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51 VARIATIONAL PRINCIPLE

In this section we shall describe the variational principle. This principle is the
foundation for all the approximate methods that we shall discuss later. We there-
fore repeat that our ultimate goal is to solve the time-independent Schrodinger
equation

AV = EW, 5.1

but realize that due to the complexity of this equation, it can only in very few
cases be solved exactly. It would, therefore, be desirable to be able to approximate

the solutions to Eq. (5.1),
P~ . (5.2)

The fundamental guestion is, how do 'we determine ®, how accurate is @, and

how do we compare different approximate $7
To address this question we start somewhat more generally. We consider the

general eigenvalue problem comesponding to Eq. (5.1),

Afn=0anfn (5.3)

where ﬁ, as I} , is a Hermitian and linear operator. ]
Since A is Hermitian, all the eigenvalues a, are real, and we shall assume that
there exists a smallest one, so that we can sort the eigenvalues according to

ap <a; <apy<a3 < Llpo1 L8, Sy =00 (54

This procedure can obviously be carried through when ﬁ equals the Hamilton
operator. Actually, it is one of the basic principles of the (non-relativistic) quan-
tum theory that the system seeks ~— at least at the absolute temperature zero — that
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state that corresponds to the lowest energy, ie., the eigenvalue of our interest is
ag. On the other hand, when, e.g., A equals the position operator, %, there is no
smallest eigenvalue. But in almost all cases where we seck approximate solutions
to Eq. (5.3), the operator A is the Hamilton operator, and the variational principle
works, ' '

We need to repeat one further property of the solutions to Eq. (5.3), i.e., the
eigenfunctions can per construction be made orthonormal, and we shail therefore
assume (notice, this is no lack of generality) that

(fnlfm) = §n,m~ (55)

We stress that we do not explicitly need the eigenfunctions fr or the eigenvalues
ay. We just need to know that they exist and that the eigenfunctions form a
complete set in order to carry the arguments through that lead to the variational
principle. ’

A further fundamental principle of quantum theory is that expectation values
of experimental observables for a given system in a given state are calculated as
matrix elements of (normalized) eigenfunctions. Therefore, if we knew that the
system of our interest occupied the state f,, then the expectation value for the
operator O is calculated as

{FalO|f )
(Fulfny

A special case is the trivial case that O equals A and that » = 0. Then Eq. (5.6)
takes the forim

(FalOlfn) _ (FolAifo) _ (Folaolfo) _ av(falfo)
(Falfn) {folfo} (folfol {folfo}

We shall now ask ourselves what happ?:ns with the above expectation vake (5.7)
when we replace [ by an approximate function

(5.6)

Jo ¢ ' (5.8)

The idea is that we can choose ¢ absolutely freely, whereby we also can choose
¢ so that the integrals entering

(B1Alg)
(plp)

can be evalnated. Furthermore, we stress that by evaluvating Eq. (5.9) we do not
need to know anything about the exact function fo. However, we immediately
arrive at the question: if two persons suggest two different approximate functions
@, how do we distinguish between them, and, in particular, how do we determine
which one is the better (whatever that may mean). To answer this question partly

(5.9)

= dp. (57)
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we use the completeness of the eigenfunctions Sn

so that al i
@ of Eq. (5.8) can be expanded as akso any test function

¢=2 S (5.10)

and use the fact that the operator A is a
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At the first step we have inserted the expansion of Eq. (5.10) into Eq. (5.9
and thereby used two different summation variables n; and n, for clarity. Subse-
quently, we have used that A is a linear operator so that the outcome of letting
it act on a linear combination of functions equals the linear combination of the
operator acting on the individual functions. Then we use that the functions f,
are eigenfunctions of A. Afterwards, we move the summations inside the bras
and kets to the oviside, together with the constant coefficients ¢n; and ¢, and the
cigenvalues a,,. By using the orthonormality of the eigenfunctions {Eq. (5.5)],
we can reduce the double summations to single summations {and simultaneously
change the summation index to #). The crucial step at the unequality is due to the
assumption (5.4). This step is valid since every a, is multiplied by a non-negative
real number. Having replaced all g, by ay, we can place this constant outside
the summation, whereby we easily end up with the final result of Eq. (5.11).

