
Ising Model of a ferromagnetic spin system 
 
Assume an array of N ferromagnetic spin, si = 1, i=1,2,…, N, immersed in an external magnetic 
field, B.  
 
Spin here is synonym to microscopic magnetic moment. It is constrained to point only in the up 
or down directions, with respect to the external magnetic field, B. 
 
To be specific, we will consider N spins arranged in a 2-D surface, so that now we have a 2-D 
Ising model. In Figure, there are N=9 spins, and each spin has z =4 nearest neighbours.   
 

 
 
First, assume zero spin-spin interactions.  
 
The total interaction energy due to the interactions between the spins and the B field are given by  

i iME B s      s B  

where  is the microscopic magnetic moment (Bohr magneton).  
 
If a spin si is parallel to the external magnetic field B, si B, the interaction energy is 

i ii Bs B         s B . Likewise, i ii Bs B         s B if si is anti-parallel to B. 
 
The system is said to be ferromagnetic since the configuration with the spins s parallel to B is 
favorable. Such configuration favors a state with negative EM.  
 
In statistical mechanics, a single spin s in an external magnetic field B has both possibilities to 
point in the up as well as down directions. The respective probabilities are  

1 1 1 1exp exp ; exp expB BP P
Z kT Z kT Z kT Z kT

    
 

                     
       

, 

where T is the temperature at which the spin is in thermal equilibrium with. 

exp expB BZ
kT kT
          

   
 

is the so-called partition function, obtained by requiring that the total probability is normalized, 
i.e., 1P P   .  
 
According to statistical mechanics, the observed value of a spin in a magnetic field is an 
averaged value of the microscopic configuration, given by  

1 1exp exp tanhB B Bs P s P s
Z kT Z kT kT

  
   

                
     

 

 
In the presence of spin-spin interaction, the “pure” magnetic field interaction energy B will 
have to be replaced by an “effective magnetic field” interaction effH that contains the spin-spin 
interaction in addition to the magnetic field interaction energy,  
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efftanh Hs
kT

   
 

. Eq. (1) 

 We will derive effH in the next part with mean field approximation.  
 
 
Ising model in the presence of spin-spin interactions 
 
Now we will add in spin-spin interaction to the picture. We assume the simplest Ising model: (i) 
1-D, and (ii) a spin only interacts with it nearest neighbour (nn) in the form of  
 

,
I i j

i j

E J s s   , 

 
J is called the exchange energy, or coupling energy between adjacent spins. For ferromagnet, J > 
0. For the special case of a 1-D spin-chain with N=5 spins, for example, 
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 will be useful for coding of MC 

simulation latter.  
 
The total energy of N spins in the simplest 1-D Ising model in the presence of both nn interaction 
and external magnetic field is 

1 ,
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We rewrite it as 

1 , 1 ,
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Mean field approximation (MFA) 
 
Now we would like to evoke the mean field approximation to solve for E. In mean field 
approximation, the effect of the spin-spin interaction is assumed to be described by an effective 
magnetic field energy. We would now attempt to derive the form of the effective magnetic field, 
Heff, which is kind of similar to ME but with the spin-spin interaction effects in it.  
 
By construct, for a single spin, the effect of Heff is effi iH s   .  
 
For a collection of N spins,  

eff eff
1 1
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 eff
,

Sum of the spins of nearest neighbours to a generic spinj
i j

J JH B s B
 

       

Next, we make another approximation, that the value of any individual spin is replaced by its 
thermal average, i is s s  . As a result,  
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 Eq. (2) 

where z = 2 is the number of nn for any spin i. Essentially, in the mean field approximation, 
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It is straight forward to show that Eq. (2) also holds for Ising model in 2-D and 3-D by replacing 
z with the corresponding value. For 2-D case, z = 4; for 3-D, z = 6. 
 
