
Plot functions

• Plot a function with single variable

• Syntax: function[x_]:=; Plot[f[x],{{x,xinit,xlast}}]; 
Plot[{f1[x],f2[x]},{x,xinit,xlast}];

• Plot various single-variable functions in Chapter 1, ZCA 110 as 
examples.

• Plot a few functions on the same graph. 





Plot a few functions on the same graph

• F1[x_]:=1*x; 

• F2[x_]:=2*x;

• F3[x_]:=3*x;

• F4[x_]:=4*x;

• list={F1[x],F2[x],F3[x],F4[x]};

• Plot[list,{x,-10,10}]



Plot a few functions on the same graphs

• Do the same thing by defining 
the functions to depend on x 
and n:

• F[x_,n_]:=n*x; 

• list={F[x,1], F[x,2], F[x,3], 
F[x,4]};

• Plot[list,{x,-10,10}]
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Exercise

• Plot Planck’s law of black body radiation for various temperatures on 
the same graph by  defining R as a function of two variables.

• Define function of two variables:

• h,c,T, are constants;

• R[lambda_,T_]:=2Pi*h*c^2/(lambda^5*(Exp[h*c/(lambda*k*T)]-1));

• Customize the plots using these: 

• PlotLabel; AxesLabel; PlotLegend;PlotRange;
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Exercise:

• Manually locate 𝜆max, the wavelength at which R(𝜆,T) is maximum for 
a fixed T. 

• Write a Do loop to automatically do this.

• Hence, generate the list 

• {{𝜆max1,T1}, {𝜆max2,T2}, {𝜆max3,T3}, {𝜆max4,T4},…} 

Hence, proof Weinmann’s displacement law. 



Syntax: Table[]; Sum[]

• Generate a list using Table[ f[x,n], {n,ninit,nlast}];

• The function 𝑓 𝑥, 𝑁0 =  𝑛=1
𝑛=𝑁0 𝑥𝑛 can be expressed in Mathematica 

as 

• F[x_,N0_]:=Sum[x^n,{n,1,N0}];

• Use these to numerically verify that the infinite series representation 
of a function converges into the function. 
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Example 2 Finding Taylor polynomial 
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• Expectation value of a photon’s energy 
when deriving Planck’s law for black body 
radiation;

• Define 
• The sum over all n in the RHS 

should converge to
in the limit n infinity.
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Exercise:  Numerical verification of hv kT
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Constructing wave pulse
• Two pure waves with slight difference in frequency 

and wave number Dw = w1 - w2, Dk= k1 - k2, are 
superimposed
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Envelop wave and phase wave
The resultant wave is a ‘wave group’ comprise of an 

`envelop’ (or the group wave) and a phase waves
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Wave pulse – an even more 
`localised’ wave 

• In the previous example, we add up only two slightly 
different wave to form a train of wave group

• An even more `localised’ group wave – what we call a  
“wavepulse” can be constructed by adding more sine 
waves of different numbers ki and possibly different 
amplitudes so that they interfere constructively over a 
small region Dx and outside this region they interfere 
destructively so that the resultant field approach zero

• Mathematically, 
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A wavepulse – the wave is well localised within Dx. This is done by 
adding a lot of waves with with their wave parameters {Ai, ki, wi} 
slightly differ from each other (i = 1, 2, 3….as many as it can)



Exercise: Simulating wave group and wave 
pulse 
• Construct a code to add n waves, each with an angular frequency 

omegai and wave number ki into a wave pulse for a fixed t.

• Display the wave pulse for t=t0, t=t1, …, t=tn. 

• Syntax: Manipulate

• Sample code: wavepulse.nb

wavepulse.nb


Syntax: ParametricPlot[], Show[]

• The trajectory of a 2D projectile with initial location (𝑥0, 𝑦0), speed 𝑣0
and launching angle 𝜃 are given by the equations:

• 𝑥 𝑡 = 𝑥0 + 𝑣0𝑡 cos 𝜃; 𝑦 𝑡 = 𝑦0 + 𝑣0𝑡 sin 𝜃 +
𝑔

2
𝑡2, for t from 0 till 

T, defined as the time of flight, T =-2(𝑦0 + 𝑣0 sin 𝜃)/𝑔.

• 𝑔 = −9.81;

• The trajectories can be plotted using ParametricPlot.

• You can combine few plots using Show[] command.



2D projectile motion (recall your Mechanics 
class)
• Plot the trajectories of a 2D projectile launched with a common initial 

speed but at different angles

• Plot the trajectories of a 2D projectile launched with a common angle 
but different initial speed.

• Sample code: 2Dprojectile.nb

• For a fixed v0 and theta, how would you determine the maximum 
height numerically (not using formula)?

