
Chapter 9

Solving Second order 
differential equations 

numerically, 2



Online lecture materials
•The online lecture notes by Dr. Tai-Ran 
Hsu of San José State University, 

http://www.engr.sjsu.edu/trhsu/Chapt
er%204%20Second%20order%20DEs.p
df

provides a very clear explanation of the 
solutions and applications of some 
typical second order differential 
equations.

http://www.engr.sjsu.edu/trhsu/Chapter 4 Second order DEs.pdf










DSolve

•DSolve of Mathematica can 
provide analytical solution to a 
generic second order differential 
equation. See 
Math_built_in_2ODE.nb.

http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1415SEM2/notes/Math_built_in_2ODE.nb


Typical second order, non-homogeneous 
ordinary differential equations
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Typical second order, non-homogeneous 
ordinary differential equations

n(x)



Guess:

After some algebra





Simple Harmonic pendulum as a special 
case of second order DE

Equation of motion (EoM)

Force on the pendulum

The period of the SHO is 
given by
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Simple Harmonic pendulum as a special 
case of second order DE (cont.)

𝑑2𝜃(𝑡)

𝑑𝑡2
= −

𝑔𝜃

𝑙

𝑥 ≡ 𝑡
𝑢 𝑥 ≡ 𝜃(t)

𝑎 ≡ 0

𝑏 ≡
𝑔

𝑙
𝑛(𝑥) ≡ 0

n(x)



Simple Harmonic pendulum as a special 
case of second order DE (cont.)

Analytical solution:

𝑑2𝜃(𝑡)

𝑑𝑡2
= −

𝑔𝜃

𝑙

Ω = 𝑔/𝑙 natural frequency of the pendulum; 
𝜃0 and 𝜙 are constant determined by boundary conditions



For a pendulum, instantaneous velocity v = wl = l (dq/dt)

Hence, fd = - kl (dq/dt). 

The net force on the forced pendulum along the 
tangential direction

Drag force on a moving object, fd = - kv

fd

l

- kl (dq/dt). 
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Simple Harmonic pendulum with drag 
force as a special case of second order DE
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Simple Harmonic pendulum with drag force 
as a special case of second order DE (cont.)

𝑥 ≡ 𝑡
𝑢 𝑥 ≡ 𝜃(t)

𝑎 ≡ 𝑞

𝑏 ≡
𝑔

𝑙
𝑛(𝑥) ≡ 0 fd
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Analytical solution
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Underdamped regime (small damping). Still oscillate, 
but amplitude decay slowly over many period before 
dying totally.
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Overdamped regime (very large damping), decay slowly 
over several period before dying totally. q is dominated 
by exponential term.
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q t

t C t eq q


 

Critically damped regime, intermediate between 
under- and overdamping case. 
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See 2ODE_Pendulum.nb where 
DSolve solves the three cases of a 
damped pendulum analytically. 

http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1415SEM2/notes/2ODE_Pendulum.nb


Adding driving force to the damped 
oscillator: forced oscillator

- kl (dq/dt) + FD sin(Dt)
D frequency of 
the applied force
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Analytical solution
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Forced oscillator: An example of 
non homogeneous 2nd order DE
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𝑥 ≡ 𝑡
𝑢 𝑥 ≡ 𝜃(t)

𝑎 ≡ 𝑞

𝑏 ≡
𝑔

𝑙

𝑛 𝑥 ≡
𝐹𝐷sin 𝛺𝐷𝑡

𝑚𝑙

n(x)



Exercise: Forced oscillator
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Use DSolve to solve the forced oscillator. Plot on the same 
graph the analytical solutions of q(t) for t from 0 to 10 T , 

where T= 2/𝛺, 𝛺 = 𝑔/𝑙, for 𝛺𝐷 = 0.01𝛺, 0.5𝛺, 0.99𝛺, 

1.5𝛺, 4𝛺. Assume the boundary conditions q(t=0)=0; 
dq/dt(t=0)=0; m=l=FD=1; q=0. 

See forced_Pendulum.nb.