The average spin s as described in Eq. (1) is derived from statistical mechanics. Its value can 
now be solved for in the mean field approximation of Eq. (2): 
 

efftanh tanh
B Jz sHs

kT kT
            

 

Given kT, z, J and B, we can solve for s numerically, as follows: 

Let   tanh
B Jz s

f s s
kT

 
    

 
. We wish to find the value of s . This can be obtained at the 

zeros of the function  f s , i.e,   0f s  . Now the problem of finding the numerical value 
of s is simple to find the roots of   0f s  . 
 
 
Newton-Raphson method for root finding 
 
Use Newton-Raphson (NR) method to solve for the root of an equation of the form f(x) = 0. 
Choose a point on the x-axis as the zero approximation to the equation f(x) =0.  
 
Taking the derivative of f(x) at x=x0 gives f ’(x0).  
 
f ’(x0) is the slope at the point (x0, f (x0)) on the curve y=f(x). The slope f ’(x0) cut through the y-
axis at x1. The triangle defined by the points (x0, f (x0)), (0, x0), (0, x1) are related by Pythogorus 

theorem,      
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. Once x1 is obtained, we can proceed to obtain x2 using 

the same procedure, where now x0 is replaced by x1. We can keep repeating the same procedure 

to approximate closer the true root xtrue from x0 x1 x2 … xn…, where  
 1 '

n
n n

n

f x
x x

f x   

The procedure is repeated until N where xN = |xN-xN-1| is sufficiently small. If this happens, we 
say xN converges. xN is then taken as a good approximation to xtrue. 
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See sample code 8.1 where the NR method is used to solve   0f s  at a fixed kT. Code 8.2 
modifies sample code 8.1 to find the root for   0f s  as a function of kT. 
 
Spontaneous magnetisation 
 
The magnetisation of a system with N spins as measured in experiment, according to statistical 
mechanics, is given by  

M N s . 
Hence, the average megenetisation per spin, m, is /m M N s  . M is directly proportional 
to s .  
 
If is found that for the case where B=0, s tends towards 0 as T >> zJ/k. For T < zJ/k, 1s   as 
T0. We interpret this as: Below T =zJ/k, the spin system is in a ferroelectric phase, with non-
zero magnetization. Above T =zJ/k, the spin system enters paramagnetic phase with an average 
of zero magnetization.  
 
 
Critical temperature 
 
In the mean field approximation, assuming B = 0, once the temperature is larger than T=zJ/k the 
spin system losses its magnetization and entered the paramagnetic phase.  
 
The critical temperature as obtained in the mean field approximation for zero magnetic field, is 
given by  

 
Tc =zJ/k. 

We shall see that the true value for the critical temperature of a 2-dimensional Ising system 
deviates from the above expression due to the fact that MFA fails to capture the physics near the 
critical point where phase transition is taking place.  
 
 
Second order phase transition, induced thermally. 
 
In other words, a spontaneous magnetization occurs at T = Tc when temperature is reduced from 
above. The system losses its magnetization above Tc because thermal fluctuation, kT, dominates 
over the spin-spin interactions. This is an example of phase transition in which the 
magnetization spontaneously appear from a paramagnetic phase when temperature crosses a 
critical value. The phase transition we see here is induced by temperature at a fixed external 
magnetic field.  
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Numerical solution of mean field equation for 
<s> as a function of temperature, where J/k 
=1, z = 4. Note that for T ≥Tc = zJ/k, 
magnetization vanishes. 
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The abrupt transition of magnetization at T = Tc as predicted by the mean field approximation is 
an example of a second order phase transition. Phase transition is known as critical behavior. It is 
characterized by an abrupt change of an order parameter (of which the magnetization is) at some 
critical temperature. The critical behaviour at the vicinity at the critical temperature is usually 
given some power laws, with universal value of critical exponent. In the case there, the power 
law has the form  

 c~s T T  , 
 is a universal critical exponent. The value of  for any other systems undergoing 2nd order 
phase transition is known to be the same. This is an amazing fact.  
 
