Plot functions

- Plot a function with single variable
- Syntax: **function[x_]:=**; **Plot[f[x],{{x,xinit,xlast}}]**; **Plot[{f1[x],f2[x]},{x,xinit,xlast}]**;
- Plot various single-variable functions in Chapter 1, ZCA 110 as examples.
- Plot a few functions on the same graph.

FIGURE 1.59 Reflections of the graph $y = \sqrt{x}$ across the coordinate axes (Example 5c).

Plot a few functions on the same graph

- $F1[x_]:=1*x;$
- **F2[x_]:=2*x;**
- **F3[x_]:=3*x;**
- **F4[x_]:=4*x;**
- **list={F1[x],F2[x],F3[x],F4[x]};**
- **Plot[list,{x,-10,10}]**

The collection of lines **FIGURE 1.34** $y = mx$ has slope *m* and all lines pass through the origin.

Plot a few functions on the same graphs

- Do the same thing by defining the functions to depend on x and n:
- **F[x_,n_]:=n*x;**
- **list={F[x,1], F[x,2], F[x,3], F[x,4]};**
- **Plot[list,{x,-10,10}]**

FIGURE 1.34 The collection of lines $y = mx$ has slope *m* and all lines pass through the origin.

Black Body Radiation

Exercise

- Plot Planck's law of black body radiation for various temperatures on the same graph by defining R as a function of two variables. 2
- Define function of two variables: $R(\lambda,T)$ $(e^{nc/\lambda\kappa t} - 1)$ $, \mathcal{T}$ $)$ $=$ —
— 5 2 $\frac{1}{2} \left(e^{hc/\lambda kT} - 1 \right)$ $R(\lambda, T) = \frac{2\pi hc}{\lambda^5 (hc/\lambda k)}$ $\overline{\lambda^{5}\bigl(e^{hc/\lambda}}$
- h,c,T, are constants;
- **R[lambda_,T_]:=2Pi*h*c^2/(lambda^5*(Exp[h*c/(lambda*k*T)]-1));**
- Customize the plots using these:
- **PlotLabel**; **AxesLabel**; **PlotLegend;PlotRange;**

Exercise:

- Manually locate λ_{max} , the wavelength at which $R(\lambda,T)$ is maximum for a fixed *T*.
- Write a Do loop to automatically do this.
- Hence, generate the list
- $\{\{\lambda_{\max1},T1\},\{\lambda_{\max2},T2\},\{\lambda_{\max3},T3\},\{\lambda_{\max4},T4\},\ldots\}$ Hence, proof Weinmann's displacement law.

Syntax: Table[]; Sum[]

- Generate a list using Table[f[x,n], {n,ninit,nlast}];
- The function $f(x, N_0) = \sum_{n=1}^{n=N_0} x^n$ can be expressed in Mathematica as
- **F[x_,N0_]:=Sum[x^n,{n,1,N0}];**
- Use these to numerically verify that the infinite series representation of a function converges into the function.

Applying Term-by-Term Differentiation **EXAMPLE 4**

Find series for $f'(x)$ and $f''(x)$ if

$$
f(x) = \frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots + x^n + \dots
$$

$$
= \sum_{n=0}^{\infty} x^n, \qquad -1 < x < 1
$$

A Series for $\ln (1 + x)$, $-1 < x \le 1$ **EXAMPLE 6**

The series

$$
\frac{1}{1+t} = 1 - t + t^2 - t^3 + \cdots
$$

converges on the open interval $-1 < t < 1$.

$$
\ln(1+x) = \int_0^x \frac{1}{1+t} dt = t - \frac{t^2}{2} + \frac{t^3}{3} - \frac{t^4}{4} + \cdots \Big]_0^x
$$

= $x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$, $-1 < x < 1$.

Example 2 Finding Taylor polynomial for e^x at $x = 0$
 $(x) = e^x \to f^{(n)}(x) = e^x$ χ ⁽ⁿ⁾ Example 2 Finding Taylor
for e^x at $x = 0$
 $f(x) = e^x \rightarrow f^{(n)}(x) = e^x$

