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The variational method for the Schrodinger equation

3.1 Variational calculus

Quantum systems are governed by the Schrodinger equation. In particular, the solu-
tions to the stationary form of this equation determine many physical properties of
the system at hand. The stationary Schrodinger equation can be solved analytically
in a very restricted number of cases — examples include the free particle, the har-
monic oscillator and the hydrogen atom. In most cases we must resort to computers
to determine the solutions. It is of course possible to integrate the Schrodinger equa-
tion using discretisation methods — see the different methods in Appendix A7.2 -
but in most realistic electronic structure calculations we would need huge num-
bers of grid points, leading to high computer time and memory requirements. The
variational method on the other hand enables us to solve the Schrodinger equation
much more efficiently in many cases. In the next few chapters, which deal with elec-
tronic structure calculations, we shall make frequent use of the variational method
described in this chapter.

In the variational method, the possible solutions are restricted to a subspace of
the Hilbert space, and in this subspace we seek the best possible solution (below
we shall define what is to be understood by the ‘best’ solution). To see how this
works, we first show that the stationary Schrédinger equation can be derived by a
stationarity condition of the functional:

AXyYr(X)H Y (X H
gy = LIXETEOHY ) _ (WIHI) a.0)
JAXy* 0w X) (W)

which is recognised as the expectation value of the energy for a stationary state i
(to keep the analysis general, we are not specific about the form of the generalised
coordinate X — it may include the space and spin coordinates of a collection of
particles). The stationary states of this energy-functional are defined by postulating
that if such a state is changed by an arbitrary but small amount 8, the corresponding
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change in E vanishes to first order:

SE = 0. 3.2)
Defining
P =(y|H|Y) and
3.3)
Q = (V)
we can write the change §E in the energy to first order in 8 as
_ W HyIHIY +oy)  (YIHIY)
(Y +oyly + oy) {(Wly)
L SYIHIY) — P/O)EYIY) n (WIH|5y) —(P/Q)(WIW)' (3.4)

Q Q
As this should vanish for an arbitrary but small change in i, we find, using
E=P/0:
Hyr = Evy, (3.5)
together with the Hermitian conjugate of this equation, which is equivalent.
In variational calculus, stationary states of the energy-functional are found within
a subspace of the Hilbert space. An important example is linear variational calculus,

in which the subspace is spanned by a set of basis vectors |x,), p = 1,...,N. We
take these to be orthonormal at first, that is,
{XplXq) = dpg, (3.6)

where 8, is the Kronecker delta-function which is O unless p = g, and in that case,
itis 1.
For a state

W) = Cplxp), 3.7)
p

the energy-functional is given by

N
> pa=1 CpCqHpq

E==01= (3.8)
N * )
Zp,q:l Cp anpq
with
Hpq = (Xp|H|Xq)- (3.9)

The stationary states follow from the condition that the derivative of this functional
with respect to the C), vanishes, which leads to

N
Y (Hpg —Edp)Cq=0 forp=1,...,N. (3.10)
qg=1
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Figure 3.1. The behaviour of the spectrum of Eq. (3.11) with increasing basis set
size in linear variational calculus. The upper index is the number of states in the
basis set, and the lower index labels the spectral levels.

Equation (3.10) is an eigenvalue problem which can be written in matrix notation:
HC = EC. (3.1

This is the Schrodinger equation, formulated for a finite, orthonormal basis.

Although in principle it is possible to use nonlinear parametrisations of the wave
function, linear parametrisations are used in the large majority of cases because of
the simplicity of the resulting method, allowing for numerical matrix diagonalisa-
tion techmques, discussed in Appendix A7.2, to be used. The lowest eigenvalue
of (3.11) is always higher than or equal to the ground state energy of Eq. (3.5), as
the ground state is the minimal value assumed by the energy-functional in the full
Hilbert space. If we restrict ourselves to a part of this space, then the minimum
value of the energy-functional must always be higher than or equal to the ground
state of the full Hilbert space. Including more basis functions into our set, the sub-
space becomes larger, and consequently the minimum of the energy-functional will
decrease (or stay the same). For the specific case of linear variational calculus, this
result can be generalised to higher stationary states: they are always higher than
the equivalent solution to the full problem, but approximate the latter better with
increasing basis set size (see Problem 3.1). The behaviour of the spectrum found
by solving (3.11) with increasing basis size is depicted in Figure 3.1.

