbour sites. This makes the
two mommﬂmﬁ Hamiltonians Hogg and Hevey trivial to deal with in the path integral.
However, Hogg and Heyven do not commute. It will therefore be necessary to use the
short-time approximation.

The time-evolution operator is split up as follows:

o™ ny o ATHud g~ AvHern g - AtHout g ~ATHoven || o~AtHoatg—ATHee  (12.95)

.SEH atotal number of 2 exponents in the right hand side; At = /M. In calculat-
ing the partition function, we insert a unit operator of the form ¥ ¢ [SHS| between
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‘ Figure 12.7. The checkerboard decomposition of the space-time lattice. Two world
lines are shown.

the exponentials, where ) ¢ denotes a sum over all the spins s; in §:

Z =3 (Sole™AeHaua 3y (SplemA7Heren |51 (Syje ™ A o |8y

Si5i
x (Syle™ 0 Fewn S0y Syt leT AT Sy 1)
X {8y jzq e A Heren |S0), (12.96)

“The operators exp(AtTHeven) and exp(ATHoga) can be expanded as products of
terms of the form exp( At H;). Bach such term couples the spins around a plaquette of
the space-time lattice and the resulting picture is that of Figure 12.7, which explains
the name ‘checkerboard decomposition’ for this partitioning of the Hamiltonian.
Other decorpositions are possible, such as the real-space decomposition [5], but
we shall not go into this here.

The simulation of the system seems straightforward: we have a space-time lattice
with interactions around the shaded plaquettes in Figure 12.7. At each site of the
lattice we have a spin 5i,,, where i denotes the spatial index and m denotes the index
along the imaginary-time or inverse-temperature axis. The simulation consists of
attempting spin flips, evaluating the Boltzmann weight before and after the change,
and then deciding to perform the change or not with a probability determined by
the fractions of the Boltzmann weights (before and after). But there is a snake in the
grass. The Hamiltonians #,,, commute with the total spin operator, 3 _; s7; therefore
the latter is conserved, i.e.

Sim + Sit+1m = ,«,rE.I + St Lant1 (12.97)
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for each plaquette (remember the 5; occurring in this equations are the eigenvalues of
the corresponding s¢ operators). Therefore a single spin fiip will never be accepted
as it does not respect this requirement. This was already noted in Section 11.5:
letting a chain evolve under the Hamiltonian time evolution leaves the system in
the ‘sector” where it started off. Simple changes in the spin configuration which
conserve the total spin from cone row to another are mﬁE flips of all the spins at the
corners of a nonshaded plaquette.

In the boson and fermion models, where we have particle numbers 3y, instead
of spins, the requirenient (12.97) is to be replaced by

Ry + a_.r,,ri = Rim+1 T it Lm+1 {12.98)

In this case the simplest changs in the spin configuration consists of an increase
{decrease) by one of the numbers at the two left corners of a nonshaded plaquette and
adecrease (increase) by one of the numbers at the right hand corners (obviously, the
particle numbers must obey n;,, > 0 (bosons) or 1y, == 0, 1 (fermions)). Such a step
is equivalent to having one particle moving one lattice position to the left (right). The
overall particle number along the time direction is conserved in this procedure. The
particles can be represented by world lines, as depicted in Figure 12.7. The changes
presented here preserve particle numbers from row to row, so for a simulation of
the full system, one should consider also removals and additions of os.mﬂo world
lines as possible Monte Carlo moves.

Retorning to the Heisenberg model, we note that the operator exp(~AtH;)
couples only spins at the bottom of a shaded plaquette to those at the top.. This
means that we can represent this operator as a 4 x 4 matrix, where the four pos-
gible states | + +}, | + ~—}. | — +} and | — —) label the rows and columns. For the
Heisenberg model one finds after some calculation

7
exp |DﬂMQm O

m.bﬁ&\m 0 0 0

—AJ/4 o cosh(AzJ/2) sinh(AtJ/2) 0

0 sinh(A7J/2) cosh(Az//2) 0 (12.95)

0 0 0 @Di /2

(o is the vector of Pauli matrices (oy, oy, 0;) ~ we have s = Fo /2; i = 1). This
matrix can be diagonalised (only a diagonalisation of the inner 2 x 2 block is
necessary) and the model can be solved trivially. Some matrix elements becomne
negative when J < 0 {Heisenberg antiferromagnet). This minus-sign problem turns
out not to be fundamental, as it can be transformed away by a redefinition of the
spins on alternating sites {5, 281.
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In the case where, instead of spin-1/2 degrees of freedom, we have (boson)
numbers on the sites, the matrix H; becomes infinite-dimensional. In that case we
must expand exp{— A7 H;)} in a Taylor series expansion in At. We shall not go into
details but refer to the literature [5].

If we have fermions, there is again a minus-sign problem. This turns out to
be removable for a one-dimensional chain, but not for two and three dimensions.
In these cases one uses fixed-node and transient estimator methods as described

above [29].

