Chapter 9

Solving Second order
differential equations
numerically, 2



Online lecture materials

*The online lecture notes by Dr. Tai-Ran
Hsu of San José State University,

http://www.engr.sjsu.edu/trhsu/Chapt
er%204%20Second%20o0rder%20DEs.p
df

provides a very clear explanation of the
solutions and applications of some
typical second order differential
equations.



http://www.engr.sjsu.edu/trhsu/Chapter 4 Second order DEs.pdf

2"d Order Homogeneous DEs
d 2w(x) du(x)
dx’ dx
with TWO given conditions
The solutions
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Case 3: a% - 4b = 0: — A special case

ax ax ax

u(x) = ¢ e 2 +c,xe 2 = (¢ +c,x)e 2 (4.12)

where c,, C,, A and B are arbitrary constants to be determined by given conditions



Example 4.1 Solve the following differential equation

d’ u(x) du(x)
x>

+ 6u(x) =

__—5x/2 x/2 -x/2) -2x —3x

where ¢, and c, are arbitrary constants to be determined by given conditions



Example 4.2

d’u(x) L6 du(x)

2 +9u(x) =0
X

u(0) = 2
du(x)

dx x=0

=0

u(x) =2(1+3x)e™



DSolve

*DSolve of Mathematica can
provide analytical solution to a
generic second order differential

eguation. See
Math built in 20DE.nb.



http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1415SEM2/notes/Math_built_in_2ODE.nb

Typical second order, non-homogeneous
ordinary differential equations

du(x) = du(x) bu(x) = n(x) (4.25)

dx’ dx

Non-homogeneous term

Solution of Equation (4.25) consists TWO components:

Complementary| 4 Particular

Solution u(x)

solution uy(x) solution u(x)

U(X) = Up(X) + U (X)



Typical second order, non-homogeneous
ordinary differential equations

d’u(x) N du(x)

2 a ’ + bu(x) = n(x) (4.25)

Non-homogeneous term
U(X) = Uh(X) + Up()()
d’u, (x) du, (x)

3 + a i +bu,(x) =0

There is NO fixed rule for deriving u(x)



Example 4.6

d’ d _
dﬁgx) - J:i(:) —2y(x) = Sin2x

y(X) = Yn(X) + y,(x)
d’y,(x) dy,(x)

dx’ dx
y,(x)=ce" +c,e

-2y,(x) =0

2x

Guess: Yo(X) = A Sin 2x + B Cos 2x
\ After some algebra

. |
yx)=y,(x)+y,(x) =ce” +c e +£—230an2;£+20(2'0523¢}



Example 4.8

d u(x) )
dx”

-4u(x) = 28in2x

u(x) =u,(x)+u,(x) =c Cos2x+c, Sian—%COSzx



Simple Harmonic pendulum as a special
case of second order DE

Force on the pendulum Fy = — m g sinf

for small oscillation, sinf = 6.

Equation of motion (EoM)

Fg = mag

O\
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Simple Harmonic pendulum as a special
case of second order DE (cont.)

d’ u(x) du (x)
dx’ dx

X =1

u(x) =600
a=0
g

+ bu(x) = n(x)

[
nx)=0

d*o(t)  gb
de2 ]




Simple Harmonic pendulum as a special
case of second order DE (cont.)

d*o(t)  gb

dt? [

Analytical solution:

0 = 6y sin(2t + @)

() = ,/g/! natural frequency of the pendulum;
6, and ¢ are constant determined by boundary conditions



Simple Harmonic pendulum with drag
force as a special case of second order DE

Drag force on a moving object, f; = - kv

For a pendulum, instantaneous velocity v = ol = [ (d§/dt)

Hence, f; = - kl (d6/dt).

The net force on the forced pendulum along the
tangential direction

Fy = —m g sin@ -kl (dg/dt).