Equation (5.11) tells us that no matter what approximate function ¢ of Eq. (5.8)
we suggest, the expectation value (5.9) will always be higher than or identical
to the lowest eigenvalue ag. The identity will only occur when ¢ is an exact
eigenfunction for A for the lowest eigenvalue ap.

A simple example will illustrate the importance of this theorem. Let us assume
that A is the Hamilton operator and We seek the lowest energy for some system.
We choose one ¢, calculate the expectation value (5.9), and obtain the number
~90 in some (unimportant) units. By choosing another ¢ we obtain —92. We
know, from Eq. (3.11), that both results are above or identical to the lowest exact
energy. Therefore, the lowest exact energy mmst be —92 or below. This is what
the theorem states. We will now assume that the ¢ function that led to the result
—92 also is the best approximation to the true eigenfunction-of the lowest energy.
This is an assumption, although it is in most cases also a good approximation.
But it raises also another question: what is meant by a good approximation?
Before addressing this through an example in Section 5.4 we shall extend the
vatiational principle slighily.

.11)

52 AN EXAMPLE

The importance of the variational principle is due the possibility of introducing
approximate eigenfunctions to, e.g., the Hamilton operator and to compare

of:

e

Fio

larg

Ex

VARIATIONAL PRINCIPLE; L.AGRANGE MULTIPLIERS 25

different approximate eigenfunctions. We demonstrated this above for a simple
example where two functions were compared. But one may also study a whole
class of functions and out of this obtain the ‘best’ function. Let us illustrate the
approach through a simple example.

We study a one-dimensional case with a single particle moving in a potential
well- The profile of this well is shown in Fig. 5.1 and is given through

[ =Vo forlx]<t
Vin) = {0 for |x| > £ (3.12)

The Schrddinger equation for this particle is given by

2 2
d
[ﬂ%@' + V(X)J W(x) = E¥(x), (5.13)
with V(x) defined above. The Hamilton operator is obviously
" 7 2 dz o Foamg b L0 M\“, '
H=m-—— "_ ' 5.14)
TomgE TV ( )_

The ground state is the state of the lowest total energy. By looking ai the potential
of Fig. 5.1 it seems intuitively correct that the particle occupies the potential
well as mmch as possible, ie., that the wavefunction has the largest amplitudé in
the region x| < £. A Gaussian centred at the origin is such a function and we
therefore propose the approximate function

¢ = exp(—ax?). (5.15)

For very small & this function is broad and extends well outside the region of the |
well, whereby the potential energy goes up.'On the other hand, in that case the |
kinetic energy [the first term on the right-hand side of Eq. (5.14)] is small. For
large o the opposite is true: the potential energy is low, but the kinetic energy

‘ignre 5.1 The one-dimensional poiential well with finite depth




5.3 VARIATION
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goes up. Thus, the ‘best’ o will most likely lie somewhere i
we can simply determine it through variation. Thus, the quantity

For any o, Fi(a) = Ep (Wiﬂ1~Eg being the ground-
a that leads to the lowest E(a) leads to the bes
we determine o« by requiring

In the general case we seek an ap
and to the corresponding eigenfun

The eigenfunction ( Fo) depends o

Equivalently, an approximate solution
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(BIH |p) s
B19) _ ©-16)

becomes a function of e,

G

state energy), and therefore that
t estimate for Fj. Accordingly,

9.
E@ =0, (5.18)

Simultz}neo_usly, we will then assume that the resulting function ¢ is the best
approximation to the exact ground-state eigenfunction,
We have not carried these calcolati

for our general arguments, but hope that the basic ideas are clear.

ons through here since they are not irﬁportant

proximate sofution to the lowest eigenvalue
ction for the eigenvalue equation

Afo=agfo. . (5.19)

m the coordinates of the system of our intérest

(in the example above, of the one-dimensional coordinate x), i.e.

fo= fo(®. (5.20)