The critical behavior of magnetization in the Ising model is a result of the (i) interaction between 
the Ising spins with the environment (the heat bath at temperature T), and (ii) the spin-spin 
interactions. These interactions play the role to mediate energy exchange among the spins so that 
the system can be brought to thermalisation with the heat bath. To certain extent the behavior of 
a system also may be influenced by the geometry of the system (e.g., finite size effect, the way 
how the spins are arranged in 3D, the degree of freedoms of a spin, boundary conditions etc.). 
 
In mean field approximation, we can expand s about the critical temperature to find that  =1/2. 
This is the value predicted by mean field approximation.  can also be calculated using exact 
method, i.e., without approximation. In this way it is shown that the mean field  deviates from 
the exact value given by 

1/ 8  . 
This discrepancy illustrates the limitation of mean field approximation. A more detailed way to 
calculate  is called for. We will use Monte Carlo method for such purpose. 
 
 
Magnetization with a non-zero B  
 
Also note that once B field is switched on, the critical behavior is modified. The critical 
transition now appears to become smoother. 
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Monte Carlo Simulation of 2D Ising model 
 
We will use MC to simulate the values of average magnetization M =N s , as well as the 
average energy of the 2D Ising model. Say the spin system comprise of N = L  L spins in a 
square lattice. The sites are index by a pair of number {i,j}. N is the total number of spins in the 
simulation square = number of grid points. 
 
Essentially we will simulate how the Ising spin system interacts with the environment. MC is a 
stochastic method similar to the simulation of random walk. But here the temperature (heat bath) 

Numerical solution of mean field equation for 
<s> as a function of temperature, where J/k 
=1, z = 4, B=0.1. 
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and energy (a.k.a. interaction) is taken into account. The heat bath exchanges energy with the 
spin system to bring it into equilibrium at some temperature T.   
 
In MC, we simulate the microscopic states of the spin system, and then take averages of these 
states. The experimentally measured physical quantities (e.g., heat capacity, magnetization, 
magnetic susceptibility) are, in the language of statistical physics, the averages of these 
microscopic states.   
 
The MC scheme we will be using is the simplest and historically the earliest: Metropolis 
algorithm. First, we fix a temperature for which the simulation is to be done. Then we choose an 
initial configuration for the spin system (e.g. all up/down or random). The energy of the system 
is calculated, and we call it E0. We randomly choose a spin and flip it. The total energy of the 
flipped states is evaluated at Etrial = E0 + Eflip. If Eflip < 0, we accept the move and replace the 
current configuration by the trial configuration, and also E1 = Etrial. If Etrial > 0, the trial state is 
accepted if the Boltzmann factor exp(-Eflip/kT) > q, a random number uniformly distributed on 
[0,1]. If exp(-Eflip/kT) < q, the trial move is rejected. The current state then remains as it is, and 
E1 = E0. The procedure is repeated for a sufficiently long step. At time step n in the MC 
simulation, the current magnetization and the corresponding energy can be calculated via  
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i i j j i j

E J s i j s i j B s i j    . 

s(i,j) is the value of the spin (either +1 or -1) at site {i,j}. The sum runs over all nearest 
neighboring spins. For the special case where external magnetic field is switched off, the total 
energy is only contributed by the spin-spin interaction term: 

   
 , ', , '

, ', 'n
i i j j

E J s i j s i j    

Periodic boundary condition is adopted to minimize the finite size effect due to the termination 
of the sample at its edges. 
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This simply means:  
       
       
0, , ; 1, 0, ;

,0 , ; , 1 ,0 ;

s j s L j s L j s j

s i s i L s i L s i

  

  
 

 
 
 
 

 
 
In the simulation, T is in unit of J/k, B in unit of J/.  
 
A MC run is done by fixing the number of fixed step say nlast. The first quantity we wish to 
monitor is the magnetization per spin, m = M/N, as a function of time step n.  
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The MC code of sample code 8.3 implements the above described procedure to simulate the 
microscopic states Mn and the corresponding energy En as a function of time step. For the same 
of simplicity, we set off the magnetic field contribution to the total energy.  
 
 
Second order phase transition induced by thermal effect at zero magnetic field. 
 
