ZCE 111 Assignment 8

Write a code to implement bisection method so that, given any continuous function f(x), it can

(i) Count the number of roots in a domain [a,b].

(ii) Evaluate each of these roots one by one in sequence.

Try your code on the following functions

```
(i) f(x) = e^x - x - 2, for all x.
```

(ii) $f(x) = x^3 + 2x^2 - 3x - 1$, for all x

(iii) $f(x) = (1/x) \sin x$, for $-3\pi \le x \le 3\pi$.

(iv) $f(x) = \tan(\pi x) - x - 6$, for $-3\pi \le x \le 3\pi$.

Use ε = 0.001. You code is suppose to be able to find out the roots in all the functions automatically and without manual intervention.

Repeat Q1 for Newton-Ralpson method.

Given the functions f and g, find all the points (x,y) at which both curves intersect. Method: Mathematica built-in functions FindRoot or Nsolve. You should display these function before finding their roots.

• $f(x) = (1/x) \sin(x)$, $g(x) = (1/x) \sin(x - 1.45 \pi)$, for all $-3\pi \le x \le 3\pi$.

Consider the function $f(x) = x \sin(4x)$ for the interval $-4\pi \le x \le 4\pi$, and a horizontal line y(x)=h.

- Plot the functions on the same graph for any given value of real *h*.
- Write a Mathematica code that automatically counts the number of points, N, the y(x)=h line intersect with f(x) for any given real value of h.
- Hence, plot the number of intersection *N* as a function of *h* for all real value of *h*.