2Dprojectile.nb


Exercise: Circular motion

• Write down the parametric equations for the x and y coordinates of 
an object executing circular motion.

• Plot the trajectories of a particle moving in a circle (recall your vector 
analysis class, ZCT 211)



Parametric Equation of an Ellipse

• http://en.wikipedia.org/wiki/Semi-major_axis

• In geometry, the major axis of an ellipse is its longest diameter: line 
segment that runs through the center and both foci, with ends at the widest 
points of the perimeter. The semi-major axis, a, is one half of the major axis, 
and thus runs from the centre, through a focus, and to the perimeter. 
Essentially, it is the radius of an orbit at the orbit's two most distant points. For 
the special case of a circle, the semi-major axis is the radius. One can think of 
the semi-major axis as an ellipse's long radius.

a

b

C(h,k)

http://www.mathopenref.com/coordparamellipse.html
http://en.wikipedia.org/wiki/Geometry
http://en.wikipedia.org/wiki/Ellipse
http://en.wikipedia.org/wiki/Line_segment
http://en.wikipedia.org/wiki/Focus_(geometry)
http://en.wikipedia.org/wiki/Perimeter
http://en.wikipedia.org/wiki/Focus_(geometry)


The distance to the focal point from the center of the ellipse is 
sometimes called the linear eccentricity, f, of the ellipse. 
In terms of semi-major and semi-minor, f2 = a2 −b2.
e is the eccentricity of an ellipse is the ratio of the distance between 
the two foci, to the length of the major axis or e = 2f/2a = f/a

Geometry of an ellipse

http://en.wikipedia.org/wiki/Eccentricity_(mathematics)


Elliptic orbit of a planet around the Sun

• Consider a planet orbitng around the Sun which is located at one of the foci of the ellipse.  

• Coordinates of the planet at time t can be expressed in parametrised form: 

• x(t) = h + a cos wt; y = k + b sin wt;  or equivalently,
𝑥−ℎ

𝑎

2
+

𝑦−𝑘

𝑏

2
= 1

where x, y are the coordinates of any point on the ellipse at time t, a, b are semi-major and semi-minor.

• (h,k) are the x and y coordinates of the ellipse's center.

• w is the angular speed of the planet. w is related to the period T of the planet via T=2p /w; whereas 

the period  T is related to the parameters of the planetary system via 𝑇 = 2p
𝑎3

𝐺𝑀
, where M is the 

mass of the Sun. 

C(h,k)



Exercise: Marking a point on a 2D plane.

• x = h + a cos wt; y = k + b sin wt. Set w1.

• Display the parametric plot for an ellipse with your choice of h, k, a, b.

• How would you mark a point with the coordinate (x(t),y(t)) on the ellipse?

• Syntax: ListPlot[{{x[t],y[t]}}];

• You can customize the size of the point using PlotStyle->PointSize[0.05], 
PlotMarkers;



Exercise: Simulating an ellipse trajectory in 2D

• How would you construct a simulation displaying a point going around
the ellipse as time advances? 

• Sample code: ellipse1.nb

ellipse1.nb


Exercise:

• (i) Given any moment t, how would you abstract the coordinates of a point 
P(t) on the ellipse?

• (ii) How could you obtain the coordinates P’(t) at the other end of the 
straight line connecting to point P(t) via the center point (h,k)? (you have to 
think!)

• (iii) Given the knowledge of P(t) and P’(t), draw a line connecting these two 
points on the ellipse (see sample code 3 in ellipse1.nb) at fixed t.

• (iv) Simulate the rotation of the straight line about (h,k) as the point P 
move around the ellipse.

• (v) Use your code to “measure” the maximum and minimum distances
between the points PP’ (known as major axis and minor axis). Theoretically, 
major axis = Max[2b,2a]; minor axis = Min[2b,2a]; see ellipse2.nb

ellipse1.nb
ellipse2.nb


Exercise: Simulating SHM
• A pendulum executing simple harmonic motion (SHM) with length L, 

released at rest from initial angular displacement 𝜃0, is described by 

the following equations: 𝜃 𝑡 = 𝜃0 cos𝜔𝑡, 𝜔=
𝑔

𝐿
.The period T of the 

SHM is given by 𝑇=2p/w.

• Simulate the SHM using Manipulate[]

• Hint: you must think properly how to 

specify the time-varying positions of the 

pendulum, i.e., (x(t),y(t)). 

See simulate_pendulum.nb
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O

simulate_pendulum.nb


Exercise: Simulating SHM
• Simulate two SHMs with different lengths L1, L2:

• Plot the phase difference between them as a function of time.