 $f^{(n)}(x) = e^x$
(k) (x) $\begin{vmatrix} x^k & e^0 & e^0 & x^1 + e^0 & x^2 + e^0 & x^3 + e^0 \end{vmatrix}$ $0 + \frac{e^{0}}{1!}x^{1} + \frac{e^{0}}{2!}x^{2} + \frac{e^{0}}{2!}x^{3}$ $\begin{array}{ccc} 0 & \kappa & | & \kappa=0 \end{array}$ $\int \frac{f^{(k)}(x)}{k!}$ For e^x at $x = 0$
 $(x) = e^x \rightarrow f^{(n)}(x) = e^x$
 $(x) = \sum_{k=0}^{k=n} \frac{f^{(k)}(x)}{k!} \bigg|_{x=0} x^k = \frac{e^0}{0!} x^0 + \frac{e^0}{1!} x^1 + \frac{e^0}{2!} x^2 + \frac{e^0}{3!} x^3 + ...$ (n) $(x) = e^x$
 $\frac{(x)}{!} \bigg|_{x=0} x^k = \frac{e^0}{0!} x^0 + \frac{e^0}{1!} x^1 + \frac{e^0}{2!} x^2 + \frac{e^0}{3!} x^3 + \dots + \frac{e^0}{n!}$ $f(x) = e^{\frac{k=n}{2}} \frac{f^{(k)}(x)}{k!} \bigg|_{x=0} x^k = \frac{e^0}{0!} x^0 + \frac{e^0}{1!} x^1 + \frac{e^0}{2!} x^2 + \frac{e^0}{3!} x^3 + ... + \frac{e^0}{n!} x^n$
1+ $x + \frac{x^2}{2} + \frac{x^3}{3!} + ... + \frac{x^n}{n!}$ This is the Taylor polynomial of order *n* for $\begin{bmatrix} \frac{2}{10} & \frac{1}{10} \\ \frac{1}{10} & \frac{1}{10} \end{bmatrix}$ $\begin{bmatrix} x^k \\ x^l \end{bmatrix}$ $\begin{bmatrix} x^k \\ x^l \end{bmatrix}$ $\begin{bmatrix} x^l \\ y^l \end{bmatrix}$ it $n \rightarrow \infty$ is tall $P_n(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} \Big|_{x=0} x^k = \frac{x^3}{0!} x^3 + \frac{x^4}{1!} x^2 + \frac{x^2}{3!} x^3 + \frac{x^3}{2!} x^4$
= 1 + x + $\frac{x^2}{2} + \frac{x^3}{3!} + ... \frac{x^n}{n!}$ This is the Taylor polyn
If the limit $n \to \infty$ is taken, $P_n(x) \to \text{Taylor series}$ $e^{x} \rightarrow f$
 $\sum_{k=n}^{k=n} f^{(k)}$ $f(x) = e^x \rightarrow f^{(n)}(x) = e^x$
 $g_n(x) = \sum_{n=0}^{k=n} \frac{f^{(k)}(x)}{k!} \left[x^k = \frac{e^0}{0!} x^0 + \frac{e^0}{1!} x^1 + \frac{e^0}{2!} x^2 + \frac{e^0}{2!} x^3 + ... \frac{e^0}{n!} x^n \right]$ *k x n x* $P_n(x) \to \text{Taylor series.}$ **for** e^x at $x = 0$
 $f(x) = e^x \rightarrow f^{(n)}(x) = e^x$
 $P_n(x) = \sum_{k=0}^{k=n} \frac{f^{(k)}(x)}{k!} \bigg|_{x=0} x^k = \frac{e^0}{0!} x^0 + \frac{e^0}{1!} x^1 + \frac{e^0}{2!} x^2 + \frac{e^0}{3!} x^3 + \dots + \frac{e^0}{n!} x^2$ $f^{(n)}(x) = e^x$
 $\frac{f^{(n)}(x)}{k!} \bigg|_{x=0} x^k = \frac{e^0}{0!} x^0 + \frac{e^0}{1!} x^1 + \frac{e^0}{2!} x^2 + \frac{e^0}{3!} x^3 + \dots + \frac{e^0}{n!}$ $f^{(n)}(x) =$
 $\frac{f^{(n)}(x)}{k!} \bigg|_{x=0}$
 $\frac{x^2}{2} + \frac{x^3}{3!} + ... + \frac{x^2}{n}$ $\begin{aligned}\n&= e^{-\lambda} \int_{-\infty}^{\infty} (x) e^{-\lambda} dx \\
&= \sum_{k=0}^{k=n} \frac{f^{(k)}(x)}{k!} \bigg|_{x=0}^{\infty} x^k = \frac{e^0}{0!} x^0 + \frac{e^0}{1!} x^1 + \frac{e^0}{2!} x^2 + \frac{e^0}{3!} x^3 + \dots + \frac{e^0}{n!} x^n \\
&= x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} \quad \text{This is the Taylor polynomial of order } n \text{ for } e.\n\end{aligned}$ *n* $\begin{aligned} \n\overrightarrow{k!} \\
\overrightarrow{k!} \\
+ \frac{x^3}{3!} + \dots + \frac{x^n}{n!} \\
\overrightarrow{n} \rightarrow \infty \text{ is taken, } P_n(x) \n\end{aligned}$ $=$ e^{x} at $x = 0$
= $e^{x} \rightarrow f^{(n)}(x) = e^{x}$
= $\sum_{k=0}^{k=n} \frac{f^{(k)}(x)}{k!} \bigg|_{x=0} x^{k} = \frac{e^{0}}{0!} x^{0} + \frac{e^{0}}{1!} x^{1} + \frac{e^{0}}{2!} x^{2} + \frac{e^{0}}{3!} x^{3} + ... + \frac{e^{0}}{n!} x^{n}$ $f(x) = e \rightarrow f'(x) = e$
 $P_n(x) = \sum_{k=0}^{k=n} \frac{f^{(k)}(x)}{k!} \bigg|_{x=0} x^k = \frac{e^0}{0!} x^0 + \frac{e^0}{1}$
 $= 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + ... + \frac{x^n}{n!}$ This is th $\frac{x^3}{k!}$ $x^k = \frac{y^3}{0!}x^0 + \frac{y^2}{1!}x^1 + \frac{y^2}{2!}x^2 + \frac{y^3}{3!}$
 $\frac{x^3}{3!} + ... \frac{x^n}{n!}$ This is the Taylor polynor
 $\rightarrow \infty$ is taken, $P_n(x) \rightarrow$ Taylor series. \sum $\begin{aligned} \n\text{Taylor} \\ \n\text{Taylor} \\ \n\text{P} \times \text{Taylor} \\ \n\text{query} \\ \n\end{aligned}$ 0 $= 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + ... + \frac{x^n}{n!}$ This is the Taylor polynomial of ord
If the limit $n \to \infty$ is taken, $P_n(x) \to \text{Taylor series.}$
The Taylor series for e^x is $1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + ... + \frac{x^n}{n!} + ... = \sum_{n=0}^{\infty} \frac{x^n}{n!}$, ne Taylor polynomial of or
 \rightarrow Taylor series.
 $x^2 + x^3 + ... + x^n + ... = \sum_{n=0}^{\infty} \frac{x^n}{n!}$