We note here that it is possible to formulate the standard discretisation methods
such as the finite difference method of Appendix A7.2 as linear variational methods
with an additional nonvariational approximation caused by the discretised repres-
entation of the kinetic energy operator. These methods are usually considered as
separate: the term variational calculus implies continuous (and often analytic) basis
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functions. Because the computer time needed for matrix diagonalisation scales with
the third power of the linear matrix size (it is called a O(N?) process), the basis
should be kept as small as possible. Therefore, it must be chosen carefully: it should
be possible to approximate the solutions to the full problem with a small number
of basis states. The fact that the basis in (continuous) variational calculus can be
chosen to be so much smaller than the number of grid points in a finite differ-
ence approach implies that even though the latter can be solved using special O(N)
methods for sparse systems (see Appendix A8.2), they are still far less efficient than
variational methods with continuous basis functions in most cases. This is why, in
most electronic structure calculations, variational calculus with continuous basis
functions is used to solve the Schrodinger equation: see however Refs. [1] and [2].

An example of a variational calculation with orthonormal basis functions will be
considered in Problem 3.4. We now describe how to proceed when the basis consists
of nonorthonormal basis functions, as is often the case in practical calculations. In
that case, we must reformulate (3.] 1), taking care of the fact that the overlap matrix
S, whose elements S, are given by

Spq = (prXq) (3.12)

is not the unit matrix. This means that in Eq. (3.8) the matrix elements §,, of the
umt matrix, occurring in the denominator, have to be replaced by Sy4, and we obtain

HC = ESC. (3.13)

This looks like an ordinary eigenvalue equation, the only difference being the matrix
S in the right hand side. It is called a generalised eigenvalue equation and there
exist computer programs for solving such a problem. The numerical method used
in such programs is described in Section 3.3.

3.2 Examples of variational calculations

In this section, we describe two quantum mechanical problems and the computer
programs that can solve these problems numerically by a variational calculation.
In both cases, we must solve a generalised matrix eigenvalue problem (3.13).

You can find a description of the method for diagonalising a symmetric matrix
in Appendix A8.2, and the method for solving the generalised eigenvalue problem
is considered in Section 3.3; see also problem 3.3. It is not advisable to program
the matrix diagonalisation routine yourself; numerous routines can be found on the
internet. Solving the generalised eigenvalue problem is not so difficult if you have
a matrix diagonalisation routine at your disposal. It is easy to find such a routine
on the network (it is part of the LAPACK library, which is part of the ATLAS
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numerical library; these can be found in the NETLIB repository). In the following
we shall assume that we have such programs available.

3.2.1 The infinitely deep potential well
The potential well with infinite barriers is given by:

_Joo for [x| > |a|
Vi = {0 for |x| < |a|

and it forces the wave function to vanish at the boundaries of the well (x = +a). The
exact solution for this problem is known and treated in every textbook on quantum
mechanics [3, 4]. Here we discuss a linear variational approach to be compared
with the exact solution. We take @ = | and use natural units such that A?/2m = 1.

As basis functions we take simple polynomials that vanish on the boundaries of
the well:

(3.14)

Yp(x) =x"(x — D(x+ 1), n=0,1,2,... (3.15)
The reason for choosing this particular form of basis functions is that the relevant

matrix elements can easily be calculated analytically. We start with the matrix
elements of the overlap matrix, defined by

t
Smn = {Un|thm) = f 1 Yn (X)Ym(x)dx. (3.16)

Working out the integral gives
2 4 2
- -
n+m+5 n4+m+3 n4+m+ 1
for n 4+ m even; otherwise S, = 0.

We can also calculate the Hamilton matrix elements, and you can check that they
are given by:

(3.17)

Smn =

| 2
Hyn = (Ynlp? |Wm) = /_ @ (—dd?) Yim(x)dx
=—8[ l—m—n—2mn il (3.18)
(m+n+3)ym+n+Hm+n—1)

for m 4+ n even, otherwise H,,, = 0.

PROGRAMMING EXERCISE

Write a computer program in which you fill the overlap and Hamilton matrix
for this problem. Use standard software to solve the generalised eigenvalue
problem.
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Table 3.1. Energy levels of the infinitely deep potential well.

N=5 N=2§ N =12 N =16 Exact
2.4674 2.4674 2.4674 2.4674 2.4674
9.8754 9.8696 9.8696 9.8696 9.8696

22.2934 22.2074 22.2066 22.2066 22.2066

50.1246 39,4892 39.4784 39.4784 39.4784

87.7392 63.6045 61.6862 61.6850 61.6850

The first four columns show the variational energy levels for various
numbers of basis states N. The last column shows the exact values.
The exact levels are approached from above as in Figure 3.1.