12.6 The Monte Carlo s.wsm_mmu matrix method

In Chapter 11 we have seen that it is possible to calculate the free energy of a

digcrefe lattice spin model on a strip by solving the largest eigenvalue of the transfer
matrix. The size of the transfer matrix increases rapidly with the strip width and the
calculation soon becomes unfeasible, in particular for models inr which the spins
can assume more than two different values. The QMC techitiques which have been
presented in the previous sections can be used to tackle the problem of finding
the largest eigenvalues of the very large matrices arising in such models. Here
we discuss such a method. It goes by the name of ‘Monte Carlo transfer matrix’
(MCTM) method and it was pioneered by Nightingale and Bléte [30].
Let us briefly recall the transfer matrix theory, The elements T(5", ) = (8|75}
of the transfer matrix T are the Boltzmann weights for adding new spins to a semi-
- infinite system. For example, the transfer matrix might contain the Boltzmann
- weights for adding an entire row of spins to a semi-infinite lattice model, or a single
spin, in which case we take helical boundary conditions so that the transfer matrix
is the same for each spin addition (see Figure 12.8). The free energy is given in
terms of the largest eigenvalue A9 of the transfer matrix:

F = —kpT In(Ag). (12.100)

From discussions in Chapter 11 and Section 12.4, it is clear that the transfer matrix
of a lattice spin model is the analogue of the time-evolution operator in quantum
mechanics.

We now apply a technique analogous to diffusion Monte Carlo to sample the
cigenvector corresponding to the largest eigenvatue. In the following we use the
terms ‘ground state’ for this eigenvector, because the transfer matrix can be written
intheform 7" = exp(—tH), so that the ground state of H gives the largest eigenvalue
of the transfer matrix, We write the transfer matrix as a product of a normalised
transition probability P ard a weight factor D, In Dirac notation:

(S'1T|Sy = D(SH{S'|P|S). (12.101)
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"

mwmcﬁm 12.8. Helical boundary conditions for the spin model with nearest neigh-
bour mteractions on 4 strip. A step of the algorithm consists of evolving the “old’
walker § into a new one called §'. This is done by first adding a new ‘head’ s}, of

$" according to a probability distribution like (12.104). Then the ‘old’ components
Sr—2 10 o are copied onto 5 _, to 5.

dﬁ ground state will be represented by a collection of random walkers {8} which
&m.dmm in configuration space according to the transition probability P. Bach dif-
msao.w m.ﬁ% is followed by a branching step in which the walkers are eliminated or
‘multiplied, i.e. split into a collection of identical walkers, depending on the value
of the weight factor D(S).

Let us describe the procedure for a p-siate clock model with stochastic variables
(spins) whick assume values

2rn

mﬂﬂuf“:ﬂot..:me (12.102)

and a nearest neighbour coupling

= > Teos-6). (12.103)
(i}

For p = 2 this is equivalent to the Ising model (with zero magnetic field), with
J being exactly the same coupling constant as in the standard formulation of this
model (Chapter 7). For large p the model is equivalent to the X¥ model. The X¥
model will be discussed in Chapter 15 — t this moment it is sufficient to know that
this model is critical for all temperatures between 0 and Tk, which corresponds to
BJ 7= 1.1 (the subscript KT denotes the Kostestitz—Thouless phase transition; see
Chapter 15). The central charge ¢ (see Section 1 1.3)is equal to 1 on this critical line.



416 Cuanium Monte Carlo methods

Table 12.3, Largest eigenvalues of the
trangfer matrix of the Ising model on a strip
with helical boundary conditions

(Figure 12.8) versus strip width L.

L Indg MCTM) In Ag (Lanczos)
5 0.9368(2) 0.9369
7 0.9348(2) 0.9350
8 0.9337(2) 0.9338
9 0.9328(2) 0.9329
10 0.9321(2) (.9323
11 0.9316(2) 0.9318

The target number of waikers is equal to 5000, and
they performed 10000 diffusion steps. The third
column gives the eigenvalues obtained by diagon-
alising the full transfer matrix using the Lanczos
method. These values are determined with high
accuracy and are rounded to four significant digits.

The walkers are ‘columns’ of lattice spins, (sg,...,5.-1), as represented in
Figure 12.8. In the diffusion step, a new spin is added to the system, and its value
is the sg-component of the new configuration of the walker. The spin components
1to L — 1 of the new configuration are filled with the components 0 1o L — 2 of
the old walker — the walker is shifted one position over the cylinder. To sampie the
new hmémEov we use the ‘shooting method’ in which the interval [0, 1] is divided
up into p segments corresponding to the conditional probability P(s;(S) which is
proportional to the Boltzmann factor for adding a spin s;, = 0,...,p — I to the
existing column S. In our clock model example, we have :

P(s)|S) = ef oshms0r+T eoslsy=si-0) /py(sy), (12.104)
with normalisation factor .
wﬁhv — M m_\c_. 00m?m|mcu+;- QOmA.m..olhth. :.N.,._.OMV
5

A random number between 0 and [ is then generated and the new spin value
corresponds to the index of the segment in which the random number falls.