_ do do
-mgsind —kl—=~ -mg68 — kl —;
dt dt

T
I




Simple Harmonic fpendulum with drag force

as a special case o

d’u(x) N du(x)

a

+ bu(x) = n(x)

dx’ dx
X =t
u(x) = 6(9 | \
a=q i
=9 o\ !

second order DE (cont.)

Y/ :
nx)=0 \&,




Analytical solution

Underdamped regime (small damping). Still oscillate,
but amplitude decay slowly over many period before
dying totally. e

0 (t)=0,e "?sinl p+ty/0? - — |

)

Q = ‘/g the natural frequency of the system
I

Overdamped regime (very large damping), decay slowly
over several period before dying totally. £is dominated
by exponential term. o, fot o)
o(t)y-o,e
Critically damped regime, intermediate between
under- and overdamping case.

gt

6(t)=(0,+Ct)e °



Overdamped Crltlcally damped

BRI U 0(t)=(0, +Ct)e *
¢

Underdamped

( g2 |
e(t)zeoe_qtlzsin|go+t - |
L ‘)

- 01F

- 0.2%



See 20DE Pendulum.nb where
DSolve solves the three cases of a
damped pendulum analytically.



http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1415SEM2/notes/2ODE_Pendulum.nb

Adding driving force to the damped
oscillator: forced oscillator

_ . Q. frequency o
Fy = —mgsiné -kl (d6/dt) + Fp sin(Qpt) thl;];pgliedf)(;rc];
_ do _ do .
=-mgsind —kl—+ Fysin(Q t)~ -mgd — kl —+ F sin (Q ,t);
dt dt
d°r d*° d’o
2 2
dt dt dt
d’r d’o do _
=m-——=ml——=~-mgod -kl —+ F, sin (Q pt)
d“t dt dt
9 g do F, sin(QDt) k
~ —-—0 —-( + g = —
2 | dt m | m



Analytical solution

6 (t)=06,sin(Qyt+¢)

Fy /(ml)

JleT-ad) +(eay)

Resonance happenswhen Q, =0 = /g /I



Forced oscillator: An example of
non homogeneous 2" order DE

d’ u(x) du (x)
dx’ dx

+ bu(x) = n(x)

x =1t
u(x) =600

a=q
g

[
Fpsin(2pt)

ml

n(x) =

d-o g do Fgp sin(QDt)

dt° ! dt ml



Exercise: Forced oscillator

d2o g do Fpsin(Qpt)
= -—0-q +
dt’ | dt m |

Use DSolve to solve the forced oscillator. Plot on the same
graph the analytical solutions of &t) for t fromoto1o T,

where T=27/0, ) =\/g/l, for 2, = 0.01, 0.5, 0.9912,
1.5, 4. Assume the boundary conditions &t=0)=0;
d6/dt(t=0)=0; m=I=F=1; g=o.

See forced Pendulum.nb.



Second order Runge-Kutta (RK2) method

Consider a generic second order differential
equation.

[t can be numerically solved using second order
Runge-Kutta method. First, split the second order DE
into two first order parts:

u( x dv ( X
NIt S

d x d x




Algorithm

Set boundary conditions: u(x=x,)=u,, u’(x=x_)=v(x=x_)=v,.

~ 1
calculate U =U +—VAX
2
. 1 -
calculate v=v +—G(u)Ax
2
calculate U.,, = U, + VAX

1+1

~

calculate Vi,, =V, + G (u)Ax

1+1



Translating the SK2 algorithm into the case of
simple pendulum
du

2
) oy Sm=-Lew XD 99
dx’ | dt [
du (X do (t
v(x)= ) o(t) = )
dx dt
dV(X)ZG(u) do(t)  90(1)
I . it
Set boundar)j conditions: Set boundary conditions:
u(x=xo)=uo, u (X=XO)=V(X=XO)=VO @(t=to)= 90, & (t=to)=a)(t=to)=a)o
- 1 - 1
Uu=u; + —V;AX 0 =0 +—wAt
2 2 .
1 1( g@\
V=V +—G(u)Ax 60=60.+_L——JA'[
2 2 l