Check Compare the results with the analytic solutions. These are given by

_|cos(kpx) nodd
V() = {sin(knx) n even and positive (3.19)
withk, = nm/2,n = 1,2, ..., and the corresponding energies are given by
, nim?
E, =k = (3.20)

For each eigenvector C, the function Zgzl Cp xp(x) should approximate an
eigenfunction (3.19). They can be compared by displaying both graphically.
Carry out the comparison for various numbers of basis states. The variational
levels are shown in Table 3.1, together with the analytical results.

3.2.2 Variational calculation for the hydrogen atom

As we shall see in the next two chapters, one of the main problems of electronic

structure calculations is the treatment of the electron—electron interactions. Here

hy
va
an

we develop a program for solving the Schrodinger equation for an electron in a

drogen atom for which the many-electron problem does not arise, so that a direct
riational treatment of the problem is possible which can be compared with the
alytical solution [3, 4].

The program described here is the first in a series leading to a program for

calculating the electronic structure of the hydrogen molecule. The extension to the

hy

H; 1on can be found in the next chapter in Problem 4.8 and a program for the

drogen molecule is considered in Problem 4.12.
The electronic Schridinger equation for the hydrogen atom reads:

1 1
[_—vz e ;} Y(r) = EY(r) (3.21)
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where the second term in the square brackets is the Coulomb attraction potential of
the nucleus. The mass m is the reduced mass of the proton—electron system which
is approximately equal to the electron mass. The ground state is found at energy

m e\’
E=—— ) ~ —13.6058 eV (3.22)
h? \ d4meg
and the wave function is given by
2
W (r) = _§7§e‘”7“0 (3.23)
a
in which ag 1s the Bohr radius,
47 oh?
ap= =0 ~ 052918 A, (3.24)
me

In computer programming, it i$ convenient to use units such that equations take
on a simple form, involving only coefficients of order 1. Standard units in electronic
structure physics are so-called atomic units:the unit of distance is the Bohr radius
ap, masses are expressed in the electron mass me and the charge is measured in unit
charges (e). The energy is finally given in ‘hartrees’ (Ey), given by mec?a? (a is
the fine-structure constant and m. is the electron mass) which is roughly equal to
27.212 V. In these units, the Schrodinger equation for the hydrogen atom assumes
the following simple form:

[—-;-v2 — 1] ¥ (r) = Ey(r). (3.25)
r

We try to approximate the ground state energy and wave function of the hydrogen
atom in a linear variational procedure. We use Gaussian basis functions which will
be discussed extensively in the next chapter (Section 4.6.2). For the ground state,
we only need angular momentum [/ = 0 functions (s-functions), which have the
form:

xp(r) = e’ (3.26)
centred on the nucleus (which is thus placed at the origin). We have to specify the
values of the exponents «; these are kept fixed in our program. Optimal values for
these exponents have previously -been found by solving the nonlinear variational
problem including the linear coefficients Cj, and the exponents « [5]. We shall use
these values of the exponents in the program:

ap = 13.00773
ary = 1.962079

(3.27)
a3 = 0.444 529

ag =0.1219492.
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If the program works correctly, it should yield a value close to the exact ground
state energy —1/2 Ey (which is equal to —13.6058 V).

It remains to determine the linear coefficients C), in a computer program which
solves the generalised eigenvalue problem, just as in Section 3.2.1:

HC = ESC. (3.28)

It is not so difficult to show that the elements of the overlap matrix S, the kinetic
energy matrix T and the Coulomb matrix A are given by:

3/2
2 2 T
Spg = f d>re® e = ;
ap + o,

1 2 2 o, 0, TT

qu _ __ / d3re—apr v2e—01qr =3 P9 > :
2 (ap + ag)”/

Apg = — f d3reerr’ lre_%r2 = — on .

r op + Qg

3/2
(3.29)

See also Section 4.8. Using these expressions, you can fill the overlap and the
Hamilton matrix. Since both matrices are symmetric, it is clear that only the upper
(or the lower) triangular part (including the diagonal) has to be calculated; the other
elements follow from the symmetry. -

PROGRAMMING EXERCISE

Write a program in which the relevant matrices are filled and which solves
the generalised eigenvalue problem for the variational calculation.

Check 1 Fortunately, we again have an exact answer for the ground state energy:
this should be equal to —0.5 hartree = 13.6058 eV, and, if your program contains
no errors, you should find —0.499 278 hartree, which is amazingly good if you
realise that only four functions have been taken into account,

Check 2 The solution of the eigenvalue problem not only yields the eigenvalues
(energies) but also the eigenvectors. Use these to draw the variational ground state
wave function and compare with the exact form (3.23). (See also Figure 4.3.)