es for e^x converges to e^x . ken, $P_n(x) \to \text{Taylor series.}$
 $x^2 + x^3 + x^n + \dots + x^n = \sum_{n=1}^{\infty} x^n$ *n* $+\dots \frac{x^n}{n!} + \dots = \sum_{n=0}^{\infty} \frac{x}{n}$
x converges to e^x the Taylor polynomial of α

→ Taylor series.
 $\frac{x^2}{2} + \frac{x^3}{3!} + ... = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ This is the Taylor polynomial of order *n* for *e*
aken, $P_n(x) \rightarrow$ Taylor series.
 e^x is $1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + ... + \frac{x^n}{n!} + ... = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ *n n* or series.
 $\frac{x^n}{n!} + ... = \sum_{n=0}^{\infty} \frac{x^n}{n!}$,
 e^x converges to e^x for all x ∞ $=$

In this special case, the Taylor series for e^x converges to e^x for all x.

Exercise: Numerical verification of $\frac{hv}{h\nu/kT-1}$ *hv* $e^{hv/kT}-1$ $\mathcal{E} = \frac{W}{\sqrt{W}}$ -1

Exercise: Numerical verification of
$$
\langle \varepsilon \rangle = \frac{h\nu}{e^{h\nu/kT} - 1}
$$

\n $\langle \varepsilon \rangle = \frac{\sum_{n=0}^{\infty} N(n) E_n}{\sum_{n=0}^{\infty} N(n)}; N(n) = N_0 n h\nu; E_n = nhf; n = 0, 1, 2, 3, ...$
\n $\langle \varepsilon \rangle = \frac{\sum_{n=0}^{\infty} N_0 n h \nu \exp(-\frac{n h\nu}{kT})}{\sum_{n=0}^{\infty} N_0 \exp(-\frac{n h\nu}{kT})}$
\n $= \frac{0 + h\nu e^{\frac{h\nu}{kT}} + 2h\nu e^{\frac{2h\nu}{kT}} + 3h\nu e^{\frac{2h\nu}{kT}} + ...$
\n $= \cdots = \frac{h\nu}{e^{h\nu/kT} - 1}$
\n $= \frac{h\nu}{e^{h\nu/kT} - 1}$

$$
\langle \varepsilon \rangle = \frac{\sum_{n=0}^{\infty} N_0 n h v \exp\left(-\frac{n h v}{k T}\right)}{\sum_{n=0}^{\infty} N_0 \exp\left(-\frac{n h v}{k T}\right)}
$$