Second order Runge-Kutta (RK2) method

Consider a generic second order differential 
equation. 
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It can be numerically solved using second order 
Runge-Kutta method. First, split the second order DE 
into two first order parts: 



Algorithm

1

2
i i

u u v x  

1
( )

2
i

v v G u x  

1i i
u u v x


  

 1i i
v v G u x


  

Set  boundary conditions: u(x=x0)=u0, u’(x=x0)=v(x=x0)=v0. 

calculate

calculate

calculate

calculate



Translating the SK2 algorithm into the case of 
simple pendulum
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Set  boundary conditions: 
u(x=x0)=u0, u’(x=x0)=v(x=x0)=v0
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𝑑2𝜃(𝑡)

𝑑𝑡2
= −

𝑔𝜃

𝑙
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Set  boundary conditions: 
q(t=t0)= q0, q’ (t=t0)=w(t=t0)=w0
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Exercise: Develop a code to implement SK2 
for the case of the simple pendulum. 
Boundary conditions: 

See pendulum_RK2.nb

   0 ; 0 0
g

l
w q 

http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1415SEM2/notes/pendulum_RK2.nb


Translating the SK2 algorithm into the case of 
damped pendulum
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Set  boundary conditions: 
u(x=x0)=u0, u’(x=x0)=v(x=x0)=v0
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Set  boundary conditions: 
q(t=t0)= q0, q’ (t=t0)=w(t=t0)=w0
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Exercise:
Develop a code to implement SK2 for the case of a 
pendulum experiencing a drag force, with damping 

coefficient q= 0.1* (4),  𝑔/𝑙, 𝑙 = 1.0 m. 
Boundary conditions: θ 0 = 0.2; 𝜔 𝑡 = 0 = 0;

2

2

d g d
q

l d td t

q q
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See pendulum_RK2.nb

http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1415SEM2/notes/pendulum_RK2.nb


Exercise:
Develop a code to implement SK2 for the case of a 
forced pendulum experiencing no drag force but a 

driving force𝐹𝐷sin 𝛺𝐷𝑡 ,  𝑔/𝑙, 𝑙 = 1.0 m, 
m=1kg; 𝐹D= 1N; ΩD=0.99 ;
Boundary conditions: θ 0 = 0.0;𝜔 𝑡 = 0 = 0;
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Exercise: Stability of the total 
energy a SHO in RK2.

𝜔 =
𝑑𝜃

𝑑𝑡
, angular velocity. M=1kg; l=1m. 

User your RK2 code to track the total energy for t running 

from t=0 till t=25T; T= 𝑔/𝑙. Boundary conditions: 
𝐸𝑖 should remain constant throughout all 𝑡𝑖. 
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Exercise: Develop a RK2 code for 
planetary motion in polar 
coordinates
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𝑑2𝑟

𝑑𝑡2
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Velocity verlet algorithm
for solving the Newton 

second law



Newton’s second law

•Given a position-dependent force acting on 
a particle, F(r), Newton second law 
determines the acceleration of a particle, a. 

d2r/dt2= F(r)/m
•This is a second order differential equation.
•Given F(r), we wish to know what are the 
subsequent evolution of r(t), v(t) beginning 
from the boundary values of r(0), v(0).
•Previously we solve the second order DE 
using RK2 to obtain r(t), v(t). 



Verlet algorithms
•The equation d2r/dt2=F(r)/m can be integrated 
to obtain r(t), v(t), via a numerical scheme: 
Verlet algoritm

•Three types: ordinary Verlet, velocity Verlet, 
leap frog verlet.

•In the following, we shall denote the RHS as 

F(r)/m → a

So that d2r/dt2=F(r)/m

↓

d2r/dt2= a

•See http://en.wikipedia.org/wiki/Verlet_integration

http://en.wikipedia.org/wiki/Verlet_integration


Velocity Verlet algorithm



Global error in velocity Verlet algorithm

•The global (cumulative) error in x over a 
constant interval of time is given by

Δ𝑥 ~ O(Δt2)

•Because the velocity is determined in a non-
cumulative way from the positions in the 
Verlet integrator, the global error in velocity 
is also 

Δv ~ O(Δt2)



Exercise: SHO

See verlet_algorithm_samples.nb

•Solve for x(t), v(t), for a simple harmonic 
oscillator with constant k, mass m, initial 
displacement x0, and velocity v0 =0, using 
velocity Verlet algorithm. 