¢ will depend on %. But in addition we

--+» Pu, (in the case above of
only one such parameter, or). Accordingly we

¢=¢(p1, pa, ..., py i 3. (5.21)

As in Eq, (5.17) the expectation value (5.9) becomes a function of these extra

i) _ 52
(é}(,i)) = Pl:PZ,---rpr); ( -2.' )

n between. However,
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and we will determine these parameters by minimizing this function, i.e., by

requiring
aa(phPZ:‘-'spr)_ 8a(p17p2&'°-:pr)
ap1 ap;

_dalpy, p2...., pn,)

= 0.
(5.23)

By introducing more and more parameters it should be possible to obtain very
accurate approximations to the exact ground-state eigenfunctions, but, unfortu-
nately, the equations (5.22) very easily become too complicated to be solvable.
There is, however, one important exception, the so-called linear variation, which
we shall discuss further below. But before this we shall discuss a little further
the guality of the approximate eigenfunctions obtained through this variation, by

looking at a very simple example.

5.4 THE HYDROGEN ATOM

The Hamilton operator for the single electrdh of a hydrogen atom is

2

where we have assumed that the nucleus is placed at the origin.

e 1

2m Aweg 7

. {5.24)

In order to avoid having to remember all the fundamental constants, it is useful
to work with so-called atomic units. We shall later describe them in more detail

but here we just list them. We sef’

h:m:]ei:ll-n&(}zl.

Energies are then given in so-called hartrees (1 hariree ~ 2
in bohr (1 bohr 2 0.5292°&). With these, the Hamilton o

becomes :
Aoty
b 2
The eigenvalue problem
H Wr( = €y wn
has as its lowest eigenvalue
€y = —%
and the corresponding eigenfuflcﬁon is
Y= e
= —=g R
ST

1

F

(5.25) 1 *

7.21 V) and lengths
perator of Eq. (5.24)

5.26) =

(5.27)

(5.28)

(5.29)

(this function is normalized) as can be found in most introductory texibooks on

quanturn theory.

LR S R R A e
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Since we in this case know the exact solution we can directly compare it with
results of calculations using the variational method. This is in almosi all other
cases not possible.

We will apply the variational method for the test function

9\ 3 B
- (2]
T

i.e., a Gaussian (that furthermore is normalized). In Fig. 5.2 we compare the
exact wavefunction [Eq. (5.29)] with that of Eq. (5.30) for different values of a.
Since ¢ of eq. (5.4.7) is normalized, the expectation value of Eq. (5.22)

(5.30)

- becomes _ .
E(e) = {glH ), . (5.31)
which can be calculated to yield
-~ 3 20\ 1*
Ea)y==-2 (a) . (5.32)
2 T

This fonction is shown in Fig. 5.3.
Taking the derivative of this with respect to & gives the value of « at the
minimum,

o= 3 ~().283, (5.33)
9
and the expectation value for this value of « is
- 8 4
Ela=— | = —— ~ —0.424, (5.34)
O,/ . 3m

By looking at Fig. 5.2 we see that this value of o does appear to give &
reasonable (but no more!) description of the exact wavefunction although the
agreement between the exact lowest energy [Eq. (5.28)] and the approximate
one [Eq. (5.32)] may suggest a better dagreement.

However, the application of the variational principle is not restricted to the
Hamilton operator. We therefore construct another operator that happens to have
the same eigenfunction of the lowest eigenvalue as the Hamilton operator of the
hydrogen atorn. Please notice that this construction does not result from physical
reagsons but is vsed since it may illustrate some few aspects of the variational
method.