Exercise: Numerical we
\n
$$
\sum_{n=0}^{\infty} N(n) E_n
$$
\n
$$
= \frac{\sum_{n=0}^{\infty} N(n) E_n}{\sum_{n=0}^{\infty} N(n)}
$$
\n
$$
= \frac{\sum_{n=0}^{\infty} N_0 n h v \exp\left(-\frac{n h v}{kT}\right)}{\sum_{n=0}^{\infty} N_0 \exp\left(-\frac{n h v}{kT}\right)}
$$
\n
$$
= \frac{0 + h v e^{-\frac{h v}{kT}} + 2 h v e^{-\frac{2 h v}{kT}} + 3 h v e^{-\frac{3 h v}{kT}} + \cdots}{1 + e^{-\frac{h v}{kT}} + e^{-\frac{2 h v}{kT}} + e^{-\frac{3 h v}{kT}} + \cdots}
$$
\n
$$
= \cdots = \frac{h v}{e^{h v / kT} - 1}
$$

- Expectation value of a photon's energy when deriving Planck's law for black body radiation; **tion of** $\langle \varepsilon \rangle = \frac{1}{e^h}$
 x ition value of a phote

eriving Planck's law
 x = *hv*/*kT*

m. over all *n* in the RH
 $\sum N_0 nhv \exp(-nx)$
- Define $x = hv/kT$
- The sum_e over all *n* in the RHS $_{0}nhv$ exp $(-nx)$

 $\overline{0}$

n=0

erification of
$$
\langle \varepsilon \rangle = \frac{hv}{e^{hv/kT} - 1}
$$

= 0,1,2,3,...
Expectation value of a photon's energy
when deriving Planck's law for black body
radiation;
Define $x = hv/kT$
The sum-over all *n* in the RHS

$$
\sum_{n=0}^{\infty} N_0 nhv \exp(-nx)
$$

should converge to $\langle \varepsilon \rangle = \frac{hv}{e^{hv/kT} - 1}$
in the limit $n \rightarrow \text{infinity.}$

Constructing wave pulse

• Two pure waves with slight difference in frequency and wave number $\Delta \omega = \omega_1 - \omega_2$, $\Delta k = k_1 - k_2$, are superimposed

Envelop wave and phase wave

The resultant wave is a 'wave group' comprise of an `envelop' (or the group wave) and a phase waves

$$
y = y_1 + y_2
$$

= 2A cos $\frac{1}{2}$ { { $k_2 - k_1$ }x - { $\omega_2 - \omega_1$ }t) · cos $\left\{ \left(\frac{k_2 + k_1}{2} \right) x - \left(\frac{\omega_2 + \omega_1}{2} \right) t \right\}$

Wave pulse – an even more `localised' wave

- In the previous example, we add up only two slightly different wave to form a train of wave group
- An even more `localised' group wave what we call a "*wavepulse*" can be constructed by adding more sine waves of different numbers *ki and* possibly different amplitudes so that they interfere constructively over a small region Δx and outside this region they interfere destructively so that the resultant field approach zero
- Mathematically,

$$
y_{\text{wave pulse}} = \sum_{i}^{\infty} A_i \cos(k_i x - \omega_i t)
$$

Exercise: Simulating wave group and wave pulse

- Construct a code to add *n* waves, each with an angular frequency omegai and wave number ki into a wave pulse for a fixed t.
- Display the wave pulse for t=t0, t=t1, …, t=tn.
- Syntax: **Manipulate**
- Sample code:<wavepulse.nb>

Syntax: ParametricPlot[], Show[]

- The trajectory of a 2D projectile with initial location (x_0, y_0) , speed v_0 and launching angle θ are given by the equations:
- $x(t) = x_0 + v_0 t \cos \theta$; $y(t) = y_0 + v_0 t \sin \theta +$ \overline{g} 2 t^2 , for t from 0 till *T*, defined as the time of flight, $T = 2(y_0 + v_0 \sin \theta)/g$.
- $q = -9.81$;
- The trajectories can be plotted using **ParametricPlot**.
- You can combine few plots using **Show[]** command.

2D projectile motion (recall your Mechanics class)

- Plot the trajectories of a 2D projectile launched with a common initial speed but at different angles
- Plot the trajectories of a 2D projectile launched with a common angle but different initial speed.
- Sample code:<2Dprojectile.nb>
- For a fixed v0 and theta, how would you determine the maximum height numerically (not using formula)?

