ZCE 111 Assignment 13

Q1: Coulomb charge scattering in 3D

Develop a code based on velocity Verlet algorithm (see the sample code <u>verlet_algorithm_2D_coulomb_scatterings.nb</u> as a reference) to simulate the scattering process of a fixed charge Q = +1 unit, located at $(r_{20}\sin\theta_2\sin\phi_2, r_{20}\cos\phi_2, r_{20}\sin\theta_2\cos\phi_2)$, by a moving charge q=+1 unit (with mass m=1 unit), initially located at (0,0,0), and is shooting towards Q with an initial speed $v_0=1$ unit. In your simulation, set $k = \frac{1}{4\pi\epsilon_0} = 1$, r20= 1 unit, $\theta_2 = \phi_2 = 45^\circ$.

Q2: Charge moving in a magnetic field

A charge (mass m and charge q) moving with velocity $\mathbf{v} = (v_x, v_y, v_z)$ in a magnetic field $\mathbf{B}=(B_x,B_y,B_z)$ experiences a velocity-dependent Lorentz force $\mathbf{F} = (F_x, F_y, F_z) = q \mathbf{v} \times \mathbf{B}$. Develop a code based on the Störmer-Verlet integration algorithm to simulate the dynamical path of the charge particle moving through the magnetic field. Assume: q=+1 unit, mass m=1 unit, initially located at (0,0,0), initial velocity (v_{0x}, v_{0y}, v_{0z}) , $v_{0x} = v_{0y} = 0.1$ unit, $v_{0z} = 0.05$ unit, **B**=(0, $0, B_z, B_z = 0.1$ unit. You should see a helical trajectory circulating about the z-direction.

(my code: verlet_algorithm_3D_coulomb_helix.nb)