*3.3 Solution of the generalised eigenvalue problem

Itis possible to transform (3.13) into an ordinary eigenvalue equation by performing
a basis transformation which brings S to unit form. Suppose we have found a matrix
V which transforms S to the unit matrix;

VISV =1 (3.30)
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Then we can rewrite (3.13) as

VIHVV~IC = EViSVvv~IC (3.31)
and, defining
C =vic (3.32)
and
H = V'HYV, (3.33)
we obtain
H'C' = EC. (3.34)

This is an ordinary eigenvalue problem which we can solve for C" and E, and then
we can find the eigenvector C of the original problem as VC'.

The problem remains of finding a matrix V which brings S to unit form accord-
ing to (3.30). This matrix can be found if we have a unitary matrix U which
diagonalises S:

U'SU =5 (3.35)

with s the diagonalised form of S. In fact, the matrix U is automatically gener-
ated when diagonalising S by a Givens—Householder QR procedure (see Appendix
A8.2). From the fact that S is an overlap matrix, defined by (3.12), it follows directly
that the eigenvalues of S are positive (see Problem 3.2). Therefore, it is possible
to define the inverse square root of s: it is the matrix containing the inverse of
the square root of the eigenvalues of S on the diagonal. Choosing the matrix V as
Us~!/2, we obtain

VISV = s712yufsus /2 = 1 (3.36)

so the matrix V indeed has the desired property.

*3.4 Perturbation theory and variational calculus

In 1951, L.owdin [6] devised a method in which, in addition to a standard basis set
A, anumber of extra basis states (B) is taken into account in a perturbative manner,
thus allowing for huge basis sets to be used without excessive demands on computer
time and memory. The size of the matrix to be diagonalised in this method is equal
to the number of basis states in the restricted set A; the remaining states are taken
into account in constructing this matrix. A disadvantage is that the latter depends
on the energy (which is obviously not known at the beginning), but, as we shall see,
this does not prevent the method from being useful in many cases.

We start with an orthonormal basis, which could be a set of plane waves. The
basis is partitioned into the two sets A and B, and for the plane wave example, A
will contain the slowly varying waves and B those with shorter wavelength. We



38 The variational method for the Schrodinger equation

shall use the following notation: n and m label the states in A, « and 8 label the
states in B, and p and q label the states in both sets. Furthermore we define

H,’,q = Hpo(1 — 8pq), (3.37)
that is, H' is H with the diagonal elements set to 0. Now we can write Eqg. (3.11) as
(E— Hpp)Cp =Y H, Co+ Y H,,Co. (3.38)

neA aeB

If we define

hprz = H /(E - pr)’ (339)

and similarly for A, then we can write Eq. (3.38) as
Co=) h,Cit+ Y h,Co. (3.40)

neA «eB

Using this expression to rewrite Cy in the second term of the right hand side, we
obtain

Co= hpCat D Mo | D hipyCrt+ Y hiyCp

neA «eB neA BeB
- Z(%ﬁZ% ) ot Y kg Cs G
neA aeB aeB BeB

After using (3.40) again to re-express Cg and repeating this procedure over and
over, we arrive at

C Z (h[ill+zhpa an Z ot ozf} 3,1 )Cn (3.42)

neA aeB a,BeB

We now introduce the following notation:

H H’ H H H
+ paian 4 pa”aBt fn 4o (343)
Aot Dl 2~ Ho (B Hig)
aeB afeB

Then (3.42) transforms into

U — Hypbpn
C, = prn__ PP e (3.44)
E — Hpp

neA

Choosing p 1n A (and calling it m), (3.44) becomes
(E = Hum)Cn = Y _ UpiCr = HumCr, (3.45)

neA
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SO
UC = EC. (3.46)

This equation is similar to (3.11), except that H is replaced by U. Notice that
U depends on the energy which remains to be calculated, which makes Eq. (3.46)
rather difficult to solve. In practice, a fixed value for E is chosen somewhere in the
region for which we want accurate results. For electrons in a solid, this might be
the region around the Fermi energy, since the states with these energies determine
many physical properties.

The convergence of the expansion for U, Eq. (3.44), depends on the matrix
elements A, and A, o> which should be small. Cutting off after the first term yields

Upp = Hm + ) E’""‘ H"‘” (3.47)
(5454

aeB

Lowdin perturbation theory is used mostly in this form.