Exercise: Circular motion

- Write down the parametric equations for the *x* and *y* coordinates of an object executing circular motion.
- Plot the trajectories of a particle moving in a circle (recall your vector analysis class, ZCT 211)

Parametric Equation of an Ellipse

- http://en.wikipedia.org/wiki/Semi-major axis
- In [geometry,](http://en.wikipedia.org/wiki/Geometry) the **major axis** of an [ellipse](http://en.wikipedia.org/wiki/Ellipse) is its longest diameter: line segment [that runs through the center and both](http://en.wikipedia.org/wiki/Line_segment) [foci,](http://en.wikipedia.org/wiki/Focus_(geometry)) with ends at the widest points of the [perimeter.](http://en.wikipedia.org/wiki/Perimeter) The **semi-major axis**, *a*, is one half of the major axis, and thus runs from the centre, through a [focus,](http://en.wikipedia.org/wiki/Focus_(geometry)) and to the perimeter. Essentially, it is the radius of an orbit at the orbit's two most distant points. For the special case of a circle, the semi-major axis is the radius. One can think of the semi-major axis as an ellipse's *long radius*.

Geometry of an ellipse

The distance to the focal point from the center of the ellipse is sometimes called the **linear eccentricity**, *f*, of the ellipse. In terms of semi-major and semi-minor, $f^2 = a^2 - b^2$. *e* is the **[eccentricity](http://en.wikipedia.org/wiki/Eccentricity_(mathematics))** of an ellipse is the ratio of the distance between the two foci, to the length of the major axis or $e = 2f/2a = f/a$

Elliptic orbit of a planet around the Sun

- Consider a planet orbitng around the Sun which is located at one of the foci of the ellipse.
- Coordinates of the planet at time *t* can be expressed in parametrised form:
- $x(t) = h + a \cos \omega t$; $y = k + b \sin \omega t$; or equivalently, $\left(\frac{x-h}{a}\right)$ \boldsymbol{a} 2 $+$ $y-k$ \boldsymbol{b} 2 $= 1$

where *x*, *y* are the coordinates of any point on the ellipse at time *t, a*, *b* are semi-major and semi-minor.

- (*h*,*k*) are the *x* and *y* coordinates of the ellipse's center.
- ω is the angular speed of the planet. ω is related to the period *T* of the planet via *T*=2 π / ω ; whereas the period *T* is related to the parameters of the planetary system via $T = 2\pi$ a^3 GM , where *M* is the mass of the Sun.

Exercise: Marking a point on a 2D plane.

- $x = h + a \cos \omega t$; $y = k + b \sin \omega t$. Set $\omega = 1$.
- Display the parametric plot for an ellipse with your choice of *h, k, a, b.*
- How would you mark a point with the coordinate (x(t),y(t)) on the ellipse?
- Syntax: **ListPlot[{{x[t],y[t]}}]**;
- You can customize the size of the point using **PlotStyle->PointSize[0.05], PlotMarkers;**

Exercise: Simulating an ellipse trajectory in 2D

- How would you construct a simulation displaying a point going around the ellipse as time advances?
- Sample code: <ellipse1.nb>

Exercise:

- (i) Given any moment *t*, how would you abstract the coordinates of a point P(*t*) on the ellipse?
- (ii) How could you obtain the coordinates P'(*t*) at the other end of the straight line connecting to point P(*t*) via the center point (*h*,*k*)? (you have to think!)
- (iii) Given the knowledge of P(*t*) and P'(*t*), draw a line connecting these two points on the ellipse (see sample code 3 in [ellipse1.nb\)](ellipse1.nb) at fixed *t*.
- (iv) Simulate the rotation of the straight line about (*h*,*k*) as the point P move around the ellipse.
- (v) Use your code to "measure" the maximum and minimum distances between the points PP' (known as major axis and minor axis). Theoretically, major axis = Max[2*b*,2*a*]; minor axis = Min[2*b*,2*a*]; see <ellipse2.nb>

Exercise: Simulating SHM

• A pendulum executing simple harmonic motion (SHM) with length *L*, released at rest from initial angular displacement θ_0 , is described by

the following equations: $\theta(t)=\theta_0\cos\omega t$, ω = \overline{g} \overline{L} .The period T of the SHM is given by $T=2\pi/\omega$. *O*

L

 θ

- Simulate the SHM using **Manipulate[]**
- Hint: you must think properly how to specify the time-varying positions of the pendulum, i.e., (*x*(*t*),*y*(*t*)).

See simulate pendulum.nb

Exercise: Simulating SHM

- Simulate two SHMs with different lengths L1, L2:
- Plot the phase difference between them as a function of time.