The next step is then the assignment of the weight D(3”) to the walker with D
given in {12.105). Branching is then carried out exactly as in the DMC method. In

fact, the weights are also multiplied by a factor exp(Eyia), where Eyjq is the same’

for all walkers but varies in time. It is updated as in the DMC method according to
Exin = Eo — o In(N/No), (12.106)

i
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Figure 12,9, The logarithm of the fargest eigenvalue of the transfer matrix versus
the inverse-of the square of the strip width L. The stzaight line has a slope 77 /6 and
is adjusted in height to fit the data.

where Ey is a guess of the trial energy (which should be equal to — In Ag, Ag is the
largest eigenvalue), M is the actual number of walkers and N is the target number
of walkers. This term aims at stabilising the population size to the target number Np.

The simplest information we obtain is the largest eigenvalue, which is given as
eXp{Liial), Where the average value of Fyyy during the simulation is to be used
(with the usual omission of equilibration steps). This can be used to determine
central charges. In Table 12.3 we compare the values of this quantity for the Ising
mode! with those obtained by a Lanczos diagonalisation of the transfer matrix.
The agreement is seen to be excellent. For the XY model, the eigenvalues cannot
be found using direct diagonalisation and we can check the MCTM method only
by comparing the central charge obtained with the known value: 1 in the low-
temperature phase and O at high temperatures. In Figure 12.9 we show the results
for 8.7 = 1.25. The points in a graph of the form In A vs. 1/L? lie on a straight
curve with a slope of /6 (c = 1).

Exercises

12.1 Inthis problem we consider the virial expression for the ensrgy [20].
I a path-integral QMC simulation for a particie in one dimension in a potential
V{x) we want to find the energy  as a function of temperature T = 1/(kg8). Wedo
this by using the thermodynamic relation .

dlnZ
G

E =
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{a} Show that for a two-dimensional table containing values of a function f(x, y) for
integer x and y, the value f(x, y) for arbitrary x and y within the boundaries set
by the table size is given as

Flyy =2 —x—y+ ]+ D=L D - (zae7)
+ (14 x—[x]—y+DFAx+ LD (12.108)
(1 4y == x+ &L+ D (12,109}

+ G- [x] +y = DI+ LI+ D

Here [x] denotes the largest integer smailer than x.
{(b) Find analogous expressions for a table with a noninteger (but equidistant)
spacing between the table entries and also for a three-dimensional Table.

12.5 [C]

In this problem we consider applying variational Monte Carlo to the hydrogen
molecule. There are two complications in comparison with the helium atom, One is
the calculation of the local energy which is quite cumbersome, although
straightforward. The second one is the cusp condition.

To specify the trial wave function we take the nuclei at positions £¢/2. A
one-particle orbital has the form (in atomic units):

(1) = ml?lmw\m_\a + GLHLDG‘N\M_\Q

where g is some parameter. The two-electron wave function is given as

Y (ry, T2} = ¢r¢(r2)f ()

with f the Jastrow factor
r
H =\ aa T )
(a) Show that the Coulomb-cusp condition near the nuclei leads to the relation
H —_—
1 +exp(—sja)
For a given distance s, this equation should be solved numerically to give you
the vajue a. _

{b) Show that the electron—election cusp condition leads to the requirement ¢ = 2,
This leaves a single parameter 8 in the wave function. .

(c) Now you can implement the hydrogen molecule in VMC. Calculate the energy
as a function of the parameters £ and s and find the minimum.

{d) You may also evaluate the ground state by applying the methed of Harju et al.
[6] which was described in Section 12.2, in order to update the values of 8 and s
simultaneously.

(e) What would you need in order to calculate the molecular formation energy from
this? Note that this is the difference between the energy of the hydrogen
molecule and that of two isolated hydrogen atoms. Consider in particular the
contribution arising from the nuclear motion.
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13
The finite element method for partial
differential equations

13.1 Introduction

When we consider a partial differential equation, such as the uhiquitous Laplace
equation .

V2p(r) = 0, (13.1)

together with some boundary condition{s}, the obvious way of solving it that comes
to mind is to discretise this equation on a regular grid, hoping that this grid can
match the boundary in some way. Then we solve the discretised problem using,
for example, iterative methods such as the Gauss—Seidel or conjugate gradients
method (see Appendix A7.2). For many problems, this approach is adequate, but
if the problem is difficult in the sense that it has a Iot of structure on small scales
in some region of the domain, or if the boundary has a complicated shape which
is difficult to match with a regular grid, it might be useful to apply methods that
allow for flexibility of the grid on which the solution is formulated. In this chapter
we discuss such a method, the finite element method.

One way of looking at the finite element method (FEM) is by realising that many
partial differential equations can be viewed as solution methods for variational
problems. In the case of the Laplace equation with zero boundary condition, for
example, finding the stationary solution of the functional

\ (Vo (0T dér, 13
i d?r

where the integral is over the d-dimensional domain I3 and where we confine
ourselves to functions ¢ (r) which vanish on the domain boundary, yields the same
solution as that of the Laplace equation — in fact, the Laplace equation is the Euler
equation for this functional (see the next section). )
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