ZCE 111 Assignment 12

Q1: SK2 code for forced pendulum

SK2 code for forced pendulu
de to implement SK2 for the case of a fo
periencing no drag force but a driving
 $f_D t$), $\Omega = \sqrt{g/l}$, $l = 1.0$ m, $m=1$ kg; $F_D =$
 Ω ;
aditions: $\theta(0) = 0.0$; $\omega(t = 0) = 0$;
 $\frac{d^2 \theta}{dt^2} = -\frac{g}{$ SK2 code for forced pend

le to implement SK2 for the case of

periencing no drag force but a driv:
 $\Omega_b t$), $\Omega = \sqrt{g/l}$, $l = 1.0$ m, $m=1$ kg:
 Ω ;

ditions: $\theta(0) = 0.0$; $\omega(t = 0) = 0$
 $\frac{d^2 \theta}{dt^2} = -\frac{g}{l} \theta - q \frac{d \$ K2 code for forced pendulum
to implement SK2 for the case of a forced
iencing no drag force but a driving
), $\Omega = \sqrt{g/l}$, $l = 1.0$ m, $m=1$ kg; $F_D =$
;;
tions: $\theta(0) = 0.0$; $\omega(t = 0) = 0$;
 $\frac{\theta}{2} = -\frac{g}{l} \theta - q \frac{d\theta}{dt} + \frac{$ 2 code for forced pendulum
implement SK2 for the case of a forced
ing no drag force but a driving
 $\Omega = \sqrt{g/l}$, $l = 1.0$ m, $m=1$ kg; $F_D =$
ns: $\theta(0) = 0.0$; $\omega(t = 0) = 0$;
 $= -\frac{g}{l} \theta - q \frac{d\theta}{dt} + \frac{F_D \sin(\Omega_D t)}{m l}$ Develop a code to implement SK2 for the case of a forced pendulum experiencing no drag force but a driving force $F_D \sin(\Omega_D t)$, $\Omega = \sqrt{g/l}$, $l = 1.0$ m, $m=1$ kg; $F_D =$ 1N; $\Omega_{\rm D} = 0.99 \Omega$; Boundary conditions: $\theta(0) = 0.0$; $\omega(t = 0) = 0$;

$$
\frac{d^2\theta}{dt^2} = -\frac{g}{l}\theta - q\frac{d\theta}{dt} + \frac{F_D \sin(\Omega_D t)}{ml}
$$

Q2: Stability of the total energy a SHO in RK2.

 $\omega = \frac{d\theta}{dt}$, angular velocity. *m*=1kg; *l*=1m.

 $\omega = \frac{d\theta}{dt}$, angular velocity. $m=1$ kg; $l=1$ m.

The total energy of the SHO in can be calculated as
 $E_{i+1} = K_{i+1} + U_{i+1} = \frac{1}{2}m\left(l\omega_{i+1}\right)^2 + mgl\left(1 - \cos\theta_{i+1}\right)$
 $\approx \frac{1}{2}ml^2\omega_{i+1}^2 + mgl\left[1 - \left(1 - \frac{\theta_{i+1}^2}{2}\right)\$ in can be calculated as
 $\begin{bmatrix}\nmgl(1-\cos\theta_{i+1})\end{bmatrix}$
 $\begin{bmatrix}\n\frac{2}{t+1} \\
\frac{1}{t+1} \\
\frac{1}{t+1}$

User your RK2 code to track the total energy for *t* running from *t=0* till t=25*T; T=* $\sqrt{g/l}$ *. Boundary conditions:* $\int_{\omega(0)}^{\infty} e^{(\omega)} d\omega = \int_{0}^{\infty}$ *(b)* \pm *Check that indeed* E_i *l*

Q3: Planetary motion in polar coordinates

The Earth (E) moves in an elliptical orbit around the Sun (S). In polar coordinate, the equation of motions for the radial and angular coordinate (r, θ) of E with respect to the Sun, are given by *y*

L is the angular moment of Earth about the Sun: $L = m\sqrt{GMa(1 - \epsilon^2)}$; $a = 1.496 \times 10^{11}$ m (=1 A.U) (semimajor); $m=$ 5.97 \times 10²⁴kg, mass of Earth; $M = 1.987 \times 10^{30}$ kg, Mass of the Sun; $G = 6.673 \times 10^{-11} \text{Nm}^2/\text{kg}^2$; $\epsilon = 0.017$ (eccentricity). The period is $T = 2\pi \sqrt{\frac{a^3}{GM}}$ GM

Q3: Planetary motion in polar coordinates (cont.)

- (i) Solve the radial equation, $m\ddot{r} mr$ \overline{L} mr^2 2 = − GMm r^2 , numerically using your RK2 code, so that you can plot the graph of *r* as a function of time for *t* from 0 to the period of the orbit, $T (= 1$ year). Boundary conditions: $r(0) =$ L^2 $GMm²$ 1 $1+\epsilon$, $\dot{r}(0) = 0$.
- (ii) Hence, plot the angular velocity function $\dot{\theta}(t)$ as the time varies throughout the year.
- (iii) Plot the normalised angular function $\theta(t$ 2π as the time varies throughout the whole period. (*Think carefully how you are going to do this using the prior knowledge you have acquired. Think Euler.)
- (iv) Visualise the evolution of the Earth's location, $(x(t),y(t))$ on the orbit on a *x*-*y* plot using the Manipulate function. Your visualization should contain the origin, *x*- and *y*-axes.

Q4: Planetary motion in polar coordinates, for Halle's comet

Repeat Q2 for Halle's comet. The parameters of Halle's comet are:

$$
a = 17.8
$$
 A. U; $m = 2.2 \times 10^{14}$ kg; $\epsilon = 0.967$.

Check that the period is indeed \approx 75 years.

Q5: Coulomb charge scattering in 3D

Develop a code based on velocity Verlet algorithm (see the sample code [verlet_algorithm_2D_coulomb_scatterings.nb](http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1415SEM2/notes/verlet_algorithm_2D_coulomb_scatterings.nb) as a reference) to simulate the scattering process of a fixed charge $Q = +1$ unit, located at $(r_{20} \sin \theta_2 \sin \phi_2, r_{20} \cos \phi_2, r_{20} \sin \theta_2 \cos \phi_2$, by a moving charge $q=+1$ unit (with mass $m=1$ unit), initially located at $(0,0,0)$, and is shooting towards Q with an initial speed $v_0=1$ unit. In your simulation, set $k =$ 1 $4\pi\epsilon_0$ $= 1, r_{20} = 1$ unit, $\theta_2 = \phi_2 = 45^\circ$.

Q6: Charge moving in a magnetic field

A charge (mass *m* and charge *q*) moving with velocity $\mathbf{v} = (v_x, v_y, v_z)$ in a magnetic field $\mathbf{B} = (B_x, B_y, B_z)$ experiences a velocity-dependent Lorentz force $\mathbf{F} = (F_x, F_y, F_z) = q \mathbf{v} \times \mathbf{B}$. Develop a code based on the Störmer-Verlet integration algorithm to simulate the dynamical path of the charge particle moving through the magnetic field. Assume: $q=+1$ unit, mass $m=1$ unit, initially located at $(0,0,0)$, initial velocity $(v_{0x}, v_{0y}, v_{0z}), v_{0x} = v_{0y} = 0.1$ unit, $v_{0z} = 0.05$ unit, **B**=(0, 0, B_z), B_z = 0.1 unit. You should see a helical trajectory circulating about the *z*-direction.

(my code: verlet_algorithm_3D_coulomb_helix.nb)