
Chapter 8

Solving Second order 
differential equations 

numerically



Online lecture materials
•The online lecture notes by Dr. Tai-Ran 
Hsu of San José State University, 

http://www.engr.sjsu.edu/trhsu/Chapt
er%204%20Second%20order%20DEs.p
df

provides a very clear explanation of the 
solutions and applications of some 
typical second order differential 
equations.

http://www.engr.sjsu.edu/trhsu/Chapter 4 Second order DEs.pdf










DSolve

•DSolve of Mathematica can 
provide analytical solution to a 
generic second order differential 
equation. See 
Math_built_in_2ODE.nb.

http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1415SEM2/notes/Math_built_in_2ODE.nb


Typical second order, non-homogeneous 
ordinary differential equations
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Typical second order, non-homogeneous 
ordinary differential equations
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Guess:

After some algebra





Simple Harmonic pendulum as a special 
case of second order DE

Equation of motion (EoM)

Force on the pendulum

The period of the SHO is 
given by
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Simple Harmonic pendulum as a special 
case of second order DE (cont.)

𝑑2𝜃(𝑡)

𝑑𝑡2
= −

𝑔𝜃

𝑙

𝑥 ≡ 𝑡
𝑢 𝑥 ≡ 𝜃(t)

𝑎 ≡ 0

𝑏 ≡
𝑔

𝑙
𝑛(𝑥) ≡ 0
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Simple Harmonic pendulum as a special 
case of second order DE (cont.)

Analytical solution:

𝑑2𝜃(𝑡)

𝑑𝑡2
= −

𝑔𝜃

𝑙

Ω = 𝑔/𝑙 natural frequency of the pendulum; 
𝜃0 and 𝜙 are constant determined by boundary conditions



For a pendulum, instantaneous velocity v = wl = l (dq/dt)

Hence, fd = - kl (dq/dt). 

The net force on the forced pendulum along the 
tangential direction

Drag force on a moving object, fd = - kv

fd

l

- kl (dq/dt). 
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Simple Harmonic pendulum with drag 
force as a special case of second order DE
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Simple Harmonic pendulum with drag force 
as a special case of second order DE (cont.)

𝑥 ≡ 𝑡
𝑢 𝑥 ≡ 𝜃(t)

𝑎 ≡ 𝑞

𝑏 ≡
𝑔

𝑙
𝑛(𝑥) ≡ 0 fd
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Analytical solution
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Underdamped regime (small damping). Still oscillate, 
but amplitude decay slowly over many period before 
dying totally.
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Overdamped regime (very large damping), decay slowly 
over several period before dying totally. q is dominated 
by exponential term.
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Critically damped regime, intermediate between 
under- and overdamping case. 
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See 2ODE_Pendulum.nb where 
DSolve solves the three cases of a 
damped pendulum analytically. 

http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1415SEM2/notes/2ODE_Pendulum.nb


Adding driving force to the damped 
oscillator: forced oscillator

- kl (dq/dt) + FD sin(Dt)
D frequency of 
the applied force
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Analytical solution
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Resonance happens when /
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Forced oscillator: An example of 
non homogeneous 2nd order DE
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𝑥 ≡ 𝑡
𝑢 𝑥 ≡ 𝜃(t)

𝑎 ≡ 𝑞

𝑏 ≡
𝑔

𝑙

𝑛 𝑥 ≡
𝐹𝐷sin 𝛺𝐷𝑡

𝑚𝑙

n(x)



Exercise: Forced oscillator
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Use DSolve to solve the forced oscillator. Plot on the same 
graph the analytical solutions of q(t) for t from 0 to 10 T , 

where T= 2/𝛺, 𝛺 = 𝑔/𝑙, for 𝛺𝐷 = 0.01𝛺, 0.5𝛺, 0.99𝛺, 

1.5𝛺, 4𝛺. Assume the boundary conditions q(t=0)=0; 
dq/dt(t=0)=0; m=l=FD=1; q=0. 

See forced_Pendulum.nb.



Second order Runge-Kutta (RK2) method

Consider a generic second order differential 
equation. 
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It can be numerically solved using second order 
Runge-Kutta method. First, split the second order DE 
into two first order parts: 



Algorithm
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Set  boundary conditions: u(x=x0)=u0, u’(x=x0)=v(x=x0)=v0. 

calculate

calculate

calculate

calculate



Translating the SK2 algorithm into the case of 
simple pendulum
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Set  boundary conditions: 
u(x=x0)=u0, u’(x=x0)=v(x=x0)=v0
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𝑑2𝜃(𝑡)

𝑑𝑡2
= −
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Set  boundary conditions: 
q(t=t0)= q0, q’ (t=t0)=w(t=t0)=w0
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Exercise: Develop a code to implement SK2 
for the case of the simple pendulum. 
Boundary conditions: 

See pendulum_RK2.nb
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http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1415SEM2/notes/pendulum_RK2.nb


Translating the SK2 algorithm into the case of 
damped pendulum
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Set  boundary conditions: 
u(x=x0)=u0, u’(x=x0)=v(x=x0)=v0
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Set  boundary conditions: 
q(t=t0)= q0, q’ (t=t0)=w(t=t0)=w0
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Exercise:
Develop a code to implement SK2 for the case of a 
pendulum experiencing a drag force, with damping 

coefficient q= 0.1* (4),  𝑔/𝑙, 𝑙 = 1.0 m. 
Boundary conditions: θ 0 = 0.2; 𝜔 𝑡 = 0 = 0;
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See pendulum_RK2.nb

http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1415SEM2/notes/pendulum_RK2.nb


Exercise:
Develop a code to implement SK2 for the case of a 
forced pendulum experiencing no drag force but a 

driving force𝐹𝐷sin 𝛺𝐷𝑡 ,  𝑔/𝑙, 𝑙 = 1.0 m, 
m=1kg; 𝐹D= 1N; ΩD=0.99 ;
Boundary conditions: θ 0 = 0.0;𝜔 𝑡 = 0 = 0;
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Exercise: Stability of the total 
energy a SHO in RK2.

𝜔 =
𝑑𝜃

𝑑𝑡
, angular velocity. M=1kg; l=1m. 

User your RK2 code to track the total energy for t running 

from t=0 till t=25T; T= 𝑔/𝑙. Boundary conditions: 
𝐸𝑖 should remain constant throughout all 𝑡𝑖. 

   0 ; 0 0
g

l
w q 