Exercise: Develop a code to implement SK2
for the case of the simple pendulum.
Boundary conditions: «(o)- \E“’(O):O

See pendulum RK2.nb



http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1415SEM2/notes/pendulum_RK2.nb

Translating the SK2 algorithm into the case of
damped pendulum

2
dzu(x) d H(t):_ﬁ_qd_e
2 o) dt? l dt
X
du(x do (t
RNIC) N0
dx dt
dv (x) 9 do (1 _ go ~ t
-6 () G(u)=-T0m-ao " —ae(l)
Set boundar)j conditions: Set boundary conditions:
u(x=xo)=uo, u (X=XO)=V(X=XO)=VO @(t=to)= 90, & (t=to)=a)(t=to)=a)o
- 1
- 1 0 =0 +—ow At
u=u, + —V,AX P,
2 ( g - )
o, — —0 (t)At
o I N LIRS IC Y
V=V +—G(Uu)Ax o =0 +—|-—0({)-qo At= o =
2 ZL | J S
i L + , thJ
Uj,; = Uj + VAX 0. = 0, + @A
) (g0 -)
Vi,g =V, + G (u)Ax wi+1=mi+L———qa)JAt



Exercise:
Develop a code to implement SK2 for the case of a
pendulum experiencing a drag force, with damping

coefficient g=0.1* (4Q2), Q=,/g/l, [ = 1.0 m.
Boundary conditions: 6(0) = 0.2; w(t = 0) = 0;

See pendulum RK2.nb



http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1415SEM2/notes/pendulum_RK2.nb

Exercise:

Develop a code to implement SK2 for the case of a
forced pendulum experiencing no drag force but a
driving forceFpsin(Q2pt), Q=/g/l,1 = 1.0 m,
m=1kg; Fp= 1N; Qp=0.99 Q;

Boundary conditions: 6(0) = 0.0; w(t = 0) = 0;

d%o g do Fpsin(Qt)
=-—0-qQ—+
dt’ I dt m |




Exercise: Stability of the total
energy a SHO in RKa2.

W = i—f, angular velocity. M=1kg; [=1m.

The total energy of the SHO 1n can be calculated as

{

1 5 5 e
zgmf ., | +mg{l—[l—7ﬂﬂ

I oo 1 2
=—ml ®, ,~ +—mglo-,

E. =K. +U., :%m(/a}f+1 )2 +mgf(l—cos 9,-“)

User your RK2 code to track the total energy for ¢t running
from t=o till t=25T; T=,/g/l. Boundary conditions: « (0) - \/?:;9 (0)=0
E; should remain constant throughout all ¢;.



Exercise: Develop a RK2 code for
planetary motion in polar
coordinates y




Velocity verlet algorithm
for solving the Newton
second law



Newton’s second law

*Given a position-dependent force acting on
a particle, F(r), Newton second law
determines the acceleration of a particle, a.

d?r/dt’= F(r)/m
*This is a second order differential equation.

*Given F(r), we wish to know what are the
subsequent evolution of r(t), v(t) beginning
from the boundary values of r(0), v(0).

*Previously we solve the second order DE
using RK2 to obtain r(t), v(t).



Verlet algorithms

*The equation d?r/dt*=F(r)/m can be integrated
to obtain r(t), v(t), via a numerical scheme:
Verlet algoritm

*Three types: ordinary Verlet, velocity Verlet,
leap frog verlet.

*In the following, we shall denote the RHS as
F(r)/m — a
So that d?r/dt>=F(r)/m
l
d’r/dt’= a
*See http://en.wikipedia.org/wiki/Verlet integration



http://en.wikipedia.org/wiki/Verlet_integration

Velocity Verlet algorithm

1. Calculate:
T(t + At) = T(t) + 0(t) At + L a(t) At?
2. Derive a(t + At) from the interaction
potential using (t 4+ At)
3. Calculate:
o(t + At) = 0(t) + 5 (@(t) + a(t + At)) At
Note, however, that this algorithm assumes that
acceleration a(t 4+ At) only depends on position
T(t + At), and does not depend on velocity
u(t + At).