The operator we construct is

G=(A+1), (5.35)
where H is the operator of Eq. (5.26). This operator has exactly the same eigen-
functions as A of Eqg. (5.26) (this can be shown by using the completeness of
the latter), and the lowest eigenvalue is 0 for the function of Eq. (5.29).

p

W
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- Figure 5.2 The solid line shows the exact hydrogen function of Eq. (5.29), whereas

the dashed curves show Gaussians of Eg. (5.30) with e = 0.1, 0.3, 0.6, and 1.0. The
most compact function is that of the largest «. The upper panel shows the functions
themselves, whereas the lower panel shows the functions squared times 2 (i.e., a radial
electron density)

Here we calculate

Gla) = ($Gl¢), (5.36)
~ which can be calculated to yield
Bl@) = - 1 2ot e ey L2 (5.37)
o) = — + - = - e g f —, .
R A R -
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Figure 5.3 The function E(e) of Eq. (5.32)
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G (o)

Figure 5.4 The function G() of Eq. {5.37)

This function is shown in Fig. 5.4.
The minimum of G(e) is found for

o =~ 0.0508, (5.38)

i.e., a significantly smaller value than that of Eq. (5.33). By inspecting Fig. 5.2 we
see that the larger value of & [Eq. (5.33)j leads to a function that more resembles
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0 (@

Figere 5.5 The function O(w) of Eq. (5.39)

the troe ground-state function, which lends supports to the usual approach of
using the Hamilton operator in variationally giving an approximate wavefunction.
It does, however, also show that one may occasionally obtain results that are less
trustworthy, although the formulas have been applied correctly.

Fially, we may also directly measure the quality of a given approximate
wavefunction in the present example by calculating

Of) = (¢ — di¢ — ).

This function is smallest when the difference between the exact and the approx-
imate function is smallest (using the usual norm). ((«) is shown in Fig. 5.5.
The minimum in Fig. 5.5 is found for

@027, (5.40)

' ':' Le., for a value close to that of Eq. (5.33).

3.5 LINEAR VARIATION AND LAGRANGE

MULTIPLIERS

As.mentioned above, the problem of solving the equations (5.23) becomes very
easily very complicated also when the number of parameters is not very large.
There is, however, one - very important — case, where the equations, although
-a slightly modified form, can be solved straightforwardly.

*We want to minimize the expectation value

(BIAlg)

. 41)!
@) G4,

5.39)

‘¢ shall now assume that the minimization is done by varying the coefficients to'
Ofig J_ﬁ)_ced so-called basis functions. This means that we will write ¢ as a linear ;
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combination of fixed basis functions,

B
(5.42)

Ny
P(X) = ZCin(i),
] izl

where N is the number of basis functions {y;}, and where the variation is done
by varying the coefficients {c;} but keeping the basis functions {y;} fixed.
Equation (5.23) takes then the form
]

8 (PlAl)
—- =0 5.43)
) (43)

forallk =1,2,..., Ny, or by taking the complex conjugate of this equation (this
_is not really a necessary step, but the equations look simpler!), )

ey

o
S

3 (plA "
2 @ile) _ 5.40)
act (¢le) ,
We may restate this as requiring that
o ~
7or (PlAle) = 0, k=1,...,Ny, (5.45)
Ck
when we simultaneously require that the function ¢ is normalized:
(plg) = 1. (5.46)
o This means that the single equation (5.44) can be replaced by the two
equations (5.45) and (5.46). 5

. We shall combine the two equations tS A5} and (5.46) into one by introducing
“one extra parameter. This is done by considering the quantity

_ K = (plAlp) — ALigle) — 1. (5.47)
%The extra parameter A is a so-called Lagrange multiplier, and Egs. (5.45) and
(5.46) then take the form B -
: aK oK
= =0 5.48

dep DA ( )
‘The Lagrange multiplier is a mathematical trick that allows one to incorporate
one (or more) extra boundary condition(s) [in this case, that of Eq. (5.46)] mto
a variation. It is not obvious whether the multiplier has any meaning (although
this often is the case), but it is first of all introduced due to its convenience.