•For SHO, F = -kx ⇒ a = -(k/m)x

d2x/dt2 = -(k/m)x

http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1415SEM2/notes/verlet_algorithm_samples.nb


Exercise: 2D free-fall projectile

See verlet_algorithm_samples.nb

•Solve for x(t), y(t), v(t) of a 2D free-fall projectile 
with initial speed v0=0 and launching angle q0
using velocity Verlet algorithm.

•For 2D projectile motion, 𝑭 = −𝑚𝑔 𝑦 + 0 𝑥.

a = 𝑭/m

ax  𝑥 + ay  𝑦 = 0 𝑥 − 𝑔 𝑦

d2x/dt2  𝑥+ d2y/dt2  𝑥= −𝑔 𝑦

⇒ d2x/dt2 = 0,      d2y/dt2 = −𝑔

http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1415SEM2/notes/verlet_algorithm_samples.nb
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R=(rq – rQ)=R  𝑟,  𝑟 =
𝒓q−𝒓𝑄
𝒓q−𝒓𝑄

q

F=F  𝑟 =
𝑘𝑞𝑄
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2  𝑟 =
𝑘𝑞𝑄

𝑅2
 𝑟

(projectile, with mass m)

(Fixed)

Exercise: Scattering of a projectile charge 
via Coulomb force

𝒓𝑞 = (𝑥, 𝑦)

𝒓𝑄 = 𝑥𝑄,𝑦𝑄



Notation for scattering of a projectile 
charge via Coulomb force

•𝒓𝑄 = 𝑥𝑄,𝑦𝑄 ; 𝒓q = (𝑥, 𝑦)

•𝑭 = 𝑘
𝑞𝑄

(𝑥−𝑥𝑄)
2+(𝑦−𝑦𝑄)

2  𝑟;

•⇒

•𝑎𝑦 =
1

𝑚
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𝑑2𝑦

𝑑𝑡2
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•𝑎𝑥 =
1

𝑚
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.

 𝑟 =
𝒓q − 𝒓𝑄
𝒓q − 𝒓𝑄



The equations required by Verlet
algorithm

•𝒓𝑄 = 𝑥𝑄,𝑦𝑄 ; 𝒓q = (𝑥, 𝑦)

𝑑2𝑦

𝑑𝑡2
=

𝑘𝑞𝑄

𝑚

 𝑟∙  𝑦

(𝑥−𝑥𝑄)
2+(𝑦−𝑦𝑄)

2
,

𝑑2𝑥

𝑑𝑡2
=
𝑘𝑞𝑄

𝑚

 𝑟 ∙  𝑥

(𝑥 − 𝑥𝑄)2+(𝑦 − 𝑦𝑄)2

See verlet_algorithm_2D_coulomb_scatterings.nb

 𝑟 =
𝒓q − 𝒓𝑄
𝒓q − 𝒓𝑄

http://www2.fizik.usm.my/tlyoon/teaching/ZCE111/1415SEM2/notes/verlet_algorithm_2D_coulomb_scatterings.nb


Störmer-Verlet integration 
algorithm

 𝑥𝑛+1 = 2  𝑥𝑛 −  𝑥𝑛−1 +  𝑎𝑛 ∆𝑡 2

 𝑣𝑛+1 = (  𝑥𝑛+1− 𝑥𝑛)/∆𝑡

• Another variant of Verlet algoritm
• Use this for integrating dynamical system with 

a velocity-dependent acceleration, such as 
Lorentz force on a moving charge particle. 

• The cumulative error in the velocity is larger 
than that in velocity Verlet algorithm



Exercise: Charge moving in a 
magnetic field 

•A charge (mass m and charge q) moving with velocity v 
=(vx, vy , vz) in a magnetic field B=(Bx, By , Bz) experiences a 
velocity-dependent Lorentz force F=(Fx, Fy , Fz) = q v × B. 
Develop a code based on the Störmer-Verlet integration 
algorithm to simulate the dynamical path of the charge 
particle moving through the magnetic field. Assume: q=+1 
unit, mass m = 1 unit, initially located at (0,0,0), initial 
velocity (v0x,v0y, v0z), v0x=v0y=0.1 unit, v0z =0.05 unit,       
B=(0, 0, Bz), Bz = 0.1 unit. You should see a helical 
trajectory circulating about the z-direction.

•verlet_algorithm_3D_coulomb_helix.nb