Global error in velocity Verlet algorithm

*The global (cumulative) error in x over a
constant interval of time is given by

Ax ~ O(At?)

*Because the velocity is determined in a non-
cumulative way from the positions in the
Verlet integrator, the global error in velocity
is also

Av ~ O(At?)



Exercise: SHO

*Solve for x(t), v(t), for a simple harmonic
oscillator with constant k, mass m, initial
displacement x,, and velocity v, =0, using
velocity Verlet algorithm.

*For SHO, F = -kx = a = -(k/m)x

d%x/dt? = -(k/m)x

See verlet algorithm samples.nb



http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1415SEM2/notes/verlet_algorithm_samples.nb

Exercise: 2D free-fall projectile

*Solve for x(t), y(t), v(t) of a 2D free-fall projectile
with initial speed v,=0 and launching angle 6,
using velocity Verlet algorithm.

*For 2D projectile motion, F = —mgy + 0X.
a=F/m
ax+ay=0x—gy
d?x/dt?x+ d?y/dt’X= —g7y
= d?x/dt? =0, d?%y/dt?=—g

See verlet algorithm samples.nb



http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1415SEM2/notes/verlet_algorithm_samples.nb

Exercise: Scattering of a projectile charge
via Coulomb force

)

. kqQ ~ _ kqQ .
F=Fr = r = —
(x—x0)*+(y—Yyq)* R?
‘.
,//’/ ....... rq — (x, y)
(projectile, with mass m)
r—r
= — = N — { L
R=(r, - ro)=R7,7 o
Q(Fixed)
1o = (X ¥o)
o
- X




Notation for scattering of a projectile
charge via Coulomb force

Ty = (XQ’yQ); r,=(xY)

X r —r
OF — k ZqQ - s 7’,\. — q Q
(x—x@)*+(y-vq) [r, — 1l
=
1 ~ k qQ N o~ A%y
oq =—F .-V = Ty =—
Y m y m (x—xg)*+(y—yq)*? y dt?
1 ~ k qQ ~ A~ d%x
ea =—F - -Xx = Y e X = —,
X m m (x—xg)*+(y—yq)*? dt?



The equations required by Verlet

algorithm

[r, — 1l

*To = (xQ’YQ); r,=(xY) =

d’y _ kqQ 7y
dt? m (x—xg)?+(-yg)?

AN AN

@_kqQ reXx
dt2  m (x —x9)%2+(y —y)?

See verlet algorithm 2D coulomb_scatterings.nb



http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1415SEM2/notes/verlet_algorithm_2D_coulomb_scatterings.nb

Stérmer-Verlet integration
algorithm

Xni1 = 2Xp — Xp_q1 + Ay (At)*

1})n+1 — (fn+1_fn)/At

* Another variant of Verlet algoritm

» Use this for integrating dynamical system with
a velocity-dependent acceleration, such as
Lorentz force on a moving charge particle.

» The cumulative error in the velocity is larger
than that in velocity Verlet algorithm



Exercise: Charge moving in a
magnetic field

* A charge (mass m and charge q) moving with velocity v
=(v,, V,,, V,) in a magnetic field B=(B,, B, B,) experiences a
velocity-dependent Lorentz force F=(F,, F,, F,) = q v x B.
Develop a code based on the Stormer-Verlet integration
algorithm to simulate the dynamical path of the charge
particle moving through the magnetic field. Assume: g=+1
unit, mass m = 1 unit, initially located at (0,0,0), initial
velocity (v, Vo, Vo)r Vo=V0,=0.1 unit, vy, =0.05 unit,

B=(0, O, B,), B,= 0.1 unit. You should see a helical
trajectory circulating about the z-direction.

everlet_algorithm_ 3D coulomb helix.nb