By inserting K of Eq. (5.47) into the last identity of Eq. (5.48) we recover
immediately the boundary condition (5.46),

(@l) — 1 =0. (5.49)
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From the first equations of Eq. (5.48) we obtain, upon inserting Eq. (5.42);
} A "
(o Zom) - ((ZealSon) -
z 7 i J'
3 o Ta] e
- (Sl ) - (SenfSem)
it i i

) b

ST ereilalAlxg) — Al

- acy o
= > ellalAl) — 2xelx) =0, (5.50)
i

This gives immediately the following eigenvalue equation,

ch(x:;ifilxj) mlzcj(Xk!Xj)a (5.51)
b i

. ;raehere we have as many equations (k = 1,2, ..., N}) as we have basis functions,
- k=1,2,. .., N;. {(5.52)

In Eq. (5.50) we recognize matrix elements of the type { Xk_l;fh x;) and of the type
{xx!lx;}. It is useful to define two matrices containing these, i.e.,

A = Caldlx;) (5.53)
and

0, = talx;) (5.54)

.T'h'_‘:' cquations (5.51) are then easily rewritten as the generalized matrix eigen-
value equation

Ac=1-0-¢ (5.55)

lig]

or containing the sought coefficients {c;}. Eq. (5.55) is

That EqA-A5.
_?matrix €quations (5.55) and inserting the definitions of Egs. (5.53) and (5.54).
agl}: Very impoxltant point is that the matrix eigenvalue equation (5.55) easily
:;:oefﬁ ?-‘Solved using stgndard computer routines. The results will contain the
fﬁﬁlﬁ <«]1f€nts ¢; and the eigenvalue )» However, the coefficients ¢ ; may have to be |
%:. 61’ lefi by a common cfonstant in order to satisfy the normalization condition
?.- Actually, there will not be only one solution, but ¥, solutions. One
Question is. thus, which one do we choose.




34 METHODS OF ELECTRONIC-STRUCTURE CALCULATIONS b VARIATIONAL PRINCIPLE; LAGRANGE MULTIPLIERS 35
Once the coefficients are known, the sought expectation valoe 3 o <+ P T
) > ere;lAlxg) B - I
A i L B .
@lAlg) 5 5.56) I

B8 S ere; el < : .
i,J o ] £ S

W(X)
2
I
|

can be calculated. But in our case the Lagrange multiplier has a very simple
interpretation that makes this step unnecessary and that furthermore allows s to _ :
choose the correct eigenvalue and eigenfunction immediately. IR T r .

To realize this we multiply Eqg. (5.51) by ¢} and sum all the different equations '
for the different &, which gives

> creilalAly =2 dieilalx), (5.57) .
ik ik
or )
> ereilxalAlxs)
A= 2E . , (5.58)
> et xsd
ik P} 2 @lx) = crx (x) + eaxa (x) + e3x3(x) +caxalx), (5.62)
ie., the cigenvalue (or Lagrange multiplier) is the sought expectation value! W ‘here the coefficients ¢; are sought.
Futthermor.e, out of the N, eige.nvalues and eigenfunctions, we shall choose that Applying the method of the previous subsection, these coefficients can be
corresponding to the smallest eigenvalue. { fo ound through the following 4 x 4 generalized eigenvalue problem (the secular
eq
J 5.6 AN EXAMPLE alflx) ) el By /e
" . . . : . xelHx1) OaelHx2) elHixsy el xa) )
As an example we consider the potential (gf Fig. 5.6, given by alf 1) ol o) (X3|FIEX3) Ol x | e
Vi = o — 192, (5.59) OalBxn)  GalB ) Calfie) OwlfBla)/ \ec
which is shown in Fig. 5. (X;|X1) Dalxal Oalxs) (aixa) €
The corresponding one-dimensional Schrédinger equation, balx) Oalxa) Oelxs) Dol 21 5.63)
) alx) Oelxa) Dabe) (xolxa) c3
B od N alx) xadx) OGalxa) (xalxa) cy
{ﬁ?&;ﬁ + V(x)} vy =0y =E -4, | (5.60) : o w
m Th _l-uno_n sought is the one that corresponds to the lowest eigenvalue E.
camot be solved directly and instead we seek an approximate solotion. To this
" end we choose some fixed basis functions {x;} for which we can calculate the
matrix elements {xx Eﬁ |x:) and {xi|x:). These functions could, e.g., be

x1(x) = =61

xo(x) = &
X3(x) = (x — e~

xa(x) = (x+ e &+ : (5.61)
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