It is not a priori clear that the elements 4,,, and h:x,s are small. However, keeping
inmind a plane wave basis set, if we have a potential that varies substantially slower
than the states in set B, these numbers will indeed be small as the H[’m are small, so
in that case the method will improve the efficiency of the diagonalisation process.
The Lowdin method is frequently used in pseudopotential methods for electrons in
solids which will be discussed in Chapter 6.

Exercises

3.1 MacDonald’s theorem states that, in linear variational calculus, not only the
variational ground state but also the higher variational eigenvectors have eigenvalues
that are higher than the corresponding eigenvalues of the full problem.

Consider an Hermitian operator H and its variational matrix representation H
defined by
Hpq = (Xlel)(q)-
Xp are the basis vectors of the linear variational calculus. They form a finite set.
We shall denote the eigenvectors of H by ¢, and the corresponding eigenvalues by
Ae; Oy are the eigenvectors of H with eigenvalues Ag. They are all ordered, i.e. ¢p
corresponds to the lowest eigenvalue and so on, and similarly for the ®,.

(a) Write ®g as an expansion in the complete set ¢y in order to show that

o D
(Dol H| 0)_1\0>

= > Ag.
(Po| Do)
(b) Suppose @' is a vector perpendicular to ¢o. Show that

(& [H| D)
L
(@ ]®))
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(Note that, in general, the lowest-but-one variational eigenstate ®; is not
perpendicular to ¢g so this result does not guarantee Ay > Aj.)

(c) Consider a vector @) = a®g + fP which is perpendicular to ¢o. From (b) it is
clear that (@' |[H|®))/(P]|P|) > A. Show that

(PLHIPY) _ laPPAo+IBIPA,
(@ |®)) | + 1817

and that from this it follows that A} > A;. This result can be generalised for
higher states.

3.2 The overlap matrix S is defined as

Spq = (Xp|Xr1)-
Consider a vector ¥ that can be expanded in the basis x;, as:
v =2 Coxp
p
(a) Suppose ¥ is normalised. Show that C then satisfies:
> Cr8peCq = 1.
124

(b) Show that the eigenvalues of S are positive.

3.3 [C] In this problem, it is assumed that a routine for diagonalising a real, symmetric
matrix is available.

(a) [C] Using a library routine for diagonalising a real, symmetric matrix, write a
routine which, given the overlap matrix S, generates a matrix V which brings S
to unit form:

Visv =1

(b) [C] Write a routine which uses the matrix V to produce the solutions

(eigenvectors and eigenvalues) to the generalised eigenvalue problem:
HC = ESC.

The resulting routines can be used in the programs of Sections 3.2.1 and 3.2.2.
3.4 [C] The potential for a finite well is given by

0 for x| > |al

vV —
O=1-vo for x| < lal

In this problem, we determine the bound solutions to the Schrodinger equation using
plane waves on the interval (—L, +L) as basis functions:

Un(x) = 1//2L e*r*

with -
kn=+—, n=0,1,...
L
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It is important to note that, apart from the approximation involved in having a finite
basis set, there is another one connected with the periodicity imposed by the specific
form of the basis functions on the finite interval (—L,L). In this problem, we use units
such that the factor /% /2m assumes the value 1.

(a) Show that the relevant matrix elements are given by
Smn = 5,,,,,

(Wnlpzlwm) = —k,eanm and
Vo sin(k,, — k,)a

(Yn|V[¥m) = T — for n # m
Vi) = =20
(UnlVIYn) = —7 4

The stationary states in an even potential (i.e. V(x) = V(—x)) have either
positive or negative parity [3]. From this it follows that if we use a basis
1/+/L cos kyx (and 1/+/2L for n = 0), we shall find the even stationary states, and
if we take the basis functions 1/+/L sin knx, only the odd states. It is of course less
time-consuming to diagonalise two N x N matrices than a single 2N x 2N,
knowing that matrix diagonalisation scales with N3.
(b) Show that the matrix elements with the cosine basis read

Smn - amn

(Y \P2|Wm) = _k,2;8rmz and

Vo | sin(ky — k)a sin(k, + kp)a
WalVlm) = =7 [ kn—kn T kn otk ]
for n #m
_ Yl s$nCha)
(Wnlvhlfn) == I3 |:Cl + 2kn :| for n 9& 0

Vo
(WolVIyo) = — 74 forn =0

In the sine-basis, the last terms in the third and fourth expressions occur with a
minus sign.

(c) [C] Write a computer program for determining the spectrum. Compare the results
with those of the direct calculation (which, for Vo = 1 and a = 1, yields a ground
state energy E =~ —0.4538).

As you will note, for many values of A, Vp, L and N, the variational ground state
energy lies below the exact ground state energy number. Explain why this happens.
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