We should find the following behavior of the magnetization at fixed temperature T (with B = 0): 
 

1) If T is lower than a value of Tc= 1/ln(2 + √2) = 2.27, fluctuation in m is small.  
2) When we set T closer to 2.27, say, T = 2.0, we find that the fluctuation becomes larger. 
3) When we set T at very close to 2.27, fluctuation in m becomes very large. It infers that 

the all the spins of the entire system change direction, as at close to the critical point, the 
system is extremely sensitive to small perturbation. A small perturbation in the 
temperature can already cause strong response.  

4) When T is much larger than Tc, we see that the average magnetization fluctuates around 
m = 0. The size of the fluctuation is larger than that at temperature T << Tc. The 
magnetization is zero now and the system is in the paramagnetisation phase. This is 
attributed to the fact that now the thermal fluctuation, originated from the temperature 
term kT as appear in the Boltzmann factor fexp(-Eflip/kT) dominates over the spin-spin 
interaction which is responsible for the development of ferromagnetic phase. 

 
The critical temperature Tc= 1/ln(2 + √2) = 2.27 is obtained from analytical solution. The MC 
simulation confirms quite comfortably that indeed when the temperature of the system approach 
Tc= 2.27, a phase transition happens.  
 
In addition, the following behavior in the simulated energy En is also be observed:  
 
(i) When B = 0, T 0, E /N  -2J, m  1 
(ii) When B = 0, T  > Tc, E /N  0, m  0 
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Next, the average of interested quantity such as the average energy and average energy squared  
at step n,  

<En>=
0

0
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n

n n
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n n  , 

0

2
2

0
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n

n
n n

EE
n n


 , 

are also monitored as a function of time step n. n0 is the initial time step we need to wait before 
the averages are taken so that the average values are that belongs to the states that are already 
entered thermal equilibrium.  
 
These averages are important because from them we can evaluate the variance of the energy,  
 2 22E E E    at each time step n. The square root of the variance,  2E , is the standard 
deviation that measures how much the energy deviate from its average value E .  
 
According to fluctuation dissipation theorem, we can obtain the heat capacity of the spin system 
from the variance in energy via  

 2
2

E
C

kT


  

Heat capacity per spin is defined as  2

2/
E

c C N
NkT


  is a normalized quantity. We should find 

from the MC simulation that c display large peak at T close to Tc. This is direct consequence of 
the fact that fluctuation in energy becomes large (in fact diverges in the analytical limit) at Tc.  
Sample code 8.4 implements a MC code that calculates E , 2E  and the heat capacity at fixed 
temperature. Sample code 8.5 is obtained by modifying sample code 8.4 to calculate specific 
heat, magnetisation m as a function of temperature T. Basically, to do so we simply put the 
sample code 8.4 into a loop to vary for temperature.  
 
 
From sample code 8.5, we see that the phase of magnetisation changes continuously. However, 
the heat capacity, which is a second order derivative of the free energy F of the spin system 
change discontinuously at Tc. This is a phase transition termed second order phase transition, in 
which the second order derivative of the free energy changes discontinuously.  
 
 
First order phase transition induced by external magnetic field at fixed temperature.  
 
In the previous case we assume that the external magnetic field contribution to be switched off. 
The phase transition was induced by thermal effect. Now, in sample code 8.6, we include the 
magnetic field into the MC code to calculate magnetisation as a function of magnetic field at 
fixed temperature. The magnetic field comes into the picture through the definition of the total 
energy TE = TE (spin - spin) + TE (magnetic):  

   
 

 
, ', , ' ,

, ', ' ,n
i i j j i j

E J s i j s i j B s i j     

Below Tc we will find from the MC simulation that found that magnetisation m undergoes a first 
order phase transition. First, we let B to increase according to the trend: B<0  B=0  B>0. The 
entire spin states of the system flips simultaneously when B passes through some critical value 
B=Bc0.  
 
In this kind of phase transition, the magnetisation changes discontinuously. Since the 
magnetisation is a first derivative of the free energy F of the spin system, the phase transition in 
which the phase of m changes abruptly is termed first order transition.  
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